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Abstract—Building accurate and efficient deep neural network
(DNN) models for intelligent sensing systems to process data
locally is essential. Spiking neural networks (SNNs) have gained
significant popularity in recent years because they are more
biological-plausible and energy-efficient than DNNs. However,
SNNs usually have lower accuracy than DNNs. In this paper, we
propose to use SNNs for image sensing applications. Moreover,
we introduce the DNN-SNN knowledge distillation algorithm to
reduce the accuracy gap between DNNs and SNNs. Our DNN-
SNN knowledge distillation improves the accuracy of an SNN by
transferring knowledge between a DNN and an SNN. To better
transfer the knowledge, our algorithm creates two learning paths
from a DNN to an SNN. One path is between the output layer
and another path is between the intermediate layer. DNNs use
real numbers to propagate information between neurons while
SNNs use 1-bit spikes. To empower the communication between
DNNs and SNNs, we utilize a decoder to decode spikes into real
numbers. Also, our algorithm creates a learning path from an
SNN to a DNN. This learning path better adapts the DNN to the
SNN by allowing the DNN to learn the knowledge from the SNN.
Our SNN models are deployed on Loihi, which is a specialized
chip for SNN models. On the MNIST dataset, our SNN models
trained by the DNN-SNN knowledge distillation achieve better
accuracy than the SNN models on GPU trained by other training
algorithms with much lower energy consumption per image.

Index Terms—spiking neural network, knowledge distillation,
sensing system, deep neural network

I. INTRODUC T I ON

With the development of deep neural networks (DNNs),
using DNNs on intelligent sensing systems for applications
such as smart cities, smart factories, and autonomous vehicles
has gained immense attention [1, 2, 3, 4, 5]. These applications
heavily rely on cloud computing for data processing. However,
cloud computing suffers from reliability, long latency, and
weak privacy issues. On-device data processing is required for
many time-critical applications. DNNs require large computa-
tion and storage resources [6, 7]. Therefore, it is inefficient to
deploy a DNN model on resource-constrained devices. In
recent years, spiking neural networks (SNNs) have demon-
strated their feasibility in efficient hardware implementation
[8, 9, 10]. Compared to DNNs, SNNs are more biologically
plausible and exploit sparse and asynchronous discrete events
for communication between neurons. Taking advantage of
event-based computation, SNNs are capable to perform effi-
cient inference on resource-constrained devices for intelligent
sensing systems.

Loihi [8] is a neuromorphic computing chip for running
SNNs. Loihi utilizes asynchronous SNNs to implement event-
driven parallel computations for executing inference and learn-
ing with high efficiency. The innovative architecture of Loihi
power future applications that need real-time processing and
energy efficiency. In this paper, we focus on building intelli-
gent sensing systems using SNNs on Loihi.

One of the challenges in SNNs is that it has lower accuracy
compared to DNNs in image sensing applications [11]. One
of the main reasons is that the mature training algorithms for
DNNs such as gradient descent [12] cannot be adopted in
SNNs because of the non-differentiable spike activities. STDP
learning [13, 14] has been widely used for the training of
SNNs because of its efficiency and simplicity. It updates the
weight of one synaptic connection based on the relative timing
of pre- and post-synaptic action potentials during a learning
window. However, exploiting the STDP learning algorithm
only is not sufficient to generate a high-performance SNN
model. To address the training issue, several surrogate gradient
descent learning algorithms have been introduced [15, 16]. In
these research works, the authors first define an approximation
function to approximate the spiking activities. Then, the back-
propagation through time [17] algorithm is adopted to back-
propagate gradients to both the spatial and temporal domain of
an SNN model.

