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Enabling a New Methodology of Neural Coding:
Multiplexing Temporal Encoding in
Neuromorphic Computing
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Abstract—From rate to temporal encoding, spiking infor-
mation processing has demonstrated advantages across diverse
neuromorphic applications. In the aspects of data capacity
and robustness, multiplexing encoding outperforms alternative
encoding schemes. In this work, we aim to implement a new class
of multiplexing temporal encoders, patterning stimuli in multiple
timescales to improve the information processing capability, and
robustness of systems deployed in noisy environments. Benefitted
by the internal reference frame using subthreshold membrane
oscillation (SMO), the encoded spike patterns are less sensitive
to the input noise, increasing the encoder’s robustness. OQur
design results in a tremendous saving on power consumption
and silicon area compared with the power-hungry analog-
to-digital converters. Furthermore, a working prototype of the
multiplexing temporal encoder built based on an interspike
interval (ISI) encoding scheme is implemented on a silicon
chip using the standard 180-nm CMOS process. To the best of
our knowledge, our introduced encoder demonstrates the first
integrated circuit (IC) implementation of neural encoding with
multiplexing topology. Finally, the accuracy and efficiency of
our design are evaluated through standard machine learning
benchmarks, including Modified National Institute of Standards
and Technology (MNIST), Canadian Institute For Advanced
Research (CIFAR)-10, Street View House Number (SVHN),
and spectrum sensing in high-speed communication networks.
While our multiplexing temporal encoder demonstrates a higher
classification accuracy across all the benchmarks, the power
consumption and dissipated energy per spike reach merely
2.6 nW and 95 fJ/spike, respectively, with an effective frame
rate of 300 MHz. Compared with alternative encoding schemes,
our multiplexing temporal encoder achieves at most 100% higher
data capacity, 11.4% more accurate in classification, and 25%
more robust against noise. Compared with the state-of-the-art
designs, our work achieves up to 105x power efficiency without
significantly increasing the silicon area.

Index Terms— Analog integrated circuit (IC) design, gamma
alignment, interspike interval (ISI), multiplexing encoding, neu-
romorphic computing.
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I. INTRODUCTION

EUROMORPHIC computing was first introduced by
Carver Mead in the late 1980s [1]. With the inherent
self-learning capability, neuromorphic computing systems
have drawn tremendous interest in recent years with the
potential to accelerate computational efficiency and overcome
the limitations of the traditional von Neumann architecture
[1]. To be specific, neuromorphic computing systems can
efficiently process and learn from data, making data-intensive
applications, such as image classification and speech recog-
nition, to be effectively carried out [2]. More importantly,
neuromorphic computing systems consistently obtain higher
power efficiency, in a way that is sufficient by modeling
our human brain. In the past decades, efforts to imitate the
operation in biological neural systems with very VLSI circuits
have been made [3], [4]. For instance, the IBM TrueNorth has
demonstrated excellent power efficiency (in less than 3 W)
compared with the standard central processing unit (CPU)
and graphics processing unit (GPU) over object recognition
tasks [4]. Moreover, the Intel Loihi has also been evaluated
through diverse applications—such as adaptive robot arm con-
trol and drone motor control with the state-of-the-art latency
in response to the visual input—by only consuming far less
than 1 W of power [3]. As for the Tianjic, the chip achieves
high accuracy with high throughput and power efficiency
for pattern recognition and has been used in a multimodal
bicycle system [5]. Finally, the BiCoSS, which achieves high
accuracy for the Modified National Institute of Standards and
Technology (MNIST) dataset, can reproduce the network-level
dynamic activities of different brain regions to further reveal
the mechanisms responsible for human cognition and analyze
the mechanisms from the neuron level [6]. In short, neuromor-
phic computing systems outperform the traditional structures
in both the learning ability and power efficiency perspectives.
Similar to the biological neural systems, signals can be
represented in terms of spikes in the neuromorphic computing
systems. Thus, a spike encoder is essential for a neuromor-
phic computing system. To better understand the functionality
of the spiking information processing, the neural encoding
schemes need to be carefully investigated. Such an encoding
scheme refers to converting the information of raw sensory
inputs into a set of spike trains, which downstream units can
process. In general, there are two major types of encoding
schemes, rate encoding and temporal encoding [7]. Rate
encoding is an encoding scheme that maps input information
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TABLE I
PROS AND CONS OF DIFFERENT ENCODING SCHEMES

Encoding Scheme Rate

Temporal Multiplexing

Pros Straightforward and Easy to implement

Higher data capacity Highest data capacity and High robustness

Cons Low data capacity

Low robustness against noise

High complexity and power & area cost

into the number of spikes within a sampling window. Due to
its simplicity in realization, rate encoding is more widely used
in both software and hardware [8]. However, such an encoding
scheme has the disadvantage of low data density, in which only
the firing rate is used to convey information and the temporal
patterns of spikes are ignored. On the other hand, the temporal
codes tend to represent information with the temporal patterns
of spikes, thus using both the firing rate and time of spikes.
Two different types of temporal encoding have been commonly
investigated, the time-to-first-spike (TTFS) encoding and the
interspike interval (ISI) encoding.

