
1172 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 42, NO. 4, APRIL 2023

PocketNet: A Smaller Neural Network for
Medical Image Analysis

Adrian Celaya , Jonas A. Actor, Rajarajesawari Muthusivarajan, Evan Gates ,
Caroline Chung, Dawid Schellingerhout , Beatrice Riviere , and David Fuentes

Abstract— Medical imaging deep learning models are
often large and complex, requiring specialized hardware to
train and evaluate these models. To address such issues,
we propose the PocketNet paradigm to reduce the size of
deep learning models by throttling the growth of the number
of channels in convolutional neural networks. We demon-
strate that, for a range of segmentation and classification
tasks, PocketNet architectures produce results comparable
to that of conventional neural networks while reducing the
number of parameters by multiple orders of magnitude,
using up to 90% less GPU memory, and speeding up training
times by up to 40%, thereby allowing such models to be
trained and deployed in resource-constrained settings.

Index Terms— Neural network, segmentation, pattern
recognition and classification.

I. INTRODUCTION

DEEP learning is an increasingly common framework for
automating and standardizing essential tasks related to

Manuscript received 14 September 2022; accepted 20 November
2022. Date of publication 25 November 2022; date of current version
3 April 2023. This work was supported in part by the Tumor Measure-
ment Initiative through the MD Anderson Strategic Research Initiative
Development (STRIDE) and in part by the National Science Foundation
under Award NSF-2111147 and Award NSF-2111459. The work of
Adrian Celaya was supported by the Department of Defense through
the National Defense Science and Engineering Graduate Fellowship
Program. The work of Jonas A. Actor and Evan Gates was supported
by the Training Fellowship from the Gulf Coast Consortia, on NLM
Training Program in Biomedical Informatics and Data Science under
Grant T15LM007093. The work of Dawid Schellingerhout and David
Fuentes was supported in part by under Grant R21CA249373. The work
of Beatrice Riviere was supported by under Grant NSF-DMS2111459.
(Adrian Celaya and Jonas A. Actor contributed equally to this work.)
(Corresponding author: Adrian Celaya.)
Adrian Celaya is with the Rice University, Houston, TX 77005 USA, and

also with the University of Texas MD Anderson Cancer Center, Houston,
TX 77030 USA (e-mail: aecelaya@rice.edu).
Jonas A. Actor was with Rice University, Houston, TX 77005 USA, and

also with the University of Texas MD Anderson Cancer Center, Houston,
TX 77030 USA. He is now with the Sandia National Laboratories,
Albuquerque, NM 87123 USA (e-mail: jonasactor@gmail.com).
Rajarajesawari Muthusivarajan, Caroline Chung, and Dawid

Schellingerhout are with the University of Texas MD Anderson
Cancer Center, Houston, TX 77030 USA (e-mail: rmuthusivarajan@
mdanderson.org; cchung3@mdanderson.org; dawid.schellingerhout@
mdanderson.org).
Evan Gates was with the University of Texas MD Anderson Cancer

Center, Houston, TX 77003 USA. He is now with the University of
Washington, Seattle, WA 98195 USA (e-mail: egates1@uw.edu).
Beatrice Riviere is with Rice University, Houston, TX 77005 USA

(e-mail: riviere@rice.edu).
David Fuentes is with the University of Texas MD Anderson Cancer

Center, Houston, TX 77030 USA, and also with Rice University, Houston,
TX 77005 USA (e-mail: dtfuentes@mdanderson.org).
Digital Object Identifier 10.1109/TMI.2022.3224873

medical image analysis that would otherwise be subject to
wide variability. For example, delineating regions of interest
(i.e., image segmentation) is necessary for computer-assisted
diagnosis, intervention, and therapy [1]. Manual image seg-
mentation is a tedious, time-consuming task whose results are
often subject to wide variability among users [2], [3]. On the
other hand, fully automated segmentation can substantially
reduce the time required for target volume delineation and
produce more consistent segmentation masks [2], [3]. Over
the last several years, deep learning methods have produced
impressive results for segmentation tasks such as labeling
tumors or various anatomical structures [4], [5], [6], [7].
However, the performance of deep learning methods comes

