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Abstract—Spiking neural network (SNN) has attracted more
and more research attention due to its event-based property.
SNNs are more power efficient with such property than a conven-
tional artificial neural network. For transferring the information
to spikes, SNNs need an encoding process. With the temporal
encoding schemes, SNN can extract the temporal patterns from
the original information. A more advanced encoding scheme is a
multiplexing temporal encoding which combines several encoding
schemes with different timescales to have a larger information
density and dynamic range. After that, the spike timing depen-
dence plasticity (STDP) learning algorithm is utilized for training
the SNN since the SNN can not be trained with regular training
algorithms like backpropagation. In this work, a spiking domain
feature extraction neural network with temporal multiplexing
encoding is designed on EAGLE and fabricated on the PCB
board. The testbench’s power consumption is 400mW. From
the test result, a conclusion can be drawn that the network on
PCB can transfer the input information to multiplexing temporal
encoded spikes and then utilize the spikes to adjust the synaptic
weight voltage.

Index Terms—SNN, feature extraction, multiplexing, STDP

I. INTRODUCTION

With the capability to closely mimic biological neural
systems, spiking neural networks have attracted more and
more research attention [1]. Unlike traditional artificial neural
networks (ANNs), SNN neurons don’t transmit signals to
receivers in every clock cycle. They only fire spikes when
the membrane potential exceeds a specific threshold voltage
[2]. That way, SNNs can save unnecessary operational energy
and thus improve power efficiency. Moreover, SNN has the
potential for temporal learning since it can transfer temporal
information into its signals using temporal encoding schemes.
Different encoding schemes introduce temporal information
in different forms [3]. For example, in the Time-to-first-spike
encoding (TTFS) scheme, information is transferred to the
time difference between the onset of the encoding window and
the first spike. With temporal spiking neurons, the dynamic
range of SNN will be significantly improved. A high dynamic
range means that neurons can respond to extreme input signals.
With the exponential relation of spiking neurons, the system’s
dynamic range will be way better than conventional ANNS.
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A higher temporal resolution feature should be added to
systems to enable high-efficiency recognition tasks. SNN has
the potential to carry out information processing with higher
frequency since the computation complexity is lower than
ANNG.

Due to the non-differentiable property of spikes, SNN can
not be trained with regular training algorithms. For example,
backpropagation is unsuitable for SNNs since the spike cannot
be differentiated to get a gradient. Thus, researchers have come
up with various training algorithms for SNN, such as spike
timing dependence plasticity (STDP) [4], Hebbian learning
[5], surrogate gradients [6] and NormAD [7]. Among them,
the most commonly used is the STDP learning rule. With
the STDP algorithm, the synaptic weight between neurons
is updated with the relative time difference of pre-and post-
synaptic spikes [4]. Nevertheless, the baseline STDP suffers
from several shortcomings. The baseline STDP doesn’t support
supervised learning. It only allows SNNs to divide data points
into groups. In addition, even after addressing this issue, the
classification accuracy of baseline STDP is relatively lower
than other training algorithms utilized in traditional ANNs.

Trying to enable the mentioned valuable features of SNN,
our group has been investigating neural encoding schemes for
years. Since the rate encoding doesn’t possess the property of
temporal learning, high dynamic range, and low latency, we
skipped the rate encoding and looked directly into the area of
temporal neural encoding. In one of the recent papers, [8], we
proposed the integrated circuit (IC) design of a multiplexing
temporal encoder that combines multiple temporal encoding
schemes with different timescales together. SNN can carry out
temporal learning with high robustness and low processing
latency with such an encoding scheme.

To verify the function of multiplexing temporal neural
encoding more deeply, especially investigate the training
performance when the STDP training rule is working with
the multiplexing encoding schemes, a hardware prototype of
the training neural network needs to be implemented. This
network must support temporal and multiplexing encoding
and be trained in the STDP rule for verification. With these
restrictions and requirements, we have designed and fabricated
a printed circuit board (PCB) board with a simple training
neural network to verify the temporal learning, high dynamic



range, and low latency features of multiplexing encoding to
address the low accuracy issue of STDP. Major contributions
of our work are summarized as follows:

o Implementation of the spiking domain feature extraction
neural network with dynamic temporal multiplexing en-
coding on PCB board.

e The training neural network on the PCB board can
convert the input information to temporal multiplexing
encoded spikes and utilize the STDP training algorithm
to adjust the synaptic weight voltage according to pre-and
post-spike relation.

II. SPIKING NEURON MODEL

For understanding the functionality of spiking neural net-
works, the most fundamental component of the system that
needs to be carefully investigated is the neuron model. Since
the beginning of neuroscience, scientists have been focusing
on neurons and its property [9]. A neuron has four main parts,
dendrites, soma, axon, and synapse. The function of a neuron
is to receive a stimulus and output an impulse. When stimulus
arrives at dendrites, it will be transformed into the soma, the
central computing unit in the biological neural network. Each
neuron has a specific threshold voltage, and the neuron fires a
spike to the axon only when the input exceeds the threshold.
Finally, the synapse will convey the impulse to the subsequent
neurons. After a spike is fired, the membrane potential will be
reset to the resting stage until the arrival of the following input
signal [10].