Even though a surrogate gradient descent training algorithm
can improve the accuracy of an SNN, the accuracy gap still
exist between an SNN and its DNN counterpart. To address
this issue, we propose the DNN-SNN knowledge distillation
algorithm to enhance the accuracy of an SNN. Conventional
knowledge distillation algorithms are a model compression
technique [18]. It lifts the accuracy of a smaller student
model by learning the knowledge from a larger teacher model.
There are three issues in conventional knowledge distillation
algorithms. First of all, conventional knowledge distillation is
designed for DNNs. How to effectively transfer knowledge
from a DNN to an SNN remains an open question. Sec-
ondly, finding a suitable teacher model for a student model
is challenging. Because of the mismatched capacity issue,
a high-performance teacher model does not often yield a
high-performance student model. Thirdly, a teacher model’s
parameters might be adaptable to the student model. Then,
the knowledge in the teacher model would not be beneficial
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P (z ; T ) = P n (1)

(2)

for the student model.
To address the aforementioned issues of conventional

knowledge distillation, we propose the DNN-SNN knowledge
distillation algorithm to train a DNN and an SNN in parallel.
An SNN is used as the student model and the DNN counterpart is
utilized as the teacher model. This design diminishes the
mismatched capacity issue between a DNN and an SNN. Our
algorithm creates two knowledge transfer paths from a DNN to
an SNN. One path is between the intermediate layer and
another path is between the output layer. These two knowledge
transfer paths improve the accuracy of the SNN model by
allowing the SNN model to learn both output distribution and
intermediate layer representation from the DNN model. DNNs
use real numbers to convey information between neurons
while SNNs use 1-bit spikes. To empower the communication
between DNNs and SNNs, we utilize a decoder to decode
spikes into real numbers. Also, we create a learning path from
an SNN to a DNN. Using this path, the DNN can learn the
knowledge from the SNN to better adapt itself to the SNN.
Our contributions are summarized below.

• The DNN-SNN knowledge distillation is proposed. It
enables knowledge distillation between DNNs and SNNs.
Also, it diminishes the mismatched capacity issue be-
tween DNNs and SNNs and allows an SNN to learn both
output distribution and intermediate representation from a
DNN.

• The DNN-SNN knowledge distillation transfers knowl-
edge from both the output and intermediate layer of a
DNN to an SNN. A  decoder is utilized to decode the
spikes in an SNN into real numbers to empower the
communication between a DNN and an SNN. Also, the
knowledge from an SNN is transferred to a DNN to better
adapts the DNN to the SNN.

• We have successfully deployed our SNN models on the
Loihi. Compared to models on GPU trained by other
surrogate gradient descent algorithms [19, 20, 21, 22, 23,
24], our SNN models on Loihi trained by the DNN-SNN
knowledge distillation achieve better accuracy and energy
efficiency for image classification tasks.

I I . BAC K G RO U N D

A. Comparison of DNNs and SNNs
DNNs are a type of neural network inspired by the structure

and function of the human brain. However, there are some
fundamental differences between DNNs and the brain in terms
of neural computations. DNNs use real numbers to propagate
information between neurons while spike trains of action
potentials are used to convey information between neurons in
the brain [25]. Due to this essential difference, SNNs emerged.
SNNs use 1-bit spikes to perform communications between
neurons. Information is embedded in spike latency and rates.
The differences between DNNs and SNNs are summarized in
Fig. 1. DNNs transfer information using real numbers while
SNNs utilize spikes. In SNNs, the spikes in a sequence are
time-dependent. Therefore, SNNs can process temporal and
spatial information at the same time.

Fig. 1. Comparison of DNNs and SNNs

B. Knowledge Distillation
Knowledge distillation is introduced in [18]. It is a model

compression technique by transferring knowledge from a
larger teacher model to a smaller student model. In conven-
tional knowledge distillation [18], a teacher model’s knowl-
edge is transferred to a student model through the soft target.
The soft target is the prediction of each class yielded by
the teacher model. In [18], the authors state that essential
information is embedded in the ratios of very small probabil-
ities between different classes. To strengthen the probability
differences, a temperature parameter T is inserted into the
softmax function. The modified softmax function is expressed
as,

exp (zi /T )
i

j = 1  exp (zj /T )

The student model is trained by two loss functions. The first
loss function uses the ground truth labels from the dataset as
the target. The second loss function utilizes the soft target from
the teacher model as the target. The overall loss function for
the student model is written as,

L(zt , zs , y) =  (1 −  α)H (y, P (zs ; T =  1 ) ) +
αH (P (zt ; T =  k), P (zs ; T =  k)),

where H  represents the cross-entropy loss function. P  is the
modified softmax function with temperature parameter T . y is
the ground truth target. α is the coefficient for the loss
function. zt and zs are the logits of the teacher model and
student model, respectively.

