
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 31, NO. 3, MARCH 2023 331

Enabling a New Methodology of Neural Coding:

Multiplexing Temporal Encoding in

Neuromorphic Computing

Honghao Zheng , Student Member, IEEE, Kang Jun Bai , Member, IEEE, and Yang Yi , Senior Member, IEEE

Abstract— From rate to temporal encoding, spiking infor-
mation processing has demonstrated advantages across diverse
neuromorphic applications. In the aspects of data capacity
and robustness, multiplexing encoding outperforms alternative
encoding schemes. In this work, we aim to implement a new class
of multiplexing temporal encoders, patterning stimuli in multiple
timescales to improve the information processing capability, and
robustness of systems deployed in noisy environments. Benefitted
by the internal reference frame using subthreshold membrane
oscillation (SMO), the encoded spike patterns are less sensitive
to the input noise, increasing the encoder’s robustness. Our
design results in a tremendous saving on power consumption
and silicon area compared with the power-hungry analog-
to-digital converters. Furthermore, a working prototype of the
multiplexing temporal encoder built based on an interspike
interval (ISI) encoding scheme is implemented on a silicon
chip using the standard 180-nm CMOS process. To the best of
our knowledge, our introduced encoder demonstrates the first
integrated circuit (IC) implementation of neural encoding with
multiplexing topology. Finally, the accuracy and efficiency of
our design are evaluated through standard machine learning
benchmarks, including Modified National Institute of Standards
and Technology (MNIST), Canadian Institute For Advanced
Research (CIFAR)-10, Street View House Number (SVHN),
and spectrum sensing in high-speed communication networks.
While our multiplexing temporal encoder demonstrates a higher
classification accuracy across all the benchmarks, the power
consumption and dissipated energy per spike reach merely
2.6 µW and 95 fJ/spike, respectively, with an effective frame
rate of 300 MHz. Compared with alternative encoding schemes,
our multiplexing temporal encoder achieves at most 100% higher
data capacity, 11.4% more accurate in classification, and 25%
more robust against noise. Compared with the state-of-the-art
designs, our work achieves up to 105× power efficiency without
significantly increasing the silicon area.

Index Terms— Analog integrated circuit (IC) design, gamma
alignment, interspike interval (ISI), multiplexing encoding, neu-
romorphic computing.
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I. INTRODUCTION

NEUROMORPHIC computing was first introduced by

Carver Mead in the late 1980s [1]. With the inherent

self-learning capability, neuromorphic computing systems

have drawn tremendous interest in recent years with the

potential to accelerate computational efficiency and overcome

the limitations of the traditional von Neumann architecture

[1]. To be specific, neuromorphic computing systems can

efficiently process and learn from data, making data-intensive

applications, such as image classification and speech recog-

nition, to be effectively carried out [2]. More importantly,

neuromorphic computing systems consistently obtain higher

power efficiency, in a way that is sufficient by modeling

our human brain. In the past decades, efforts to imitate the

operation in biological neural systems with very VLSI circuits

have been made [3], [4]. For instance, the IBM TrueNorth has

demonstrated excellent power efficiency (in less than 3 W)

compared with the standard central processing unit (CPU)

and graphics processing unit (GPU) over object recognition

tasks [4]. Moreover, the Intel Loihi has also been evaluated

through diverse applications—such as adaptive robot arm con-

trol and drone motor control with the state-of-the-art latency

in response to the visual input—by only consuming far less

than 1 W of power [3]. As for the Tianjic, the chip achieves

high accuracy with high throughput and power efficiency

for pattern recognition and has been used in a multimodal

bicycle system [5]. Finally, the BiCoSS, which achieves high

accuracy for the Modified National Institute of Standards and

Technology (MNIST) dataset, can reproduce the network-level

dynamic activities of different brain regions to further reveal

the mechanisms responsible for human cognition and analyze

the mechanisms from the neuron level [6]. In short, neuromor-

phic computing systems outperform the traditional structures

in both the learning ability and power efficiency perspectives.

Similar to the biological neural systems, signals can be

represented in terms of spikes in the neuromorphic computing

systems. Thus, a spike encoder is essential for a neuromor-

phic computing system. To better understand the functionality

of the spiking information processing, the neural encoding

schemes need to be carefully investigated. Such an encoding

scheme refers to converting the information of raw sensory

inputs into a set of spike trains, which downstream units can

process. In general, there are two major types of encoding

schemes, rate encoding and temporal encoding [7]. Rate

encoding is an encoding scheme that maps input information
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TABLE I

PROS AND CONS OF DIFFERENT ENCODING SCHEMES

into the number of spikes within a sampling window. Due to

its simplicity in realization, rate encoding is more widely used

in both software and hardware [8]. However, such an encoding

scheme has the disadvantage of low data density, in which only

the firing rate is used to convey information and the temporal

patterns of spikes are ignored. On the other hand, the temporal

codes tend to represent information with the temporal patterns

of spikes, thus using both the firing rate and time of spikes.