at an enormous computational and monetary cost, indepen-
dent of concerns about data quality. Training networks to
convergence can take several days or weeks using specialized
computing equipment with sufficient computing capacity and
available memory to handle large imaging datasets. The cost of
a workstation with suitable hardware specifications for training
large deep learning models ranges from roughly $5,700 to
$49,000, whereas a dedicated deep learning-enabled server
blade can range from $31,500 to $134,000 [8]. Cloud-based
solutions offer a more economical option for training models
by allowing users to pay for time on accelerated computing
instances. However, the cost of such instances ranges from
$3 to $32 per hour, and additional measures must be imple-
mented to protect patient privacy [9]. The latter may involve
an institution entering into a service agreement with a cloud-
computing resource provider. The cost of such an agreement
is another consideration that must be taken into account.
We wish to reduce the costs - in model size, training time,

and memory requirements - associated with training deep
learning models while preserving their performance. To do so,
we propose the PocketNet paradigm for deep learning models,
a straightforward modification to existing architectures that
substantially reduces the number of parameters and main-
tains the same performance as the original architecture. This
modification questions the long-held assumption that doubling
the number of features after each downsampling operation
(i.e., pooling or convolution) is necessary for convolu-
tional neural networks [4], [5], [6], [7], [10], [11], [12], [13],
[14], [15]. Our work demonstrates the effectiveness of our
PocketNets in several 3D segmentation tasks and a classifi-
cation problem. We also show that the PocketNet paradigm
carries several practical benefits - less GPU memory required
for training, less time required for training, and faster inference
times.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-3659-435X
https://orcid.org/0000-0003-4230-2528
https://orcid.org/0000-0002-0829-6286
https://orcid.org/0000-0003-0041-7239

CELAYA et al.: PocketNet: A SMALLER NEURAL NETWORK FOR MEDICAL IMAGE ANALYSIS 1173

A. Previous Work
The last several years have seen several attempts to decrease

the number of parameters in deep learning architectures in
medical imaging. Broadly, these attempts fall into two cate-
gories: post-processing tools and architecture design strategies.
More specifically, pruning (post-processing tool), depth-wise
separable (DS) convolutions (architecture design strategy), and
filter reductions (architecture design strategy) are known to
help mitigate the overparameterization of deep convolutional
neural networks (CNNs) for 3D medical image segmenta-
tion [16], [17], [18]. These methods, alone and combined, give
rise to many of the novel, efficient deep learning architectures
that are currently popular. We briefly survey these network
reduction strategies below.
Introduced by LeCun et al., the purpose of pruning is

to remove the redundant connections within a neural net-
work [16]. Pruning starts with a large pre-trained model and
involves deleting weights and iteratively retraining the model
until a significant drop in performance occurs. Pruning in
medical image analysis reduces the required inference time
and GPU memory while maintaining model performance [19],
[20], [21]. However, network pruning is a post-processing step
that is applied to an existing pre-trained network; although
useful, pruning does not solve the demands of training large,
overparameterized models, which requires a great deal of
memory and high-end computing hardware.
Network architecture design strategies for reducing the

number of parameters in deep neural networks for medical
image analysis include DS convolutions and reduction of the
number of feature maps at each layer. DS convolutions are
well known for reducing the number of parameters associated
with convolution [17], [22], [23]. DS convolution factorizes
the standard convolution operation into two distinct steps:
depth-wise convolution followed by a point-wise convolution.
A normal convolution layer has a number of parameters that
is quadratic in the number of channels. In contrast, DS con-
volutions have a number of parameters that is linear in the
number of channels. In practice, recently developed medical
neural network architectures take advantage of DS convolution
to reduce the number of parameters in their networks by
up to a factor of 5 while achieving results comparable with
those of conventional convolution [24], [25]. However, 3D
DS convolution is not supported in standard deep learning
packages and requires more memory than standard convolu-
tion during training due to the storage of an extra gradient
layer.
By convention, the number of feature maps doubles after

each downsampling operation in a CNN. This growth in the
number of feature maps accounts for a large portion of the
number of training parameters. With this in mind, perhaps
the simplest way to reduce overparameterization in a deep
learning model is to reduce the number of feature maps.
Van der Putten et al. explore this idea in [18] by dividing
the number of feature maps in the decoder portion of a U-Net
by a constant factor r . For increasing values of r , the number
of parameters in the decoder is reduced by up to a factor
of 100, and segmentation performance remains the same.

