Density Mediated Spin Correlations Drive Edge to Bulk Flow Transition in Active Chiral Matter
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We demonstrate that edge currents develop in active chiral matter due to boundary shielding over a wide
range of densities corresponding to a gas, fluid, and crystal. The system is composed of spinning disk-shaped
grains with chirally arranged tilted legs confined in a circular vibrating chamber. The edge currents are shown
to increasingly drive circulating bulk flows with area fraction as percolating clusters develop due to increasing
spin-coupling between neighbors mediated by frictional contacts. Edge currents are observed even in the dilute
limit. While, at low area fraction, the average flux vanishes except within a distance that is of the order of a
particle diameter of the boundary, the penetration depth grows with increasing area fraction till a solid body
rotation is achieved corresponding to the highest packing, where the particles are fully caged with hexagonal
order and spin in phase with the entire packing. A coarse-grained model, based on the increased collisional
interlocking of the particles with area fraction and the emergence of order, captures the observed flow fields.

I. INTRODUCTION

Chiral active matter is composed of particles or organisms
that intrinsically spin [28-33]. These materials are naturally
out of equilibrium; energy and rotation are constantly sup-
plied to the system on the scale of the particle, and dissipated
by the global motion of the particles. The intrinsic rotation of
each particle causes colliding particles to rotate about one an-
other in a preferred direction. Consequently, locally increas-
ing particle density also increases the local vorticity. The cor-
responding rheology of the chiral material is described by a
dissipationless odd viscosity and odd elasticity [34, 35]. The
study of these systems gives insight into non-equilibrium pat-
tern formation [36, 37], may be relevant for the ecology of
certain organisms [38, 39], and aids the design of robots that
couple translation to rotational modes [40, 41].

Collections of chiral grains moving on a vibrated substrate,
as in Fig.1, provide an avenue by which to reach a deeper un-
derstanding of how particle rotation at an individual level can
manifest itself collectively [28, 42]. While collections of gran-
ular rods can self-assemble to form chiral structures which
spin collectively [43], particles with tilted legs and bumpy
sides, which promote frictional particle-particle interactions,
have been demonstrated to spin, self-organize, and give rise
to further collective motion [44-46]. However, many sim-
ple questions on the effect of particle concentration, and dif-
ferences on bulk versus boundary interactions remain unan-
swered. In vibro-fluidized granular systems, interactions oc-
cur only during contact and present the opportunity to inves-
tigate density effects over a wide range of area fractions, in
contrast to systems in which secondary flows in the interstitial
medium can give rise to attraction and other system-specific
effects [38, 47].

Here we examine the increasing effect of particle-particle
density and spin correlations on the global flow in a monolayer
of chiral active matter as their area fraction ¢ increases from
that of a gas to a crystal. Past work, using similar experimen-
tal designs [44—46, 48], have exclusively studied the dynam-
ics of active chiral particles at relatively high area fractions,
above ~ (0.3. Consequently, these experiments give little in-
sight into how the edge current emerges and changes across
the phases of chiral matter. To better understand the onset

of global motion and systematic variation of the edge current
across phases of active chiral matter, we measure the transla-
tional and rotational motion of particles as the area fraction
increases from 0.078 to 0.746, which is the densest packing
that could be practically achieved in our experiment. A coarse
grained model captures the systematic variation of the trans-
lational motion of particles across all area fractions examined.
However, neither this model nor existing continuum theories
predict the variation of particle angular velocity across the
phases.

II. MATERIALS AND METHODS
A. Particle Design and Fabrication

A schematic of the chiral particles used in our study is
shown in Fig. 1(a). The particles are designed specifically
to achieve two tasks: each particle is to spin on average in a
desired direction, and each particle should be able to interact
with other particles and exchange angular momentum. The
particles are composed of a solid gear cap with outer radius
ro = 0.6cm with mass m = 0.28 g and moment of inertia
I = 0.04 gcm?. The seven slanted legs (length 3.3 mm, width
0.8 mm, angle 30°) are arranged in a circular pattern beneath
the circular cap (height 2 mm, diameter 10 mm). Because the
legs are slanted, striking the particle from below causes it to
spin as it accelerates upwards off the plate [49]. Grain inter-
actions are augmented using 25 triangular gear spokes (spoke
length 1 mm) that can couple grains that are in contact with
each other. To ensure that these particles are nearly identical,
they are fabricated using a Formlabs 3D printer with a clear
photopolymer resin. A white sticker is centered on the top of
each grain to assist with tracking position; a black circle is
drawn slightly off-center to assist with tracking the individual
rotation as shown in Fig. 1(b).