I I I . I N T E L L I G E N T SE NS I NG S Y S T E M S USING S P I K I N G
N E U R A L N E T W O R K S ON L O I H I CH I P

A. Applications of Intelligent Sensing Systems
Intelligent sensing systems is crucial for many applications

such as smart factory, smart city, and autonomous systems
[1, 2, 3, 4, 5]. These applications are summarized in Fig. 2.
Incorporating advanced sensing systems into these applications
can make the whole society more efficient and sustainable.

Many research works have applied SNNs in sensing systems
for applications such as autonomous robots, keyword spotting,
Visual-Tactile Sensing, and Hand-Gesture Recognition [26, 27,
28, 29]. These research works exploit SNNs to perform real-
time and highly efficient data processing.
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results than other SNN training algorithms [15, 19, 21, 22, 23,
24] on image classification tasks with better energy efficiency.

Fig. 2. Applications of intelligent sensing systems

B. Loihi Chip for Intelligent Sensing Systems

Loihi is a neuromorphic computing chip for SNNs from
Intel Research Labs. Loihi exploits asynchronous SNNs to im-
plement event-driven parallel computations to execute highly
efficient inference. Loihi has several advantages over other
neuromorphic computing chips such as Neurogrid [30] and
BrainScaleS [31]. In the first place, using barrier synchro-
nization, Loihi’s cores in a mesh can execute independently
and utilize barrier messages to perform global synchronization.
Secondly, Loihi has up to 1 million neurons on each chip and
the chip is fabricated with the Intel 4 process [32]. Thirdly,
the behaviors of Loihi are more reliable and predictable than
other neuromorphic computing chips such as Neurogrid [30]
and BrainScaleS [31], which utilize mixed-signal or fully
asynchronous digital circuit systems. Lastly, Loihi has better
research community support and documentation. The software
framework provided by Loihi is open, modular, and extensible.

Loihi chips have been used on many sensing systems
[33, 34, 35]. In [33], the authors build a sensing system
with Loihi to learn and recognize hazardous chemicals under
significant noise conditions. The experimental results show
that the algorithm achieves better accuracy than state-of-the-art
algorithms such as DNNs. In [34], the authors create a high-
performance gesture recognition system using Loihi and DVS
camera, which is an event-based sensor. The system performs
accurate gesture recognition with real-time processing. An
event-based object tracking on the Loihi chip is introduced
In [35]. Using an event-based DVS camera and Loihi chip,
the system can execute accurate and fast object tracking when
occlusions are present.

C. SNNs for Intelligent Sensing Systems on Loihi Chip

In this paper, we propose an energy-efficient SNN model
for image sensing applications and deploy the SNN model on
the Loihi chip. To reduce the accuracy gap between DNNs and
SNNs, we introduce a knowledge distillation algorithm called
DNN-SNN knowledge distillation. The algorithm improves the
accuracy of an SNN by learning the knowledge from a DNN.
Our experimental results show that the SNN models on Loihi
trained by the DNN-SNN knowledge distillation achieve better