However, this approach introduces another hyperparameter
r that needs to be tuned, does not reduce the number of
parameters in the encoder branch of the U-Net architecture,
and is only applicable to segmentation models.

B. Novel Contributions

This paper makes the following novel contributions:
1) We propose the PocketNet paradigm. This paradigm

builds from the definition of multigrid methods from
numerical linear algebra. (Section II-A)

2) We demonstrate that PocketNet architectures perform
comparably with their conventional neural network
architecture counterparts. We measure PocketNet perfor-
mance on three segmentation problems and one classi-
fication problem, using data from recent public medical
imaging challenges. (Section III-A)

3) We profile the memory footprint for training conven-
tional and PocketNet architectures, highlighting that
PocketNet reduces the memory footprint for training
models. During this profiling, we also track training
time per epoch, showing that PocketNet models take
less wall-time to train than do their conventional coun-
terparts. (Section III-B)

4) We perform a controlled study of the effects of dou-
bling the number of feature maps in convolutional
neural networks, and additionally compare the intensities
of the learned activations for voxel-wise classification
(Sections III-C and III-D). To our knowledge, this
constitutes the first controlled study of the effects of
feature map doubling in convolutional deep learning
architectures for medical imaging tasks.

II. MATERIALS AND METHODS

A. The PocketNet Paradigm
We propose a modification to existing network architectures

that dramatically reduces the number of parameters while also
retaining performance. Many common network architectures
for imaging tasks rely on manipulating images (or image
features) at multiple scales because natural images encapsulate
data at multiple resolutions. As a result, most CNN archi-
tectures – including many popular state-of-the-art methods
such as nnUNet [14] and HRNet [13] – follow a pattern of
downsampling and upsampling, following the intuition of the
original U-Net paper [4] that popularized this approach. In the
architecture first presented there, the number of feature maps
(i.e., channels) in each convolution operator is doubled each
time the resolution of the images decreases; the justification
being that the increased number of feature maps offsets the
loss of information from downsampling. This idea, of com-
pensating for lost information by increasing the number of
features, can be traced before U-Net, to the original ImageNet
paper [11] and earlier. In all of these architectures, from
ImageNet to U-Net to the state-of-the-art architectures today,
the recurring refrain is that training is limited by compute
availability due to the network’s size, since the number of
parameters in all of these architectures grows exponentially as
the number of channels is doubled.

1174 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 42, NO. 4, APRIL 2023

However, other classical methods that manipulate images
(or other signals) at multiple scales assume a hierarchy of
scales i.e. that information can be decomposed into coarse-
scale and fine-scale features independently; most prominent
among such methods are those based on wavelets [26] and
on multigrid methods [27]. Intrinsic to these methods is the
construction of a series of grids of appropriate resolution.
At each resolution, the constructed grid allows for the specific
frequencies to be resolved, without aliasing. Because of this
hierarchy of scales, and that specific sets of frequencies are
resolved by specific grids at specific scales, the information
capacity of coarser scales is guaranteed to be less than that
of finer scales, and as a result, fewer operations (for multigrid
solvers) and memory (for wavelets) are required: information
“lost” by downsampling into a smaller, coarser subspace is
accounted for at a grid of different resolution, and when
images are downsampled to a coarser resolution, it is not
necessary to double the number of channels or dimensions
to preserve the information capacity at each downsampling
instance. As a result, we propose that the doubling of the chan-
nels at each resolution in CNN architectures like U-Net is not
intrinsically necessary, since each depth in these architectures
corresponds to features at a different scale.
A generic U-Net framework is fully written out in

Algorithm 1.