B. Container and Vibration System

Particles are confined within a quasi-two-dimensional
cylindrical chamber of radius R. = 8.75cm that oscillates



Figure 1. Chiral particles are confined to a quasi-two dimensional
circular chamber. (a) A schematic of the chiral matter design viewed
from the side and bottom. (b) A top view of a 3D-printed chiral par-
ticle. A white sticker with a black marker is added to find its location
and spin rate. (c) Top view image of chiral particles in the circu-
lar chamber. The chiral particle monolayer sits atop the sandblasted
aluminum plate, and are confined by a clear acrylic lid.

vertically with frequency f = 60Hz and amplitude A =
0.17mm. We vary the number of particles N, from 20 to
191. These particles are placed in a quasi-two dimensional
chamber which is connected via a linear bearing to an electro-
magnetic shaker (Labworks Inc. Model PA-141) connected to
an Agilent waveform generator [43]. The linear bearing en-
sures that the vibrations are purely vertical as tested with an
accelerometer to within 1%. This chamber is composed of an
aluminum base that is bolted to clear acrylic walls and a cap.
The aluminum base was lightly sandblasted to excite the dif-
fusive motion of the particles, and dyed black to contrast with
the particles. The height of the chamber, 6.35 mm is slightly
greater than the particle height, which is 5mm. The cham-
ber is vibrated at 60 Hz. The amplitude is adjusted such that
the maximum of the measured acceleration is 2.5-times the
Earth’s gravitational acceleration.

A PixelLink camera above the chamber records the two-
dimensional motion of the particles. An example is shown
in Fig. 1(c). Images are acquired at 50 ms intervals over ten
minute time intervals.

C. Particle Tracking

We begin by describing the tracking of the particles. The
white 6 mm sticker placed on the center of each particle are
sharply contrasted with the opaque particles and dark sub-
strate. Knowing the radius of each sticker allows one to
quickly identify their centers by applying a Circular Hough
Transform. The pairwise distances between particles in se-
quential frames are then computed. The assignment of in-
stantaneous locations to particle tracks is performed using
Munkres Assignment Algorithm. In the rare circumstances
that a particle is not found in a particular frame, its position is
interpolated from is positions immediately before and after the
missing frame. In a typical experiment, fewer than 0.06% of
particle positions are interpolated. At the lowest area fractions
examined, where the particle velocity is greatest, as many as
1.6% of positions are interpolated.

A similar method is used to track particle orientation. A
small black spot is drawn on each sticker at a point about
halfway between its center and edge. After the center of
the particle is found, the mean intensity of the sticker is ra-
dially averaged to give the mean intensity as a function of
orientation about the center of the particle. The dark spot
appears as a minimum in the intensity at a particular angle.
Fitting a parabola to the minimum allows one to track the spot
with subpixel resolution. These measurements are assembled
into trajectories, which show the change in particle orientation
from the beginning of the experiment.

To move to a reference frame that rotates with the collective
motion of the particles (as in supplementary videos SV2 and
SV3), we first calculate the velocity v of each particle in the
laboratory frame. We then find the average angular velocity of
the average flow as Q = (v x (rx 2)/r?), where r is the vector
from the center of the chamber to a particular particle, and 2
is normal to the vibrating plate. We then change coordinates
to one that rotates with the instantaneous angular velocity 2.

D. Kinetics of isolated particles

Isolated particles are found to spin counterclockwise on av-
erage when viewed from above with a mean angular velocity
of wg = 7.61 &+ 0.01s~ L. Particles diffuse with translational
diffusion coefficient D = 0.134 4 0.07 cm?/s and rotational
diffusion coefficient D, = 3.4 + 0.4 rad?/s.

