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Abstract: We introduce a two-strain model with asymmetric temporary immunity periods and par-
tial cross-immunity. We derive explicit conditions for competitive exclusion and coexistence of the
strains depending on the strain-specific basic reproduction numbers, temporary immunity periods, and
degree of cross-immunity. The results of our bifurcation analysis suggest that, even when two strains
share similar basic reproduction numbers and other epidemiological parameters, a disparity in tempo-
rary immunity periods and partial or complete cross-immunity can provide a significant competitive
advantage. To analyze the dynamics, we introduce a quasi-steady state reduced model which assumes
the original strain remains at its endemic steady state. We completely analyze the resulting reduced
planar hybrid switching system using linear stability analysis, planar phase-plane analysis, and the
Bendixson-Dulac criterion. We validate both the full and reduced models with COVID-19 incidence
data, focusing on the Delta (B.1.617.2), Omicron (B.1.1.529), and Kraken (XBB.1.5) variants. These
numerical studies suggest that, while early novel strains of COVID-19 had a tendency toward dramatic
takeovers and extinction of ancestral strains, more recent strains have the capacity for co-existence.
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1. Introduction

Since the start of the COVID-19 pandemic, compartmental differential equation-based mathemati-
cal models have played an instrumental role in informing public health decisions. Early on, modeling
efforts focused on forecasting and evaluating the efficacy of non-pharmaceutical interventions such
as lockdowns [1, 2], school closures [3, 4], contact tracing [5, 6], and face mask utilization [7, 8].
Following the rapid development of effective vaccines and antiviral treatments, the emphasis shifted
to modeling pharmaceutical measures, such as estimating the effects of different vaccine distribution
strategies [9, 10], evaluating vaccine efficacy [11, 12], and assessing waning vaccine immunity [13].
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Despite the unprecedented global effort to eradicate COVID-19, however, the disease has continued to
spread widely and is now widely considered to be endemic in the global population.

A significant factor in this continuing spread has been the emergence of variants, such as Delta
(B.1.617.2), Omicron (B.1.1.529) and the Omicron subvariant Kraken (XBB.1.5), which were reported
as the most transmissible strains at the time. Transmissibility, however, is only one of several factors,
including vaccine-resistance, diagnostic evasion, and cross-immunity, which cumulatively determine
whether emerging strains exhibit competitive exclusion or coexistence with the circulating ancestral
strains. Competitive exclusion, where one strain drives the others to extinction, has been observed
with the Delta and Omicron waves during the COVID-19 pandemic, where earlier strains were largely
eradicated over the course of several months. Indeed, such dramatic takeovers are expected during
the beginning of a pandemic by a novel virus as it is rapidly mutating and exploring its evolutionary
fitness. As COVID-19 transitions from a pandemic to endemic infection, however, it is anticipated that
we will see multiple co-existing strains circulating in a given year, akin to seasonal influenza [14].

Mathematically, it has been common to account for multiple strains in an SIR-type (Susceptible-
Infectious-Removed) model of infectious disease spread [15] by dividing the infectious class between
several competing and non-overlapping strains. The roots of this research can be found in several
areas, including the study of viruses such as influenza, bacterial infections and parasites [16–19]. For
many basic SIR-type models extended to multiple strains, the only possibility is competitive exclusion
[16, 20–22]. However, there are several mechanisms known to facilitate coexistence, including co-
infection, cross-immunity, seasonal variations and age-stratification of infectious [23]. In the context
of COVID-19, several studies have demonstrated the capacity of coexistence in certain cases, such
as utilizing different force of infection terms [24, 25] and strain-specific vaccination [14], and cross-
immunity [13]. Understanding the capacity of a multistrain model to exhibit competitive exclusion or
coexistence remains challenging, however, due to the high-dimensionality of the associated models.

In this paper, we introduce a two-strain model which incorporates asymmetric temporary immu-
nity periods and partial cross-immunity. We determine explicit conditions for competitive exclusion
and coexistence of the two strains based on the basic reproduction numbers, the temporary immu-
nity period durations and the degree of cross-immunity. To address the challenges of analyzing the
dynamics of multistrain models, we further introduce a dimension-reducing modeling framework for
analyzing the emergence of new strains of a virus. In our method, we assume that the original strain
is endemic in the population and remains at a steady state throughout the evolution of the new strain.
This allows the dynamics of the emerging strain to be reduced while closely capturing the dynamics
and long-term behavior of the full model. The method is based on the quasi-steady state approxima-
tion (QSSA), which is extensively used in the study of biochemical reaction networks to justify the
Michaelis-Menten [26, 27] and Hill [28] rate forms. More broadly in mathematical biology, the use of
the QSSA is more limited but includes application to a two-strain tuberculosis model [29], parasite-host
models [30], cancer therapy [31], vector-borne illnesses [32] and a two-strain dengue fever model [33].
We validate the models by parameter-fitting to COVID-19 incidence data in the United States across
multiple strains, including the Delta, Omicron and Kraken variants. The results suggest that differ-
ences in the temporary immunity periods and partial cross-immunity are sufficient to account for the
dramatic shifts in variant proportions we have seen during the course of the COVID-19 pandemic.
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2. Main results

2.1. Basic two-strain model

Consider the following two-strain compartmental model constructed after the classical SIR
(Susceptible-Infectious-Removed) model introduced by Kermack and McKendrick in 1927 [15]:

Infectious
Original Strain

(I1)

Immune
Original Strain

(R1)

Susceptible
(S )

Immune
Emerging Strain

(R2)

Infectious
Emerging Strain

(I2)

γ1

σ1β1

β2σ2

γ2

(2.1)

In the model (2.1), we allow each strain to infect a common pool of susceptible individuals at different
rates (β1 and β2, respectively, for the original and emerging strain). We also allow each strain to exhibit
different mean infection periods (γ−1

1 and γ−1
2 ) and different mean temporary immunity periods (σ−1

1
and σ−1

2 ). We do not allow co-infection and assume complete cross-immunity so that individuals catch
one strain at a time and completely recover before they are capable of being infected by either strain
again. The model (2.1) is a special case of those considered in [21, 22].

The model (2.1) can be corresponded to the following system of ordinary differential equations:

dS
dt

= −
S
N

(β1I1 + β2I2) + σ1R1 + σ2R2,

dI1

dt
=
β1

N
S I1 − γ1I1,

dI2

dt
=
β2

N
S I2 − γ2I2,

dR1

dt
= γ1I1 − σ1R1,

dR2

dt
= γ2I2 − σ2R2.

(2.2)

Note that the Eqs (2.2) imply that the total population is constant, i.e., N = S + I1+R1+ I2+R2. Setting
S = N − I1 − R1 − I2 − R2, we reduce the system to:

dI1

dt
=
β1

N
(N − I1 − R1 − I2 − R2)I1 − γ1I1,

dI2

dt
=
β2

N
(N − I1 − R1 − I2 − R2)I2 − γ2I2,

dR1

dt
= γ1I1 − σ1R1,

dR2

dt
= γ2I2 − σ2R2.

(2.3)

It can be easily computed that the system (2.2) only permits the following steady states, where x =

(S , I1,R1, I2,R2):

x0 = (N, 0, 0, 0, 0) (2.4)

x1 =

(
Nγ1

β1
,

Nσ1(β1 − γ1)
β1(γ1 + σ1)

,
Nγ1(β1 − γ1)
β1(γ1 + σ1)

, 0, 0
)

(2.5)
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x2 =

(
Nγ2

β2
, 0, 0,

Nσ2(β2 − γ2)
β2(γ2 + σ2)

,
Nγ2(β2 − γ2)
β2(γ2 + σ2)

)
(2.6)

The disease free steady state x0 exists for all parameter values, while the original strain only steady
state x1 is physically relevant if and only if β1 > γ1 and the emerging strain only steady state x2 is
physically relevant if and only if β2 > γ2. The system does not have the capacity for a coexistence
steady state, i.e., a steady state x12 with I1 > 0 and I2 > 0.

2.2. Basic reproduction number

The basic reproduction number of a disease, denoted R0, is one of the most important and well-
studied parameters in the study of infectious disease spread. Intuitively, it corresponds to the expected
number of secondary infections produced by a single primary infection in a fully susceptible population
[34]. Consequently, an infectious disease has the capacity to infiltrate a population if and only if
R0 > 1. For multi-strain models like (2.1), however, we are also interested in the capacity of an
individual strain to infiltrate a population, either in the absence or presence of other strains. Following
the notation of [35], we let the basic reproduction number of strain i in the absence of other strains
be denoted by Ri, and the basic reproduction number of strain i in the presence of strain j be denoted
by Ri j. The threshold Ri > 1 suggests that strain i has the capacity to infiltrate the population in the
absence of other strains, while the condition Ri j > 1 suggests that strain i has the capacity to infiltrate
a population already infected at a steady level with strain j.

For compartmental differential equations models, the next-generation method can be used to cal-
culate the basic reproduction numbers [35–39] (see Appendix A for details). For the basic two-strain
model (2.3), the next generation method gives the parameters (see Appendix A.1 for details):

R1 =
β1

γ1
,R2 =

β2

γ2
,R12 =

R1

R2
,R21 =

R2

R1
, and R0 = max{R1,R2}.