With the increasing data density for mission-critical appli-
cations [9], the demand for higher data capacity increases.
It has been found that an encoder that combines multiple
encoding topologies would increase the data capacity, known
as multiplexing encoding. In addition to the improved encod-
ing capability, multiplexing encoding is more robust against
noise using an internal reference frame [10], [11].

Table I demonstrates the pros and cons of the aforemen-
tioned encoding schemes. It shows that multiplexing encoding
can provide the highest data capacity and better robustness
compared with alternative encoding schemes, and yet, the
integrated circuit (IC) implementation of the multiplexing
temporal encoder has not been discovered. In this work,
we design and analyze a multiplexing temporal encoder, which
can transfer raw sensory inputs into neural spike trains with
multiple timescales. The major contributions of our work are
summarized as follows.

1) Our work develops the first IC implementation of mul-
tiplexing temporal neural encoder using the Global-
Foundries standard 180-nm CMOS process.

High robustness is realized by the ISI encoding topol-
ogy and the internal reference frame with subthreshold
membrane oscillation (SMO). The SMO together with
gamma alignment enables precise phase modulation
within the encoder, thus enhancing its robustness and
classification accuracy. Better yet, an improved data
processing capacity with up to 100% over alternative
encoding schemes is also achieved.

The multiplexing temporal encoder was evaluated with
spiking neural networks (SNNs) in PyTorch, and the
performances were compared with alternative encoding
schemes (rate, TTFS, ISI). A classification accuracy of
93.78% on the MNIST dataset was reported, yielding
up to 10.78% improvement over alternative encoding
schemes. Beyond that, improvements in classification
accuracy with up to 6.4% and 11.4% on the Canadian
Institute For Advanced Research (CIFAR)-10 and Street
View House Number (SVHN) data, respectively, were
also achieved.

2)

3)

4) Under the performance evaluation of spectrum sens-
ing in multiple-input and multiple-output orthogonal
frequency-division multiplexing (MIMO-OFDM) sys-
tems, the detection accuracy with our multiplexing
temporal encoder demonstrates 11% improvement over
alternative encoding schemes, revealing the application
potential of the proposed encoder in 5G or Internet of
Things (IoT).

We eliminate the power-hungry analog-to-digital con-
verters (ADCs) and op-amps, and thus, our multiplexing
temporal encoder offers an ultralow power consumption
at 2.6 uW with a reasonable silicon area of 0.024 mm?.
The dissipated energy per spike is 95 fJ/spike with an
effective frame rate of 300 MHz.

In this article, the literal research of the neural encoding
schemes and the general structure of our multiplexing temporal
encoder are illustrated in Sections II and III, respectively, fol-
lowed by the circuit implementation and experimental results
in Section IV. The benchmark and application evaluations are
discussed in Section V, and the article is then concluded in
Section VI.

5)

II. NEURAL ENCODING

Neural encoding defines the process that transfers the input
signal (stimuli) to neural spike trains. Research efforts have
been made on investigating different encoding schemes [12].
First, it has been proven that the input stimuli could be
represented in terms of the firing rate within the sampling
window. Afterward, an encoding scheme that uses the spike
patterns to convey information has been found. The former
is commonly known as the rate code and the latter is known
as the temporal code. The rate encoding scheme, depicted in
Fig. 1(a), converts the information into the number of spikes
within the sampling window. Because of its simplicity in the
working mechanism and hardware realization, rate encoding
has been widely applied in designing SNNs. However, even
the same input would lead to different patterns of spikes as
long as the numbers are the same, and thus, the robustness of
rate encoding is limited due to its low data density [10]. Such
a low data density also leads to the fact that any mistake in
the spike train would affect the output of the whole encoding
process. On the contrary, the temporal encoding schemes
can use internal/external reference frames to overcome minor
mistakes. In [13], a rate encoder is implemented in a feed-
forward network, and yet, the power consumption of such
design reaches 577 u'W using the 130-nm technology.

On the other hand, temporal encoding uses time of firing
spikes to represent stimuli, improving the accuracy and robust-
ness of the encoded spike trains. In practice, several temporal
encoding methodologies have been investigated, among which
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Fig. 1. Examples of the encoding schemes. Presentation of (a) rate encoding,
(b) TTFES encoding, and (c) ISI encoding.

the TTFS encoding and the ISI encoding schemes are the two
most common [12].

