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We demonstrate that edge currents develop in active chiral matter due to boundary shielding over a wide

range of densities corresponding to a gas, fluid, and crystal. The system is composed of spinning disk-shaped

grains with chirally arranged tilted legs confined in a circular vibrating chamber. The edge currents are shown

to increasingly drive circulating bulk flows with area fraction as percolating clusters develop due to increasing

spin-coupling between neighbors mediated by frictional contacts. Edge currents are observed even in the dilute

limit. While, at low area fraction, the average flux vanishes except within a distance that is of the order of a

particle diameter of the boundary, the penetration depth grows with increasing area fraction till a solid body

rotation is achieved corresponding to the highest packing, where the particles are fully caged with hexagonal

order and spin in phase with the entire packing. A coarse-grained model, based on the increased collisional

interlocking of the particles with area fraction and the emergence of order, captures the observed flow fields.

I. INTRODUCTION

Chiral active matter is composed of particles or organisms

that intrinsically spin [28–33]. These materials are naturally

out of equilibrium; energy and rotation are constantly sup-

plied to the system on the scale of the particle, and dissipated

by the global motion of the particles. The intrinsic rotation of

each particle causes colliding particles to rotate about one an-

other in a preferred direction. Consequently, locally increas-

ing particle density also increases the local vorticity. The cor-

responding rheology of the chiral material is described by a

dissipationless odd viscosity and odd elasticity [34, 35]. The

study of these systems gives insight into non-equilibrium pat-

tern formation [36, 37], may be relevant for the ecology of

certain organisms [38, 39], and aids the design of robots that

couple translation to rotational modes [40, 41].

Collections of chiral grains moving on a vibrated substrate,

as in Fig.1, provide an avenue by which to reach a deeper un-

derstanding of how particle rotation at an individual level can

manifest itself collectively [28, 42]. While collections of gran-

ular rods can self-assemble to form chiral structures which

spin collectively [43], particles with tilted legs and bumpy

sides, which promote frictional particle-particle interactions,

have been demonstrated to spin, self-organize, and give rise

to further collective motion [44–46]. However, many sim-

ple questions on the effect of particle concentration, and dif-

ferences on bulk versus boundary interactions remain unan-

swered. In vibro-fluidized granular systems, interactions oc-

cur only during contact and present the opportunity to inves-

tigate density effects over a wide range of area fractions, in

contrast to systems in which secondary flows in the interstitial

medium can give rise to attraction and other system-specific

effects [38, 47].

Here we examine the increasing effect of particle-particle

density and spin correlations on the global flow in a monolayer

of chiral active matter as their area fraction φ increases from

that of a gas to a crystal. Past work, using similar experimen-

tal designs [44–46, 48], have exclusively studied the dynam-

ics of active chiral particles at relatively high area fractions,

above ≈ 0.3. Consequently, these experiments give little in-

sight into how the edge current emerges and changes across

the phases of chiral matter. To better understand the onset

of global motion and systematic variation of the edge current

across phases of active chiral matter, we measure the transla-

tional and rotational motion of particles as the area fraction

increases from 0.078 to 0.746, which is the densest packing

that could be practically achieved in our experiment. A coarse

grained model captures the systematic variation of the trans-

lational motion of particles across all area fractions examined.

However, neither this model nor existing continuum theories

predict the variation of particle angular velocity across the

phases.

II. MATERIALS AND METHODS

A. Particle Design and Fabrication

A schematic of the chiral particles used in our study is

shown in Fig. 1(a). The particles are designed specifically

to achieve two tasks: each particle is to spin on average in a

desired direction, and each particle should be able to interact

with other particles and exchange angular momentum. The

particles are composed of a solid gear cap with outer radius

r0 = 0.6 cm with mass m = 0.28 g and moment of inertia

I = 0.04 g cm2. The seven slanted legs (length 3.3 mm, width

0.8 mm, angle 30◦) are arranged in a circular pattern beneath

the circular cap (height 2 mm, diameter 10 mm). Because the

legs are slanted, striking the particle from below causes it to

spin as it accelerates upwards off the plate [49]. Grain inter-

actions are augmented using 25 triangular gear spokes (spoke

length 1 mm) that can couple grains that are in contact with

each other. To ensure that these particles are nearly identical,

they are fabricated using a Formlabs 3D printer with a clear

photopolymer resin. A white sticker is centered on the top of

each grain to assist with tracking position; a black circle is

drawn slightly off-center to assist with tracking the individual

rotation as shown in Fig. 1(b).