It follows from Ri > 1, i = 1, 2, that strain i has the capacity to infiltrate a disease-free population only
if βi > γi, and from R0 = max{R1,R2} > 1 that the disease will infiltrate the population if at least one
strain is able to infiltrate. The condition Ri j > 1 suggests the strain i has the capacity to infiltrate a
population already infected with strain j if Ri > R j, i.e., its basic reproduction number must be strictly
higher than that of the other strain.

It is furthermore known from the results of [21, 22] that: (a) the disease free steady state x0 (2.4)
is stable if R1 < 1 and R2 < 1; (b) the original strain only steady state x1 (2.5) is stable if R1 > 1
and R1 > R2; and (c) the emerging strain only steady state x2 (2.6) is stable if R2 > 1 and R2 > R1.
Which individual strains survives is only dependent on the relative values of the basic reproduction
numbers R1 and R2. Ultimately, the more contagious strain will infiltrate the population and eliminate
the other strain; coexistence of strains is not permitted in the long-term dynamics.
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2.3. Full asymmetric temporary immunity periods and partial cross-immunity model

We now extend the two-strain model (2.1) to include asymmetric temporary immunity periods and
partial cross-immunity:

Infectious
Original Strain

(I1)

Immune
Original Strain

(R1)

Susceptible
(S )

Immune
Emerging Strain

(R2)

Infectious
Emerging Strain

(I2)

γ1

σ1

β2

β1

β2

β1(1 − ϵ)
σ2

γ2

(2.7)

In the model (2.7), we assume individuals in the temporary immunity states R1 and R2 can only be
infected by the other strain. Those recovered from the original strain (R1) are infected by the emerging
strain at the same rate as susceptible individuals (S ); however, those recovered from the emerging
strain (R2) are provided with partial protection from catching the original strain. This asymmetric
cross-immunity can occur when the antibodies produced from infection by the emerging strain are
sufficient protection against the original strain, but not the other way around. The degree of cross-
immunity is tuned by the parameter 0 ≤ ϵ ≤ 1, with ϵ = 0 corresponding to no cross-immunity, and
ϵ = 1 corresponding to complete cross-immunity.

Note that we have opted not to include in (2.7) a latency period, which is often incorporated in the
form of an exposed class of individuals. The decision to not include a latency period was made for
mathematical tractability and to allow us to focus on other key aspects of the disease dynamics, such
as transmission rates, immunity periods and the impact of emerging variants. While the latency period
is an important component of the disease process, its omission does not significantly alter the general
dynamics of the model leading to similar results for the reproduction numbers [22, 39]. However, we
note that the latency period plays a role in the understanding of disease transmission and can influence
the effectiveness of control measures, such as testing and lockdown protocols.

We utilize the following system of ODEs to model the time evolution of the full model (2.7):

dS
dt

= −
S
N

(β1I1 + β2I2) + σ1R1 + σ2R2,

dI1

dt
=
β1

N
I1(S + (1 − ϵ)R2) − γ1I1,

dI2

dt
=
β2

N
I2(S + R1) − γ2I2,

dR1

dt
= γ1I1 − σ1R1 −

β2

N
R1I2,

dR2

dt
= γ2I2 − σ2R2 −

β1

N
(1 − ϵ)R2I1.

(2.8)

Substituting S = N − I1 − R1 − I2 − R2 into (2.8), we obtain the following equivalent system of ODEs:
dI1

dt
=
β1

N
(N − I1 − R1 − I2 − ϵR2)I1 − γ1I1,

dI2

dt
=
β2

N
(N − I1 − I2 − R2)I2 − γ2I2,

dR1

dt
= γ1I1 − σ1R1 −

β2

N
R1I2,

dR2

dt
= γ2I2 − σ2R2 −

β1

N
(1 − ϵ)R2I1.

(2.9)
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The analysis of (2.9) is more complicated than that of (2.3). Nevertheless, it can be easily checked
that the three steady states of (2.3) from Section 2.1, (2.4)–(2.6), are also steady states of (2.9). The
basic reproductive numbers listed below (2.10) can be determined by using the next generation method
[35] (see Appendix A.2 for details):

R1 =
β1

γ1
,R2 =

β2

γ2
,R12 =

R1

R2

(
(1 − ϵ)β2 + ϵγ2 + σ2

γ2 + σ2

)
,R21 =

R2

R1

(
β1 + σ1

γ1 + σ1

)
, and R0 = max{R1,R2}.

(2.10)
The condition R21 > 1, required for the emerging strain to infiltrate a population already infected at

an endemic level with the original strain, can be intuitively interpreted by considering limiting cases.
If the original strain has a short temporary immunity period (i.e., σ1 → ∞, σ−1

1 → 0), the emerging
strain needs to be more contagious than the original strain to gain a foothold in the population (R2 >

R1). This is due to the emerging strain constantly having to compete with the original strain for new
infections. If the original strain has a longer temporary immunity period (i.e., σ1 → 0, σ−1

1 → ∞),
however, the emerging strain only needs to be able to sustain itself in the population on its own to
survive (R2 > 1). This is due to the emerging strain having exclusive ability to infect those who have
previously been infected with the original strain.

Table 1. Variables and parameters for the full model (2.9) and reduced model (2.13).

Variable Units Description
S ≥ 0 people Susceptible individuals
Ii ≥ 0 people Infectious individuals (ith strain)
Ri ≥ 0 people Temporarily immune individuals (ith strain)
t ≥ 0 days Time elapsed
Parameter Units Description
βi ≥ 0 days−1 Transmission rate (ith strain)
γ−1

i ≥ 0 days Infectious period (ith strain)
σ−1

i ≥ 0 days Temporary immunity period (ith strain)
0 ≤ ϵ ≤ 1 — Degree of cross-immunity
R0 ≥ 0 — Basic reproduction number of disease
Ri ≥ 0 — Basic reproduction number of strain i
Ri j ≥ 0 — Basic reproduction number of strain i in presence of strain j

Similar intuition holds for the condition R12 > 1 required for the original strain to survive as the
emerging strain infiltrates the population. If the immunity period of the emerging strain is short (i.e.,
σ2 → ∞, σ−1

2 → 0), or the degree of cross-immunity provided by the emerging strain is high (i.e.,
ϵ → 1), then the original strain will survive only if it is more contagious than the emerging strain
(R1 > R2). If, however, the immunity period of the emerging strain is long (i.e., σ2 → 0, σ−1

2 → ∞)
then the original strain will survive only if it can survive on its own (R1 > 1).

Unlike the basic model (2.1), the model (2.7) also allows for a co-existence steady state where both
strains survive and circulate in the population, so long as specific conditions on the basic reproduc-
tion numbers, temporary immunity periods, and degree of cross-immunity are satisfied. This is more
formally stated in the following result, which we prove in Appendix B.
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Theorem 1. The full two-strain model with asymmetric temporary immunity periods and partial cross-
immunity (2.8) has a coexistence steady state (i.e., x12 = (S , I1,R1, I2,R2) with I1 > 0 and I2 > 0) if and
only if min{R1,R2,R12,R21} > 1, where R1,R2,R12, and R21 are the basic reproduction numbers
from (2.10). Furthermore, this coexistence steady state is unique whenever it exists.

2.4. Reduced asymmetric temporary immunity periods and partial cross-immunity model

Although we are able to determine conditions for the existence of four steady states of (2.9), an-
alyzing the dynamics remains difficult to perform directly due to the nonlinearities, four-dimensional
state space and seven undetermined parameters. We are also not able to write down an explicit closed
form for the co-existence steady state. This makes linear stability and bifurcation analysis challenging.

To make analysis of the model’s dynamics more tractable, we perform a model reduction of (2.9).
We are primarily interested in the situation where the original strain has become endemic in the popula-
tion before the emerging strain arrives. This suggests the modeling assumption that the original strain
remains at its endemic steady state throughout the dynamics of the emerging strain. To update the
dynamics of the emerging strain, we substitute the steady state values of I1 and R1 into the dynamical
equations for I2 and R2. This produces a system of two differential equations for the emerging strain
I2 and R2, and two algebraic equations for the original strain I1 and R1. Consequently, we assume that
the first two equations in (2.9) are at steady state. This gives the following system of equations:

β1

N
(N − I1 − R1 − I2 − ϵR2)I1 − γ1I1 = 0,

γ1I1 − σ1R1 −
β2

N
R1I2 = 0.

(2.11)

Solving (2.11) gives rise to the following function, which tracks the steady state level of I1 as a function
of the infection level of I2 and R2:

ω(I2,R2) =


(N(β1 − γ1) − β1I2 − β1ϵR2)(β2I2 + Nσ1)

β1(β2I2 + N(γ1 + σ1))
, if I2 + ϵR2 < N

(
1 −

1
R1

)
0, if I2 + ϵR2 ≥ N

(
1 −

1
R1

)
.

(2.12)

We substitute the steady state function I1 = ω(I2,R2) into (2.9) to get the reduced two-strain with
asymmetric temporary immunity periods and partial cross-immunity model:

dI2

dt
=
β2

N
(N − ω(I2,R2) − I2 − R2)I2 − γ2I2,

dR2

dt
= γ2I2 − σ2R2 −

β1

N
(1 − ϵ)ω(I2,R2)R2.