Latency encoding, also known as TTFS encoding, is a well-
known temporal encoding scheme [14]. In TTFS, the stimuli
are converted into a single spike, where the information is
represented by the time difference between the rising edge
of the sampling window and the fired spike, as illustrated
in Fig. 1(b). In [15], a TTFS encoder was designed with
merely 3.5 uW of power consumption. However, external
sources are needed to initiate the sampling windows, in which
the performance of TTFS code could be affected while its
robustness against noise is limited. To be specific, when a
neuron inaccurately fires a spike, all the later computing units
could not achieve the desired output, leading to tremendous
errors in the system.

To sidestep the aforementioned drawbacks, the ISI encoding
scheme was introduced. Unlike latency encoding, ISI encoding
maps the stimuli to time intervals between spikes, as shown
in Fig. 1(c). The ISI spike train is generated in one sampling
window without additional reference, as spikes can be relative
references to each other. The ISI encoding generates more
spikes in one sampling window than the TTFS encoding,
thus conveying more information. It has been proven that ISI
encoding has a better ability to mimic how biological neural
networks encode stimuli. Two different circuit implementa-
tions of the ISI encoder have been proposed in [14]. The
parallel encoder demonstrates lower latency when encoding
information, while the iteration encoder would generate more
spikes even with the same number of neurons to improve the
area efficiency. In practice, the parallel encoder [8] maintains
a linear relationship, such that

Ns =N (1)

where N and Ng are the number of neurons used in the
encoder and the number of spikes within a sampling window,
respectively. In contrast, the iferation encoder [14] holds
an exponential relationship

Ng =2N-1, (2)

Instead of increasing the number of spikes within sampling
windows, relying on an internal reference would also improve
the performance. Specifically, the SMO, originated from the
rhythmic activity pattern of biological neurons with a dominant
frequency [10], is often modeled by a sine wave in neuromor-
phic applications, where its period needs to be smaller than
the sampling time window [11]. Such SMO helps eliminate
the onset precision issue, thus supporting phase encoding [16].
In this manner, the input stimuli are converted into a voltage
value, where a spike will be fired when SMO reaches it, which
can be expressed as

SMO; = A - cos(wT + ¢;) (3)

where A is the amplitude of SMO, w is the phase angular
velocity, and ¢; is the phase of the ith input for i €
{1,2,3,..., N} with N denoting the number of parallel inputs.
More specifically, ¢; can be defined as

$i=¢o+ (@ —1)Ag “)

where ¢y is the initial phase, and A¢ is the phase shift between
SMOs [11].

IIT. MULTIPLEXING ENCODING DESIGN

Intending to improve the data processing capability of sys-
tems, the concept of applying the multiplexing encoding mech-
anism in neuromorphic computing has been introduced [17].
Multiplexing is a process that combines two different encod-
ing schemes to increase the data encoding capacity. It has
been proven that multiplexing occurs in biological neural
systems, thus improving learning and processing capabilities.
For instance, researchers have carried out an experiment using
rats to verify the functionality of multiplexing encoding in
which a multiplexing code consisting of rate and temporal
codes is applied to rats to sense object texture [10]. It turns
out that the multiplexing code can transfer more stimuli than
whichever of rate encoding and temporal encoding alone [11].
Beyond that, neuroscientists have quantified the information
in the analysis of single-unit data to compare the information
density of different encoding schemes [18]. As illustrated
in Fig. 2, the temporal encoding scheme provides higher
information density than rate encoding, and multiplexing codes
have higher data capacity than temporal or rate code alone.
As such, the multiplexed code requires a smaller encoding
time window for the same amount of information and thus
increasing the data processing rate.

In addition, the multiplexing encoding schemes can convey
more information [11]. With experiments to quantify the
impact of sensory noise on different codes, the robustness
against noise across various encoding schemes is demonstrated
in Fig. 3 [18]. While the information density in various
encoding schemes decreases when the noise level is rising,
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Fig. 3. Information in codes for different noise levels.
the multiplexing code still retains the most information across
all noise levels.

The multiplexing operation can be divided into two main
steps [11]. The first step is encoding, where the input analog
stimuli are transferred into spike signals. Here, we define the
excitation signal as S and the output spike (train) as P. When
the latency encoding is applied, P will be a single spike.
On the other hand, P will be in the form of spike trains if ISI
encoding occurs.

The second step of multiplexing encoding is the transfor-
mation phase. To discuss this step, a terminology, gamma
alignment, needs to be introduced. The gamma alignment
refers to the process that shifts the generated latency (or ISI)
spikes to the next local maximum of SMO, which can be
written as

P/ =P )

where ¢ is the exact time of P, and 7 is the next local
maximum of its corresponding SMO.