Two different types of temporal encoding have been commonly

investigated, the time-to-first-spike (TTFS) encoding and the

interspike interval (ISI) encoding.

With the increasing data density for mission-critical appli-

cations [9], the demand for higher data capacity increases.

It has been found that an encoder that combines multiple

encoding topologies would increase the data capacity, known

as multiplexing encoding. In addition to the improved encod-

ing capability, multiplexing encoding is more robust against

noise using an internal reference frame [10], [11].

Table I demonstrates the pros and cons of the aforemen-

tioned encoding schemes. It shows that multiplexing encoding

can provide the highest data capacity and better robustness

compared with alternative encoding schemes, and yet, the

integrated circuit (IC) implementation of the multiplexing

temporal encoder has not been discovered. In this work,

we design and analyze a multiplexing temporal encoder, which

can transfer raw sensory inputs into neural spike trains with

multiple timescales. The major contributions of our work are

summarized as follows.
1) Our work develops the first IC implementation of mul-

tiplexing temporal neural encoder using the Global-

Foundries standard 180-nm CMOS process.

2) High robustness is realized by the ISI encoding topol-

ogy and the internal reference frame with subthreshold

membrane oscillation (SMO). The SMO together with

gamma alignment enables precise phase modulation

within the encoder, thus enhancing its robustness and

classification accuracy. Better yet, an improved data

processing capacity with up to 100% over alternative

encoding schemes is also achieved.

3) The multiplexing temporal encoder was evaluated with

spiking neural networks (SNNs) in PyTorch, and the

performances were compared with alternative encoding

schemes (rate, TTFS, ISI). A classification accuracy of

93.78% on the MNIST dataset was reported, yielding

up to 10.78% improvement over alternative encoding

schemes. Beyond that, improvements in classification

accuracy with up to 6.4% and 11.4% on the Canadian

Institute For Advanced Research (CIFAR)-10 and Street

View House Number (SVHN) data, respectively, were

also achieved.

4) Under the performance evaluation of spectrum sens-

ing in multiple-input and multiple-output orthogonal

frequency-division multiplexing (MIMO-OFDM) sys-

tems, the detection accuracy with our multiplexing

temporal encoder demonstrates 11% improvement over

alternative encoding schemes, revealing the application

potential of the proposed encoder in 5G or Internet of

Things (IoT).

5) We eliminate the power-hungry analog-to-digital con-

verters (ADCs) and op-amps, and thus, our multiplexing

temporal encoder offers an ultralow power consumption

at 2.6 µW with a reasonable silicon area of 0.024 mm2.

The dissipated energy per spike is 95 fJ/spike with an

effective frame rate of 300 MHz.
In this article, the literal research of the neural encoding

schemes and the general structure of our multiplexing temporal

encoder are illustrated in Sections II and III, respectively, fol-

lowed by the circuit implementation and experimental results

in Section IV. The benchmark and application evaluations are

discussed in Section V, and the article is then concluded in

Section VI.

II. NEURAL ENCODING

Neural encoding defines the process that transfers the input

signal (stimuli) to neural spike trains. Research efforts have

been made on investigating different encoding schemes [12].

First, it has been proven that the input stimuli could be

represented in terms of the firing rate within the sampling

window. Afterward, an encoding scheme that uses the spike

patterns to convey information has been found. The former

is commonly known as the rate code and the latter is known

as the temporal code. The rate encoding scheme, depicted in

Fig. 1(a), converts the information into the number of spikes

within the sampling window. Because of its simplicity in the

working mechanism and hardware realization, rate encoding

has been widely applied in designing SNNs. However, even

the same input would lead to different patterns of spikes as

long as the numbers are the same, and thus, the robustness of

rate encoding is limited due to its low data density [10]. Such

a low data density also leads to the fact that any mistake in

the spike train would affect the output of the whole encoding

process. On the contrary, the temporal encoding schemes

can use internal/external reference frames to overcome minor

mistakes. In [13], a rate encoder is implemented in a feed-

forward network, and yet, the power consumption of such

design reaches 577 µW using the 130-nm technology.

