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Abstract—In spike-timing-dependent plasticity (STDP), synap-
tic weights are modified according to the relative time difference
between pre and post-synaptic spikes of spiking neural network
(SNN). A  triplet STDP model was proposed since this model
can better take account of a series of spikes and thus more
closely mimic the activity in biological neural systems. Circuit
that can switch between different STDP rules was also introduced
to improve the range of STDP applications. To apply the
advantages of triplet STDP to various tasks, a mixed-signal
triplet reconfigurable STDP circuit and its hardware prototype
are proposed in this paper. The performance analysis of the STDP
training algorithm is carried out with a hardware testbench as
well as Pytorch-based SNN. This triplet STDP design achieves
3.28% and 3.63% higher accuracy than the pair STDP learning
rule through datasets such as MNIST and CIFAR-10.  Our design
shows one of the best reconfigurability while keeping a relatively
low energy per spike operation (SOP) through the performance
comparison with the state of the arts.

Index Terms—Spike-timing-dependent plasticity, triplet STDP,
reconfigurable STDP.

I . INTRODUC T I ON

EUROMORPHIC has shown the potential to improve
computing efficiency for data-intensive applications. In-spired

by biological neural networks, SNN was proposed as an
alternative to the artificial neural network (ANN)s since it can
more closely mimic biological neural systems [1]. SNNs only
transfer information when the membrane potential exceeds
some particular threshold value, and thus the information is
transmitted in the system in the form of spikes. Due to its
power efficiency and parallel computing property, the SNN
has become a promising candidate for data-intensive tasks such
as image processing. For example, Loihi,  the SNN processor
fabricated by Intel, can classify objects in 3D space with only
0.001 times the power of a standard computer [2], [3].

Besides the basic STDP rule [4], another advanced STDP
rule is the triplet STDP [5]. It takes account of a series of
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spikes instead of only a pair of spikes. Thus, it more accu-
rately mimics complex biological neural mechanisms. Even
for pair STDP rules, there are rules besides the asymmetric
rule. Research has verified that these rules have advantages
in various engineering tasks, and researchers have proposed
a circuit design that can switch between these algorithms
[6]. To integrate the advantage of the triplet STDP rule and
the reconfigurable STDP circuits, we have proposed a triplet
reconfigurable STDP circuit design. Major contributions of our
work are summarized as follows:

• To the best of our knowledge, this proposed work is the
first CMOS integrated circuit (IC) design of the triplet
reconfigurable STDP circuit.

• Consisting of a hardware testbench, Python simulation,
and prototype measurement. The performance analysis of
the triplet STDP rule working with multiplexing encoding
schemes of the MNIST and CIFAR-10 datasets has shown
3.28% and 3.63% higher accuracy than the pair STDP
rule and also 4.9% and 14.05% higher accuracy than
working with other temporal encoding schemes such as
the time to first spike (TTFS) and Interspike Interval (ISI)
encoding.

• The layout design of the introduced work consumes
258µW of power and takes 0.045mm2 of area. Com-
pared with other state of the arts, it shows the best
reconfigurability while keeping reasonable energy per
SOP.

I I . T H E T R I P L E T  R E C O N FI G U R A B L E STDP C I R C U I T
DESIGN

A. Multiple STDP Rules and Applications

The asymmetric STDP rule can not fulfill the requirements
of various engineering applications. Thus, many other STDP
rules were proposed [6]. These STDP algorithms modify the
synaptic weights differently with relative time differences.
For instance, the anti-STDP algorithm increments the weight
when the post-spike arrives before the pre-spike and vice
versa. According to their time-weight relation shapes, these
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STDP algorithms are named DPD, PP, DD, PD... where D
means depression and P means potentiation. These rules have
advantages for various applications, respectively. The basic
asymmetric STDP rule, DP, is used in unsupervised learning.
In order to carry out supervised learning in SNN, the DP
learning rule and the anti-STDP learning rule, PD, are both
utilized in applications. For associative learning, the symmetric
STDP rule, DPD, is proven effective in [7]. [8] has used three
different STDP rules in the SNN for the classification tasks.
As for the symmetric rules such as potentiating rule, PP, and
depressive rule, DD, although they only have one side of
weight adjustment, they are still very effective in liquid state
machine (LSM) and some classification projects [9].