For instance, in TTFS-phase encoding, the gamma align-
ment shifts the output spikes of TTFS encoding to each
channel’s corresponding SMO. These SMOs have a particular

Latency encoding |

|
|
Gamma alignment |

I
h
I
W
Compression | |

ISI encoding | |

(b)

Fig. 4. Examples of multiplexing encoding. (a) TTFS-phase encoding and
(b) ISI-phase encoding.

phase shift from each other, as illustrated in (4). Such a
concept is introduced in [11] with a four-channel TTFS-phase
multiplexing encoding scheme, as demonstrated in Fig. 4(a).
With a similar operation manner, the gamma alignment proce-
dure shifts the output spikes from the ISI encoder to the next
local maximum of SMO in the ISI-phase encoding, as shown
in Fig. 4(b).

The concept of multiplexing is proposed based on a mech-
anism in which information on different timescales can be
integrated for higher information density. Multiplexing encod-
ing schemes will combine complementary temporal patterns to
transmit more information with the same sampling frequency,
thus enhancing the performance of systems [19]. Under noisy
environments, the robustness of multiplexing codes has sig-
nificant advantages over others. The SMO introduced by
the multiplexing encoding scheme helps with the system’s
stability and robustness, especially when operating in noisy
environments [12].

In biological systems, the neurons tend to adjust themselves
for dynamic input information; thus, the relationship between
the stimuli and the output spikes varies from time to time. Such
a variation in input—output relationships would lead to ambi-
guity of response. The spikes would be fired at different times,
even with the same stimulus. However, multiplexing encoding
would sidestep this shortcoming. For instance, it has been
found that the motion-sensitive cell in a fly’s visual system
tends to encode the history of stimuli and the present stimuli
with both rate encoding and ISI encoding. The ambiguity can
be eliminated using the ISI scheme to encode the recent history
of input information along with the current stimulus, and thus,
the necessary information provided to ensure the ambiguity is
not a problem [10], [20].
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Fig. 5. Overview of the proposed multiplexing encoder.

Some literature has proven the advantages of multiplexing
encoding toward noise and ambiguity over the other encoding
schemes [10], [11], [12], and yet, to implement a practical
circuit of the multiplexing encoder, there are still many limita-
tions needed to be addressed. For instance, with the increasing
number of neurons, the implementation complexity of the
encoder increases exponentially, especially for the ISI-phase
encoders.

To use these prominent properties of multiplexing codes,
such as high data capacity and robustness, for large-scale
data processing applications, the IC implementation of the
multiplexing ISI-phase encoder is urgently needed. Not only
because IC implementations are power-efficient but also due
to their area efficiency. In this work, we introduce a new class
of multiplexing encoders consisting of three essential blocks,
namely, the ISI encoder, the spike expander for extending the
spike width for later computation, and the gamma alignment.
The block diagram of our ISI-phase encoder is demonstrated
in Fig. 5.

In the ISI encoding module, neurons with different reference
voltages fire spikes at different times. The larger the Vi,
the further the spike is away from the clock (CLK) signal.
Therefore, with an OR gate in the ISI encoder to integrate two
spikes, the IST encoder can transfer the input current to a spike
train.

As for the gamma alignment block, the firing amplitude of
spikes will be sampled and held by a peak detector composed
of a diode-connected transistor and a capacitor. This captured
spike will be transmitted to one input of an AND gate, where
the other input is from the SMO. This SMO is precisely tuned
such that its peak point is right at the AND gate’s threshold.
One spike will be fired when the next local maximum of
the SMO comes after a sampled input. Afterward, the reset
mechanism is triggered, and the captured voltage decreases to
its initial level.

It is noticeable that the peak detector can only sample spikes
that are wider than 10 ns; else, the peak detector will not
be triggered. However, the ISI encoder only generates spikes
with 1 ns width, and thus, the spike expander is introduced to
overcome this issue.

IV. IC DESIGN, OPTIMIZATION, AND RESULT OF
MULTIPLEXING ENCODER

The introduced ISI-phase multiplexing encoder is designed
and optimized using the GlobalFoundries standard 180-nm
CMOS technology, and the simulation is performed in the
Cadence Virtuoso platform.