Algorithm 1 U-Net
Input: Tensor uD , integers D, ν

procedure BLOCK(ν, u) � Tensor u, integer ν
for i = 1 : ν do

u ← σ (Ki ∗ u + bi) � Convolution block
return u

procedure U-NET(uD, D, ν)
uD ← Block(ν, uD) � Initial computation

Encoder
for d = D − 1 to 1 do

ud ← �d
d+1ud+1 � Downsample

ud ← Block(ν, ud)
rd → fd − Ad

Coarsest resolution
v0 ← �0

1u1
v0 ← Block(ν, v0)

Decoder
for d = 1 to D do

vd ← �d
d−1vd−1 � Upsample

vd ← ud + vd � Skip connection
vd ← Block(ν, vd)

return φ(Kout ∗ vD + bout)

In the Block procedure of this algorithm, each convolution
kernel Ki has some number of channels-in and channels-out

that depend on the layer’s depth in the ‘U’ of the architecture.
The overall depth D used in this architecture is commonly
set to D = 3 to D = 6 [4], [5]. If the convolutions have
cin channels-in and cout channels-out at the network’s finest
resolution, the convolutions in the next layer will have 2cin
channels-in and 2cout channels-out. Subsequently, at resolution
depth d , there are 2dcin channels-in and 2dcout channels-out
for the convolutions. As a result, the number of parameters
in a CNN grows exponentially with increasing depth, and this
exponential growth is the driving factor for the large size of
image segmentation networks.
We remark that Algorithm 1 is nearly identical to a single

V-cycle of a geometric multigrid solver for solving the linear
system of equations Au = f , where the linear system A and
the unknown variable u relate to a geometric grid involving
multiple resolutions [27], [28]. An algorithm for a V-cycle is
shown in Algorithm 2.

Algorithm 2 Multigrid V-Cycle, Adapted From [28]
Input: Matrix AD , vectors fD, uD , integers D, ν

procedure BLOCK(ν, A, u, f) � Matrix A, vectors u, f
for i = 1 : ν do

u ← D−1(f − (A − D)u) � Iterative step

return u

procedure V-CYCLE(AD, uD, fD, D, ν)
uD ← Block(ν, AD, uD, fD) � Initial computation
rD ← fD − ADuD � Residual update

Encoder
for d = D − 1 to 1 do

fd , Ad ← �d
d+1rd+1, Ad+1 � Downsample

ud ← Smooth(ν, Ad, 0, fd)
rd ← fd − Adud � Residual update

Coarsest resolution
f0, A0 = �0

1r1, A1

v0 = A−1
0 f0 � Direct solve

Decoder
for d = 1 to D do

vd ← �d
d−1vd−1 � Upsample

vd ← ud + vd � Skip connection
vd ← Block(ν, Ad, ud , fd)

return vD (Kout)

The PocketNet paradigm, defined in Definition 2.1, exploits
this similarity between multigrid methods and U-Net-like
architectures. This paradigm proposes that the number of
feature maps used at the finest resolution is sufficiently rich
to capture the relevant information for the imaging task at
hand and that doubling the number of channels is unnecessary.
Instead of doubling the number of feature maps at every level
of a CNN, we keep them constant, substantially reducing
the number of parameters in our models in the process.

CELAYA et al.: PocketNet: A SMALLER NEURAL NETWORK FOR MEDICAL IMAGE ANALYSIS 1175

Fig. 1. (Left) Full U-Net (top) and ResNet (bottom) segmentation architectures where for each downsampling step, the number of feature maps
doubles after each convolution layer. (Right) Pocket U-Net (top) and ResNet (bottom) segmentation architecture. In this PocketNet architecture,
the number of feature maps resulting from each convolution layer remains constant regardless of spatial resolution, resulting in substantially fewer
parameters overall.

We designate network architectures that keep the number of
feature maps constant as Pocket Networks, or PocketNets for
short, in the sense that these networks are “small enough to fit
in one’s back pocket”. For example, “Pocket U-Net” refers to a
U-Net architecture where we apply our proposed modification.
Figure 1 provides a visual representation of the PocketNet par-
adigm applied to a U-Net. We present a formalized definition
of the PocketNet paradigm in Definition 2.1.
Definition 2.1: A network architecture obeys the PocketNet

paradigm if the range of all convolution operators (except
the final output layer) present in the network is a subset
of R

h×w×cout , where cout is fixed. Such a network is called
a Pocket Network, or PocketNet for short.
While the relationship between multigrid algorithms and