B. Container and Vibration System

Particles are confined within a quasi-two-dimensional

cylindrical chamber of radius Rc = 8.75 cm that oscillates
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Figure 1. Chiral particles are confined to a quasi-two dimensional

circular chamber. (a) A schematic of the chiral matter design viewed

from the side and bottom. (b) A top view of a 3D-printed chiral par-

ticle. A white sticker with a black marker is added to find its location

and spin rate. (c) Top view image of chiral particles in the circu-

lar chamber. The chiral particle monolayer sits atop the sandblasted

aluminum plate, and are confined by a clear acrylic lid.

vertically with frequency f = 60Hz and amplitude A =
0.17mm. We vary the number of particles Np from 20 to

191. These particles are placed in a quasi-two dimensional

chamber which is connected via a linear bearing to an electro-

magnetic shaker (Labworks Inc. Model PA-141) connected to

an Agilent waveform generator [43]. The linear bearing en-

sures that the vibrations are purely vertical as tested with an

accelerometer to within 1%. This chamber is composed of an

aluminum base that is bolted to clear acrylic walls and a cap.

The aluminum base was lightly sandblasted to excite the dif-

fusive motion of the particles, and dyed black to contrast with

the particles. The height of the chamber, 6.35mm is slightly

greater than the particle height, which is 5mm. The cham-

ber is vibrated at 60Hz. The amplitude is adjusted such that

the maximum of the measured acceleration is 2.5-times the

Earth’s gravitational acceleration.

A PixelLink camera above the chamber records the two-

dimensional motion of the particles. An example is shown

in Fig. 1(c). Images are acquired at 50ms intervals over ten

minute time intervals.

C. Particle Tracking

We begin by describing the tracking of the particles. The

white 6mm sticker placed on the center of each particle are

sharply contrasted with the opaque particles and dark sub-

strate. Knowing the radius of each sticker allows one to

quickly identify their centers by applying a Circular Hough

Transform. The pairwise distances between particles in se-

quential frames are then computed. The assignment of in-

stantaneous locations to particle tracks is performed using

Munkres Assignment Algorithm. In the rare circumstances

that a particle is not found in a particular frame, its position is

interpolated from is positions immediately before and after the

missing frame. In a typical experiment, fewer than 0.06% of

particle positions are interpolated. At the lowest area fractions

examined, where the particle velocity is greatest, as many as

1.6% of positions are interpolated.

A similar method is used to track particle orientation. A

small black spot is drawn on each sticker at a point about

halfway between its center and edge. After the center of

the particle is found, the mean intensity of the sticker is ra-

dially averaged to give the mean intensity as a function of

orientation about the center of the particle. The dark spot

appears as a minimum in the intensity at a particular angle.

Fitting a parabola to the minimum allows one to track the spot

with subpixel resolution. These measurements are assembled

into trajectories, which show the change in particle orientation

from the beginning of the experiment.

To move to a reference frame that rotates with the collective

motion of the particles (as in supplementary videos SV2 and

SV3), we first calculate the velocity v of each particle in the

laboratory frame. We then find the average angular velocity of

the average flow as Ω = 〈v×(r×ẑ)/r2〉, where r is the vector

from the center of the chamber to a particular particle, and ẑ
is normal to the vibrating plate. We then change coordinates

to one that rotates with the instantaneous angular velocity Ω.

D. Kinetics of isolated particles

Isolated particles are found to spin counterclockwise on av-

erage when viewed from above with a mean angular velocity

of ω0 = 7.61 ± 0.01 s−1. Particles diffuse with translational

diffusion coefficient D = 0.134 ± 0.07 cm2/s and rotational

diffusion coefficient Dr = 3.4± 0.4 rad2/s.

III. RESULTS

A. Variation of packing geometry and global flow with

packing fraction

Figure 2 shows representative snapshots of the system cor-

responding to gas, fluid, and crystal phases with increasing

φ, and a corresponding video can be found in Supplemen-

tal Video SV1 [50]. We have further superimposed the spin

angular velocity ω on the tracked position of each particle.