B. Triplet STDP Rule and Advantages
As mentioned in Section.I, the triplet STDP rule (TSTDP)

takes account of three spikes. The combination of the spikes
could be pre-post-pre or post-pre-post. These combinations of
spikes describe how the time difference of spikes is utilized to
modify synaptic weights. Compared with the pair-based STDP
(PSTDP) rules, the TSTDP can mimic and realize higher
order of spiking patterns. The mathematical model of the basic
asymmetric TSTDP learning rule [5] can be written as:

�           − ∆ t                                        − ∆ t                 − ∆ t

A1 e τ +            +  A2 e τ +          e τ +

∆ t − ∆ t ∆ t

−A 1  e τ −         −  A − e  τ −          e τ −

where A1  and A2  are the potentiation and depression pa-
rameters and ∆t1  represents the time difference between the
pre-neuron and post-neuron spikes. As for ∆t2 , it equals
to tpost(n)–tpost(n −  1), the time gap of two immediate
successive post spikes. n means one certain time step and
n −  1 represents its immediate last post spike. Similarly, ∆t3
represents the time gap between two pre-spikes. It is noticeable
that the TSTDP has a higher-order term in both depression and
potentiation formulas.

Physiological experiments have demonstrated that the
TSTDP can mimic the biological mechanism more accurately.
At first, researchers have found that the PSTDP rule could
not explain the biological synaptic weight changing result.
Moreover, the TSTDP can reproduce the frequency effects
that happened in the experiments where the potentiation
amplitude increases with the spike firing rate [10]. Besides
these advantages, the most critical advantage of TSTDP is the
capability to reproduce Bienenstock–Cooper–Munro (BCM)
model behavior [5]. With that, neurons will enable input
selectivity when receiving multiple inputs [10].

C. Triplet Reconfigurable STDP Circuit Design
Intending to apply the advantages of the TSTDP learning

rule to various applications, we proposed an STDP learning
circuit that applies different shapes of STDP learning rules
to the triplet STDP. The triplet part of the triplet recon-
figurable STDP circuit is inspired by [11] and the idea of
switching between different rule is inspired by [12]. With
such configuration, the merits of TSTDP, such as frequency
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Fig. 1. Circuit schematic of the first-order time window generator.

effects and BCM model behavior, will be utilized in different
applications. Similar as the PSTDP learning rule, the TSTDP
can be applied to unsupervised learning, supervised learning,
associative learning and recognition tasks and improve the
performance of neural networks. To the best of our knowledge, it
is the first IC  implementation of the triplet reconfigurable
STDP circuit.

The triplet reconfigurable STDP circuit, is controlled by six
digital signals to switch between different shapes of learning
rules. These six digital signals are separated into pre-spike and
post-spike control signals. The circuit implementation can be
divided into five parts. Two are the time window generators
for first-order potentiation and depression, and the other two
are for second-order potentiation and depression. The fifth part
of the circuit is the synapse core. It uses time window signals
from the other four parts to adjust the weight of the synapse.

The first-order time window generator is demonstrated in
Fig. 1. The V decay signals are used to control the decaying
rate of voltages across capacitors after being charged to supply
voltage. As for V pot, this signal controls the rising rate
of voltage across C2 when V cont is at digital low. When
V pre spikes come, the voltage across C1 will increase and
decrease to 0 exponentially due to R C  effect. When V ctr1
is at digital high, the voltage is compared with V c. Before
the voltage across C1 becomes lower than V c, V cont will
uncharge C2, and when C1 voltage is smaller than V c, V cont
will charge C2. When V ctr1 is set to 0, V cont will always
uncharge C2. After that, when pre spikes come, the voltage
across C2 will increase to the supply voltage and exponentially
decrease to 0. After V cont is set to 0, C2 voltage will increase
back to V ref 1. The post spikes will trigger M12 and make
V edcp equal to C2 voltage. V r ef  will be compared with
C2 voltage and produce current for weight changing with an
operational transconductance amplifier (OTA). V ctr2 controls
which voltage is fed into the positive input of the OTA and
the other to the negative input. V ctr3 selects which one of
V ref 1 and V ref 2 is fed to V ref .