A. Analog Neuron

The structure of the neuron used in this design is built based
on the latency encoder [8], as shown in Fig. 6. When the input

Input

Output
Vref 4 m2
ClI =
w7 ]}
Fig. 6. Circuit schematic of the neuron.
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Fig. 7. Spikes of the latency encoding module.

current is being integrated, the voltage across the membrane
capacitor Cl1 increases. Due to the voltage dividing effects,
the voltage at the gate of M1 raises up the voltage at the
drain of M2. The buffer then fires a spike when the voltage
exceeds a certain threshold. Thus, the integration time, 7, can
be expressed as

_ Cm . Vref
=7
where [, is the excitation current, C,, is the membrane
capacitance, and Vs is the threshold voltage of the neu-
ron. The CLK’s frequency controls the sampling rate of the
neuron. The charge integration on the membrane capacitor
starts after the CLK reaches digitally high. Meanwhile, the
reset mechanism forces the membrane voltage back to its
initial level after the spike fires. To be specific, a fired spike
triggers the reset switch M7, leading the membrane voltage
to decrease to zero and wait for the next charge integration.
Fig. 7 illustrates the conversion of an analog current signal
into a latency spike. In this example, a sine-wave current is
converted into latency spikes. It is noticeable that the larger
input leads to a closer spike to the CLK, while the smaller
input makes the spike further apart from the CLK. Such
property fulfills the inversely proportional input and output
signal relationship in latency encoding.

T (6)

B. ISI Encoder

The number of neurons in the ISI encoder can be varied.
As highlighted in Section II, the number of neurons and
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outputted spikes in the parallel structure have a linear rela-
tionship. The more neurons in the encoder, the more spikes
in one sampling window. Increasing the number of neurons
will lead to higher data capacity and yet increase the power
consumption and silicon area. Since the neurons are the main
source of power consumption and area used in the ISI encoder
and the whole multiplexing encoder, increasing the number of
neurons will drastically affect the power and area efficiency of
the whole design. That is why there are only two neurons in
the ISI encoder, as demonstrated in Fig. 8, which take different
Vier voltages. With the same input (excitation) current, these
neurons fire spikes at different times, 77 and 75, according to
(6). After the spikes are conveyed from the neurons, they will
be integrated by an OR gate such that the ISI encoder generates
a spike train. Therefore, the interval between the spikes can
be written as

Cot (Ve — V,
D=T—T = m( ref2 refl). (7)
I;
This encoder transfers the input current signal to time intervals
between spikes consisting of two neurons and an OR gate.

As shown in Fig. 9, after being triggered by the CLK signal,
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Fig. 10. Circuit schematic of the gamma alignment block.
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Fig. 11. TIllustration of gamma alignment.

the integrate-and-fire mechanism starts, and thus an ISI spike
train is fired. Noticeably, the input current ranges from 100 to
700 nA. It can be observed that the time interval between each
pair of spikes varies with the current value between the onset
signal and its corresponding spike train due to the different
integration rates of the charge.

C. Gamma Alignment

The gamma alignment is a critical module in the introduced
multiplexing temporal encoder. It offsets spikes to their next
local maximum determined by the SMO. In the circuit imple-
mentation shown in Fig. 10, a spike detector consisting of a
diode-connected transistor and a capacitor is used. With the
diode connection, M1 transfers the incoming spike to C1 and
stops the charge on C1 from leaking after that spike. The
held spike is then fed into the AND gate and recognized as
digital “1.” Since the SMO is often modeled by sine wave and
its frequency needs to be larger than that of the corresponding
neurons, a function generator is often used to generate SMO.
To ensure that the SMO is recognized as digital “1” only
at local maximums, the threshold voltage of the AND gate
is adjusted precisely such that the maximum point of the
SMO aligns with the gate’s threshold voltage. When the local
maximum of SMO arrives after the input spike, an output spike
will be generated through the buffer. Meanwhile, the switch
M2 helps with the reset mechanism. The buffer-stabilized
spike will trigger M2, and the held voltage will decrease to its
initial level, waiting for the next input spike. Fig. 11 shows the
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relationship between the input spikes, the SMO, and the shifted
spikes. It can be observed that the outputted spikes of the ISI
encoder are shifted to their corresponding local maximums of
SMO.

D. Spike Expander

As mentioned in Section III, a lasting time of 10 ns for
the incoming spike is required for the peak detector to work
properly; else, the peak detector will be unable to charge the
capacitor such that the voltage is recognized as digital “1.”
However, due to the reset mechanism, the ISI encoder can
only output spikes that last for 1 ns. To this end, a spike
expander is implemented to expand the pulsewidth of spikes
to sidestep this issue, as illustrated in Fig. 12.

In the circuit implementation, an inverted spike is generated
by the spike coming from the ISI encoder, and Vbias controls
the inverted spike width since the gate voltage of the PMOS
transistor controls the charging rate at the capacitor. Thus, the
large capacitor to provide enough delay can be avoided. After
that, an inverter is used to flip the inverted spike.