On the other hand, temporal encoding uses time of firing

spikes to represent stimuli, improving the accuracy and robust-

ness of the encoded spike trains. In practice, several temporal

encoding methodologies have been investigated, among which
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Fig. 1. Examples of the encoding schemes. Presentation of (a) rate encoding,
(b) TTFS encoding, and (c) ISI encoding.

the TTFS encoding and the ISI encoding schemes are the two

most common [12].

Latency encoding, also known as TTFS encoding, is a well-

known temporal encoding scheme [14]. In TTFS, the stimuli

are converted into a single spike, where the information is

represented by the time difference between the rising edge

of the sampling window and the fired spike, as illustrated

in Fig. 1(b). In [15], a TTFS encoder was designed with

merely 3.5 µW of power consumption. However, external

sources are needed to initiate the sampling windows, in which

the performance of TTFS code could be affected while its

robustness against noise is limited. To be specific, when a

neuron inaccurately fires a spike, all the later computing units

could not achieve the desired output, leading to tremendous

errors in the system.

To sidestep the aforementioned drawbacks, the ISI encoding

scheme was introduced. Unlike latency encoding, ISI encoding

maps the stimuli to time intervals between spikes, as shown

in Fig. 1(c). The ISI spike train is generated in one sampling

window without additional reference, as spikes can be relative

references to each other. The ISI encoding generates more

spikes in one sampling window than the TTFS encoding,

thus conveying more information. It has been proven that ISI

encoding has a better ability to mimic how biological neural

networks encode stimuli. Two different circuit implementa-

tions of the ISI encoder have been proposed in [14]. The

parallel encoder demonstrates lower latency when encoding

information, while the iteration encoder would generate more

spikes even with the same number of neurons to improve the

area efficiency. In practice, the parallel encoder [8] maintains

a linear relationship, such that

NS = N (1)

where N and NS are the number of neurons used in the

encoder and the number of spikes within a sampling window,

respectively. In contrast, the iteration encoder [14] holds

an exponential relationship

NS = 2N−1. (2)

Instead of increasing the number of spikes within sampling

windows, relying on an internal reference would also improve

the performance. Specifically, the SMO, originated from the

rhythmic activity pattern of biological neurons with a dominant

frequency [10], is often modeled by a sine wave in neuromor-

phic applications, where its period needs to be smaller than

the sampling time window [11]. Such SMO helps eliminate

the onset precision issue, thus supporting phase encoding [16].

In this manner, the input stimuli are converted into a voltage

value, where a spike will be fired when SMO reaches it, which

can be expressed as

SMOi = A · cos(ωT + φi) (3)

where A is the amplitude of SMO, ω is the phase angular

velocity, and φi is the phase of the i th input for i ∈

{1, 2, 3, . . . , N} with N denoting the number of parallel inputs.

More specifically, φi can be defined as

φi = φ0 + (i − 1)1φ (4)

where φ0 is the initial phase, and 1φ is the phase shift between

SMOs [11].

III. MULTIPLEXING ENCODING DESIGN

Intending to improve the data processing capability of sys-

tems, the concept of applying the multiplexing encoding mech-

anism in neuromorphic computing has been introduced [17].

Multiplexing is a process that combines two different encod-

ing schemes to increase the data encoding capacity. It has

been proven that multiplexing occurs in biological neural

systems, thus improving learning and processing capabilities.

For instance, researchers have carried out an experiment using

rats to verify the functionality of multiplexing encoding in

which a multiplexing code consisting of rate and temporal

codes is applied to rats to sense object texture [10]. It turns

out that the multiplexing code can transfer more stimuli than

whichever of rate encoding and temporal encoding alone [11].

Beyond that, neuroscientists have quantified the information

in the analysis of single-unit data to compare the information

density of different encoding schemes [18]. As illustrated

in Fig. 2, the temporal encoding scheme provides higher

information density than rate encoding, and multiplexing codes

have higher data capacity than temporal or rate code alone.

As such, the multiplexed code requires a smaller encoding

time window for the same amount of information and thus

increasing the data processing rate.

In addition, the multiplexing encoding schemes can convey

more information [11]. With experiments to quantify the

impact of sensory noise on different codes, the robustness

against noise across various encoding schemes is demonstrated

in Fig. 3 [18]. While the information density in various

encoding schemes decreases when the noise level is rising,
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Fig. 2. Stimulus information for different encoding schemes.

Fig. 3. Information in codes for different noise levels.

the multiplexing code still retains the most information across

all noise levels.