U-Nets has been explored (see [29] and references therein),
the PocketNet paradigm is applicable to any CNN architecture,

regardless of whether or not the architecture is similar in
overall structure to a U-Net.
The number of parameters saved in the PocketNet archi-

tectures is substantial. Assume that a PocketNet and its cor-
responding full-sized architecture are identical apart from the
doubling of the number of channels in standard convolutions.
For simplicity’s sake, we further assume that the number of
convolutions performed at each resolution is the same, denoted
by C . Also for simplicity’s sake, we assume that the window of
each convolution kernel is isotropic, with a stencil width of k
in each dimension. We denote the maximum resolution depth,
i.e. the number of downsampling operations in the network
architecture, as D. In a full-sized network, a convolution
kernel at resolution depth d operating on an nD image (for
n = 2 or n = 3) with a stencil width k has kn

(
cin2d

) (
cout2d

)
parameters. Therefore, the full-sized network has the following

1176 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 42, NO. 4, APRIL 2023

number of parameters

nfull =
D∑

d=0

Ckn(cin2d)(cout2d) = 1

3
Ckncincout

(
4D+1 − 1

)
.

(1)

On the other hand, the convolution kernels in a PocketNet
architecture have kncincout parameters at each resolution depth,
resulting in the following number of parameters

npocket =
D∑

d=0

Ckncincout = (D + 1)Ckncincout. (2)

Therefore, the PocketNet paradigm reduces the number of
parameters in a network by up to a factor of

savings = nfull
npocket

= 4D+1 − 1

3(D + 1
) ≈ 4D

D
. (3)

This analysis highlights that the growth of parameters with
increasing depth is exponential for full networks but only
linear for PocketNets.

B. Experiments

1) Data: We test PocketNet on a range of recent public
medical imaging challenge datasets. These datasets encompass
three segmentation problems and one classification task, all
with various data set sizes, complexity, and modalities. Two
of our segmentation tasks - binary liver segmentation in the
MICCAI Liver and Tumor Segmentation (LiTS) Challenge
2017 dataset [30] and single-contrast brain extraction in the
Neurofeedback Skull-stripped (NFBS) repository [31] - are
comparatively simple. We use these datasets for baseline
comparisons, much like the MNIST Fashion and CIFAR-10
datasets are used to evaluate newly proposed classification
architectures. The third segmentation task - multilabel tumor
segmentation in the MICCAI Brain Tumor Segmentation
(BraTS) Challenge 2020 dataset [32], [33], [34] - is commonly
viewed as a more complex and technical segmentation problem
than LiTS or NFBS segmentation. Therefore, we use BraTS
data for our performance benchmarks (see Section III-B).
Finally, our classification task - binary classification in the
COVIDx8B dataset [35] - evaluates the PocketNet paradigm
with a much larger dataset, demonstrating its appropriateness
for pertinent problems other than image segmentation. These
datasets and their related pre-processing and post-processing
methods are described below.

a) LiTS Data: For the LiTS dataset, we perform binary
liver segmentation. This dataset consists of the 131 CT
scans from the MICCAI 2017 Challenge’s multi-institutional
training set. These scans vary significantly in the number of
slices in the axial direction and voxel resolution, although all
axial slices are at 512 × 512 resolution. As a result, we use
the preprocessing steps proposed by nnUNet to handle this
variability [14]. We resample each image to the median
resolution of the training data in the x and y-directions and
use the 90th percentile resolution in the z-direction. For
intensity normalization, we window each image according

to the foreground voxels’ 0.5 and 99.5 percentile intensity
values across all of the training data. This scheme results
in windowing from −17 to 201 HU. We also apply
z-score normalization according to the foreground voxels’
mean and standard deviation. The LiTS dataset is available for
download https://competitions.codalab.org/competitions/17094
#learn_the_details-overview.

b) NFBS Data: The segmentation task for the NFBS
dataset is extraction (i.e., segmentation) of the brain from
MR data. The NFBS dataset consists of 125 T1-weighted MR
images with manually labeled ground truth masks. All images
are provided with an isotropic voxel resolution of 1×1×1 mm3

and are of 256 × 256 × 192 resolution. For pre-processing,
we apply z-score intensity normalization. The NFBS dataset
is available for download at http://preprocessed-connectomes-
project.org/NFB_skullstripped/.