I V. S P I K I N G N E U R A L N E T W O R K S WITH DNN-SNN
KN OW L E D G E D I S T I L L AT I O N

DNNs have gained significant attention nowadays due to
their great success in many areas such as computer vision
[36], nature language processing [37], and speech recognition
[38]. With the development of DNNs, using DNNs in intel-
ligent sensing systems for applications such as smart cities,
smart factories, and autonomous vehicles is becoming more
and more popular [39, 40]. Due to the large computation
and storage resources required by DNNs, these emerging
applications count on cloud computing for data processing. It
is not practical for many applications because cloud com-
puting has several issues such as long latency, reliability,
and privacy. Many research works have been proposed to
reduce the computation and storage resources of a DNN on
resource-constrained devices [6, 7, 18, 41]. In recent years,
SNNs have demonstrated their feasibility in efficient hardware
implementation [8]. Compared to DNNs, SNNs are more
biologically plausible and energy-efficient on neuromorphic
computing chips such as Loihi. It is because SNNs exploit
sparse and asynchronous discrete events for communication
between neurons [25].

However, the accuracy of an SNN is usually worse than
a DNN in image sensing applications because the training of
SNNs is challenging. It is because neurons in an SNN use 1-bit
spikes to communicate with other neurons. These spikes are
sparse and non-differentiable. Therefore, The popular training
algorithms such as gradient descent [12] cannot be used
in SNNs. To address this issue, surrogate gradient descent
algorithms have been proposed [15, 16]. In these works, the
authors first define an approximation function to approximate
the spiking activities. Next, the back-propagation through time
[17] algorithm is exploited to propagate gradients to both the
spatial and temporal domain of an SNN model.

Surrogate gradient descent algorithms can improve the
accuracy of an SNN significantly. However, there is still a
gap between the accuracy of a DNN and an SNN. To de-
crease the gap, a novel knowledge distillation algorithm called
DNN-SNN knowledge distillation is proposed in this paper.
Conventional knowledge distillation is a model compression
technique by transferring knowledge from a larger teacher
model to a smaller student model. By learning the knowledge
from the teacher model, the student model’s performance can
be improved. Conventional knowledge distillation has three
issues. Firstly, conventional knowledge distillation is intro-
duced for DNNs and how to effectively use it between DNNs
and SNNs remains an open question. Then, it is challenging to
pick a teacher model for a student model because of the
mismatched capacity between them. Many research works [42,
43] conclude that a high-performance teacher model often does
not produce a good student model. Next, a teacher model’s
parameters might not be adaptable to a student model. The
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knowledge from the teacher model would not be useful for
the student model.

To address these issues of conventional knowledge distil-
lation, an SNN is used as the student model and the DNN
counterpart is exploited as the teacher model. This design
reduces the mismatched capacity issue between a DNN and
an SNN. The DNN and the SNN model are trained in
parallel. During the training phase, there is two knowledge-
transferring path from a DNN to an SNN. One path is from the
intermediate layer and another path is from the output layer.
Through these two learning paths, the SNN model can learn
both output distribution and intermediate layer representation
from the DNN model. DNNs use real numbers to propagate
information between neurons while SNNs use 1-bit spikes.
To enable the communication between DNNs and SNNs, we
utilize a decoder to decode spikes into real numbers. Also,
we create a learning path from an SNN to a DNN. Through
this learning path, the DNN can learn the knowledge from the
SNN to better adapt itself to the SNN.

A. DNN-SNN Knowledge Distillation

The training procedure of the DNN-SNN knowledge distil-
lation is shown in Fig. 3. In DNN-SNN knowledge distillation,

Fig. 3. The overall structure of DNN-SNN knowledge distillation

an SNN is used as the student model and the DNN counterpart is
utilized as the teacher model. This setup helps to diminish the
gap in model capacity between the student and teacher
model. There are three loss functions used to train the student
model during training. The first loss function is the output
distillation loss function. It uses the predicted values from the
teacher model as the target. The second loss function is the
output loss function and it uses the ground truth labels as the
target values. The last loss function is the intermediate layer
distillation loss function, which utilizes the output of
intermediate layers from the teacher model as the target values.
Compared to conventional knowledge distillation, the teacher
model’s knowledge is transferred from both the output and
intermediate layers to the student model. These two knowledge
transfer paths improve the accuracy performance of the student
model by allowing the student model to learn both output
distribution and intermediate layer representation from the
teacher model. We use a decoder to decode the spikes from

the intermediate layers of the student model to real numbers
to communicate with the teacher model. The details of the
decoder will be discussed in later subsections.