(2.13)

Notice that (2.13) is a planar system which only depends on the emerging strain (I2 and R2). The
original strain is tracked through the steady state function I1 = ω(I2,R2) (2.12).

Since ω(I2,R2) is a piecewise-defined function, the system (2.13) is a state-dependent switching
system [40]. The dynamics of such systems are more varied than standard dynamical systems but
have been increasingly studied in recent years due to their applications in control theory [41–43]. We
note, in particular, that the right-hand side of (2.13) is continuous everywhere but not differentiable at
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I2 + ϵR2 = N
(
1 −

1
R1

)
. The system (2.13) is planar and consequently its dynamics can be analyzed by

methods such as linear stability analysis, phase-plane analysis, and the Bendixson-Dulac criterion [44].
The method used to reduce (2.9) to (2.13) mirrors that of the quasi-steady state assumption (QSSA).

The QSSA is used when there is a parametrizable time-scale separation between two parts of a process
and has been popularly used in biochemistry to justify the Michaelis-Menten [27] and Hill [28] kinetic
rate functions. This and other asymptotic methods also has been used to reduce models in mathematical
epidemiology and other areas of mathematical biology in order to determine the long-term behavior
of complicated models [29–33, 45–47]. For (2.9) and (2.13), however, we do not assume that there
is a parametrizable time-scale separation between the original and emerging strain; in fact, such an
assumption would be poorly justified for competing strains of COVID-19 as the infectivity and tempo-
rary immunity periods are on similar orders of magnitude. Consequently, we cannot treat the reduced
system (2.13) as a asymptotically limiting case of (2.9). Nevertheless, numerical simulations show that
the full system (2.9) and reduced system (2.13) have comparable dynamics when the full system (2.9)
is assumed to start near the endemic steady state (see Figure 1). We leave further consideration of the
relationship between the behaviors of the full model (2.9) and reduced model (2.13) as future work.

2.5. Reduced model analysis (all parameters)

We now turn our attention to the dynamical behavior of the switching system of differential equa-
tions (2.13). First, we want to ensure that the model is well-behaved and that solutions remain physi-
cally meaningful at all times. This is verified by the following result.

Theorem 2. Solutions to the reduced two-strain model (2.13) starting in the following compact set Λ
exist, are unique, and remain in Λ for all time t ≥ 0:

Λ = {(I2,R2) ∈ R2
≥0 | I2 + R2 ≤ N}. (2.14)

Proof. We first show that Λ (2.14) is a trapping region of (2.13) with three boundaries: I2 = 0, R2 = 0,
and I1 + R2 = N. Consider the boundary I2 = 0. Substituting I2 = 0 into (2.13) gives I′2 = 0. It follows
that the R2-axis is an invariant set. Therefore, no solution may pass through I2 = 0. Next, consider
the boundary R2 = 0. Substituting R2 = 0 into (2.13) gives R′

2 = γ2I2 > 0 for I2 > 0. It follows
that trajectories cannot escape the positive quadrant through R2 = 0. Lastly, consider the boundary
I2 + R2 = N and the function L(t) = I2(t) + R2(t). Along trajectories (I2(t),R2(t)) of (2.9) we have that

L′(t) = I′2(t) + R′
2(t) =

β2

N
(N − ω(I2,R2) − I2 − R2)I2 − σ2R2 −

β1

N
(1 − ϵ)ω(I2,R2)R2

= −
β2

N
ω(I2,R2)I2 − σ2R2 −

β1

N
(1 − ϵ)ω(I2,R2)R2

where we have used the consideration that we are only interested in I2+R2 = N to reduce the first term.
Since ω(I2,R2) ≥ 0 by (2.12), we have that L′(t) < 0 whenever L(t) = N. Consequently, trajectories
starting in the set Λ given by (2.14) remain in Λ, and we are done.

To prove existence and uniqueness with Λ, we note that the vector field (2.13) is continuous in
Λ and that Λ is closed and bounded and therefore a compact set. It follows that the vector field is
Lipschitz continuous within Λ which implies that solutions exist and are unique, and we are done.
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2.6. Reduced model analysis (ϵ = 0 or ϵ = 1)

We now consider the dynamics of (2.13) within the invariant set Λ in the specific cases of ϵ = 0 (no
cross-immunity) and ϵ = 1 (full cross-immunity). Note that the system is planar so that it is sufficient
to consider properties of the nullclines. We have the following result, which we prove in Appendix C.

Theorem 3. Consider the reduced two-strain with asymmetric temporary immunity periods system
(2.13) and basic reproduction numbers R1, R2, R12, and R21 as in (2.10). Suppose that R1 > 1,
R2 > 1, and R21 > 1 and either ϵ = 0 or ϵ = 1. Then the system has the following properties in int(Λ):

1) Vector field: The I2-nullcline is continuous, has a strictly positive R2-intercept, and is strictly de-
creasing, and the R2-nullcline is continuous, intercepts the R2-axis at R2 = 0, and is strictly increas-
ing. Furthermore, the regions bound by the I2- and R2-nullclines have the following directional
properties:

(a) Above the I2- and R2- nullclines, I′2 < 0 and R′
2 < 0.

(b) Above the I2-nullcline and below the R2-nullcline, I′2 < 0 and R′
2 > 0.

(c) Below the I2-nullcline and above the R2-nullcline, I′2 > 0 and R′
2 < 0.

(d) Below the I2- and R2- nullclines, I′2 > 0 and R′
2 > 0.

2) Steady state existence and stability: The I2- and R2-nullclines have a unique intersection, corre-
sponding to a unique positive co-existence steady state (Ī2, R̄2) ∈ int(Λ). This steady state is locally
exponentially stable and the global attractor for trajectories in int(Λ). Furthermore, we have the
following:

(a) If R12 > 1 then 0 < Ī2 + ϵR̄2 < N
(
1 −

1
R1

)
and Ī1 = ω(Ī2, R̄2) > 0.

(b) If R12 < 1 then Ī2 + ϵR̄2 ≥ N
(
1 −

1
R1

)
and Ī1 = ω(Ī2, R̄2) = 0.

Theorem 3 establishes the uniqueness and global stability of a strictly positive steady state when
R1 > 1, R2 > 1, and R21 > 1. It follows that, in these conditions, the emerging strain always has
the capacity to infiltrate and survive in a population. Theorem 3 furthermore defines where that steady
state lies in the state space. The original strain is able to survive as the emerging strain is infiltrating
the population so long as R12 > 1 and will die off otherwise. Although Theorem 3 is only proven
for the cases of ϵ = 0 (no cross-immunity) and ϵ = 1 (full cross-immunity), we conjecture that the
conclusions hold for all values 0 ≤ ϵ ≤ 1.

3. Numerical results

In this Section, we conduct some further analysis on the full and reduced two-strain with asymmetric
temporary immunity period and partial cross immunity models (2.9) and (2.13).

3.1. Vector field plots and numerical simulations

We demonstrate the dynamical behavior of the full model (2.8) and reduced model (2.13) for three
distinct sets of endemic parameters values in Figure 1.
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The planar dynamics of the reduced system (2.13) may be represented with a vector field plot
(Figure 1, upper row). We indicate the I2-nullcline (red), R2-nullcline (blue) and switching line

I2 + ϵR2 = N
(
1 −

1
R1

)
(dashed green). The endemic steady state corresponds to the intersection of

the nullclines. When this intersection is to the left of the green line, we have coexistence (I1 > 0 and
I2 > 0) while when it is to the right we have emerging strain dominant behavior (I1 = 0 and I2 > 0). In
the lower row of Figure 1, we include numerical simulations of the full system (2.9) (dashed) and the
reduced system (2.13) (solid) for the same three sets of parameter values. The initial conditions I1(0)
and R2(0) for the full system are chosen to be at the endemic steady state value according to (2.11).

(a) β1 = 0.4, ϵ = 0, R1 = 2, R2 =

6, R12 = 1.17, R21 = 5
(b) β1 = 0.3, ϵ = 0, R1 = 1.5, R2 =

6, R12 = 0.875, R21 = 5.33
(c) β1 = 0.4, ϵ = 0.5, R1 = 2, R2 =

6, R12 = 0.75, R21 = 5

Figure 1. In the upper row, we show vector field plots of reduced model (2.13), and in the
lower row, we show numerical simulations for the full (2.9) (dashed) and reduced (2.13)
(solid) models. We utilize the parameter values N = 10, 000, β2 = 0.6, γ1 = 0.2, γ2 = 0.1,
σ1 = 0.1, σ2 = 0.1, I2(0) = 1000, and R2(0) = 0. The remaining parameter values are
indicated above. For the vector field plots, the I2-nullcline (red), R2-nullcline (blue), and

switching line I2 + ϵR2 = N
(
1 −

1
R1

)
(dashed green) are indicated. The left of the transition

line is the coexistence region (I1 > 0 and I2 > 0) while the right is the competitive exclusion
region (I1 = 0 and I2 > 0). Notice that the number of people infected by the original strain
(I1(t)) in the reduced system (2.13) may hit zero and then become positive. This occurs in the
vector field diagram when a trajectory transitions from the left of the switching line (green)
to the right and then back to the left.