III. RESULTS

A. Variation of packing geometry and global flow with
packing fraction

Figure 2 shows representative snapshots of the system cor-
responding to gas, fluid, and crystal phases with increasing
¢, and a corresponding video can be found in Supplemen-
tal Video SV1 [50]. We have further superimposed the spin
angular velocity w on the tracked position of each particle.
We observe that the system becomes increasingly ordered not
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Figure 2. The dynamics of a chiral material is examined across the phases of gas (left column), fluid (center), and crystal (right). Panel (a)
shows the distribution and angular velocities (colored spots), and contact network (solid black lines) of 60 particles in a dilute gas (¢ = 0.23).
The scale bar is 1 cm. Panels (b) and (c) show the corresponding particle locations, angular velocities, and contact networks in a fluid of
148 particles (0.57 < ¢nex) and a crystal of 191 particles (¢ = 0.74 > ¢nex), respectively. Note that the mean and variance of the angular
velocities decrease with ¢. The bottom row shows the radial velocity profile for the (d) gas, (e) fluid, and (f) crystal. Red lines are fits to the
coarse-grained model (Eq. [1-4]). The insets show the pair correlation function g(R). The location first peak, which is insensitive to ¢, is
found at a distance 1.08 = 0.05 cm. This value is between inner (1 cm) and outer (1.2 cm) particle diameters.

only in the way the particles are arranged, but also in terms of
their spin, with the highest ¢ showing hexagonal crystalline
order and little variation in w. We construct the contact net-
work from instantaneous positions of the particles, taking two
particles to be in contact if their center to center distance is
less than 2.2rg, and is also shown in Fig. 2(a-c). As ¢ is fur-
ther increased, the contact network becomes ordered and the
disordered fluid becomes a crystal.

To characterize the emergence of flow and its nature, we
calculate the tangential velocity of each particle as it moves
about the center of the chamber. Averaging these instan-
taneous measurements over ten-minute trials, we find the
steady-state velocity profile v, as a function of distance r from
the chamber center. The corresponding profiles are shown in
Fig. 2(d-f), nondimensionalized by the characteristic speed
vy = rowg = 4.6cm/s of an isolated particle’s edge. In all
cases, particle speed is maximum within a particle diameter of
the chamber wall, where they move with flux jeqge = 2rov;.
The overall collective rotation in the chamber is in the same
direction as the individual particle spin, which implies that
the flow is driven by particle-particle collisions rather than
particle-boundary interactions [51]. The measured v; of each
data set obtained between ¢ = 0.078 and 0.746 can be found
in Figure 9. Our results provide the first experimental investi-
gation of flows driven by chirality as the density varies widely,

corresponding to a chiral gas, fluid, and crystal states.

To quantify these transitions, we plot in Fig. 3(a)
the six-fold orientational correlation function Qg(R) =
(g6(R)¢g(0)), where gg(ry) = N,;lE;yz’“leiwk-,j, R is the
position vector (of magnitude R) between the centers of two
particles, Ny is the number of particles that particle k con-
tacts, ry is the position vector of the particle k£ from the cen-
ter, and 0y ; is the angle between particles k£ and j, which
are in contact with one another. As shown in Fig. 3(b), parti-
cle orientation becomes correlated at a critical area fraction of
dnex = 0.64 over the scale of the chamber R, and the hexag-
onal packing of particles becomes apparent as in Fig. 2(c).
The pair-correlation function g(R), which describes the den-
sity variation as a function of distance R from a particle, is
shown in the Insets of Fig 2(d), Fig 2(e) and Fig 2(f). They are
observed to be consistent with those of a gas, fluid and crys-
talline solid, respectively, with the appearance of peaks grow-
ing at R = 2rg, 21/3r0, and 47, corresponding to a hexagonal
lattice. (The measured pair correlation function can be found
in Fig. 10 for each experiment.) The small secondary peak is
absent at the lowest area fraction examined.

Because colliding particles tend to rotate about one another,
collisions transfer angular momentum from the individual ro-
tation of particles to the global rotation about the chamber.
As the contact network grows and spatial correlations increase
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Figure 3. Cluster geometry and particle motion vary systematically
with area fraction. (a) The magnitude and correlation length of the
orientation of particle contacts grows with area fraction. (b) The
formation of a single rotating crystal is identified from the point at
which Qs(R.) increases discontinuously. (c) Average angular ve-
locity particles (blue line) and the typical fluctuations (shaded re-
gion) decrease as the size of the contact network grows. (d) As area
fraction increases, the rotational motion is slowed more quickly than
translational components. The black line, shown as a guide to the
eye, is (U./U) = 0.55 — 1.03¢*. (e) The edge current Jedge 18
a non-monotonic function of ¢ which changes abruptly at ¢nex. (f)
The integrated particle flux Jiot is maximized at ¢ = 0.69. The
black line shows the predictions of Egs. (1-4).