c) BraTS Data: The BraTS training set contains 369 mul-
timodal scans from 19 institutions. Each set of scans includes
a T1-weighted, post-contrast T1-weighted, T2-weighted, and
T2 Fluid Attenuated Inversion Recovery volume and a mul-
tilabel ground truth segmentation. We merge the labels
in each ground truth segmentation and perform whole
tumor segmentation for our analysis. All volumes are pro-
vided at an isotropic voxel resolution of 1 × 1 × 1 mm3,
co-registered to one another, and skull stripped, with a size of
240 × 240 × 155. We crop each image according to the
brainmask (i.e., non-zero voxels) and apply z-score intensity
normalization on only non-zero voxels for pre-processing.
The BraTS training dataset is available for download at
https://www.med.upenn.edu/cbica/brats2020/registration.html.

d) COVIDx8B Data: The classification task for the
COVIDx8B dataset is COVID-19 detection on 2D chest
x-rays. The COVIDx8B dataset consists of a training set with
15,952 images and an independent test set with 400 images.
The training set is class-imbalanced, with 13,794 COVID-19
negative images and 2,158 COVID-19 positive images.
However, the COVIDx8B test set is class-balanced, with
200 COVID-19–negative and 200 COVID-19–positive images.
We resize each image to a resolution of 256× 256 and apply
z-score intensity normalization as pre-processing steps. The
COVIDx8B dataset is available for download at https://github.
com/lindawangg/COVID-Net/blob/master/docs/COVIDx.md.

2) Network Architectures: For each of our tasks and datasets,
we compare the performance of various full-sized architectures
with their PocketNet counterparts.

a) Segmentation Architectures: We examine the effects of
our proposed modification strategy using five segmenta-
tion architectures - U-Net [5], ResNet [7], DenseNet [6],
HRNet [13], and nnUNet [14]. The U-Net, ResNet, and
DenseNet architectures are similar. They use the same U-Net
backbone with variations in their convolution blocks (see
Figure 2) but are highly prevalent architectures in the literature
for 3D medical image segmentation [15]. HRNet is not as
prevalent in the literature as U-Net and its variants but does
represent a fundamentally different deep learning architec-
ture for 3D segmentation. Rather than using a “U” shape,
where we continually coarsen (i.e., downsample via pooling)

CELAYA et al.: PocketNet: A SMALLER NEURAL NETWORK FOR MEDICAL IMAGE ANALYSIS 1177

Fig. 2. Block designs for U-Net (left), ResNet (center), and
DenseNet (right).

high-resolution features, HRNet preserves features at each
resolution level. The nnUNet architecture provides a state-of-
the-art baseline for our analysis.

b) COVIDx8B architectures: Our classification architecture
for the COVIDx8B dataset is a U-Net encoder with four
downsampling layers. The final layer of the U-Net encoder
is flattened via global max-pooling and passed to a fully
connected layer for the network’s final output. Visually, this
architecture is represented by the left half of the Pocket U-Net
architecture in Figure 1.

3) Training Protocols and Hyperparameters: For each task
(e.g., segmentation and classification), we initialize the first
layer in each network with 32 feature maps and use the Adam
optimizer [36]. The learning rate is set to 0.0003. Training for
all segmentation tasks uses a batch size of two and a batch size
of 32 for COVIDx8B classification. For all segmentation tasks,
we use a patch size of 128 × 128 × 128 and apply the same
random augmentation described in [14]. To evaluate a pre-
dicted segmentation mask’s validity, we use the Sorensen-Dice
Similarity Coefficient (Dice), the 95th percentile Hausdorff
distance, and the average surface distance. Implementations
of these metrics are available through the SimpleITK Python
package [37], [38], [39]. For the segmentation tasks, our loss
function is calculated as an L2 relaxation of the Dice score;
for a true segmentation Ytrue and a predicted segmentation
Ypred , our L2-Dice loss function is taken from [40] and is
given as

LossDice(Ytrue,Ypred) =
∥∥Ytrue − Ypred

∥∥2
2

‖Ytrue‖22 + ∥∥Ypred
∥∥2
2

. (4)

For the nnUNet architecture, we add binary cross entropy to
the Dice loss shown above.
For the classification tasks, we use categorical cross-

entropy as our loss function, with outputs being of two
classes (COVID-19 positive and negative). We use the receiver
operating characteristic area under the curve (AUC) metric
to evaluate each classification model’s validity. This metric
is available via the scikit-learn Python package. Our mod-
els are implemented in Python using TensorFlow (v2.8.0)
and trained on an NVIDIA Quadro RTX 8000 GPU [41].
All network weights are initialized using the default initializers
from TensorFlow. All other hyperparameters are left at their
default values. The code for each network architecture is
available at github.com/aecelaya/pocketnet.