3.2. Bifurcation analysis

In Figure 2, we display selected bifurcation diagrams for the full model (2.9) and reduced model
(2.13). In the upper row, we identify four qualitatively distinct regions of behavior in parameter space:
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Region I—disease-free behavior where neither strain can infiltrate the population; Region II—original
strain only behavior where the original strain may infiltrate the population but the emerging strain may
not; Region III—emerging strain only behavior where the emerging strain may infiltrate the population
but the original strain may not; Region IV—co-existence behavior where both strains may infiltrate the
population. In the lower row, we represent how the multi-strain reproductive numbers R12 and R21

change as functions of other selected parameters.

(a) 0 ≤ β1 ≤ 2, 0 ≤ β2 ≤ 2, γ1 = 1,
γ2 = 1, 0 ≤ σ1 ≤ 100, σ2 = 1, ϵ = 0

(b) 0 ≤ β1 ≤ 2, 0 ≤ β2 ≤ 2, γ1 = 1,
γ2 = 1, σ1 = 1, 0 ≤ σ2 ≤ 100, ϵ = 0

(c) 0 ≤ β1 ≤ 2, 0 ≤ β2 ≤ 2, γ1 = 1,
γ2 = 1, σ1 = 1, σ2 = 1, 0 ≤ ϵ ≤ 1

(d) 1 ≤ β1 ≤ 2, 1 ≤ β2 ≤ 2, γ1 = 1,
γ2 = 1, σ1 = 1, σ2 = 1, ϵ = 0.5

(e) 1 ≤ β1 ≤ 2, 1 ≤ β2 ≤ 2, γ1 = 1,
γ2 = 1, σ1 = 1, σ2 = 1, ϵ = 0.5

(f) β1 = 4, β2 = 2, γ1 = 1, γ2 = 1,
σ1 = 1, 0 ≤ σ2 ≤ 1, 0 ≤ ϵ ≤ 1

Figure 2. Bifurcation diagrams (upper row) and heat maps (lower row) for the steady states
of (2.13). In the upper row, the parameter space is divided into four regions corresponding
to four qualitatively distinct behaviors: Region I—disease-free behavior where neither strain
can infiltrate the population; Region II—original strain only behavior where the original
strain may infiltrate the population but the emerging strain may not; Region III—emerging
strain only behavior where the emerging strain may infiltrate the population but the origi-
nal strain may not; Region IV—co-existence behavior where both strains may infiltrate the
population. The blue lines indicate how the regions change given changes in the indicated
parameter. In the lower row, we display heat maps for the value of R21 (left) and R12 (center
and right) as a function of various parameters. Note that the threshold R21 > 1 is required for
the emerging strain to infiltrate the population and R12 > 1 is required for the original strain
to survive if the emerging strain infiltrates. The parameters values and ranges are shown
above.

3.3. Data fitting methods

To validate the differential equation models (2.9) and (2.13), we fit them to COVID-19 incidence
and variant proportion data from the United States. COVID-19 case incidence data prior to 10/10/2022
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was retrieved from the Johns Hopkins GitHub repository on May 5, 2023 [48] and after 10/10/2022
was retrieved from Our World in Data on June 5, 2023 [49]. Variant proportions data was retrieved
from the Global Initiative on Sharing All Influenza Data (GISAID) on June 5, 2023 [50].

(a) Delta (full model) (b) Omicron (full model) (c) Kraken (full model)

(d) Delta (reduced model) (e) Omicron (reduced model) (f) Kraken (reduced model)

Figure 3. Comparisons of COVID-19 case incidence data to the best-fitting full model (2.9)
and reduced model (2.13). In all figures, I2 denotes the number of new cases of the variant
of interest aggregated over the preceding two week period [(a) & (d): Delta (B.1.617.2);
(b) & (e): Omicron (B.1.1.529); (c) & (f): Omicron-subvariant Kraken (XBB.1.5)] and I1

denotes the number of new cases over all other COVID-19 strains. Parameters are fit using
the sum of squared error formula (3.1) in Python. COVID-19 case data is taken from the John
Hopkins [48] and Our World in Data [49] and the variant data is taken from GISAID [50].
Data points are displayed at the midpoint of the two-week period during which they are
aggregated. Best fitting parameters values can be found in Table 2.

We consider three separate periods of the COVID-19 pandemic during which they were a shift from
the dominance of one variant to another in the United States: 1) the Delta takeover period (04/07/2021–
08/16/2021); 2) the Omicron takeover period (08/30/2021–02/14/2022); and 3) the Omicron subvariant
Kraken takeover period (11/21/2022–05/08/2023). In all cases, we consider the variant that is taking
over as the emerging strain, I2, and aggregate all remaining strains as the original strain, I1. To de-
termine variant numbers, we take the raw COVID-19 incidence data aggregated over the preceding
two-week period and divide it according to the proportion of cases that are the emerging strain and
which are the original strain. For optimizing the fit of the data to the model, we use the sum of squared
error function

E(x, y; θ) =
n∑

i=1

(xi − x̂i)2 +

n∑
i=1

(yi − ŷi)2. (3.1)

The values (xi, yi) are the cumulative clinically-confirmed COVID-19 cases over the preceding two
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week period for the original (x) and emerging (y) strain, respectively, in the ith period of data collection.
The values (x̂i, ŷi) are biweekly increase in new cases over the same time periods derived from the
model. To simulate the model trajectories, we use the 4th order Runge-Kutta method. To fit the models
to data, we use a customized stochastic Newton’s method algorithm written in Python. We note that
other COVID-19 studies have fit to variant proportions rather than estimated case numbers [20, 51].

Table 2. Best-fitting parameter values for the model simulations shown in Figure 3. For the
full models (2.9) (a)–(c), we fit the parameters N, I1(0), R1(0), I2(0), R2(0), β1, β2, γ1, γ2, σ1,
σ2, and ϵ. For the reduced model (2.13) (d)–(f), we fit the parameters N, I2(0), R2(0), β1,
β2, γ1, γ2, σ1, σ2, and ϵ and determine the values of I1(0) and R1(0) from the system of Eqs
(2.11). In order to focus on the potential impact of the temporary immunity periods σ−1

1 and
σ−1

2 and the degree of cross-immunity ϵ, we imposed the restrictions 0.8β1 ≤ β2 ≤ 1.25β1,
γ1 = γ2, σ1 ≤ 0.5, and σ2 ≤ 0.5. We also impose that all parameters are greater than or equal
to 0.001.

Parameters Delta Omicron Kraken
full (a) reduced (d) full (b) reduced (e) full (c) reduced (f)

N 16,336,307 48,040,094 31,579,543 45,857,562 7,575,545 2,993,020
I1(0) 188,363 188,363 1,462,667 813,673 96,790 283,535
R1(0) 308,476 308,476 15,725,210 12 0 100
I2(0) 85 722 1 2 9388 3661
R2(0) 85 0 0 0 0 3661
β1 0.36685 0.36316 0.18669 0.29794 0.30167 0.31235
β2 0.43498 0.41680 0.23336 0.37243 0.28631 0.30993
γ1 0.35878 0.36162 0.09294 0.24258 0.23641 0.22252
γ2 0.35878 0.36162 0.09294 0.24258 0.23641 0.22252
σ1 0.00266 0.5 0.00676 0.5 0.01421 0.09208
σ2 0.04600 0.001 0.001 0.001 0.00544 0.02175
ϵ 0.001 1 1 1 1 1
R1 1.02250 1.00426 2.00875 1.22823 1.27603 1.40369
R2 1.21237 1.15260 2.51093 1.53528 1.21107 1.39284
R12 1.00199 0.87130 0.80000 0.80000 1.05364 1.00779
R21 1.21217 1.14977 2.42534 1.52273 1.19621 1.27560

In order to highlight the effects of the asymmetric temporary immunity periods and partial cross-
immunity, we restrict the variant-specific transmission rates βi and recovery rates γi to the limited
ranges 0.8β1 ≤ β2 ≤ 1.25β1 and γ1 = γ2. That is, we assume that the emerging strain is no more or less
than 25% as transmissible as the original strain and that the two strains have the same recovery period.
Otherwise, we restrict all parameters from going to zero and σi < 0.5. For the full model fits (2.9), we
fit over the parameters N, I1(0), R1(0), I2(0), R2(0), β1, β2, γ1, γ2, σ1, σ2, and ϵ. For the reduced model
fits (2.13), we fit over the parameters N, I1(0), R1(0), I2(0), R2(0), β1, β2, γ1, γ2, σ1, σ2, and ϵ. Note
that we also fit the population size N. This may seem unusual since the overall population size of the
United States is well-known. The choice of fitting N was made to account for several factors which are
not considered in the model: 1) removal of individuals from the susceptible population due to natural
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immunity, quarantine, and vaccination; and 2) the incompleteness of COVID-19 case incidence data
due to reporting errors and the prevalence of at-home self-test kits. The value N can be more fairly
interpreted as the effective population level after accounting for the aggregate effects of removal from
susceptibility and underreporting.

The best fitting model simulations are shown in Figure 3 and the corresponding best fitting param-
eters can be found in Table 2. The data circle corresponds to the average clinically-confirmed daily
incidence of COVID-19 over the surrounding two week period. For ease of visualization, the data
circle is displayed at the midpoint of the two-week data collection period.