with ¢, the average spin angular velocity (w) and its root mean
fluctuations decreases as shown in Fig. 3(c). We measure
the particles’ instantaneous two-dimensional translational ki-
netic energy Uy = %mv%D, where vop is the instantaneous
translational speed of a particle, the rotational kinetic energy
U, = %IwQ, and the total measured energy U = U, + Uy;. As
shown in Fig. 3(d), the partitioning of energy between transla-
tional and rotational motion (U, /U) = 0.55 in the gas phase,
and decreases quartically with ¢ in the fluid phase. As the
packing becomes crystalline—close to ¢nex—and w of the
particles locks in phase with the solid body rotation, (U, /U)
becomes similar to 1/3, the value predicted by the equiparti-
tion theorem.

In the dilute limit of a chiral gas, particle collisions are
dominated by two-body interactions. Because the co-rotation
of isotropically colliding particles generates no net flow, the
velocity field vanishes in the interior of the chamber [48]. The
presence of the chamber wall breaks this symmetry. Because
a particle near the wall can only be struck from the cham-
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Figure 4. Retrograde motion is observed in particles centered a dis-
tance ry—1 = R. — 3ro. (a) The tangential velocity profile is shown
on a much finer scale than in Fig 2(d—f) to highlight the retrograde
(b) The ratio of tangential velocities of particles in the two outer-
most annuli increases monotonically from —1, correspond to elastic
two-body collisions (blue dashed line), to 7/8, which corresponds to
solid body rotation (red dashed line)

ber interior, the outer ring of particles slip over the cham-
ber walls as they are pushed from the interior. Since this
mechanism does not reference a particular ¢, one may ex-
pect an edge current even at vanishing densities. Edge cur-
rents have been shown to develop in a numerical study of a di-
lute (¢ ~ 0.12) gas of driven rotors interacting with Yukawa
potential [31]. Figure 3(e) shows that edge currents form at
area fractions as low as 0.078 even in systems which interact
sterically. We find that jeqge increases approximately linearly
with ¢, and jeqge apparently can extend to vanishing densities
provided particle-particle collisions are present. The corre-
sponding flux Jiox = 27 f ¢vyrdr is shown in Fig. 3(f). Our
experiments show that a thin edge current (2ry wide) is main-
tained by short-range particle-particle interactions in a dilute
gas. Confinement induced packing structure has been shown
numerically to give rise to oscillatory flows at intermediate
¢, but were not clearly realized in their corresponding experi-
ments [48].

Interestingly, we observe a clear signature of oscillatory
flow for ¢ < 0.5 with a weak counterclockwise flow for
11 < r/ro < 12 as a reaction to the clockwise edge cur-
rent. To highlight this slight retrograde motion, Fig. 4(a)
shows the average tangential velocity v; of dilute particles
near the outer boundary of the chamber. Rescaling these mea-
surements by the speed vy of the outermost ring of particles
collapses the velocity profile onto a similar form. These pro-
files show retrograde motion vy_1 < 0 of particles at a dis-
tance ry_1 = R.—3r( from the center of the chamber, which
correspond to the annulus of particles that contact the outer-
most ring of particles. As the area fraction of particles in-
creases, the ratio vy _1 /vy increases monotonically and ret-
rograde motion vanishes at an area fraction of 0.5. This ra-
tio is bounded from below by vy_1/vy > —1, which cor-
responds to elastic two-particle collisions. The upper bound
vn—1/vn < (N — 1)/N corresponding to solid body rota-
tion. The chamber studied here fits N = 8 concentric annuli
of particles. Note that the retrograde motion is attenuated in



Fig. 2(d—f), where the tangential velocity is averaged over the
width of a particle rather than evaluated at the midpoints of
concentric annuli.

As ¢ rises, the edge current and associated flux, initially
grows and extends through the system (Fig 3[e—f]). We ob-
serve that a disordered contact network (Fig 2(b)) maintains
flow in the bulk, and thus conclude that bulk flow does not re-
quire the percolation of solid-like regions (see Appendix B).
Rather, around an area fraction of 0.5, the contact network
spans the chamber and the outermost particles cannot move
independently of those in the interior. However, the loose
contact network permits the relative motion of particles. As
the outermost shell of particles is pushed around the exterior
of the chamber, it drags the loose network. In this regime,
velocity gradients begin to extend through the entire material
(Fig 2(e)).