As shown in Fig. 2, the second-order time window genera-
tors are similar to the first-order ones. Only after C2 the post
spike controlled switch is replaced by two transmission gates
and one capacitor to delay the signal to the next coming spike.

The fifth part, the synapse core, is demonstrated in Fig. 3.
It is composed of 2 OTAs, one for first-order terms and the
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Fig. 2. Circuit schematic of the second-order time window generator.
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Fig. 4.      (a) Die micrograph of the encoder chip fabricated in 180nm. (b)
Hardware part of the STDP training and encoding testbench. (c) The
measurement result of the hardware testbench.
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Fig. 3. Circuit schematic of the synapse core.
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other for second-order terms. The differential voltage input
will be compared and converted to current output. Thus,
Vctr2 controls whether the current flow into or out of the
synapse weight capacitor Cw. For the second-order terms,
both the first-order and second-order time window signals are
compared simultaneously to provide high-order potentiation
or depression. Thus, the exponential operation from the first-
and second-order time window signals are combined. The two
transmission gates ensure the weight adjustment only happens
when spikes arrive.

With the help of V decays, the circuit can adjust the weight
with different decaying rates. Higher V decay leads to smaller
weight changes with the same time difference. What is more,
different V ref s enable the adjustment of time constants, and V
tail in synapse core helps with the reconfigurability of A1  and
A2  in formula (1). Thus, besides the switching between
different TSTDP types, the reconfigurability is also shown in
the adjustment of decaying rate, weight changing rate, and
weight changing amplitude.

I I I . S I M U L AT I O N AND T E S T I N G R E S U LT S  OF T H E T R I P L E T
STDP C I R C U I T

A. Performance of STDP training with encoding schemes

To verify the training accuracy of the STDP rules, neu-ral
networks with different encoding schemes are imple-
mented with Pytorch and hardware testbench. The MNIST
and CIFAR-10 datasets are utilized to verify that the STDP
training can work with various encoding schemes and provide
good performance. The datasets are first transmitted into the
microcontroller from a personal computer (PC), then converted
to electric signals and inputted into a chip with an encoder
block, as shown in Fig. 4(a). After the encoding process, the
encoded spike signal will be transferred back to the PC
through the microcontroller for the following training

Fig. 5. (a) Prototype of the TSTDP training circuit. (b) Measurement result
of the TSTDP prototype.

process. The hardware testbench is demonstrated in Fig. 4(b).
In Fig. 4(c), the measurement results of the encoder block
on the chip are illustrated. It shows the spike train in one
sampling window. What is more, a hardware testbench of
the TSTDP prototype is also implemented. As shown in Fig.
5(a), it utilizes the neuron blocks on the chip and realizes the
weight-changing function with appropriate components such
as capacitors and transistors. The measurement result of the
prototype is depicted in Fig. 5(b), where the first two channels
show the pre-and post-neuron spike, and the third channel
shows the corresponding weight voltage. As shown in Fig.
5(b), the weigh-changing frequency can be as high as 40kHz.

After the encoded spikes are transmitted back to the PC,
spikes are utilized in various encoding schemes. The TTFS  and
ISI  encoding schemes are multiplexed with a larger timescale
phase of firing encoding scheme, forming the multiplexing
TTFS-phase and ISI-phase encoding schemes. Those encoded
datasets are then fed into deep spiking neural networks with
pair and triplet STDP training methods based on SpykeTorch
[13]. The hardware and software hybrid testbench is then
being operated with MNIST and CIFAR-10 datasets. Table
I demonstrates the accuracy of PSTDP and TSTDP working
with different encoding schemes when evaluated with the
MNIST and CIFAR-10 datasets. The TSTDP training method
achieves 96.5% accuracy for MNIST when working with the
ISI-phase encoding scheme and demonstrates 3.28% more
accuracy than PSTDP and at most 4.9% more accuracy than
other codes (TTFS code). As for the CIFAR-10 dataset, the
TSTDP algorithm gets 84.35% of classification accuracy and
thus achieves 3.63% of more accuracy than PSTDP and at
most 14.05% of more accuracy than other schemes (TTFS
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TA B L E  I
A C C U R A C Y  O F PSTDP A N D TSTDP T R A I N I N G W I T H D I F F E R E N T