4. Discussion

In this section, we analyze the results of the numerical studies carried out in Section 3.

4.1. Full and reduced model comparison

Consider the numerical simulations of the full model (2.9) and reduced model (2.13) (lower row of
Figure 1). Note that there is no significant time-scale separation between the dynamics of the origi-
nal and emerging strain so that the assumptions underlying the QSSA are not met. Consequently, we
should not expect that trajectories of (2.9) converge to those of (2.13) in any limiting way. Neverthe-
less, our numerical study suggests that trajectories of the full and reduced systems agree well when the
full system is taken to start near the endemic steady state of the original strain. After a short transient
period, trajectories of both systems settle asymptotically to the same steady state. Since the long-term
dynamics agree, we conjecture that the global stability of the steady states guaranteed by Theorem 3
holds not only for the reduced system (2.13) but also for the full system (2.9).

We now consider the performance of the full (2.9) and reduced (2.13) models when fit with COVID-
19 case incidence data (see Figure 3).

1) During the Delta takeover period (Figure 3(a),(d)), the full model fits the declining trend of the
original strain (I1) noticeably better than the reduced model. We also note a disparity in the survival
prediction for the original strains (R12 > 1 for full model and R12 < 1 for the reduced model). This
disparity can be attributed to a violation of the assumption underlying the derivation of the reduced
model, which was that the original strain has reached its endemic steady state before the infiltration
of the emerging strain.

2) During the Omicron takeover period (Figure 3(b),(e)), the two models fit comparably well. In
particular, the two models consistently predict that Omicron was more transmissible than previous
strains (R2 > R1), that Omicron would infiltrate the population (R21 > 1), and that the previous
strains would not survive (R12 < 1).

3) During the Kraken takeover period (Figure 3(c),(f)), the two models fit the emerging strain (I2)
comparably well, while the reduced model fits the pre-takeover phase of the original strain (I1)
better and the full model fits the post-takeover phase of the original strain better. In particular, the
reduced model better captures the steadiness of the original strain pre-takeover but overshoots its
decline as the emerging strain enters the population. Both models, however, consistently predict the
infiltration of the Kraken (R21 > 1) and survival of the original strain (R12 > 1).
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Overall, the reduced model (2.13) performs well when fit with COVID-19 case incidence data. In
particular, it fits the dynamics of the emerging strain (I2) comparably well to the full mode. Care
should be taken, however, to ensure the model assumption that the prevalence of existing strains is
steady prior to the emergence of the new strain is met.

4.2. Effect of temporary immunity and partial cross-immunity

Now consider the bifurcation plots in Figure 2. Plots (b) and (c) show how changes in the loss of
temporary immunity rates, σ1 and σ2, influence the boundaries of the four qualitatively distinct regions
of parameter space. Note that as the temporary immunity periods become shorter (i.e., σi → ∞,
σ−1

i → 0), the co-existence region becomes smaller and the region for one-strain dominant behavior
grows. This decrease in the capacity of coexistence as the temporary immunity periods decrease can be
intuitively attributed to the increased amount of time where the two strains are competing for infections
from a common susceptible class (S ) rather than asymmetric pools of susceptibles (S +R1 or S +R2). In
this case, it is more likely that the strictly more contagious strain will survive (R1 > R2 or R2 > R1).
This analysis suggests that asymmetric temporary immunity periods is an important factor in the long-
term survival of individual strains of COVID-19. Specifically, it is important for individual strains to
be able to infect those recently infected with other strains to gain an advantage over those strains.

Plot (c) shows how changes in the degree of cross-immunity from the emerging strain to the original
strain, ϵ, influences the boundaries of the regions. We can see that as the degree of cross-immunity
increases (ϵ → 1), the region for coexistence shrinks dramatically. In this case, the original strain
needs to have a strictly higher basic reproduction number in order to survive (R1 > R2). This can be
intuitively interpreted as resulting from that reduction in individuals susceptible to the original strain
(S ) relative to the emerging strain (S + R1). This suggests that even partial cross-immunity from the
emerging strain to the original strain can contribute a significant competitive advantage to the emerging
strain. Notably, an emerging strain of COVID-19 need not be significantly more contagious than an
original strain (i.e., R2 ≫ R1) in order for the new strain to eliminate the original strain from the
population.

Plot (d) displays how the basic reproduction number for the emerging strain in the presence of the
original strain R21 changes as a function of the strain-specific basic reproduction numbers R1 and R2.
Having a more contagious emerging strain (R2 high) and a less contagious original strain (R1 low)
makes it more likely for the emerging strain to be able to infiltrate the population (R21 > 1). Plot
(e) and (f) display how the basic reproduction number for the original strain in the presence of the
emerging strain R12 changes as a function of R1, R2, σ2, and ϵ. A more contagious original strain (R1

high), less contagious emerging strain (R2 low), long temporary immunity period for the emerging
strain (σ−1

2 high) or low degree of cross-immunity (ϵ low) makes it more likely for the original strain
to survive when the emerging strain infiltrates the population (R12 > 1). The analysis suggests that the
ability of COVID-19 strains to exclusively infect those recently infected by emerging strains is crucial
for their long-term survival.

4.3. Implications for the spread of COVID-19

Notice that the parameter-fit strain-specific basic reproduction numbers R1 and R2 are not signif-
icantly different in any of the models (see Table 2). In fact, for the Kraken, the models predict that
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the emerging strain is slightly less transmissible than the original strain (R1 > R2). This suggests that
factors other than differences in transmissibility can be a driving force for the takeover of an emerging
strain. For cases (b)–(f) in Figure 3 we have that the best fitting parameters include ϵ = 1 while for case
(a) we have σ−1

1 > σ−1
2 . This suggests that the emerging strain can gain a competitive advantage by in-

creasing its cross-immunity or shortening its temporary immunity period. In these cases, even though
the two strains have comparable strain-specific reproduction numbers, the emerging strain is able to
infiltrate the already-infected population and drive the original strain to extinction or near-extinction.

For both the full and the reduced models, the data fitting suggests that the highest capacity of strain-
over-strain fitness is for Omicron over previous strains (R21 = 2.42534 for full model and R21 =

1.52273 for reduced model). This is consistent with the data trend which showed Omicron accounting
for over 99% of COVID-19 cases in the United States within three months of first being detected [50].
The data fitting also suggests that coexistence is possible with the Kraken strain and previous strains
(R12 = 1.03467 > 1 for full model and R21 = 1.10030 > 1 for reduced model). Even though we
have seen the prevalence of Kraken increase dramatically over the indicated time period, the model fits
suggests the ancestral strains will survive rather than die off like previous takeovers. This is consistent
with the observation that the Kraken variant has comprised approximate 90% of COVID-19 cases
during post-takeover period of 03/27/2023–06/05/2023 [50]. This suggests that we are closer to having
the long-term reality of co-circulating COVID-19 strains. Such a situation requires an adjustment of
public health strategies to predict the most effective strain-specific vaccines, as is currently conducted
with seasonal influenza.

We note that, while the basic reproduction numbers produced from fitting the models to data were
consistent across optimization runs and similar for the full and reduced model, the individual parame-
ters often varied significantly (see Table 2). For example, for the Delta strain, the full model fit produces
ϵ ≈ 0 and σ−1

1 ≫ σ−1
2 while the reduced model fit produces ϵ = 1 and σ−1

2 ≫ σ−1
1 . Consequently, the

full model parameter set suggests the variant takeover is due to a long temporary immunity period for
the original strain, while the reduced model parameter set suggests it is due to complete cross-immunity
of the emerging strain over the original strain. We hypothesize that this difference in plausible expla-
nations of observed data is due to two primary factors: (a) the prevalence of many local minima of
the highly nonlinear error function (3.1) over parameter space, many of which could be close to the
global minimum; and (b) a lack of structural or practical parameter identifiability. The challenges of
parameter identifiability for models of infectious disease spread have been increasingly acknowledged
in the mathematical literature and are an ongoing area of study [52–54].

5. Conclusions and future work

We have introduced a two-strain model for infectious disease spread which incorporates asymmetric
temporary immunity periods and partial cross-immunity. We have derived conditions (Theorem 2) on
the temporary immunity periods, degree of cross-immunity, and basic reproduction numbers under
which the strains can coexist. We have also reduced the model to a planar hybrid switching system and
analyzed the dynamics using linear stability analysis, phase plane analysis, and the Bendixson-Dulac
criterion. We have parameter fit the full model (2.9) and reduced model (2.13) to COVID-19 case
incidence data from the United States for three different strains. This analysis has demonstrated the
capacity of differences in temporary immunity periods and partial cross-immunity to account for the
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observed changes in variant proportions over time, and in particular the phenomenon of one variant
infiltrating a population and eliminating previous variants.

The work conducted in this paper suggests several fruitful opportunities for future work:

1) Incorporating vaccination, births and deaths, and further strains. Data has suggested, in particular,
that vaccination has played a significant role in altering the spread of COVID-19 [11]. Future
work will incorporate vaccination and other factors in the models to the impact of asymmetries in
vaccine-resistance between strains in promoting competitive exclusion or coexistence.