4) Inference and Post-Processing: We perform inference
on test images using a sliding window approach for each
segmentation task, where the window size equals the patch size
set during training. After each window prediction, we slide the
window by half the size of the patch. Additionally, we apply a
Gaussian importance weighting (σ = 0.125) to each window
prediction [14].
For post-processing, we try each of the following strategies

for each segmentation task and network:
1) Apply morphological clean-up - i.e., erode by two

voxels, retain the largest connected component, dilate
by one voxel, and fill holes.

2) Only retains the largest connected component.
3) Do nothing.

We select the strategy that yields the highest mean Dice as our
final post-processing strategy for a given task and network.
We note that the inference and post-processing steps

described above are applied to all segmentation tasks for every
network we test.

III. RESULTS

A. Comparable Accuracy
We use the training parameters described in Section II-B.3

to train the architectures listed in Section II-B.2. For the
segmentation tasks described in Section II-B.1, we employ a
five-fold cross-validation scheme to obtain predictions for each
dataset and architecture. For classification on the COVIDx8B
dataset, we train each model with the training set and generate
predictions on the test set. These results of these experiments
are shown in Tables I and II.
For the BraTS and LiTS datasets, we generally do not

see significant performance differences (p < 0.05 [Wilcoxon
signed-rank test]) between the full and pocket architectures.
In the cases where we see a significant difference in perfor-
mance, the differences are small, with median Dice scores
differing by less than 1% and median Hausdorff distances
differing by less than a fraction of a millimeter. We also do
not see a clear pattern in significant performance differences
between each pocket and full architecture. Given this and
the fact that these differences are generally small, we believe
that the outperformance of a full-sized network by its pocket
counterpart or vice versa can be explained by the stochastic
nature of training each network.
For the NFBS dataset, we generally see statistically sig-

nificant differences in performance. However, we again note
that these differences are small, and there is no clear pattern
for which architecture (i.e., full or pocket) outperforms. These
differences are so small (less than 0.0001 for Dice) that they
bear no clinical significance. Such minor differences, in this
case, are imperceptible and meaningless in a practical setting.
For all three segmentation tasks, these insignificant or minor

differences in performance indicate a reduction in the number
of parameters by more than an order of magnitude.

B. Performance Analysis

Using the training parameters described in Section II-B.3,
we profile the training performance of a full U-Net and

1178 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 42, NO. 4, APRIL 2023

TABLE I
ACCURACY OF DEEP LEARNING MODELS ON A SET OF MEDICAL IMAGING TASKS FOR POCKET VS. FULL-SIZED ARCHITECTURES. THE

POCKETNET MODELS’ ACCURACY SCORES ARE GENERALLY COMPARABLE (WITHIN 1% OR LESS) OF THE FULL MODELS’ ACCURACY

SCORES. ACCURACY SCORES FOR SEGMENTATION TASKS (LITS, NFBS, BRATS) ARE EVALUATED USING DICE

SIMILARITY COEFFICIENT, HAUSDORFF 95 DISTANCE, AND AVERAGE SURFACE DISTANCE

TABLE II
ACCURACY OF DEEP LEARNING MODELS ON THE COVIDX

CLASSIFICATION TASK FOR POCKET VS. FULL-SIZED

ARCHITECTURES. THE POCKETNET MODELS’ ACCURACY SCORES

ARE GENERALLY COMPARABLE (WITHIN 1% OR LESS) TO THE

FULL MODELS’ ACCURACY SCORES. ACCURACY SCORES

FOR THE COVIDX CLASSIFICATION TASK ARE EVALUATED

USING AUC, AND HENCE DO NOT HAVE STANDARD

DEVIATIONS OR P-VALUES

a Pocket U-Net using the BraTS dataset. Namely, we measure
peak GPU memory utilization during training and the average
time per training step for varying batch sizes for each net-
work using the TensorFlow Profiler [42]. To ensure accurate
comparisons of performance, we conduct these experiments
on a Google Colaboratory notebook with a dedicated NVIDIA
Tesla T4 GPU with 16 GB of available memory.
The GPU memory usage and training time per step for

this experiment are shown in Figure 3; we see that our
PocketNet architecture reduces memory usage and speeds up
training time for every batch size. Specifically, the Pocket
U-Net reduces the peak memory usage for training by between