The multiplexing operation can be divided into two main

steps [11]. The first step is encoding, where the input analog

stimuli are transferred into spike signals. Here, we define the

excitation signal as S and the output spike (train) as P . When

the latency encoding is applied, P will be a single spike.

On the other hand, P will be in the form of spike trains if ISI

encoding occurs.

The second step of multiplexing encoding is the transfor-

mation phase. To discuss this step, a terminology, gamma

alignment, needs to be introduced. The gamma alignment

refers to the process that shifts the generated latency (or ISI)

spikes to the next local maximum of SMO, which can be

written as

P 0
τ = Pt (5)

where t is the exact time of P , and τ is the next local

maximum of its corresponding SMO.

For instance, in TTFS-phase encoding, the gamma align-

ment shifts the output spikes of TTFS encoding to each

channel’s corresponding SMO. These SMOs have a particular

Fig. 4. Examples of multiplexing encoding. (a) TTFS-phase encoding and
(b) ISI-phase encoding.

phase shift from each other, as illustrated in (4). Such a

concept is introduced in [11] with a four-channel TTFS-phase

multiplexing encoding scheme, as demonstrated in Fig. 4(a).

With a similar operation manner, the gamma alignment proce-

dure shifts the output spikes from the ISI encoder to the next

local maximum of SMO in the ISI-phase encoding, as shown

in Fig. 4(b).

The concept of multiplexing is proposed based on a mech-

anism in which information on different timescales can be

integrated for higher information density. Multiplexing encod-

ing schemes will combine complementary temporal patterns to

transmit more information with the same sampling frequency,

thus enhancing the performance of systems [19]. Under noisy

environments, the robustness of multiplexing codes has sig-

nificant advantages over others. The SMO introduced by

the multiplexing encoding scheme helps with the system’s

stability and robustness, especially when operating in noisy

environments [12].

In biological systems, the neurons tend to adjust themselves

for dynamic input information; thus, the relationship between

the stimuli and the output spikes varies from time to time. Such

a variation in input–output relationships would lead to ambi-

guity of response. The spikes would be fired at different times,

even with the same stimulus. However, multiplexing encoding

would sidestep this shortcoming. For instance, it has been

found that the motion-sensitive cell in a fly’s visual system

tends to encode the history of stimuli and the present stimuli

with both rate encoding and ISI encoding. The ambiguity can

be eliminated using the ISI scheme to encode the recent history

of input information along with the current stimulus, and thus,

the necessary information provided to ensure the ambiguity is

not a problem [10], [20].
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Fig. 5. Overview of the proposed multiplexing encoder.

Some literature has proven the advantages of multiplexing

encoding toward noise and ambiguity over the other encoding

schemes [10], [11], [12], and yet, to implement a practical

circuit of the multiplexing encoder, there are still many limita-

tions needed to be addressed. For instance, with the increasing

number of neurons, the implementation complexity of the

encoder increases exponentially, especially for the ISI-phase

encoders.

To use these prominent properties of multiplexing codes,

such as high data capacity and robustness, for large-scale

data processing applications, the IC implementation of the

multiplexing ISI-phase encoder is urgently needed. Not only

because IC implementations are power-efficient but also due

to their area efficiency. In this work, we introduce a new class

of multiplexing encoders consisting of three essential blocks,

namely, the ISI encoder, the spike expander for extending the

spike width for later computation, and the gamma alignment.

The block diagram of our ISI-phase encoder is demonstrated

in Fig. 5.

In the ISI encoding module, neurons with different reference

voltages fire spikes at different times. The larger the Vref,

the further the spike is away from the clock (CLK) signal.

Therefore, with an OR gate in the ISI encoder to integrate two

spikes, the ISI encoder can transfer the input current to a spike

train.

As for the gamma alignment block, the firing amplitude of

spikes will be sampled and held by a peak detector composed

of a diode-connected transistor and a capacitor. This captured

spike will be transmitted to one input of an AND gate, where

the other input is from the SMO. This SMO is precisely tuned

such that its peak point is right at the AND gate’s threshold.

One spike will be fired when the next local maximum of

the SMO comes after a sampled input. Afterward, the reset

mechanism is triggered, and the captured voltage decreases to

its initial level.

It is noticeable that the peak detector can only sample spikes

that are wider than 10 ns; else, the peak detector will not

be triggered. However, the ISI encoder only generates spikes

with 1 ns width, and thus, the spike expander is introduced to

overcome this issue.