2) Extending to a multiscale within-host and between-host framework. A more accurate approach for
incorporating host immunity and variances in cross-variant immunity is by considering within-host
dynamics. Incorporating within-host dynamics with between-host population dynamics requires a
multiscale approach, which is a growing area of research [55–57]. This will be a focus of future
research.

3) Extending dynamical results to the full model (2.9) and the reduced model (2.13) for 0 ≤ ϵ ≤ 1. It
is suspected that the conclusions of Theorem 3 hold for the reduced model (2.13) for all values of
0 ≤ ϵ ≤ 1, rather than just the special cases ϵ = 0 and ϵ = 1, and also the full model (2.9). These
results, however, remain unproved. A sufficient condition for Theorem 3 to hold for the reduced
model (2.13) would be

∂ω

∂R2
R + ω(I2,R2) ≥ 0

for 0 < I2 + ϵR2 < N
(
1 −

1
R1

)
. Future work will aim to complete this analysis.
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Appendix

A. Next generation method

Following [35], we define the state vector x ∈ Rn
≥0 and reindex so that i = 1, . . . ,m, m ≤ n, corre-

sponds to the infectious compartments. For i = 1, . . . ,m, let Fi(x) denote the rate of new infections in
compartment i, V +

i (x) denote the rate of inflow into compartment i by any other means, and V −
i (x) de-

note the rate of outflow from compartment i by any other means. The rate of change in each infectious
compartment i = 1, . . . ,m, can then be given by

dxi

dt
= Fi − Vi

where Vi = V −
i − V +

i . Let

F =

[
dFi

dx j

]
, i, j = 1, . . . ,m
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and

V =

[
dVi

dx j

]
, i, j = 1, . . . ,m

denote the Jacobians of F and V , respectively, restricted to only infectious compartments. The next
generation matrix is given by FV−1. If x0 is the disease free steady state, the basic reproduction number
is given by R0 = ρ(FV−1(x0)). If FV−1 is reducible with n irreducible components, we can decouple
the system into strain specific submatrices FiV−1

i . We can then compute the basic reproduction number
of strain i by Ri = ρ(FiV−1

i (x0)) and derive R0 = max
i=1,...,m

{Ri}. Similarly, if x j is the strain j only

steady state, then the basic reproduction number of strain i in the presence of strain j is given by
Ri j = ρ(FiV−1

i (x j)).

A.1. Basic two-strain model

For the basic two-strain model (2.1), we have the following:

F =


β1

N
S I1

β2

N
S I2

 and V =

 γ1I1

γ2I2


so that

F =


β1

N
S 0

0
β2

N
S

 and V =

[
γ1 0
0 γ2

]
.

It follows that

FV−1 =


β1

γ1N
S 0

0
β2

γ2N
S

 , F1V−1
1 =

β1

γ1N
S , and F2V−1

2 =
β2

γ2N
S

where we have removed the matrix representation for the 1 × 1 matrices for notational simplicity.
Substituting in the disease free steady state x0 (2.4) gives

FV−1(x0) =


β1

γ1
0

0
β2

γ2

 , F1V−1
1 (x0) =

β1

γ1
, and F2V−1

2 (x0) =
β2

γ2
.

It follows that R1 = β1/γ1, R2 = β2/γ2, and R0 = max{R1,R2}. Furthermore, substituting in the
original strain only steady state x1 (2.5) and emerging strain only steady state x2 (2.6) into the relevant
components gives

F1V−1
1 (x2) =

β1γ2

β2γ1
, and F2V−1

2 (x1) =
β2γ1

β1γ2
.

It follows that R12 = R1/R2 and R21 = R2/R1 and we are done.
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A.2. Two-strain model with asymmetric temporary immunity periods and partial cross-immunity

For the two-strain model with asymmetric temporary immunity periods and partial cross-immunity
(2.7), we have the following:

F =


β1

N
(S + (1 − ϵ)R2)I1

β2

N
(S + R1)I2

 and V =

 γ1I1

γ2I2


so that

F =


β1

N
(S + (1 − ϵ)R2) 0

0
β2

N
(S + R1)

 and V =

[
γ1 0
0 γ2

]
.

It follows that

FV−1 =


β1

γ1N
(S + (1 − ϵ)R2) 0

0
β2

γ2N
(S + R1)

 , F1V−1
1 =

β1

γ1N
(S + (1 − ϵ)R2), and F2V−1

2 =
β2

γ2N
(S + R1).

Substituting in the disease free steady state x0 (2.4) gives

FV−1(x0) =


β1

γ1
0

0
β2

γ2

 , F1V−1
1 (x0) =

β1

γ1
, and F2V−1

2 (x0) =
β2

γ2
.

It follows that R1 = β1/γ1, R2 = β2/γ2, and R0 = max{R1,R2}. Now, substituting in the original strain
only steady state x1 (2.5) and emerging strain only steady state x2 (2.6) into the relevant components
gives

F1V−1
1 (x2) =

β1γ2((1 − ϵ)β2 + ϵγ2 + σ2)
β2γ1(γ2 + σ2)

, and F2V−1
2 (x1) =

β2γ1(β1 + σ1)
β1γ2(γ1 + σ1)

.

It follows that R12 =
R1

R2

(
(1 − ϵ)β2 + ϵγ2 + σ2

γ2 + σ2

)
and R21 =

R2

R1

(
β1 + σ1

γ1 + σ1

)
and we are done.

B. Proof of Theorem 1

Proof. We want to prove that a co-existence steady state (i.e., I1 > 0 and I2 > 0) exists if and only if
min{R1,R2,R12,R21} > 1 is satisfied.

We consider the steady state equations for (2.9):

β1

N
(N − I1 − R1 − I2 − ϵR2)I1 − γ1I1 = 0

γ1I1 − σ1R1 −
β2

N
R1I2 = 0

β2

N
(N − I1 − I2 − R2)I2 − γ2I2 = 0

γ2I2 − σ2R2 −
β1

N
(1 − ϵ)R2I1 = 0

(B.1)
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We can solve the latter two equations in (B.1) to get

I2 =
(N(β2 − γ2) − β2I1)(β1(1 − ϵ)I1 + Nσ2)

β2(β1(1 − ϵ)I1 + N(γ2 + σ2))
=: ϕ(I1),

R2 =
Nγ2(N(β2 − γ2) − β2I1)

β2(β1(1 − ϵ)I1 + N(γ2 + σ2))
=: ψ(I1)

(B.2)

We note that this steady state only satisfies I1 > 0 and R1 > 0 if I1 < N
(
1 −

1
R2

)
.

We now substitute the equations ϕ(I1) and ψ(I1) from (B.2) into the first two equations of (B.1).
This gives 

β1

N
(N − I1 − ϕ(I1) − R1 − ϵψ(I1))I1 − γ1I1 = 0

γ1I1 − σ1R1 −
β2

N
R1ϕ(I1) = 0.

(B.3)

In order to show whether these two equations can be satisfied for I1 > 0, we solve for R1 in (B.3) in
terms of I1 and compute the corresponding derivatives. We have the following:

R1 = N − I1 − ϕ(I1) − ϵψ(I1) −
Nγ1

β1
=: f (I1)

R1 =
Nγ1I1

Nσ1 + β2ϕ(I1)
=: g(I1)

(B.4)

Computing and simplifying the derivatives gives the following:


f ′(I1) = −

N2γ2(1 − ϵ)((1 − ϵ)(β2 − γ2)β1 + β2(γ2 + σ2))
β2(β1 I1(1 − ϵ) + N(γ2 + σ2))2

g′(I1) =
Nγ1([β2(I2

1 (1 − ϵ)2β2
1 + 2NI1σ2(1 − ϵ)β1 + N2σ2(γ2 + σ2))]ϕ(I1) + (β1 I1(1 − ϵ) + Nσ2)(β2β1(1 − ϵ)I2

1 + (σ1(1 − ϵ)β1 + β2σ2)NI1 + N2σ1(γ2 + σ2)))

(Nσ1 + β2ϕ(I1))2 .

Since 1 − ϵ ≥ 0, β2 > γ2, and ϕ(I1) ≥ 0, we have that f ′(I1) < 0 and g′(I1) > 0.
We observe that g(0) = 0. In order to have a solution in the region I1 > 0 and R1 > 0, it is necessary

that f (0) > 0, which corresponds to

R1 > R2

(
γ2 + σ2

(1 − ϵ)β2 + ϵγ2 + σ2

)
=⇒

R1

R2

(
(1 − ϵ)β2 + ϵγ2 + σ2

γ2 + σ2

)
> 1.

We now check where that solution can be. We will have a solution in the region

0 < I1 < N
(
1 −

1
R2

)
=: I∗1, corresponding to I2 > 0, if and only if g(I∗1) > f (I∗1). Substituting I1 = I∗1

into (B.4) gives the condition

R2 > R1

(
γ1 + σ1

β1 + σ1

)
=⇒

R2

R1

(
β1 + σ1

γ1 + σ1

)
> 1.

It follows that a solution to (B.3) with I2 > 0 and I1 > 0 if and only if min{R1,R2,R12,R21} > 1 is
satisfied.
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C. Proof of Theorem 3

We start our analysis of (2.13) by deriving a few properties of the original strain steady state function
ω(I2,R2) (2.12). We have the following Lemma.