Fig. 13 depicts the property of spike time extension. It is
noticeable that the expanded spike reaches 13 ns in pulsewidth
while the input only lasts for 2 ns. Thus, the peak detector in
the gamma alignment is capable of capturing those spikes and
keeping them for the firing process of the AND gate.

With the help of internal reference frames, systems have
outstanding robustness in noisy environments. Since the input
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Fig. 14. Tllustration of the signal flow.

data are interfered by noise, the temporal encoding part in the
multiplexing temporal encoder generates output whose spike
is shifted. However, due to the gamma alignment function
of multiplexing encoding, the spike is shifted to its next
local maximum determined by the SMO. As long as the
noise-interfered spike is in the same gap between two SMOs’
local maximums with the initial spike, the output spike of
the multiplexing encoder remains unchanged, and thus, noises
cannot affect the encoder’s outputs. Therefore, the multiplex-
ing temporal encoder can effectively improve the robustness
of systems.

Fig. 14 illustrates the conversion of a current stimulus
to a spike train using the introduced ISI-phase multiplexing
encoder in post-layout simulation. The top part of the figure
shows the ISI encoding functionality, where the input signal
is transferred into a spike train. After that, with the help of
a spike expander, the spikes in the original spike train are
moved to their next maximum point of SMO correspondingly.
Then the signal comes out of the encoder as a newly made
spike train, which has high information density and robustness
against noise.

V. PERFORMANCE AND RESULT ANALYSIS
A. Performance Comparison Among Encoding Schemes

To demonstrate the effectiveness of different encoding
schemes, SNNs with different encoders are implemented in
PyTorch with the SpykeTorch simulator [21]. In this exper-
iment, the MNIST dataset [22], the CIFAR-10 dataset [23],
the SVHN dataset [24], and the spectrum sensing dataset [25]
were used. For the MNIST dataset, 60000 samples were used
for training and 10000 were used for testing. For the CIFAR-
10 dataset, 50000 samples were used for training and 10000
samples were used for testing. For the SVHN dataset, 73257
samples were used as training samples and 26032 samples
were used for testing. As for the spectrum sensing dataset,
it was first introduced in a dynamic spectrum sharing system
which resolves the spectrum scarcity in 5G systems [26].
While the MIMO-OFDM technologies would improve the
spectral efficiency, the unused subcarriers still lead to subopti-
mal spectrum utilization efficiency. To sidestep this issue, the
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TABLE 11
PERFORMANCE COMPARISON OF CODE-LEVEL ENCODERS WITH THE MNIST, CIFAR-10, SVHN, AND SPECTRUM SENSING DATASETS

Encoder Type || Rate \ TTFS \ ISI | TTFS-Phase | ISI-Phase
MNIST [27] - 83.0% [27] — 85.0% [28] — 90.0% [this work] — 91.8% [this work] — 93.8%
CIFAR-10 [28] = 79.7% [29] - 77.4% [31] - 83.7% [this work] — 77.9% [this work] — 83.8%
SVHN [31] - 75.0% [32] - 82.1% [this work] — 82.8% [this work] — 82.5% [this work] — 86.4%
Spectrum Sensing [this work] — 79.1% [this work] — 85.0% [this work] — 86.2% [this work] — 86.3% [this work] — 86.8%
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Fig. 15. Input—output relationship of encoders. Output of (a) TTFS encoder,

(b) ISI encoder, (c) TTFS-phase encoder, and (d) ISI-phase encoder.

secondary users need to access the underused subcarriers, thus
requiring to monitoring the spectrum utilization of primary
users through spectrum sensing. It has been proven that the
use of SNNs in predicting the underused spectrum band is an
energy-efficient method [26].

In the first experiment, a rate encoder was implemented.
Since the number of spikes is linearly proportional to the
input in rate encoding, the output of the rate encoder in its
mathematical model (using Python) was set to be a spike
train with a spike number linearly proportional to the input.
To realize TTFS encoding, the outputs of the TTFS encoder
and inputs above the threshold value have an inverse logarith-
mic relationship. The larger the input, the smaller the output,
as shown in Fig. 15(a). For instance, in the MNIST dataset,
the gray scale value of each pixel was linearly assigned to the
range from O to 6, and the output will be the first spike time.

In the second experiment, an ISI encoder was implemented.
Multiple TTFS encoders with different thresholds were inte-
grated, thus transferring the input data to a spike train with
different time steps. As demonstrated in Fig. 15(b), the larger
the input, the smaller the interspike intervals of the spike trains.
With a similar prepossessing manner, the pixel value was first
linearly assigned into the range from O to 8, and the output was
represented by a vector array where each of them represents
the time interval between spikes.