The teacher model is trained by two loss functions during
training. The first loss function is the output distillation loss
function, which uses the predicted values of the student model
as the target values. The second loss function is the output loss
function and it utilizes the ground truth labels as the target
values. Our algorithm transfers the knowledge from the student
model to the teacher model because the knowledge helps the
teacher model better fit the student model. Then, the teacher
model can provide more useful information for the student
model.

B. Decoder for DNN and SNN Communication

Our DNN-SNN knowledge distillation transfers the knowl-
edge from both the intermediate layer and output layer of
a DNN to an SNN. Due to the different representations of
information, DNNs cannot communicate with SNNs. DNNs
use real numbers to represent information while SNNs use
a sequence of 1-bit spikes to convey information between
neurons.

To enable communication, we create a decoder to decode
the output of intermediate layers of an SNN to real numbers.
Assume there are N s      neurons with T time steps in an
intermediate layer of an SNN. An intermediate layer of a DNN
has Nd neurons. The decoder is a 2D matrix with a shape
of (T ×  N s )  ×  Nd . The values in the matrix are generated
from a uniform distribution over the interval of −0.5 and 0.5.
The decoder is not trained and fixed during training. During
training, the output of the SNN’s intermediate layer is flattened
and multiplied by the decoder matrix. Then, the decoder’s
output is fed into the loss function. The loss function uses the
output of the intermediate layer of a DNN as the target value.

C. DNN-SNN Knowledge Distillation Loss Function

As shown in Fig. 3, there are three loss functions to train
the student model. The first loss function is the output loss
function and it is an L1 loss function, which is written as,

L S O  =  H (y , Ps ), (3)

where y is the ground truth label from the dataset and P s  is
the output of the student model. H  is a cross-entropy loss
function.

The second loss function is the output distillation loss
function, which is a Kullback-Leibler divergence loss function
[44]. The loss function utilizes the output probability distribu-
tion of the teacher model as the target. The output distillation
loss function is shown as,

M η

L S K L  (Pt  , Ps  )  = P η  log(      
η ), (4)

c = 1

where P η  and P η  represent the predicted probability of each
class after the modified softmax function defined in Eq. 1 for
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the student and teacher model, respectively. M is the number
of classes in the dataset.

The intermediate layer distillation loss function utilizes the
output of the teacher model’s intermediate layer as the target
value. The loss function can be written as,

L S I
 

I t , I s
 
=  �I t  −  Is�1 , (5)

where I t      represents the intermediate layer of the teacher
model. I s  is the output of the intermediate layer of the student
model decoded by the decoder.

The overall loss function for the student model is shown as,

L s  =  L S O  +  α s L S K L  +  β s L S I (6)

where αs and βs are the coefficient for loss function L S
and L S I .  These two parameters are hyperparameters to control
the strength of distillation loss functions.

There are two loss functions to train the teacher model,
which are the output loss function and output distillation loss
function, respectively. The output loss function for the teacher
model is illustrated as,

L T O  =  H (y, Pt ), (7)

where Pt  is the final output of the teacher model.
The output distillation loss function for the teacher model

utilizes the output probability distribution of the student model
as the target. The output distillation loss function for the
teacher model is a Kullback-Leibler divergence loss function
and it is expressed as,

L T K L  (P η , Pt )  =  
X

P η  log(
P
η ), (8)

c = 1 t

where P η  and P η  represent the predicted probability of each
class after the modified softmax function defined in Eq. 1 for
the student and teacher model, respectively. M is the number
of classes in the dataset.

The overall loss function for the teacher model is,

L t  =  L T O  +  α t L T K L (9)

where αt is the coefficient for the output distillation loss
function.