IV. IC DESIGN, OPTIMIZATION, AND RESULT OF

MULTIPLEXING ENCODER

The introduced ISI-phase multiplexing encoder is designed

and optimized using the GlobalFoundries standard 180-nm

CMOS technology, and the simulation is performed in the

Cadence Virtuoso platform.

A. Analog Neuron

The structure of the neuron used in this design is built based

on the latency encoder [8], as shown in Fig. 6. When the input

Fig. 6. Circuit schematic of the neuron.

Fig. 7. Spikes of the latency encoding module.

current is being integrated, the voltage across the membrane

capacitor C1 increases. Due to the voltage dividing effects,

the voltage at the gate of M1 raises up the voltage at the

drain of M2. The buffer then fires a spike when the voltage

exceeds a certain threshold. Thus, the integration time, T, can

be expressed as

T =
Cm · Vref

Iin

(6)

where Iin is the excitation current, Cm is the membrane

capacitance, and Vref is the threshold voltage of the neu-

ron. The CLK’s frequency controls the sampling rate of the

neuron. The charge integration on the membrane capacitor

starts after the CLK reaches digitally high. Meanwhile, the

reset mechanism forces the membrane voltage back to its

initial level after the spike fires. To be specific, a fired spike

triggers the reset switch M7, leading the membrane voltage

to decrease to zero and wait for the next charge integration.

Fig. 7 illustrates the conversion of an analog current signal

into a latency spike. In this example, a sine-wave current is

converted into latency spikes. It is noticeable that the larger

input leads to a closer spike to the CLK, while the smaller

input makes the spike further apart from the CLK. Such

property fulfills the inversely proportional input and output

signal relationship in latency encoding.

B. ISI Encoder

The number of neurons in the ISI encoder can be varied.

As highlighted in Section II, the number of neurons and
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Fig. 8. Circuit schematic of the ISI encoder.

Fig. 9. Spikes of the ISI encoding module.

outputted spikes in the parallel structure have a linear rela-

tionship. The more neurons in the encoder, the more spikes

in one sampling window. Increasing the number of neurons

will lead to higher data capacity and yet increase the power

consumption and silicon area. Since the neurons are the main

source of power consumption and area used in the ISI encoder

and the whole multiplexing encoder, increasing the number of

neurons will drastically affect the power and area efficiency of

the whole design. That is why there are only two neurons in

the ISI encoder, as demonstrated in Fig. 8, which take different

Vref voltages. With the same input (excitation) current, these

neurons fire spikes at different times, T1 and T2, according to

(6). After the spikes are conveyed from the neurons, they will

be integrated by an OR gate such that the ISI encoder generates

a spike train. Therefore, the interval between the spikes can

be written as

D = T2 − T1 =
Cm(Vref2 − Vref1)

Iin

. (7)

This encoder transfers the input current signal to time intervals

between spikes consisting of two neurons and an OR gate.

As shown in Fig. 9, after being triggered by the CLK signal,

Fig. 10. Circuit schematic of the gamma alignment block.

Fig. 11. Illustration of gamma alignment.

the integrate-and-fire mechanism starts, and thus an ISI spike

train is fired. Noticeably, the input current ranges from 100 to

700 nA. It can be observed that the time interval between each

pair of spikes varies with the current value between the onset

signal and its corresponding spike train due to the different

integration rates of the charge.

C. Gamma Alignment

The gamma alignment is a critical module in the introduced

multiplexing temporal encoder. It offsets spikes to their next

local maximum determined by the SMO. In the circuit imple-

mentation shown in Fig. 10, a spike detector consisting of a

diode-connected transistor and a capacitor is used. With the

diode connection, M1 transfers the incoming spike to C1 and

stops the charge on C1 from leaking after that spike. The

held spike is then fed into the AND gate and recognized as

digital “1.” Since the SMO is often modeled by sine wave and

its frequency needs to be larger than that of the corresponding

neurons, a function generator is often used to generate SMO.

To ensure that the SMO is recognized as digital “1” only

at local maximums, the threshold voltage of the AND gate

is adjusted precisely such that the maximum point of the

SMO aligns with the gate’s threshold voltage. When the local

maximum of SMO arrives after the input spike, an output spike

will be generated through the buffer. Meanwhile, the switch

M2 helps with the reset mechanism. The buffer-stabilized

spike will trigger M2, and the held voltage will decrease to its

initial level, waiting for the next input spike. Fig. 11 shows the
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Fig. 12. Circuit schematic of the spike expander.

Fig. 13. Illustration of pulsewidth extension.

relationship between the input spikes, the SMO, and the shifted

spikes. It can be observed that the outputted spikes of the ISI

encoder are shifted to their corresponding local maximums of

SMO.