Lemma 1. The original strain steady state function ω(I2,R2) (2.12) satisfies the following properties:

1)
∂ω

∂I2
=


Nγ1


1 +

β2ω(I2,R2)
β2I2 + Nσ1

β2I2 + N(γ1 + σ1)

 − 1, if I2 + ϵR2 < N
(
1 −

1
R1

)

0, if I2 + ϵR2 > N
(
1 −

1
R1

)

2)
∂ω

∂R2
=


−ϵ

(
β2I2 + Nσ1

β2I2 + N(γ1 + σ1)

)
, if I2 + ϵR2 < N

(
1 −

1
R1

)
0, if I2 + ϵR2 > N

(
1 −

1
R1

)
3) (a)

∂ω

∂I2
+ 1 > 0; and (b)

∂ω

∂R2
+ 1 > 0.

Proof. Properties 1) and 2) can be verified by directly differentiating (2.12) and noting that ω(I2,R2) is

not differentiable at I2 + ϵR2 = N
(
1 −

1
R1

)
so that all inequalities are strict.

We now consider the three parts which compose property 3). We notice that they are trivially true

for I2 + ϵR2 > N
(
1 −

1
R1

)
, so we only need to consider I2 + ϵR2 < N

(
1 −

1
R1

)
. By properties 1) and

2), we have

(a)
∂ω

∂I2
+ 1 = Nγ1


1 +

β2ω(I2,R2)
β2I2 + Nσ1

β2I2 + N(γ1 + σ1)

 > 0,

(b)
∂ω

∂R2
+ 1 = −ϵ

(
β2I2 + Nσ1

β2I2 + N(γ1 + σ1)

)
+ 1 =

(1 − ϵ)(β2I2 + Nσ1) + Nγ1

β2I2 + N(γ1 + σ1)
> 0,

because ω(I2,R2) ≥ 0 by (2.12) and 1 − ϵ ≥ 0 since 0 ≤ ϵ ≤ 1, and we are done.

We now prove Theorem 3.

Proof. Proof of 1: We consider the properties of the I2- and R2-nullcline in the region int(Λ). We have
the following:

I′2 = 0 =⇒ f (I2,R2) = β2 − γ2 −
β2

N
(ω(I2,R2) + I2 + R2) = 0 (C.1)

R′
2 = 0 =⇒ g(I2,R2) = γ2I2 − σ2R2 −

β1

N
(1 − ϵ)ω(I2,R2)R2 = 0. (C.2)
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where ω(I2,R2) is given by (2.12). Also note that int(Λ) we have I2 > 0 so that we have divided by I2

in the I2-nullcline. Due to the nonlinearities in I2 and R2 in (C.1) and (C.2), we will analyze f (I2,R2)
and g(I2,R2) from implicit form.

In order to determine the R2-intercepts, we note that R21 > 1 implies β2γ1(β1+σ1)−β1γ2(γ1+σ1) >
0. We now evaluate f (I2,R2) and g(I2,R2) at I2 = 0. This gives

f (0,R2) = β2 − γ2 −
β2

N
(ω(0,R2) + R2) = 0

=⇒ β2 − γ2 −
β2

N

(
σ1 (N(β1 − γ1) − ϵβ1R2)

β1(γ1 + σ1)
+ R2

)
= 0

=⇒ R2 =
N(β2γ1(β1 + σ1) − β1γ2(γ1 + σ1))

β1β2((1 − ϵ)σ1 + γ1)
> 0

g(0,R2) = −

(
σ2 +

β1

N
(1 − ϵ)ω(0,R2)

)
R2 = 0

=⇒ R2 = 0

where we have utilized 1 − ϵ ≥ 0 and ω(I2,R2) ≥ 0. It follows that, if R21 > 1 is satisfied, then the
I2-nullcline has a positive R2-intercept and the R2-nullcline has the R2-intercept R2 = 0.

We now want to determine how the nullclines change as I2 increases in the region I2 > 0. We

consider R2 = R2(I2) as a function of I2 and implicitly differentiate to find
dR2

dI2
on the surfaces f (I2,R2)

and g(I2,R2). For the I2-nullcline f (I2,R2) (C.1), we have

d
dI2

f (I2,R2(I2)) = −
β2

N

(
∂ω

∂I2
+
∂ω

∂R2

dR2

dI2
+ 1 +

dR2

dI2

)
= 0.

Solving for
dR2

dI2
gives

dR2

dI2
= −


∂ω

∂I2
+ 1

∂ω

∂R2
+ 1

 < 0

by properties 3(a) and 3(b) of Lemma 1. It follows that the I2-nullcline is strictly decreasing in int(Λ).
For the R2-nullcline g(I2,R2) (C.2) we have

d
dI

g(I2,R2(I2)) = γ2 − σ2
dR2

dI2
−
β1

N
(1 − ϵ)

(
∂ω

∂I2
R2 +

∂ω

∂R2

dR2

dI2
R2 + ω(I2,R2)

dR2

dI2

)
= 0.

Solving for
dR2

dI2
gives

dR2

dI2
=

−β1(1 − ϵ)
∂ω

∂I2
R2 + γ2N

β1(1 − ϵ)
(
∂ω

∂R2
R2 + ω(I2,R2)

)
+ σ2N

(C.3)
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We now consider cases. If ϵ = 0, then (C.3) reduces to

dR2

dI2
=

−β1
∂ω

∂I2
R2 + γ2N

β1ω(I2,R2) + σ2N
(C.4)

where we have note that
∂ω

∂R2
= 0 if ϵ = 0 from property 2. of Lemma 1. Since ω(I2,R2) ≥ 0 we have

β1ω(I2,R2) + σ2N > 0, so we only need to consider the numerator of (C.4). We first note that (C.2)
implies that

γ2 =
R2

I2

(
σ2 +

β1

N
(1 − ϵ)R2ω(I2,R2)

)
. (C.5)

Substituting (C.5) and the form of
∂ω

∂I2
from property 1) of Lemma 1 into the numerator of (C.4) and

factoring by ω(I2,R2) gives
R2

I2
(α1ω(I2,R2) + α2)

where

α1 =
β1(σ1(γ1 + σ1)N2 + 2I2Nβ2σ1 + I2

2β
2
2)

(β2I2 + Nσ1)(β2I2 + N(γ1 + σ1))
> 0

α2 =
σ2(γ1 + σ1)N2 + (β1σ1 + β2σ2)I2N + I2

2β1β2

β2I2 + N(γ1 + σ1)
> 0

It follows that, for the R2-nullcline we have
dR2

dI2
> 0 if ϵ = 0. For the case ϵ = 1, we have that (C.3)

reduces to
dR2

dI2
=
γ2

σ2
> 0.

It follows that the R2-nullcline is increasing in the region int(Λ) if ϵ = 0 or ϵ = 1.
We now consider the directions in the vector field for different regions of the planar state space

(I2,R2). We show that I′2 = f (I2,R2) and R′
2 = g(I2,R2) strictly decrease as R2 increases. From (2.13),

we have that

∂

∂R2
f (I2,R2) =

∂

∂R2

[
β2

N
(N − ω(I2,R2) − I2 − R2)I2 − γ2I2

]
= −

β2

N
I2

(
dω
dR2

+ 1
)
< 0

by property 3(b) of Lemma 1. We also have

∂

∂R2
g(I2,R2) =

∂

∂R2

[
γ2I2 − σ2R2 −

β1

N
(1 − ϵ)ω(I2,R2)R2

]
= −σ2 −

β1

N
(1 − ϵ)

(
dω
dR2

R2 + ω(I2,R2)
)
.

=

 −σ2 −
β2

N
ω(I2,R2) < 0, if ϵ = 0

−σ2 < 0, if ϵ = 1

where we have noted that
∂ω

∂R2
= 0 for ϵ = 0 by property of 2) of Lemma 1. It follows that, if ϵ = 0 or

ϵ = 1, we have that I′2 < 0 and R′
2 < 0 if we are above both the I2- and R2-nullcline. The rest of the
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cases follow similarly.

Proof of 2: Since the I2-nullcline f (I2,R2) = 0 is strictly decreasing from a positive R2-intercept,
the R2-nullcline g(I2,R2) = 0 is strictly increasing from an R2-intercept of R2 = 0, and solutions are
restricted to Λ by Theorem 2, we have that the nullclines must have a unique intersection in int(Λ).
Local exponential stability follows from Lemma 2 in Appendix D.

For global stability, we utilize the Poincaré-Bendixson Theorem [58]. Since the system is planar,
it may not contain chaotic trajectories [58]. The only remaining possibilities are convergence to the
unique steady state or convergence to a limit cycle. We will rule out the existence of a limit cycle using
the modified Dulac’s Criterion (Lemma 3 in Appendix C).

Consider the piecewise-defined vector field (2.13) and the function ψ(I2,R2) =
1
I2

, which is continu-

ous on int(Λ). We notice that (2.13) is continuous on int(Λ) and continuously differentiable everywhere

on Λ except I2 + ϵR2 = N
(
1 −

1
R1

)
.