V. E X P E R I M E N TA L R E S U LT S

A. Experimental Setup
In our experiments, the SNN model consists of two fully

connected layers with 96 neurons in each layer. On MNIST
classification task [45], the input and output sizes are 784
and 10, respectively. The input and output sizes are 3024
and 10 respectively on the SVHN classification task. The
SNN model runs on a single Loihi chip. On Loihi, we use a
Poisson encoder to encode input data. The voltage and current
decay time constant of the L I F  neuron are 10e-3 and 5e-3,
respectively. all GPU experiments run on a single NVIDIA
GeForce RT X  2080. In terms of the measurement of power
consumption, the power consumption on GPU is measured
using the NVIDIA GPU management and monitoring tool.

The power on Loihi is measured using the internal tools
provided by Loihi. In our experiments, we use the following
abbreviations to represent different models and algorithms.

• “BaseSNN” is the fully-connected layers trained by the
surrogate gradient-descent algorithm proposed in [15].
The model has two fully connected layers with 96 neu-
rons in each layer. The model performs inference on the
Loihi chip and is trained on GPU.

• “BaseSNN+DSKD” represents the fully-connected lay-
ers trained by the proposed DNN-SNN knowledge dis-
tillation training algorithm. The model has the same
architecture as the BaseSNN model. The model performs
inference on the Loihi chip and is trained on GPU.

• “eWB” represents the fully-connected layers trained by
the training algorithm proposed in [19]. The model has
the same architecture as the BaseSNN model. The model
runs on GPU.

• “BindsNet” is the fully-connected layers trained by the
training algorithm proposed in [21]. The model has the
same architecture as the BaseSNN model. The model runs
on GPU.

• “Q-SpiNN” represents the fully-connected layers trained
by the training algorithm proposed in [23]. The model
has the same architecture as the BaseSNN model. The
model runs on GPU.

• “QSTDP” is the fully-connected layers trained by the
training algorithm proposed in [24]. The model has the
same architecture as the BaseSNN model. The model runs
on GPU.

B. Training Setup

On both MNIST and SVHN datasets, we use a mini-batch
size of 512 to train SNN models. The Adam learning algorithm
is used and the learning rate is 0.001. We multiply the learning
rate by 0.1 every 30 epochs. The training epoch is 100. Each
spiking neuron has 100 time steps. The Hyperparameters such
as αs , βs , and αt in Eq. 6 and 9 are set to 0.10, 0.05, and
0.05.

C. DNN-SNN Knowledge Distillation Architecture

The architecture of our DNN-SNN knowledge distillation
algorithm is shown in Fig. 3. The teacher model is a DNN
model and the student model is an SNN model. Both the DNN
and SNN models have two layers with the same number of
neurons. This setup reduces the mismatched capacity issue
between the DNN and the SNN. There is an intermediate
layer transfer path from the DNN model to the SNN model. A
decoder is used to decode the spikes in the intermediate
layers of the SNN to real numbers. There is a bi-directional
knowledge transfer path between the DNN and the SNN. The
bi-directional path is used to transfer knowledge at the output
layer between each other. Both the DNN and the SNN model
have another output loss function, which uses the ground truth
labels as the target values.
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D. MNIST HandWritten Digits Classification
A  commonly used dataset for evaluating SNN models is

the MNIST dataset [45]. There are 60,000 training images and
10,000 testing images in the dataset. The image is in grayscale
with a dimension of 28 ×  28. Each image is a handwritten
digit from 0 to 9. The accuracy and energy consumption per
image comparison of different models are shown in Table I.
We set the batch size on GPU to 1 because Loihi only
supports a batch size of 1. As can be seen from Table I,

TA B L E  I
A C C U R A C Y  A N D E N E R G Y  P E R I M A G E  C O M PA R I S O N ON MNIST D AT A S E T

B E T W E E N D I F F E R E N T  M O D E L S  W I T H B A T C H  S I Z E  = 1

Net work
eWB ( G P U )  [ 1 9 ]