E N C O D I N G S C H E M E  F O R MNIST A N D C I FA R - 1 0 D AT A S E T S Synapse Core

PSTDP TTFS
MNIST             88.88%

CIFAR-10 67.3%

TSTDP TTFS
MNIST 91.1%

TTFS-phase ISI
92.5%               91.8%

74.45% 75.3%

TTFS-phase ISI
93.2% 92.8%
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Time
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Time

Window
Generator
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Time
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Time
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CIFAR-10 70.3% 74.11% 78.2% 84.35%
Fig. 7. Layout of the triplet reconfigurable STDP circuit.
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This work
180nm

1.8
16

0.045
775

Fig. 6. Simulation results of different STDP shapes with different control
signals

encoding). In conclusion, the TSTDP learning rule working
with the multiplexing encoding scheme provides better perfor-
mance than the PSTDP learning rule and other basic temporal
encoding schemes.

B. Performance Analysis of the Triplet Reconfigurable STDP
Circuit.

In this section, the result of the STDP circuit, the silicon
area and the power will be simulated and summarized based
on the post-layout simulation. As mentioned in Section.II.C,
the learning rule of the reconfigurable STDP circuit can be
controlled by digital signals. As depicted in Fig. 6, the post-
layout simulation shows several STDP curve shapes with
different control signals. For instance, with signal 011001, the
circuit provides the basic asymmetric STDP learning rule, also
called DP. With signal 011011, the STDP rule implemented
is the symmetric rule, the PP. The x- and y-axis represent the
time difference between spikes and weight changes.

Fig. 7 demonstrates the layout of the triplet reconfigurable
STDP circuit. As depicted in this figure, the circuit consists of
four time window generators and one synapse core. Each time
window generator takes approximately 132 ×  48µm2 of area.
It is noticeable that the comparators take most of the area in
the time window generators. As for the synapse core, it takes
less area than other parts, only 24×86µm2. With these blocks,
the total area of the STDP circuit is 281 ×  162µm2, which is
around 0.045mm2.

Similarly, the static power consumption of the circuit can
also be divided into five parts. Each time window generator
consumes 61µW of power. With 14µW of the synapse core
power consumption, the total power of the triplet reconfig-
urable STDP circuit is 258µW . What is more, the comparison
of the proposed work and other state of the arts of the STDP

circuit is illustrated in Table II. The STDP types used in
[14] are basic DP and DPD training algorithm. [6] has better
reconfigurability. It can switch between DP, DPD, DPD’, DD,
PD, PPD, DPD” and PP algorithms. As for [8], it only utilized
the basic DP algorithm in the training process. In terms
of learning performance, only [8] has reported the training
accuracy. It achieved 97.9% of training accuracy on MNIST
dataset with much better technology node and way higher
energy per spike operation (SOP) while this work has achieved
96.5% with lower energy/SOP. The Energy/SOP represents
the dynamic energy that is consumed for one spike operation
for these works. Since this design is based on SNN, most
components are triggered only when spikes come. What is
more, the minimum transistor sizes are selected that still
keep the circuit functional also help with power efficiency.
Therefore, the comparison result shows that even with not that
advanced technology, this introduced work still provides one
of the best reconfigurability while keeping a relatively low
energy per SOP.

I V. CO NC L U S I O N

In this paper, we presented a novel design of the triplet
reconfigurable STDP circuit that integrates various STDP
types with the triplet STDP rule to take account of three spikes
and adjust the synaptic weight. We have also implemented the
hardware prototype of the proposed circuit. With performance
analysis implemented in hardware testbench and Pytorch train-
ing, TSTDP training rule working with multiplexing encoding
schemes of MNIST and CIFAR-10 datasets has shown 3.28%
and 3.63% higher accuracy than PSTDP training rule and
4.9% and 14.05% higher accuracy than working with other
encoding schemes. To the best of our knowledge, this circuit is
the first IC  implementation of the triplet reconfigurable STDP
synapse circuit with 0.045mm2 of area and 258µW of power
consumption. Compared with other state of the arts, it shows
the best reconfigurability while keeping 775f J , a reasonable
energy per SOP.
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