We observe that the system becomes increasingly ordered not
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Figure 2. The dynamics of a chiral material is examined across the phases of gas (left column), fluid (center), and crystal (right). Panel (a)

shows the distribution and angular velocities (colored spots), and contact network (solid black lines) of 60 particles in a dilute gas (φ = 0.23).

The scale bar is 1 cm. Panels (b) and (c) show the corresponding particle locations, angular velocities, and contact networks in a fluid of

148 particles (0.57 < φhex) and a crystal of 191 particles (φ = 0.74 > φhex), respectively. Note that the mean and variance of the angular

velocities decrease with φ. The bottom row shows the radial velocity profile for the (d) gas, (e) fluid, and (f) crystal. Red lines are fits to the

coarse-grained model (Eq. [1–4]). The insets show the pair correlation function g(R). The location first peak, which is insensitive to φ, is

found at a distance 1.08± 0.05 cm. This value is between inner (1 cm) and outer (1.2 cm) particle diameters.

only in the way the particles are arranged, but also in terms of

their spin, with the highest φ showing hexagonal crystalline

order and little variation in ω. We construct the contact net-

work from instantaneous positions of the particles, taking two

particles to be in contact if their center to center distance is

less than 2.2r0, and is also shown in Fig. 2(a-c). As φ is fur-

ther increased, the contact network becomes ordered and the

disordered fluid becomes a crystal.

To characterize the emergence of flow and its nature, we

calculate the tangential velocity of each particle as it moves

about the center of the chamber. Averaging these instan-

taneous measurements over ten-minute trials, we find the

steady-state velocity profile vt as a function of distance r from

the chamber center. The corresponding profiles are shown in

Fig. 2(d–f), nondimensionalized by the characteristic speed

v0 = r0ω0 = 4.6 cm/s of an isolated particle’s edge. In all

cases, particle speed is maximum within a particle diameter of

the chamber wall, where they move with flux jedge = 2r0vt.
The overall collective rotation in the chamber is in the same

direction as the individual particle spin, which implies that

the flow is driven by particle-particle collisions rather than

particle-boundary interactions [51]. The measured vt of each

data set obtained between φ = 0.078 and 0.746 can be found

in Figure 9. Our results provide the first experimental investi-

gation of flows driven by chirality as the density varies widely,

corresponding to a chiral gas, fluid, and crystal states.

To quantify these transitions, we plot in Fig. 3(a)

the six-fold orientational correlation function Q6(R) =

〈q6(R)q∗6(0)〉, where q6(rk) = N−1
k ΣNk

j=1e
i6θk,j , R is the

position vector (of magnitude R) between the centers of two

particles, Nk is the number of particles that particle k con-

tacts, rk is the position vector of the particle k from the cen-

ter, and θk,j is the angle between particles k and j, which

are in contact with one another. As shown in Fig. 3(b), parti-

cle orientation becomes correlated at a critical area fraction of

φhex = 0.64 over the scale of the chamber Rc and the hexag-

onal packing of particles becomes apparent as in Fig. 2(c).

The pair-correlation function g(R), which describes the den-

sity variation as a function of distance R from a particle, is

shown in the Insets of Fig 2(d), Fig 2(e) and Fig 2(f). They are

observed to be consistent with those of a gas, fluid and crys-

talline solid, respectively, with the appearance of peaks grow-

ing at R = 2r0, 2
√
3r0, and 4r0 corresponding to a hexagonal

lattice. (The measured pair correlation function can be found

in Fig. 10 for each experiment.) The small secondary peak is

absent at the lowest area fraction examined.

Because colliding particles tend to rotate about one another,

collisions transfer angular momentum from the individual ro-

tation of particles to the global rotation about the chamber.

As the contact network grows and spatial correlations increase
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Figure 3. Cluster geometry and particle motion vary systematically

with area fraction. (a) The magnitude and correlation length of the

orientation of particle contacts grows with area fraction. (b) The

formation of a single rotating crystal is identified from the point at

which Q6(Rc) increases discontinuously. (c) Average angular ve-

locity particles (blue line) and the typical fluctuations (shaded re-

gion) decrease as the size of the contact network grows. (d) As area

fraction increases, the rotational motion is slowed more quickly than

translational components. The black line, shown as a guide to the

eye, is 〈Ur/U〉 = 0.55 − 1.03φ4. (e) The edge current jedge is

a non-monotonic function of φ which changes abruptly at φhex. (f)