B inds N et  ( G P U )  [ 2 1 ]
Q -Sp i N N  ( G P U )  [ 2 3 ]

QSTDP ( G P U )  [ 2 4 ]
BaseSNN ( L o i h i )

BaseSNN+DSKD ( L o i h i )

E n e r g y / I m a g e ( J )
5.612

15.506
1.909
2.201
0.013
0.013

A c c u r a c y ( % )
95.35
95.00
95.14
94.58
95.06
96.87

Fig. 4. Energy consumption per image (J) of different implementations in
log scale with batch size 128

our BaseSNN+DSKD model trained by the proposed DNN-
SNN knowledge distillation algorithm achieves better accuracy
than other models using other training algorithms [15, 19,
21, 22, 23, 24]. Also, our BaseSNN+DSKD model on Loihi
has better energy efficiency than other models on GPU. The
energy consumption per image of the BaseSNN+DSKD model
on Loihi is 432X, 1193X, 147X, and 169X less than the eWB,
BindsNet, Q-SpiNN, and QSTDP models on GPU with a batch
size of 1.

Measuring GPU latency with a batch size of 1 is sig-
nificantly slower than with a larger batch size. To better
demonstrate the energy efficiency of the Loihi, we conduct
another experiment and use a batch size of 128 for all models
on GPU. Meanwhile, we keep the batch size of the model on
Loihi at 1.

the energy consumption per image (J) in log scale with a
batch size of 128 during the inference phase is shown in Fig. 4.
As demonstrated in Fig. 4, the energy consumption per image
of the BaseSNN+DSKD model on Loihi is 5.61X, 290.15X,
3.61X, and 4.69X less than the eWB, BindsNet, Q-SpiNN,
and QSTDP models on GPU.

E. SVHN Dataset
SVHN is a real-world image dataset for digits classification.

It has over 70000 digits for training and 20000 digits for
testing. The image has a dimension of 32 × 32 × 3. The target
of the dataset is to classify digits from 0 to 9. The accuracy
comparison of the BaseSNN and the BaseSNN+DSKD model
is shown in Table II. As can be seen from the table, the

BaseSNN+DSKD model improves the accuracy by approxi-
mately 2.6% compared to the BaseSNN model.

V I . CO N C L U S I O N

In this paper, we propose to use SNNs for energy-efficient
intelligent sensing systems on the Loihi chip. we introduce a
knowledge distillation algorithm called DNN-SNN knowledge
distillation to improve the accuracy of an SNN model by
transferring knowledge between a DNN and an SNN. Our
DNN-SNN knowledge distillation algorithm train a DNN and
an SNN in parallel. During training, there are two knowledge
transfer paths from the DNN to the SNN. One path is at the
output layer and another path is between the intermediate
layers. These two learning paths allow the SNN to learn both
output distribution and intermediate layer representation from
the DNN. To enable communication between the DNN and
the SNN, we build a decoder to decode the spikes in the
intermediate layers of the SNN to real numbers. Moreover,
there is a knowledge transfer path at the output layer from
the SNN to the DNN. This learning path helps the DNN to
better adapt itself to the SNN. Then, more helpful guidance
can be provided by the DNN. On the MNIST and SVHN
datasets, our experimental results demonstrate that the DNN-
SNN knowledge distillation achieves better accuracy than
other training algorithms such as eWB, BindsNet, Q-SpiNN,
and QSTDP. Meanwhile, our models on Loihi reduce energy
consumption per image significantly compared to other models
on GPUs. These results show that energy-efficient intelligent
sensing systems can be achieved using SNNs on Loihi.

TA B L E  II
A C C U R A C Y  C O M PA R I S O N ON SVHN D AT A S E T  B E T W E E N PTQ SNN A N D

Q AT SNN M O D E L

Net work N or m a l i z e d  A c c u r a c y
BaseSNN                               1.000X

BaseSNN+DSKD                        1.026X
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