To integrate the multiplexing neural encoding methodology
into both the TTFS encoder and the ISI encoder, gamma
alignment is needed. The mathematical model of gamma

alignment was achieved by updating the exact time of each
spike to the next value in an arithmetic operation, where the
frequency of SMO can be tuned by the common difference in
the arithmetic operation. It is noticeable that the figures of the
TTFES encoder and the TTFS-phase encoder are very similar.
However, some inputs in the TTFS-phase encoder would lead
to the same outputs because these outputs lie in the same
period of SMO, which also occurs in the ISI-phase encoder,
as illustrated in Fig. 15(c) and (d).

In verification, two various approaches were used to evalu-
ate the performance of different encoding schemes according
to the complexity of the dataset, for instance, a three-layer
spiking convolution neural network was implemented for the
MNIST and spectrum sensing datasets, while a ten-layer
spiking convolutional neural network was implemented for the
CIFAR-10 and SVHN datasets. All the models were trained
with the spike-timing-dependent plasticity (STDP) training
algorithm.

This performance was evaluated through a 12-GB NVIDIA
Tesla K80 GPU with 13G RAM on Google Colab. Table II
demonstrates the classification accuracy of different encoders
for various datasets. For the MNIST dataset, the multiplexing
encoding achieves 93.8% of accuracy, offering an improve-
ment of up to 10.8% over alternative approaches. As for the
CIFAR-10 dataset, the ISI-phase encoding scheme yields an
accuracy of 83.8%, offering an improvement of up to 6%.
For the SVHN dataset, the multiplexing temporal encoder
offers 86.4% of accuracy while the rate encoder only reaches
75% of accuracy, which is 11.4% lower than that of the
multiplexing encoder. Finally, for the spectrum dataset, the
ISI-phase encoder achieves 86.8% accuracy, while the rate
encoder only reaches 79.1%. In accounting for the complexity
of the dataset and the neural network structure, the train-
ing/inferencing accuracy on each encoder behaves differently
in different datasets. In short, the introduced multiplexing
encoder has the potential to offer improved accuracy over
alternative encoding schemes. Considering that the neural
network used in this work is often smaller than these state-
of-the-art works, the multiplexing temporal encoding scheme
does help with higher classification accuracy. In conclusion,
the introduced multiplexing temporal encoder can transform
the datasets to be more classifiable for spike training and thus
achieve higher accuracy for simple and complex problems.

B. Robustness, Power, and Area Analysis

In this section, the robustness, power consumption, and
design area are examined based on the post-layout simulation.
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TABLE III
POWER AND AREA COMPARISON OF MULTIPLEXING ENCODER BLOCKS

Blocks ISI Encoding Spike Expander Gamma Alignment Total
. Neuron
Power Consumption(puW) 22 2.50 0.01 0.07 2.58
9 Neuron
Area(um®) 64 x 69 13 x 16 36.5 x 50.8 64 x 106
28 x 33
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Fig. 16. Robustness comparison against noisy input of various encoders.

To simulate the robustness, noises with various amplitudes
were added to the inputs of the encoders. In this experiment,
16 output spikes were sampled and compared with the noise-
free output, in which the average drifting error between two
spike trains was recorded, as depicted in Fig. 16. It can be
observed that the drifting error decreases as the input signal-
to-noise ratio (SNR) increases. It can also be observed that the
introduced multiplexing ISI-phase encoder demonstrates the
lowest drifting error across all the SNR levels. Specifically,
when the SNR was set to 20 dB, the input noise has zero
impact on output spikes. In general, the average drifting
error of the multiplexing ISI-phase encoder across all the
SNR levels is over 25% lower than alternative approaches.
Afterward, the robustness against supply voltage variation
was examined. Our experimental results show that the final
outcomes from our ISI-phase multiplexing encoder remain
stable even when the supply voltage was reduced by 10%.
As the reduction in supply voltage keeps increasing, defective
spike trains would be generated while the spike width is
significantly reduced/expand due to inaccurate SMO amplitude
and triggering threshold at the logic AND gate. As a result,
either additional spike expanders are needed to ensure the
accuracy of later computations or more gamma alignment
operations are required to remove the idle spikes.

Fig. 17 illustrates the layout of the introduced ISI-phase
multiplexing encoder, occupying a total design area of
64 x 106 um?. An ISI encoder with two neurons takes up to

Fig. 17. Layout of the multiplexing temporal ISI-phase encoder.

64 x 69 um?, where each neuron occupies 28 x 33 um?,
while the spike expander and the gamma alignment take up
to 13 x 16 um? and 36.5 x 50.8 um?, respectively.