The integrated particle flux Jtot is maximized at φ = 0.69. The

black line shows the predictions of Eqs. (1–4).

with φ, the average spin angular velocity 〈ω〉 and its root mean

fluctuations decreases as shown in Fig. 3(c). We measure

the particles’ instantaneous two-dimensional translational ki-

netic energy Ut = 1
2
mv22D, where v2D is the instantaneous

translational speed of a particle, the rotational kinetic energy

Ur =
1
2
Iω2, and the total measured energy U = Ur + Ut. As

shown in Fig. 3(d), the partitioning of energy between transla-

tional and rotational motion 〈Ur/U〉 = 0.55 in the gas phase,

and decreases quartically with φ in the fluid phase. As the

packing becomes crystalline—close to φhex—and ω of the

particles locks in phase with the solid body rotation, 〈Ur/U〉
becomes similar to 1/3, the value predicted by the equiparti-

tion theorem.

In the dilute limit of a chiral gas, particle collisions are

dominated by two-body interactions. Because the co-rotation

of isotropically colliding particles generates no net flow, the

velocity field vanishes in the interior of the chamber [48]. The

presence of the chamber wall breaks this symmetry. Because

a particle near the wall can only be struck from the cham-

Figure 4. Retrograde motion is observed in particles centered a dis-

tance rN−1 = Rc−3r0. (a) The tangential velocity profile is shown

on a much finer scale than in Fig 2(d–f) to highlight the retrograde

(b) The ratio of tangential velocities of particles in the two outer-

most annuli increases monotonically from −1, correspond to elastic

two-body collisions (blue dashed line), to 7/8, which corresponds to

solid body rotation (red dashed line)

ber interior, the outer ring of particles slip over the cham-

ber walls as they are pushed from the interior. Since this

mechanism does not reference a particular φ, one may ex-

pect an edge current even at vanishing densities. Edge cur-

rents have been shown to develop in a numerical study of a di-

lute (φ ≈ 0.12) gas of driven rotors interacting with Yukawa

potential [31]. Figure 3(e) shows that edge currents form at

area fractions as low as 0.078 even in systems which interact

sterically. We find that jedge increases approximately linearly

with φ, and jedge apparently can extend to vanishing densities

provided particle-particle collisions are present. The corre-

sponding flux Jtot = 2π
∫

φvtrdr is shown in Fig. 3(f). Our

experiments show that a thin edge current (2r0 wide) is main-

tained by short-range particle-particle interactions in a dilute

gas. Confinement induced packing structure has been shown

numerically to give rise to oscillatory flows at intermediate

φ, but were not clearly realized in their corresponding experi-

ments [48].

Interestingly, we observe a clear signature of oscillatory

flow for φ < 0.5 with a weak counterclockwise flow for

11 < r/r0 < 12 as a reaction to the clockwise edge cur-

rent. To highlight this slight retrograde motion, Fig. 4(a)

shows the average tangential velocity vt of dilute particles

near the outer boundary of the chamber. Rescaling these mea-

surements by the speed vN of the outermost ring of particles

collapses the velocity profile onto a similar form. These pro-

files show retrograde motion vN−1 < 0 of particles at a dis-

tance rN−1 = Rc−3r0 from the center of the chamber, which

correspond to the annulus of particles that contact the outer-

most ring of particles. As the area fraction of particles in-

creases, the ratio vN−1/vN increases monotonically and ret-

rograde motion vanishes at an area fraction of 0.5. This ra-

tio is bounded from below by vN−1/vN > −1, which cor-

responds to elastic two-particle collisions. The upper bound

vN−1/vN < (N − 1)/N corresponding to solid body rota-

tion. The chamber studied here fits N = 8 concentric annuli

of particles. Note that the retrograde motion is attenuated in
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Fig. 2(d–f), where the tangential velocity is averaged over the

width of a particle rather than evaluated at the midpoints of

concentric annuli.

As φ rises, the edge current and associated flux, initially

grows and extends through the system (Fig 3[e–f]). We ob-

serve that a disordered contact network (Fig 2(b)) maintains

flow in the bulk, and thus conclude that bulk flow does not re-

quire the percolation of solid-like regions (see Appendix B).