Finally, in the dense regime, ¢ > ¢pex = 0.64, steric in-
teractions arrest the relative motion of particles, velocity gra-
dients are suppressed, and particles cease to rotate indepen-
dently of the lattice except near defects. The amplitude of
the edge current decays quickly with particle concentration
(Fig. 3(e)) and the crystal moves as a solid body (Fig. 2(f)). In-
terestingly, solid-body rotation is maintained even as system
scale dislocations form (see Supplemental Video SV2 [50]).
In the crystalline limit, particles rotate in phase with the solid
body rotation except near topological defects (see Supplemen-
tal Video SV3 [50]).

B. Coarse-grained model

To understand the variation in the particle flux with increas-
ing area fraction, we develop a coarse grained model. Accord-
ing to this model, particles are confined by steric interactions
to move around the center of the chamber along concentric
circular paths, which we call lanes. Collisions between parti-
cles transfers momentum between neighboring lanes and par-
ticles are slowed as they move relative to the chamber floor.
The simple geometry assumed by this coarse graining scheme
makes it possible to calculate torque balance on each particle
and on each lane, which is sufficient to determine the steady-
state translational and angular velocities of each particle.

We first motivate this coarse graining scheme, which re-
spects the finite size of particles and the emergent crystalline
structure, from the measured trajectories of particles. At par-
ticle concentrations above ¢ > ¢, particles rotate about
the chamber in eight concentric lanes (Fig. 5[a]). The outer-
most lane—at a distance of one particle radius from the outer
wall—is apparent even at the lowest concentration examined.
Multiple lanes become apparent around ¢ ~ 0.5 at which con-
tact networks begin to span the system (Fig. 5[a]). We coarse-
grain this system in a manner in which each lane—having a
width of one particle diameter and the outermost lane is cen-
tered one particle radius from the outer wall—is densely oc-
cupied with the average particle concentration as illustrated
Fig. 5(b).

Consider the torque balance on particles in the i*? lane from
the center with velocity v; and spin angular velocity w;, where
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Figure 5. Particles rotate about the center of the chamber in concen-
tric lanes. Lanes form from the outer boundary and grow inwards
with increasing ¢. (a) The probability density function p for parti-
cle density for all experiments analyzed is shown. The dashed lines
show the expected locations of lanes. (b) A schematic of particles
interacting between lanes. Each particle moves in a circular path at
velocity v; and rotates about its axis at angular velocity w;.

i < Nand N =~ R./(2r¢) is the number of lanes that fit in
the experiment. The rotation of these particles is slowed at rate
o, if the speed of its edge is faster than those of its neighbors.
The corresponding nondimensionalized torque balance on the
particles, as derived in Appendix A, is

w; + %Z (Vi1 = Vig1 twic1 Hdwi +wig1) =1, (1)
where « is the rate that particle rotation is slowed by the bot-
tom of the chamber. In the outermost lane, particle rotation
is only slowed by collisions from the interior, within its lane,
and the bottom of the chamber. The boundary condition on
particle rotation at the wall is

a
oJN—|—a—p(vN_1 —uN Fwy_1 +3wn) = 1. 2)
b

We assume that w is smooth and continuous near r» = 0.
Similarly, v, is slowed at rate 3, if a particle’s edges move

more quickly than the edges it contacts. The corresponding
torque balance on lane 7 < N requires

B
v = gp (Vie1 = 20 + vip1 —wip1 twi-1),  (3)
b
where (3, is the rate that the translational velocity is slowed by
the bottom of the chamber. Again, the outermost particles are
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Figure 6. The rates at which particle (a) angular velocity and (b)
translational velocity relax to the speeds of the neighboring edges
both diverge at the maximum area density. The red lines are fits to
power laws. The insets show the same data on logarithmically scaled
axes.

only affected by particles in the lane centered at rn_;. The
corresponding boundary condition is

UN = Fp (vNo1 —UN +wWN_1 FWN) . 4
b

The boundary condition at the center of the chamber requires
the angular velocity {2 = v;/r to be smooth and continuous.