D. Spike Expander

As mentioned in Section III, a lasting time of 10 ns for

the incoming spike is required for the peak detector to work

properly; else, the peak detector will be unable to charge the

capacitor such that the voltage is recognized as digital “1.”

However, due to the reset mechanism, the ISI encoder can

only output spikes that last for 1 ns. To this end, a spike

expander is implemented to expand the pulsewidth of spikes

to sidestep this issue, as illustrated in Fig. 12.

In the circuit implementation, an inverted spike is generated

by the spike coming from the ISI encoder, and Vbias controls

the inverted spike width since the gate voltage of the PMOS

transistor controls the charging rate at the capacitor. Thus, the

large capacitor to provide enough delay can be avoided. After

that, an inverter is used to flip the inverted spike.

Fig. 13 depicts the property of spike time extension. It is

noticeable that the expanded spike reaches 13 ns in pulsewidth

while the input only lasts for 2 ns. Thus, the peak detector in

the gamma alignment is capable of capturing those spikes and

keeping them for the firing process of the AND gate.

With the help of internal reference frames, systems have

outstanding robustness in noisy environments. Since the input

Fig. 14. Illustration of the signal flow.

data are interfered by noise, the temporal encoding part in the

multiplexing temporal encoder generates output whose spike

is shifted. However, due to the gamma alignment function

of multiplexing encoding, the spike is shifted to its next

local maximum determined by the SMO. As long as the

noise-interfered spike is in the same gap between two SMOs’

local maximums with the initial spike, the output spike of

the multiplexing encoder remains unchanged, and thus, noises

cannot affect the encoder’s outputs. Therefore, the multiplex-

ing temporal encoder can effectively improve the robustness

of systems.

Fig. 14 illustrates the conversion of a current stimulus

to a spike train using the introduced ISI-phase multiplexing

encoder in post-layout simulation. The top part of the figure

shows the ISI encoding functionality, where the input signal

is transferred into a spike train. After that, with the help of

a spike expander, the spikes in the original spike train are

moved to their next maximum point of SMO correspondingly.

Then the signal comes out of the encoder as a newly made

spike train, which has high information density and robustness

against noise.

V. PERFORMANCE AND RESULT ANALYSIS

A. Performance Comparison Among Encoding Schemes

To demonstrate the effectiveness of different encoding

schemes, SNNs with different encoders are implemented in

PyTorch with the SpykeTorch simulator [21]. In this exper-

iment, the MNIST dataset [22], the CIFAR-10 dataset [23],

the SVHN dataset [24], and the spectrum sensing dataset [25]

were used. For the MNIST dataset, 60 000 samples were used

for training and 10 000 were used for testing. For the CIFAR-

10 dataset, 50 000 samples were used for training and 10 000

samples were used for testing. For the SVHN dataset, 73 257

samples were used as training samples and 26 032 samples

were used for testing. As for the spectrum sensing dataset,

it was first introduced in a dynamic spectrum sharing system

which resolves the spectrum scarcity in 5G systems [26].

While the MIMO-OFDM technologies would improve the

spectral efficiency, the unused subcarriers still lead to subopti-

mal spectrum utilization efficiency. To sidestep this issue, the
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TABLE II

PERFORMANCE COMPARISON OF CODE-LEVEL ENCODERS WITH THE MNIST, CIFAR-10, SVHN, AND SPECTRUM SENSING DATASETS

Fig. 15. Input–output relationship of encoders. Output of (a) TTFS encoder,
(b) ISI encoder, (c) TTFS-phase encoder, and (d) ISI-phase encoder.

secondary users need to access the underused subcarriers, thus

requiring to monitoring the spectrum utilization of primary

users through spectrum sensing. It has been proven that the

use of SNNs in predicting the underused spectrum band is an

energy-efficient method [26].

In the first experiment, a rate encoder was implemented.

Since the number of spikes is linearly proportional to the

input in rate encoding, the output of the rate encoder in its

mathematical model (using Python) was set to be a spike

train with a spike number linearly proportional to the input.

To realize TTFS encoding, the outputs of the TTFS encoder

and inputs above the threshold value have an inverse logarith-

mic relationship. The larger the input, the smaller the output,

as shown in Fig. 15(a). For instance, in the MNIST dataset,

the gray scale value of each pixel was linearly assigned to the

range from 0 to 6, and the output will be the first spike time.

In the second experiment, an ISI encoder was implemented.