Rather, around an area fraction of 0.5, the contact network

spans the chamber and the outermost particles cannot move

independently of those in the interior. However, the loose

contact network permits the relative motion of particles. As

the outermost shell of particles is pushed around the exterior

of the chamber, it drags the loose network. In this regime,

velocity gradients begin to extend through the entire material

(Fig 2(e)).

Finally, in the dense regime, φ > φhex = 0.64, steric in-

teractions arrest the relative motion of particles, velocity gra-

dients are suppressed, and particles cease to rotate indepen-

dently of the lattice except near defects. The amplitude of

the edge current decays quickly with particle concentration

(Fig. 3(e)) and the crystal moves as a solid body (Fig. 2(f)). In-

terestingly, solid-body rotation is maintained even as system

scale dislocations form (see Supplemental Video SV2 [50]).

In the crystalline limit, particles rotate in phase with the solid

body rotation except near topological defects (see Supplemen-

tal Video SV3 [50]).

B. Coarse-grained model

To understand the variation in the particle flux with increas-

ing area fraction, we develop a coarse grained model. Accord-

ing to this model, particles are confined by steric interactions

to move around the center of the chamber along concentric

circular paths, which we call lanes. Collisions between parti-

cles transfers momentum between neighboring lanes and par-

ticles are slowed as they move relative to the chamber floor.

The simple geometry assumed by this coarse graining scheme

makes it possible to calculate torque balance on each particle

and on each lane, which is sufficient to determine the steady-

state translational and angular velocities of each particle.

We first motivate this coarse graining scheme, which re-

spects the finite size of particles and the emergent crystalline

structure, from the measured trajectories of particles. At par-

ticle concentrations above φ > φhex, particles rotate about

the chamber in eight concentric lanes (Fig. 5[a]). The outer-

most lane—at a distance of one particle radius from the outer

wall—is apparent even at the lowest concentration examined.

Multiple lanes become apparent around φ ≈ 0.5 at which con-

tact networks begin to span the system (Fig. 5[a]). We coarse-

grain this system in a manner in which each lane—having a

width of one particle diameter and the outermost lane is cen-

tered one particle radius from the outer wall—is densely oc-

cupied with the average particle concentration as illustrated

Fig. 5(b).

Consider the torque balance on particles in the ith lane from

the center with velocity vi and spin angular velocity ωi, where

Figure 5. Particles rotate about the center of the chamber in concen-

tric lanes. Lanes form from the outer boundary and grow inwards

with increasing φ. (a) The probability density function ρ for parti-

cle density for all experiments analyzed is shown. The dashed lines

show the expected locations of lanes. (b) A schematic of particles

interacting between lanes. Each particle moves in a circular path at

velocity vi and rotates about its axis at angular velocity ωi.

i < N and N ≈ Rc/(2r0) is the number of lanes that fit in

the experiment. The rotation of these particles is slowed at rate

αp if the speed of its edge is faster than those of its neighbors.

The corresponding nondimensionalized torque balance on the

particles, as derived in Appendix A, is

ωi +
αp

αb
(vi−1 − vi+1 + ωi−1 + 4ωi + ωi+1) = 1, (1)

where αb is the rate that particle rotation is slowed by the bot-

tom of the chamber. In the outermost lane, particle rotation

is only slowed by collisions from the interior, within its lane,

and the bottom of the chamber. The boundary condition on

particle rotation at the wall is

ωN +
αp

αb
(vN−1 − vN + ωN−1 + 3ωN ) = 1. (2)

We assume that ω is smooth and continuous near r = 0.

Similarly, vt is slowed at rate βp if a particle’s edges move

more quickly than the edges it contacts. The corresponding

torque balance on lane i < N requires

vi =
βp

βb
(vi−1 − 2vi + vi+1 − ωi+1 + ωi−1) , (3)

where βb is the rate that the translational velocity is slowed by

the bottom of the chamber. Again, the outermost particles are
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Figure 6. The rates at which particle (a) angular velocity and (b)

translational velocity relax to the speeds of the neighboring edges

both diverge at the maximum area density. The red lines are fits to

power laws. The insets show the same data on logarithmically scaled

axes.

only affected by particles in the lane centered at rN−1. The

corresponding boundary condition is

vN =
βp

βb
(vN−1 − vN + ωN−1 + ωN ) . (4)

The boundary condition at the center of the chamber requires

the angular velocity Ω = vt/r to be smooth and continuous.