In the continuum limit R. > 79, Eqs. (1-4) predict an
exponentially decaying edge current with penetration depth
Ae = 10v/[Bp(2a +1)/(3a + 1)]/By. In this limit, as « and
[ grow, the penetration depth grows from the particle scale (as
in Fig 2[d]) to scales much larger than the system size, which
corresponds to solid body rotation (see Fig 2[f]). This result
is similar in form to the prediction for continuum models of
active chiral materials [52] in which the penetration depth is

(n+ 1)/ B, where 7 is the sheer viscosity and 7, is the
odd viscosity.

C. Comparison of experiment and theory

Equations (1-4) uniquely determine the tangential velocity
and the angular velocity of particles in each lane. We fit the
dimensionless relaxation rates & = v,/ and 8 = B,/5p to
match the measured velocity profile. Three representative fits
are shown in Fig 2(d—f), and all the trials are shown in Fig. 9.
Remarkably, this model reproduces the velocity profile even
in the dilute regime and correctly predicts the slight retrograde
motion in the V — 1 lane (Fig 2(d) and Fig. 4).

Intuitively, the relaxation rates a and g should increase with
particle density as increasing the number of collisions simi-
larly increases the rate particles are slowed by their neighbors.
As shown in Fig. 6,  and 3 increase faster than exponentially
with area fraction. These trends are well fit by power law di-
vergences () = ag (¢ —¢)~7/* and B(9) = Bo(de— )7,
where o = 1.53, By = 0.17, v = 3, and ¢. = 0.76.

Figure 3(f) shows that the particle flux predicted by the
power law divergences of o and 3 approximates the mea-
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Figure 7. The average angular velocity of particles (blue dots) de-
creases as the area fraction increases. The red line shows the predic-
tions of Egs. (1-4), which assumes a dense packing of particles. The
black line shows a three parameter fit to the model of Liu ez. al [48],
which treats the material as a disordered fluid.

sured flux reasonably well. The predicted flux is not mono-
tonic [53] and is maximized at ¢ =~ 0.69 and is similar to the
value ¢s = 0.711 at which a large two-dimensional lattice of
hard spheres transitions from diffusive behavior to caging, as
discussed by Reis, et al. [54]. The slightly lower value could
result from the difference in particle shapes and finite size ef-
fects. This similarity suggests that flux is maximized when
the rate of particles collisions is maximized before the rela-
tive motion of particles is arrested.

At an area fraction of ¢, = 0.76 the rate coefficients o and
[ diverge and the system is stationary. While this value is
substantially less than the maximum area fraction ™3 /6 =~
0.907 of disks in an infinite plane, it is slightly greater than
the densest packing that could be practically achieved (0.74).
This values corresponds to 196 particles, five more than are
shown in Fig 2(c). We conjecture that o and 3 diverge at the
maximum packing fraction and the smaller value found here
is due to the finite size of the chamber.

Finally, we compare the predictions of the coarse-grained
model to the measured angular velocities of particles. The av-
erage angular velocities of particles decrease smoothly with
increasing area fraction (see Fig. 7). The inferred rotation
speed at vanishing area fraction is slightly less than wg as a
result of friction between particles and between particles and
the chamber walls. The average angular velocities predicted
by the power-law divergence of « and /3 systematically under-
estimate the actual angular velocity for two reasons. The first
is because the best fit power-law divergences of « and [ are
non-zero at vanishing area fraction. Consequently, particles
are predicted to rotate with angular velocity ~ 0.1wg. Rescal-
ing the predicted mean angular velocity by this factor gives
the red line shown in Fig. 7. Although agreement is good for
¢ > Onex, the predictions of our coarse grained model con-
tinue to underestimate the angular velocity at low density. For
comparison, the black line shows a three parameter fit to a



model proposed by Liu et. al [48], which relies on an expan-
sion of the pair correlation function for a low densities fluid.
The fit gives a good representation of angular velocity at low
density, but fails as expected at high densities.

IV. CONCLUSION

In conclusion, we have analyzed the evolution of edge cur-
rent and bulk flow across three phases of active chiral matter.
Edge currents are observed even at vanishing densities due
to occasional particle collisions and shielding of particles at
the boundaries. In the dilute limit (¢ < 0.4), particle-particle
collisions generate a global flow that is confined within a nar-
row band within the width of a single particle of the cham-
ber boundary. Both convection at low densities and the lin-
ear dependence is nonintuitive, and have not been anticipated.
Only simulations [31] of particles with Yukawa interactions
show edge currents similar to what we observe. Collisions
between particles near the boundary and those in the interior
produces slight retrograde motion in the bulk. This motion is
suppressed at intermediate area fractions where steric interac-
tions prevent the independent motion of particles. Upon the
onset of system-scale orientational order, the edge current is
quickly arrested and particles rotate as a solid body.