Researchers have developed several neuron models that
can mimic the functionality of biological neurons partially
or entirely. Several primary and standard models will be
discussed in this paper, including the integrate-and-fire (IF)
model, the leaky integrate-and-fire (LIF) model, the Hodgkin-
Huxley (HH) model, and the FitzHugh-Nagumo (FHN) model
[11].

The IF model is one of the simplest neuron models [12].
This is a basic neuron model that can fire spikes. As illustrated
in Fig. 1(a), the IF neuron is built of a capacitor and a resistor
in parallel. In this simple structure, the input current, the
membrane capacitance, and voltage have a relation as:

dVim

I, = Cmﬁ 6]

where I., is the input current, also known as excitation
current, C,, and V,, are the membrane capacitance and
voltage, respectively. When the voltage across the membrane
capacitor reaches a certain threshold voltage, a spike will be
fired. However, after the firing process, the voltage across
the membrane capacitor will not be reset to the initial level
because of the lack of a resetting mechanism. Therefore, the
IF model is not able to operate as real biology neurons without
resetting mechanism.

Another neuron model is the Hodgkin-Huxley model [13].
It was first introduced in 1952 by Alan Hodgkin and An-
drew Huxley, inspired by the ionic mechanism of firing
and transmitting neural pulse in the squid giant axon. This
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Fig. 1. Simplified neuron models.

model describes the biology and chemistry operation in the
neuron. The basic idea of the model is illustrated in Fig.
1(b). The three resistors represent three ion channels, in which
R represents the unspecific channel and Ry, represents the
sodium channel, and Ry represents the potassium channel.
The mathematical equation of the HH model can be written
as:

AV,
me = —Zlk(t) (2)

where Ij(t) is the ion currents through different channels. It
can be observed that this model can mimic real biological
neurons more accurately. However, because of the complexity
of the HH model, it isn’t easy to implement this model in
hardware. Therefore, a more simplified model than the HH
model is required. As shown in Fig. 4(c), the FHN model is a
simplified version of the HH model by removing several pa-
rameters in the HH model [14]. The mathematical relationship
between the parameters within this model is denoted as:

AV V3
0 — m_ﬂ_ Iex 3
i V, 3 W+ 3)

where W is the recovery variable. It is worth noting that
the FHN model is still mathematically too complicated to
be realized in hardware, which leads our eyesight to the LIF
neuron model.

Improved from the IF model, the LIF model has an addi-
tional leaky coefficient, representing the diffusion across the
membrane [15]. As illustrated in Fig. 4(d), this model consists
of three critical components in parallel, the membrane capac-
itor, the leaky resistor, and the voltage-controlled resetting
switch. The relationship between these components can be
written as:

dv,

Ieac = Ileak + Cm#- (4)

Like the IF model, the LIF neuron fires an output spike
when the membrane voltage exceeds the threshold. And the
voltage across the capacitor will constantly leak out through
the resistor if the membrane voltage is below the threshold
level. Unlike the IF model, the membrane voltage will be reset

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on August 09,2023 at 19:53:49 UTC from IEEE Xplore. Restrictions apply.



Input
g L Output
w2 b1 I -
C1 I
Input Output =
Vref— > |>
o
a I CLK4Cms s1
Sli Fig. 3. Gamma alignment block circuit schematic.

Fig. 2. Spiking neuron circuit schematic.

to the initial level with the voltage-controlled switch triggered
by the spike signal. Therefore, this model has been found
to adequately mimic the working mechanism of biological
neurons with the simplicity to be implemented in hardware.

From the discussion above, a conclusion has been come
up with that the LIF model is most suitable for the latency
encoding function for our introduced encoder because it not
only can operate like a biology neuron but is also relatively
easier to realize at the circuit level.

III. SPIKING FEATURE EXTRACTION NETWORK DESIGN

The proposed spiking feature extraction network is designed
and optimized using EAGLE. It comprises input neurons, an
STDP training circuit, synapses, and output neurons.

A. Spiking Neuron Design

Both the input and output neurons have the same structure.
The neurons accept current inputs and give analog spike signal
outputs. The neurons are built based on the structure discussed
in Section. II, the LIF neuron. The circuit schematic of the
spiking neuron is shown in Fig. 2. When the input current is
integrated into the membrane capacitor, the membrane voltage
is increased with the integration. After that, a comparator
compares the membrane voltage with a threshold voltage.
The comparator will output digital high voltage when the
membrane voltage exceeds the threshold voltage. The digital
high voltage will go through a two-inverter formed buffer to
stabilize it. Since the output signals of the neuron are spikes,
a resetting mechanism is implemented to bring the membrane
voltage back to zero. This mechanism is realized by the p-
channel transistor, the inverter and the n-channel transistor
formed switch stage. The inverter ensures that a triggering
voltage will be sent to the analog switch whenever a spike is
fired to drag the membrane voltage back to the ground. The
nmos transistor ensures that when the CLK signal starts a new
sampling window, the analog switch will be triggered to restart
the integration process on the membrane capacitor from the
ground.