In the continuum limit Rc � r0, Eqs. (1–4) predict an

exponentially decaying edge current with penetration depth

λc = r0
√

[βp(2α+ 1)/(3α+ 1)]/βb. In this limit, as α and

β grow, the penetration depth grows from the particle scale (as

in Fig 2[d]) to scales much larger than the system size, which

corresponds to solid body rotation (see Fig 2[f]). This result

is similar in form to the prediction for continuum models of

active chiral materials [52] in which the penetration depth is
√

(η + ηo)/βb, where η is the sheer viscosity and ηo is the

odd viscosity.

C. Comparison of experiment and theory

Equations (1–4) uniquely determine the tangential velocity

and the angular velocity of particles in each lane. We fit the

dimensionless relaxation rates α = αp/αb and β = βp/βb to

match the measured velocity profile. Three representative fits

are shown in Fig 2(d–f), and all the trials are shown in Fig. 9.

Remarkably, this model reproduces the velocity profile even

in the dilute regime and correctly predicts the slight retrograde

motion in the N − 1 lane (Fig 2(d) and Fig. 4).

Intuitively, the relaxation rates α and β should increase with

particle density as increasing the number of collisions simi-

larly increases the rate particles are slowed by their neighbors.

As shown in Fig. 6, α and β increase faster than exponentially

with area fraction. These trends are well fit by power law di-

vergences α(φ) = α0(φc−φ)−γ/2 and β(φ) = β0(φc−φ)−γ ,

where α0 = 1.53, β0 = 0.17, γ = 3, and φc = 0.76.

Figure 3(f) shows that the particle flux predicted by the

power law divergences of α and β approximates the mea-

Figure 7. The average angular velocity of particles (blue dots) de-

creases as the area fraction increases. The red line shows the predic-

tions of Eqs. (1–4), which assumes a dense packing of particles. The

black line shows a three parameter fit to the model of Liu et. al [48],

which treats the material as a disordered fluid.

sured flux reasonably well. The predicted flux is not mono-

tonic [53] and is maximized at φ ≈ 0.69 and is similar to the

value φs = 0.711 at which a large two-dimensional lattice of

hard spheres transitions from diffusive behavior to caging, as

discussed by Reis, et al. [54]. The slightly lower value could

result from the difference in particle shapes and finite size ef-

fects. This similarity suggests that flux is maximized when

the rate of particles collisions is maximized before the rela-

tive motion of particles is arrested.

At an area fraction of φc = 0.76 the rate coefficients α and

β diverge and the system is stationary. While this value is

substantially less than the maximum area fraction π
√
3/6 ≈

0.907 of disks in an infinite plane, it is slightly greater than

the densest packing that could be practically achieved (0.74).

This values corresponds to 196 particles, five more than are

shown in Fig 2(c). We conjecture that α and β diverge at the

maximum packing fraction and the smaller value found here

is due to the finite size of the chamber.

Finally, we compare the predictions of the coarse-grained

model to the measured angular velocities of particles. The av-

erage angular velocities of particles decrease smoothly with

increasing area fraction (see Fig. 7). The inferred rotation

speed at vanishing area fraction is slightly less than ω0 as a

result of friction between particles and between particles and

the chamber walls. The average angular velocities predicted

by the power-law divergence of α and β systematically under-

estimate the actual angular velocity for two reasons. The first

is because the best fit power-law divergences of α and β are

non-zero at vanishing area fraction. Consequently, particles

are predicted to rotate with angular velocity ≈ 0.1ω0. Rescal-

ing the predicted mean angular velocity by this factor gives

the red line shown in Fig. 7. Although agreement is good for

φ > φhex, the predictions of our coarse grained model con-

tinue to underestimate the angular velocity at low density. For

comparison, the black line shows a three parameter fit to a
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model proposed by Liu et. al [48], which relies on an expan-

sion of the pair correlation function for a low densities fluid.

The fit gives a good representation of angular velocity at low

density, but fails as expected at high densities.

IV. CONCLUSION

In conclusion, we have analyzed the evolution of edge cur-

rent and bulk flow across three phases of active chiral matter.