Multiple TTFS encoders with different thresholds were inte-

grated, thus transferring the input data to a spike train with

different time steps. As demonstrated in Fig. 15(b), the larger

the input, the smaller the interspike intervals of the spike trains.

With a similar prepossessing manner, the pixel value was first

linearly assigned into the range from 0 to 8, and the output was

represented by a vector array where each of them represents

the time interval between spikes.

To integrate the multiplexing neural encoding methodology

into both the TTFS encoder and the ISI encoder, gamma

alignment is needed. The mathematical model of gamma

alignment was achieved by updating the exact time of each

spike to the next value in an arithmetic operation, where the

frequency of SMO can be tuned by the common difference in

the arithmetic operation. It is noticeable that the figures of the

TTFS encoder and the TTFS-phase encoder are very similar.

However, some inputs in the TTFS-phase encoder would lead

to the same outputs because these outputs lie in the same

period of SMO, which also occurs in the ISI-phase encoder,

as illustrated in Fig. 15(c) and (d).

In verification, two various approaches were used to evalu-

ate the performance of different encoding schemes according

to the complexity of the dataset, for instance, a three-layer

spiking convolution neural network was implemented for the

MNIST and spectrum sensing datasets, while a ten-layer

spiking convolutional neural network was implemented for the

CIFAR-10 and SVHN datasets. All the models were trained

with the spike-timing-dependent plasticity (STDP) training

algorithm.

This performance was evaluated through a 12-GB NVIDIA

Tesla K80 GPU with 13G RAM on Google Colab. Table II

demonstrates the classification accuracy of different encoders

for various datasets. For the MNIST dataset, the multiplexing

encoding achieves 93.8% of accuracy, offering an improve-

ment of up to 10.8% over alternative approaches. As for the

CIFAR-10 dataset, the ISI-phase encoding scheme yields an

accuracy of 83.8%, offering an improvement of up to 6%.

For the SVHN dataset, the multiplexing temporal encoder

offers 86.4% of accuracy while the rate encoder only reaches

75% of accuracy, which is 11.4% lower than that of the

multiplexing encoder. Finally, for the spectrum dataset, the

ISI-phase encoder achieves 86.8% accuracy, while the rate

encoder only reaches 79.1%. In accounting for the complexity

of the dataset and the neural network structure, the train-

ing/inferencing accuracy on each encoder behaves differently

in different datasets. In short, the introduced multiplexing

encoder has the potential to offer improved accuracy over

alternative encoding schemes. Considering that the neural

network used in this work is often smaller than these state-

of-the-art works, the multiplexing temporal encoding scheme

does help with higher classification accuracy. In conclusion,

the introduced multiplexing temporal encoder can transform

the datasets to be more classifiable for spike training and thus

achieve higher accuracy for simple and complex problems.

B. Robustness, Power, and Area Analysis

In this section, the robustness, power consumption, and

design area are examined based on the post-layout simulation.
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TABLE III

POWER AND AREA COMPARISON OF MULTIPLEXING ENCODER BLOCKS

Fig. 16. Robustness comparison against noisy input of various encoders.

To simulate the robustness, noises with various amplitudes

were added to the inputs of the encoders. In this experiment,

16 output spikes were sampled and compared with the noise-

free output, in which the average drifting error between two

spike trains was recorded, as depicted in Fig. 16. It can be

observed that the drifting error decreases as the input signal-

to-noise ratio (SNR) increases. It can also be observed that the

introduced multiplexing ISI-phase encoder demonstrates the

lowest drifting error across all the SNR levels. Specifically,

when the SNR was set to 20 dB, the input noise has zero

impact on output spikes. In general, the average drifting

error of the multiplexing ISI-phase encoder across all the

SNR levels is over 25% lower than alternative approaches.

Afterward, the robustness against supply voltage variation

was examined. Our experimental results show that the final

outcomes from our ISI-phase multiplexing encoder remain

stable even when the supply voltage was reduced by 10%.

As the reduction in supply voltage keeps increasing, defective

spike trains would be generated while the spike width is

significantly reduced/expand due to inaccurate SMO amplitude

and triggering threshold at the logic AND gate. As a result,

either additional spike expanders are needed to ensure the

accuracy of later computations or more gamma alignment

operations are required to remove the idle spikes.

Fig. 17 illustrates the layout of the introduced ISI-phase

multiplexing encoder, occupying a total design area of

64 × 106 µm2. An ISI encoder with two neurons takes up to

Fig. 17. Layout of the multiplexing temporal ISI-phase encoder.