A coarse-grained model, which respects the emergent crys-
talline order and the finite particle size, accurately fits the
measured velocity profile across these phases. These fits re-
veal that the rates « and § that particles are slowed by colli-
sions with neighbors increase faster than exponentially with
area fraction and appear to diverge at a value ¢. slightly
greater than what could be practically achieved.

The comparison of this model to the measured motion of
particles leaves open two questions which should be addressed
by future work. First, it is unclear if « and /5 diverge at the
maximum packing fraction, as we suspect, or if ¢. separates
two distinct phases of chiral material. Increasing the size of
chamber relative to the particle size would address this ques-
tion. Next, the divergences of o and § are well fit by the
relation o o 3. We lack any physical model to explain this
curious coincidence.

Finally, neither our coarse grained model nor the continuum
model of chiral fluids composed of particles similar to those
studied here [48] is sufficient to understand particle rotation
across the phases. While our coarse grained model, which
assumes a density of particles that is sufficient to maintain
circular trajectories, fits that data well at high concentrations,
it fails in the fluid regime. By contrast, the continuum model,
which assumes a disorder fluid, fails for crystalline packings
of particles. The experimental results presented here provide
a strong test for any further theory to be developed to describe
the fluid-solid transition of active chiral materials.
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Appendix A: Derivation of Coarse grained model

In this section we derive equations (1-4) of the main text
and discuss their fit to the measured velocity profile. Accord-
ing to our model, a particle is accelerated and spun if its edge
moves at a different speed than those of its neighbors. Parti-
cles in the i'" lane are characterized by a velocity v; = r;€);,
where €; is the angular velocity of the lane about the center
of the chamber, and composed of particles that rotate about
their centers with angular velocity w;. The speed of a parti-
cle’s outer edge is v; 4+ w;ro and the speed of its inner edge is
Vi — W;To.

Each particle experiences a torque 7, when it is struck by
the vibrating plate, which causes it to rotate with an average
angular velocity wy = 73/(I vy ), where I is the moment of in-
ertia and «, is a rate coefficient. At steady state, this torque is
balanced by friction with other particles and the bottom plate.
The angular velocity of particle in the i*" lane increases if its
edges spin more slowly than those if its neighbors. Particles
experience a torque from the interior lane of

7— = —ITa, (vie1 + wi—1mo) — (v, —wirg)) /ro - (Al)
where o, is a rate coefficient. The corresponding torque from
the exterior lane is

T+ = —IOép ((’UiJrl —wi+17“0) — ('Ui “r‘(dﬂ’o)) /T‘(). (A2)
A particle is also slowed by collisions within its lane, which
exert a torque

To = —2lapw;. (A3)
Friction with the base plate exerts a drag
D = —IOébwl‘. (A4)

Torque balance on the particle requires 7, + 74 + 7 4+ 79 +
7p = 0, or equivalently

ap (Vi1 — Vi1 +Towi—1+2row; +Towi+1 ) Haprow; = pTowo.

(AS5)
After nondimensionalizing v; by rowg and w; by wy, this anal-
ysis yields equation (1) of the main text. At the outer bound-
ary, where 71 = 0, torque balance requires

ap(VN—1 —UNTo+ToWwN -1+ 3ToWN ) + QpTownr = apTowo,

(A6)
which gives equation (2) of the main text. Note that we have
ignored friction with the outer wall. We additionally assume
that that w; is smooth and continuous at » = 0 such that it can

be locally expanded as A + Br?, for some unknown factors A



and B. It follows that

2 2 2 2
(r3 —r3)wy + r3ws — rjws = 0,

(AT)
which gives the boundary condition at the center of the cham-
ber.