Edge currents are observed even at vanishing densities due

to occasional particle collisions and shielding of particles at

the boundaries. In the dilute limit (φ < 0.4), particle-particle

collisions generate a global flow that is confined within a nar-

row band within the width of a single particle of the cham-

ber boundary. Both convection at low densities and the lin-

ear dependence is nonintuitive, and have not been anticipated.

Only simulations [31] of particles with Yukawa interactions

show edge currents similar to what we observe. Collisions

between particles near the boundary and those in the interior

produces slight retrograde motion in the bulk. This motion is

suppressed at intermediate area fractions where steric interac-

tions prevent the independent motion of particles. Upon the

onset of system-scale orientational order, the edge current is

quickly arrested and particles rotate as a solid body.

A coarse-grained model, which respects the emergent crys-

talline order and the finite particle size, accurately fits the

measured velocity profile across these phases. These fits re-

veal that the rates α and β that particles are slowed by colli-

sions with neighbors increase faster than exponentially with

area fraction and appear to diverge at a value φc slightly

greater than what could be practically achieved.

The comparison of this model to the measured motion of

particles leaves open two questions which should be addressed

by future work. First, it is unclear if α and β diverge at the

maximum packing fraction, as we suspect, or if φc separates

two distinct phases of chiral material. Increasing the size of

chamber relative to the particle size would address this ques-

tion. Next, the divergences of α and β are well fit by the

relation α2 ∝ β. We lack any physical model to explain this

curious coincidence.

Finally, neither our coarse grained model nor the continuum

model of chiral fluids composed of particles similar to those

studied here [48] is sufficient to understand particle rotation

across the phases. While our coarse grained model, which

assumes a density of particles that is sufficient to maintain

circular trajectories, fits that data well at high concentrations,

it fails in the fluid regime. By contrast, the continuum model,

which assumes a disorder fluid, fails for crystalline packings

of particles. The experimental results presented here provide

a strong test for any further theory to be developed to describe

the fluid-solid transition of active chiral materials.
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Appendix A: Derivation of Coarse grained model

In this section we derive equations (1–4) of the main text

and discuss their fit to the measured velocity profile. Accord-

ing to our model, a particle is accelerated and spun if its edge

moves at a different speed than those of its neighbors. Parti-

cles in the ith lane are characterized by a velocity vi = riΩi,

where Ωi is the angular velocity of the lane about the center

of the chamber, and composed of particles that rotate about

their centers with angular velocity ωi. The speed of a parti-

cle’s outer edge is vi + ωir0 and the speed of its inner edge is

vi − ωir0.

Each particle experiences a torque τb when it is struck by

the vibrating plate, which causes it to rotate with an average

angular velocity ω0 = τb/(Iαb), where I is the moment of in-

ertia and αb is a rate coefficient. At steady state, this torque is

balanced by friction with other particles and the bottom plate.

The angular velocity of particle in the ith lane increases if its

edges spin more slowly than those if its neighbors. Particles

experience a torque from the interior lane of

τ− = −Iαp ((vi−1 + ωi−1r0)− (vi − ωir0)) /r0 (A1)

where αp is a rate coefficient. The corresponding torque from

the exterior lane is

τ+ = −Iαp ((vi+1 − ωi+1r0)− (vi + ωir0)) /r0. (A2)

A particle is also slowed by collisions within its lane, which

exert a torque

τ0 = −2Iαpωi. (A3)

Friction with the base plate exerts a drag

τD = −Iαbωi. (A4)

Torque balance on the particle requires τb + τ+ + τ− + τ0 +
τD = 0, or equivalently

αp(vi−1−vi+1+r0ωi−1+2r0ωi+r0ωi+1)+αbr0ωi = αbr0ω0.
(A5)

After nondimensionalizing vi by r0ω0 and ωi by ω0, this anal-

ysis yields equation (1) of the main text. At the outer bound-

ary, where τ+ = 0, torque balance requires

αp(vN−1−vNr0+r0ωN−1+3r0ωN )+αbr0ωM = αbr0ω0,
(A6)

which gives equation (2) of the main text. Note that we have

ignored friction with the outer wall. We additionally assume

that that ωi is smooth and continuous at r = 0 such that it can

be locally expanded as A+Br2i , for some unknown factors A
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and B. It follows that

(r22 − r23)ω1 + r23ω2 − r22ω3 = 0, (A7)

which gives the boundary condition at the center of the cham-

ber.