64 × 69 µm2, where each neuron occupies 28 × 33 µm2,

while the spike expander and the gamma alignment take up

to 13 × 16 µm2 and 36.5 × 50.8 µm2, respectively.

For ISI encoders, the number of neurons varies according

to specific applications. It can be observed that the increasing

number of neurons results in increased power consumption and

area. The static power consumption and energy per spike of

the introduced ISI-phase multiplexing encoder reach merely

2.58 µW and 95 fJ/spike, respectively, and the effective

frame rate of the proposed circuit is 300 MHz. With the

power-efficient design of the gamma alignment and spike

expander, the reported power consumption is roughly twice

as that of a single neuron.

Table III demonstrates the power consumption and design

area of each function module and the entire ISI-phase multi-

plexing encoder. With two integrated neurons, the ISI encoder

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on August 09,2023 at 19:53:57 UTC from IEEE Xplore.  Restrictions apply. 



340 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 31, NO. 3, MARCH 2023

TABLE IV

POWER AND AREA COMPARISON OF ENCODERS WITH OTHER WORKS

Fig. 18. Die micrograph of fabricated chip in CMOS 180-nm process.

consumes roughly 2.5 µW of power. Both the spike expander

and gamma alignment ensure higher data capacity and better

robustness against noise during the operation while only con-

suming 0.08 µW of power. The comparison of the introduced

work and the state-of-the-art implementations are illustrated

in Table IV. It is reasonable to conclude that our introduced

ISI-phase multiplexing encoders consume less power than

the state-of-the-art while a maintaining relatively reasonable

silicon area.

C. Prototype of Multiplexing Temporal Encoder

The prototype of our introduced multiplexing encoder was

built based on an on-chip ISI encoder that was fabricated in

the 180-nm CMOS process, as illustrated in Fig. 18. The chip

contains an ISI encoder with other basic function modules

occupying 9 mm2 of area while the ISI encoder takes up

merely 0.024 mm2 of silicon area. The ISI encoder consists

of delay neurons occupying 924 µm2 and an OR gate for

the signal integration. The spike shifting function was then

realized by the gamma alignment consisting of appropriate

electronic components such as a diode, a capacitor, inverters,

and an analog switch built on a printed circuit board (PCB).

Fig. 19. Testbench for measurement.

Fig. 20. Measurement result of the proposed multiplexing encoder.

The measurement testbench of the prototype is demon-

strated in Fig. 19. A RIGOL DP832A dc power supply was

used for the supply voltage and the constant voltage input

of the proposed encoder. A Tektronix AFG31102 function

generator was used to generate the global CLK and SMO

signals. The global CLK signal is a pulse signal with 10% duty

cycle at 1-MHz frequency, while the SMO is a 5-MHz sine

wave. A Tektronix MSO46 mixed-signal oscilloscope was then

used to verify the functionality of the introduced ISI-phase

multiplexing encoder.

As illustrated in Fig. 20, the ISI encoder transfers the analog

signals into spike trains with two parallel neurons. When a

completed spike train was generated with a sampling window,

the gamma alignment precisely offsets such a spike train to

its next local maximum determined by the SMO signal. Such

an experimental result demonstrates the successful implemen-

tation of the multiplexing encoder, in a way that is sufficient

by integrating an ISI encoding and a phase encoding scheme.

VI. CONCLUSION

In this article, we presented a novel design of a multiplexing

encoder that uses both the ISI encoding and phase encoding

schemes. This encoder can transfer the current stimuli into the

interspike interval, where each spike can then be offset to its

next local maximum determined by the SMO. Therefore, the
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intervals are precisely integer times of the SMO period. Our

simulation results show that the multiplexing encoder achieves

93.8% accuracy on the MNIST dataset and 83.8% accuracy

on the CIFAR-10 datasets, demonstrating improvements up

to 10.8% and 6.4% over alternative approaches. Moreover,

our multiplexing encoder also achieves 86.4% accuracy on the

SVHN dataset, which is 11.4% more accurate than the others.

With the spectrum sensing dataset, our multiplexing encoder

is 7.7% more accurate than other encoders. To the best of our

knowledge, our multiplexing encoder is the first IC imple-

mentation of the neural multiplexing ISI-phase encoder. The

power consumption of our design is extremely low because

of the power-efficient ISI encoder, spike expander and gamma

alignment design. A prototype of the multiplexing temporal

encoder is built based on an ISI encoder on a chip fabricated

in the 180-nm CMOS technology. This work validated that it

can transform data to a more classifiable structure by SNN

and has improved robustness against noisy environments with

very low power consumption and reasonable silicon area.
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