For ISI encoders, the number of neurons varies according
to specific applications. It can be observed that the increasing
number of neurons results in increased power consumption and
area. The static power consumption and energy per spike of
the introduced ISI-phase multiplexing encoder reach merely
2.58 uW and 95 fJ/spike, respectively, and the effective
frame rate of the proposed circuit is 300 MHz. With the
power-efficient design of the gamma alignment and spike
expander, the reported power consumption is roughly twice
as that of a single neuron.

Table III demonstrates the power consumption and design
area of each function module and the entire ISI-phase multi-
plexing encoder. With two integrated neurons, the ISI encoder
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TABLE IV
POWER AND AREA COMPARISON OF ENCODERS WITH OTHER WORKS

Encoder ‘ Year ‘ Process ‘ Area(mm?) ‘ Power(uW) ‘ VDD(V)
Rate[33] 2020 / / 1240 2.5
TTFS 2022 | 180 nm 0.000924 1.22 1.8
TTFS[33] 2020 / / 353.6 2.5
ISI 2022 | 180 nm 0.004416 2.5 1.8
ISI[34] 2022 | 45 nm / 2.1 /
TTFS-Phase | 2022 | 180 nm 0.004562 1.3 1.8
ISI-Phase 2022 | 180 nm 0.006784 2.6 1.8

Fig. 18. Die micrograph of fabricated chip in CMOS 180-nm process.

consumes roughly 2.5 W of power. Both the spike expander
and gamma alignment ensure higher data capacity and better
robustness against noise during the operation while only con-
suming 0.08 uW of power. The comparison of the introduced
work and the state-of-the-art implementations are illustrated
in Table IV. It is reasonable to conclude that our introduced
ISI-phase multiplexing encoders consume less power than
the state-of-the-art while a maintaining relatively reasonable
silicon area.

C. Prototype of Multiplexing Temporal Encoder

The prototype of our introduced multiplexing encoder was
built based on an on-chip ISI encoder that was fabricated in
the 180-nm CMOS process, as illustrated in Fig. 18. The chip
contains an ISI encoder with other basic function modules
occupying 9 mm? of area while the ISI encoder takes up
merely 0.024 mm? of silicon area. The ISI encoder consists
of delay neurons occupying 924 um? and an OR gate for
the signal integration. The spike shifting function was then
realized by the gamma alignment consisting of appropriate
electronic components such as a diode, a capacitor, inverters,
and an analog switch built on a printed circuit board (PCB).

Fig. 20. Measurement result of the proposed multiplexing encoder.

The measurement testbench of the prototype is demon-
strated in Fig. 19. A RIGOL DP832A dc power supply was
used for the supply voltage and the constant voltage input
of the proposed encoder. A Tektronix AFG31102 function
generator was used to generate the global CLK and SMO
signals. The global CLK signal is a pulse signal with 10% duty
cycle at 1-MHz frequency, while the SMO is a 5-MHz sine
wave. A Tektronix MSO46 mixed-signal oscilloscope was then
used to verify the functionality of the introduced ISI-phase
multiplexing encoder.

As illustrated in Fig. 20, the ISI encoder transfers the analog
signals into spike trains with two parallel neurons. When a
completed spike train was generated with a sampling window,
the gamma alignment precisely offsets such a spike train to
its next local maximum determined by the SMO signal. Such
an experimental result demonstrates the successful implemen-
tation of the multiplexing encoder, in a way that is sufficient
by integrating an ISI encoding and a phase encoding scheme.

VI. CONCLUSION

In this article, we presented a novel design of a multiplexing
encoder that uses both the ISI encoding and phase encoding
schemes. This encoder can transfer the current stimuli into the
interspike interval, where each spike can then be offset to its
next local maximum determined by the SMO. Therefore, the
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intervals are precisely integer times of the SMO period. Our
simulation results show that the multiplexing encoder achieves
93.8% accuracy on the MNIST dataset and 83.8% accuracy
on the CIFAR-10 datasets, demonstrating improvements up
to 10.8% and 6.4% over alternative approaches. Moreover,
our multiplexing encoder also achieves 86.4% accuracy on the
SVHN dataset, which is 11.4% more accurate than the others.
With the spectrum sensing dataset, our multiplexing encoder
is 7.7% more accurate than other encoders. To the best of our
knowledge, our multiplexing encoder is the first IC imple-
mentation of the neural multiplexing ISI-phase encoder. The
power consumption of our design is extremely low because
of the power-efficient ISI encoder, spike expander and gamma
alignment design. A prototype of the multiplexing temporal
encoder is built based on an ISI encoder on a chip fabricated
in the 180-nm CMOS technology. This work validated that it
can transform data to a more classifiable structure by SNN
and has improved robustness against noisy environments with
very low power consumption and reasonable silicon area.
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