With the latency neuron being implemented, the training
neuron and the temporal encoding scheme in the neural

network are both achieved. The latency neuron can be used in
the training neuron layers. It can also be used as the temporal
TTFS encoder.

B. Gamma Alignment

As mentioned in Section. I, to utilize the outstanding feature
of temporal learning, high dynamic range, and low latency
in the neural network, the multiplexing encoding needs to
be implemented on the PCB board. With the TTFS encoder
designed, a gamma alignment function block is the only block
necessary to achieve multiplexing encoding. As shown in Fig.
3, the gamma alignment block consists of one diode, capacitor,
AND gate, inverters, and an analog switch. The diode and the
capacitor form a spike detector. When a spike enters the block,
the diode will pass the voltage to the capacitor and stop it from
decreasing after the spike ends. After that, the AND gate will
wait for the subthreshold membrane oscillation (SMO) signal.
When the peak voltage of the SMO comes, the AND gate will
fire digital high voltage and the two inverters will hold the
voltage steady. To reset the spike detector, the analog switch
will use the output spike to drag the hold voltage back to the
ground, making the block ready to shift another spike.

C. STDP Training Circuit

Unlike the conventional artificial neural network, SNNs can
not be trained with a traditional algorithm like backprop-
agation. The STDP is the most commonly used algorithm
for SNNs. We have implemented an STDP training circuit
block on the PCB board for training the neural network. The
structure is inspired by [——] but has been modified and
improved for implementation on the PCB board. As shown
in Fig. 4, the STDP training circuit consists of four analog
switches, six transistors, three capacitors, and one inverter. The
inverter is used for flipping the post-neuron spike so that the
charge integration on C3 is available. Due to the symmetric
mechanism, we will mainly discuss the long-term potentiation
(LTP) process. When there is no spike, the voltage at C1 will
increase at a rate that Vtp controls so that the pmos transistor
M3 is closed. When a pre-neuron spike comes, the analog
switch S1 is open and the voltage at C1 will be dragged
down for a specific value controlled by Vwp. Thus, M3 is
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Fig. 4. STDP training block circuit schematic.

open and the potentiation process only needs another post-
neuron spike to open the pmos M4. When the post-neuron
spike comes, M3 and M4 are both open, so the voltage across
the weight capacitor C2 increases. Since the voltage across
C1 will increase exponentially after the pre-neuron spike, the
closer the post-spike to the pre-spike, the more the weight
voltage increases. The long-term depression (LTD) mechanism
is similar to the LTP process. The only differences are the
voltage across C3 is slowly decreasing after the post-spike and
when the pre-neuron spike fires after the post-neuron spike, the
weight voltage will decrease.

IV. RESULT ANALYSIS OF THE SPIKING FEATURE
EXTRACTION NEURAL NETWORK

This section will discuss and analyze the testbench setup
and the measurement results of the spiking feature extraction
neural network. As mentioned in Section. III, the training
neural network comprises input neurons, an STDP training
circuit, synapses, and output neurons. To verify the efficiency
of the network, the power consumption of the spiking feature
extraction neural network is also measured. From the measure-
ment, it has been easily tested that the power consumption of
this neural network on the PCB board is 400mW.

As depicted in Fig. 5, besides the PCB board, the first
testbench also consists of one power supply, one function
generator, and one oscilloscope. Obviously, the power supply
is used for the supply voltage. The function generator is
utilized for the CLK signals in the neurons. Only with these
CLK signals defining encoding windows will the neurons be
able to carry out the signal processing and encoding tasks.
To verify the dynamic range feature of the proposed neural
network, we also utilized the function generator to provide
extreme signals to the circuit. From the oscilloscope, it is easy
to notice that even with extreme input signals, the circuit still
operates properly since that with the variance of the pre-and
post-spike relation, the weight voltage changes according to
it, as shown in Fig. 6. When the pre-spike arrives before the
post-spike, the weight voltage will rise. The weight voltage
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Fig. 6. The PCB spiking feature extraction neural network test result.

will decrease when the post-spike arrives before the pre-spike,
indicating that the two neurons are not that relative.

With the discussion above, a conclusion can be drawn that
the spiking domain feature extraction network can convert the
input information to spike signals and then use the STDP
training algorithm to adjust the synaptic weight voltage within
a large dynamic range.

V. CONSLUSION

In this paper, we proposed a novel design of the spiking
domain feature extraction neural network with the temporal
multiplexing encoding scheme. We have also fabricated the
hardware prototype of the neural network on the PCB board.
A large dynamic range has been achieved with the temporal
multiplexing encoding scheme since the temporal multiplexing
TTFS-phase encoding can handle more extreme inputs and
stay reliable compared with normal encoding schemes. With
the SNN functionality, the neural network can extract features
from input information and transfer them as spikes. From the
test result of the hardware prototype, it is noticeable that using
the spikes, the synaptic weights can be trained with the STDP
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training algorithm so that the neural network can be utilized
for the following classification tasks,
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