Particles in the ith lane are accelerated by the particles in

neighboring lanes and slowed by friction with the bottom sur-

face. The interior lane exerts a tangential force on the ith lane

of

F− = mβp ((vi−1 + ωi−1r0)− (vi − ωir0)) , (A8)

where βp is a rate coefficient and m is the mass of a particle.

Similarly, the exterior lane exerts a force

F+ = mβp ((vi+1 − ωi+1r0)− (vi + ωir0)) . (A9)

The drag on the ith lane is

FD = −mβbvi. (A10)

At steady state, the total torque on each lane is ri(F+ +F− +
FD) = 0. Thus,

βp(vi−1−2vi+vi+1+ωi−1r0−ωi+1r0)−βbvi = 0. (A11)

Nondimensionalizing velocity by ω0r0 and angular velocity

by ω0 yields equation (3) of the main text. Particles in the

outermost lane only interact with the interior lane. The corre-

sponding torque balance, which requires τN = rN (F−+FD),
yields equation (4) of the main text. Again, we assume that Ω
is smooth and continuous at the center, implying

(r22 − r23)Ω1 + r23Ω2 − r22Ω3 = 0. (A12)

Thus, torque balance on each particle (Eqs.[1–2] in the

main text) and lane (Eqs.[3–4] in the main text) along with

continuity of particle motion at the center (Eqs. [A7] and

[A12]) define 2N linear equations for a system composed of

N lanes. These equations can be trivially rewritten as

M

(

v

ω

)

=

(

0

1

)

, (A13)

where M is a matrix composed of elements that vary with

α and β, v is vector with elements vi, and ω is vector with

elements ωi. For given values of α and β, we invert M to find

the speed and angular velocity of particles in each lane.

This model is fit to the measured velocity profile by least

squares. We provide the fits of the velocity profile for each

experiment in Fig. 9. The fitting constants α and β are plotted

in Fig. 6 in the main text. Excellent agreement is observed

over the entire range of φ.

Appendix B: Formation of a spanning contact network

We find the contact network in each frame of the experi-

ment from the observed particle locations. Two particles are

Figure 8. The contact network percolates. (a) The weight P is the

probability that a randomly selected particle is in a spanning net-

work. It grows with area fraction. (b) Cluster sizes are most widely

distributed at φperc ≈ 0.5. Nc is the number of particles in a non-

spanning cluster.

in contact if their centers are within 10% of a particle diam-

eter. We then identify disjoint clusters (collections of parti-

cles in the same contact network). At small area fractions,

most clusters contain fewer than three particles. At the high-

est area fraction, a single cluster is observed. We take a clus-

ter to be spanning if the furthest distance separating the con-

stituent particles is greater than 3Rc/4. Figure 8(a) shows the

weight P of spanning clusters as the fraction of particles in

a spanning cluster. We also measure and plot the variance of

the sizes of non-spanning clusters Nc in Fig. 8(b). Averag-

ing these measurements over the length of the experiment, we

find that cluster sizes are most widely distributed at an area

fraction of φperc ≈ 0.5. The precise value at which spanning

clusters form is sensitive to parameter choices, however the

reported value for the percolation transition is in accord with

visual inspection.
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Appendix C: Supplemental Videos

Three videos of the motion of particles are provided.

1. Video SV1.mp4 shows three representative experiments

at three different area fractions, corresponding to the

panels of Fig.1 of the main text.

2. SV2.mp4 shows the solid body motion of a crystal com-

posed of 185 particles (φ = 0.723). The image is

rotated with the instantaneous angular velocity of the

crystal. The contact network is shown with thin black

lines. The thick black like shows the orientation of each

particle in the rotating frame. Note that particle orienta-

tion changes only slightly over the course of the exper-

iment, indicating that particles rotate at a similar speed

of the crystal. Many defects in the lattice are appar-

ent. A system scale dislocation, which appears halfway

through the video, is highlighted with a red dashed line.

3. SV3.mp4 shows that, at the highest packing fraction

(191 particles, φ = 0.746), particle spin is in phase with

the solid body rotation of the crystalline packing. The

thick black lines show the orientation of the particles in

the rotating frame. Note that most particles appear sta-

tionary in the rotating reference frame, which indicates

they spin with the surrounding lattice. A few particles

close to lattice defects rotate quickly.
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