We have that

∂

∂I2
[ψ(I2,R2) f (I2,R2)] +

∂

∂R2
[ψ(I2,R2)g(I2,R2)]

=
∂

∂I2

[
β2

N
(N − ω(I2,R2) − I2 − R2) − γ2

]
+

∂

∂R2

[
γ2 −

(
Nσ2 + β1(1 − ϵ)ω(I2,R2)

NI2

)
R2

]
= −

β2

N

(
∂ω

∂I2
+ 1

)
−
σ2

I2
−
β1(1 − ϵ)

NI2

(
∂ω

∂R2
R2 + ω(I2,R2)

)

=


−
β2

N

(
∂ω

∂I2
+ 1

)
−
σ2

I2
−

β1

NI2
ω(I2,R2) < 0, if ϵ = 0

−
β2

N

(
∂ω

∂I2
+ 1

)
−
σ2

I2
< 0, if ϵ = 1

It follows by Lemma 3 in Appendix (D) that we cannot have a periodic orbit lying entirely within Λ.
Consequently, from Poincaré-Bendixson Theorem (Ī2, R̄2) is the global attractor for trajectories starting
in int(Λ).

We now establish the location of the unique steady state (Ī2, R̄2) ∈ int(Λ). We note that, since the

I2-nullcline is above the R2-nullcline at I2 = 0, for them to intersect in 0 < I2 + ϵR2 < N
(
1 −

1
R2

)
it is

sufficient for the R2-nullcline to be above the I2-nullcline along β2I2 + β2ϵR = N (β2 − γ2). Note that
we have ω(I2,R2) = 0 along this set. It consequently remains to consider the equations f (I2,R2) = 0
and g(I2,R2) = 0 along this set.

For the intersection of f (I2,R2) = 0 (C.1) and β2I2 + β2ϵR = N (β2 − γ2), we solve the following
system of equations {

β1I2 + β1ϵR2 = N(β1 − γ1)
β2I2 + β2R2 = N(β2 − γ2)

to get

R f =
N(β2γ1 − β1γ2)
β2β1(1 − ϵ)

.
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This is the value of R at the intersection of the I2-nullcline and the transition line. For the intersection
of g(I2,R2) = 0 (C.2) and β2I2 + β2ϵR = N (β2 − γ2), we solve the following system of equations{

β1I2 + β1ϵR2 = N(β1 − γ1)
γ2I2 − σ2R2 = 0

to get

Rg =
Nγ2(β1 − γ1)
β1(σ2 + ϵγ2)

.

This is the value of R at the intersection of the R2-nullcline and the transition line. In order to have
Rg > R f we must have

β2γ2(1 − ϵ)(β1 − γ1) > (σ2 + ϵγ2)(β2γ1 − β1γ2) =⇒
β1

γ1
>
β2

γ2

(
γ2 + σ2

(1 − ϵ)β2 + ϵγ2 + σ2

)
=⇒

R1

R2

(
(1 − ϵ)β2 + ϵγ2 + σ2

γ2 + σ2

)
> 1.

It follows that if R12 > 1, then the steady state (Ī2, R̄2) satisfies 0 < Ī2 + ϵR̄2 < N
(
1 −

1
R1

)
which is

sufficient to guarantee ω(Ī2, R̄2) > 0 by (2.12). If R12 < 1, however, the intersection will satisfy

Ī2 + ϵR̄2 > N
(
1 −

1
R1

)
so that ω(Ī2, R̄2) = 0 by (2.12), and we are done.

D. Supporting results

Lemma 2. Consider the nonlinear planar system
dx
dt

= f (x, y)

dy
dt

= g(x, y).
(D.1)

with a hyperbolic fixed point (x̄, ȳ). Suppose that, at the fixed point (x̄, ȳ), the x-nullcline is decreasing,
the y-nullcline is increasing, and the region above (x̄, ȳ) satisfies x′ < 0 and y′ < 0. Then (x̄, ȳ) is
locally exponentially stable.

Proof. Since (x̄, ȳ) is a hyperbolic fixed point by assumption, the Hartman-Grobman Theorem [59,60]
guarantees the existence of a neighborhood around (x̄, ȳ) where trajectories are mapped to a corre-
sponding linear system with coefficient matrix given by the Jacobian of the nonlinear system evaluated
at the fixed point. We furthermore have tangency of the nonlinear and nonlinear system nullclines at
the fixed point and that x′ < 0 and y′ < 0 above the nullclines in the linear system. We now prove
stability in the linearized system.

Consider the general linear system of ordinary differential equations in two variables:
dx
dt

= ax + by

dy
dt

= cx + dy.
(D.2)
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In order to have x′ < 0 above the x-nullcline, we require that:

x′ < 0 =⇒ ax + by < 0 =⇒ by < −ax =⇒ y > −
a
b

x.

This can only happen if b < 0. A similar argument for the y-nullcline gives that d < 0.
We now consider conditions 1 and 2. The x-nullcline is given by:

x′ = 0 =⇒ ax + by = 0 =⇒ y = −
a
b

x.

In order for this to have a negative slope, we require that − a
b < 0. Given that b < 0, we must also have

a < 0. Similarly, for the y-nullcline, we have:

y′ = 0 =⇒ cx + dy = 0 =⇒ y = −
c
d

x.

For a positive slope, we require − c
d > 0 which, given that d < 0, implies that c > 0.

It follows that the coefficient matrix for the system has the indicated sign pattern

A =

[
a b
c d

]
=

[
− −

+ −

]
.

It immediately follows that:
Tr(A) = a + d = (−) + (−) < 0

and
Det(A) = ad − bc = (−)(−) − (−)(+) > 0.

It follows from classical dynamical systems theory that the steady state (0, 0) of the linear system (D.2)
is exponentially stable. Local exponential stability of (x̄, ȳ) for (D.1) follows, and we are done.

Lemma 3 (Modified Dulac’s Criterion). Consider the nonlinear planar system (D.1) and let Λ be a
simply connected region in this plane. Consider a connected curve Γ lying within Λ which divides Λ
into two regions, Λ1 and Λ2, (i.e., Λ1 ∪Λ2 = Λ and Λ1 ∩Λ2 = Γ) both of which are simply connected.
Suppose that f and g are continuous on Λ and continuously differentiable in the interiors of Λ1 and
Λ2 (but potentially not continuously differentiable along Γ).

Suppose there is a continuously differentiable function ψ(x, y) such that

∂

∂x
[ψ(x, y) f (x, y)] +

∂

∂y
[ψ(x, y)g(x, y)]

has a constant sign in the interior of Λ1 and Λ2. Then there are no nonconstant periodic orbits lying
entirely in Λ.

Proof. Without loss of generality, we assume that

∂

∂x
[ψ(x, y) f (x, y)] +

∂

∂y
[ψ(x, y)g(x, y)] > 0

in the interior of Λ1 and Λ2. Suppose there is a periodic orbit C enclosing a bounded region D. Without
loss of generality, we assume that C is counter-clockwise oriented around D.
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The Dulac criterion guarantees that C does not lie entirely in Λ1 or Λ2 so we need only consider
the case where C crosses between Λ1 and Λ2. We note that C may cross Γ an arbitrary number of even
times; however, each time it crosses and crosses back, we may generically divide the existing region
into two subregions, both of which are simply connected. Consequently, it is sufficient to consider the
first pair of crossings and induct to any subsequent pairs of crossings.

Suppose C crosses Γ and then crosses back. We define D1 and D2 to be the two open subregions of
D created by this pair of crossings such that D1 ∪ D2 = D and D1 ∩ D2 ⊆ Γ. We define C′ to be a curve
traversing the boundary between D1 and D2, i.e., C′ = D1 ∩ D2. This curve can be oriented in either
direction. We define −C′ to the curve oriented in the other direction. We now define C1 and C2 to
be the two counter-clockwise oriented curves which traverse the boundary of D1 and D2 respectively.
Note that these curves contain part of the curve C and one of either C′ or −C′.

Now, since f (x, y) and g(x, y) are continuously differentiable within D1 and D2 we have that"
Di

∂

∂x
[ψ(x, y) f (x, y)] +

∂

∂y
[ψ(x, y)g(x, y)] dydx > 0

for i = 1, 2. By Green’s Theorem, it follows that we have

0 <
2∑

i=1

"
Di

∂

∂x
[ψ(x, y) f (x, y)] +

∂

∂y
[ψ(x, y)g(x, y)] dydx

=

2∑
i=1

∮
Ci

−ψ(x, y)g(x, y) dx + ψ(x, y) f (x, y) dy

=

∮
C
−ψ(x, y)g(x, y) dx + ψ(x, y) f (x, y) dy +

∫
C′

−ψ(x, y)g(x, y) dx + ψ(x, y) f (x, y) dy

+

∫
−C′

−ψ(x, y)g(x, y) dx + ψ(x, y) f (x, y) dy

=

∮
C
−ψ(x, y)g(x, y) dx + ψ(x, y) f (x, y) dy

=

∮
C
−ψ(x, y)

dy
dt

dx + ψ(x, y)
dx
dt

dy = 0

This is a contradiction, so that we cannot have a periodic orbit which crosses Γ and then crosses back.
We may now induct to multiple crossings by noting that each subsequent crossing will split one of the
regions already considered in exactly the same way as the first split. In particular, it will be produce
two simple connected subregions and the boundary between the split subregions may be parametrized
by a connected curve. Since the periodic orbit C was chosen arbitrarily in Λ, we are done.
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