Particles in the i*" lane are accelerated by the particles in
neighboring lanes and slowed by friction with the bottom sur-
face. The interior lane exerts a tangential force on the i*" lane
of

F_=mpy ((vi-1 + wi—1m9) — (v; —wirg)),  (A8)

where 3, is a rate coefficient and m is the mass of a particle.
Similarly, the exterior lane exerts a force

F+ = mﬁp ((Ui+1 — wi+1r0) — ('Ui + OJZ'T‘Q)) . (A9)
The drag on the i*" lane is
FD = —mﬁbvi‘ (AlO)

At steady state, the total torque on each lane is r; (Fy. + F_ +
Fp) = 0. Thus,

Bp(vi_l 72117;4”01;_5_1 +w7;_1’l"07wi+17’0)765vi =0. (All)

Nondimensionalizing velocity by wgry and angular velocity
by wy yields equation (3) of the main text. Particles in the
outermost lane only interact with the interior lane. The corre-
sponding torque balance, which requires 7y = ry (F_ + Fp),
yields equation (4) of the main text. Again, we assume that 2
is smooth and continuous at the center, implying
(r3 —13) + 73092 — r3Q5 = 0. (A12)
Thus, torque balance on each particle (Eqs.[1-2] in the
main text) and lane (Eqgs.[3—4] in the main text) along with
continuity of particle motion at the center (Eqs. [A7] and
[A12]) define 2N linear equations for a system composed of
N lanes. These equations can be trivially rewritten as

M(s) = ()

where M is a matrix composed of elements that vary with
« and 3, v is vector with elements v;, and w is vector with
elements w;. For given values of a and 3, we invert M to find
the speed and angular velocity of particles in each lane.

This model is fit to the measured velocity profile by least
squares. We provide the fits of the velocity profile for each
experiment in Fig. 9. The fitting constants « and 3 are plotted
in Fig. 6 in the main text. Excellent agreement is observed
over the entire range of ¢.

(A13)

Appendix B: Formation of a spanning contact network

We find the contact network in each frame of the experi-
ment from the observed particle locations. Two particles are

(a) . (b)
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Figure 8. The contact network percolates. (a) The weight P is the
probability that a randomly selected particle is in a spanning net-
work. It grows with area fraction. (b) Cluster sizes are most widely
distributed at ¢perc ~ 0.5. N is the number of particles in a non-
spanning cluster.

in contact if their centers are within 10% of a particle diam-
eter. We then identify disjoint clusters (collections of parti-
cles in the same contact network). At small area fractions,
most clusters contain fewer than three particles. At the high-
est area fraction, a single cluster is observed. We take a clus-
ter to be spanning if the furthest distance separating the con-
stituent particles is greater than 3R, /4. Figure 8(a) shows the
weight P of spanning clusters as the fraction of particles in
a spanning cluster. We also measure and plot the variance of
the sizes of non-spanning clusters N, in Fig. 8(b). Averag-
ing these measurements over the length of the experiment, we
find that cluster sizes are most widely distributed at an area
fraction of ¢perc =~ 0.5. The precise value at which spanning
clusters form is sensitive to parameter choices, however the
reported value for the percolation transition is in accord with
visual inspection.



Appendix C: Supplemental Videos

Three videos of the motion of particles are provided.

1. Video SV1.mp4 shows three representative experiments
at three different area fractions, corresponding to the
panels of Fig.1 of the main text.

2. SV2.mp4 shows the solid body motion of a crystal com-
posed of 185 particles (¢ = 0.723). The image is
rotated with the instantaneous angular velocity of the
crystal. The contact network is shown with thin black
lines. The thick black like shows the orientation of each
particle in the rotating frame. Note that particle orienta-
tion changes only slightly over the course of the exper-

iment, indicating that particles rotate at a similar speed
of the crystal. Many defects in the lattice are appar-
ent. A system scale dislocation, which appears halfway
through the video, is highlighted with a red dashed line.

3. SV3.mp4 shows that, at the highest packing fraction
(191 particles, ¢ = 0.746), particle spin is in phase with
the solid body rotation of the crystalline packing. The
thick black lines show the orientation of the particles in
the rotating frame. Note that most particles appear sta-
tionary in the rotating reference frame, which indicates
they spin with the surrounding lattice. A few particles
close to lattice defects rotate quickly.
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Figure 9. The measured velocity profile for the various area fractions ranging from dilute gas to dense crystal, and corresponding fits to
coarse-grain model.
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Figure 10. The measured pair correlation function for the various area fractions ranging from dilute gas to dense crystal.
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