28.3% and 87.7%, with smaller batch sizes resulting in greater
savings. This relationship is possibly due to the increasing
portion of GPU memory allocated for storing data as the batch
size increases. The PocketNet models improve the average
time per training step by between 25.0% and 43.2%, with
larger batches yielding greater time savings. This behavior
may be due to larger batch sizes taking advantage of the
computational parallelism of modern GPUs.
In addition to training performance, we benchmark the

inference speed of full-sized networks and their PocketNet
counterparts. We choose throughput in terms of the number of
images predicted per second as our metric for inference speed.
Throughput is a popular way of benchmarking the inference
speed of a network [43], [44], [45], [46]. Higher throughput
means that a network can perform faster inference in a given
computing environment. We measure the throughput of the
full and pocket variants for several networks and compute the
percent speed up of the PocketNet for several different image
sizes. The percent speed up is given by the following:
% speed up = 100 × pocket throughput− full throughput

full throughput
Table III shows the inference throughput of each architecture
for various image sizes. For architectures with a standard
U-Net backbone (i.e., U-Net, ResNet, and DenseNet), we see
modest improvements in inference speed for the PocketNet

CELAYA et al.: PocketNet: A SMALLER NEURAL NETWORK FOR MEDICAL IMAGE ANALYSIS 1179

Fig. 3. (Left) Peak memory usage during training on the BraTS dataset for Pocket U-Net vs Full U-Net for varying batch sizes. The PocketNet
architecture results in memory savings of between 28.3% and 87.7%. (Right) Average time per training step on BraTS dataset for Pocket U-Net vs
Full U-Net for varying batch sizes. The PocketNet models speed up the average time per training step by between 25.0% and 43.2%.

TABLE III
INFERENCE THROUGHPUT FOR POCKETNET VS. FULL

ARCHITECTURES OVER MULTIPLE IMAGE SIZES USING A SINGLE

NVIDIA RTX 8000 GPU. IN THIS CASE, THROUGHPUT MEASURES

THE NUMBER OF IMAGES PREDICTED PER SECOND. HIGHER

THROUGHPUT IMPLIES FASTER INFERENCE SPEED. IN EVERY

CASE, WE OBSERVE FASTER INFERENCE TIMES WITH

POCKET MODELS, WITH SPEED-UPS (SEE FORMULA

ABOVE) VARYING FROM 1 TO 17%

variants that range from 1% to 12%. A possible explanation
for these minor improvements in inference speed is the highly
parallelized computation of convolution operators on modern
GPUs. For HRNet, we see more significant improvements in
inference throughput ranging from 12% to 17%. Within the

HRNet architecture, we see more non-convolution operations
like upsampling, downsampling, and addition than in U-shaped
architectures, which may explain the more significant increases
in throughput for the Pocket HRNet architecture.

C. Ablation Study

To assess the effects of feature map doubling in U-shaped
architectures, we perform an ablation study on a standard
U-net using the LiTS dataset. In the first iteration of the
ablation study, we start with a Full U-Net where we dou-
ble the number of feature maps at every resolution level.
In the next iteration, we construct a U-Net where we stop
doubling feature maps after the second-to-last resolution level
(i.e., 8 × 8 × 8 at d = 1). We continue until we arrive
at the Pocket U-Net. By performing this ablation study,
we can determine at what resolution does feature map doubling
become important for the network’s accuracy.
For each of these networks, we perform a five-fold cross-

validation using training and inference parameters described
in Sections II-B.3 and II-B.4. Table IV shows the results of
each iteration. In every case, we see small differences in the
distribution of the resulting Dice scores. This small difference
in performance among iterations suggests that doubling the
number of feature maps at each resolution level might be
unnecessary.

D. Feature Activation Analysis

We conjecture that the comparable performance between
the PocketNet and full architectures is due to both networks
having similar representation capabilities, that ultimately both
networks build similar representations of the image data as
they compute the final segmentations. To test whether the
networks learn similar features, we look at the mean of the

1180 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 42, NO. 4, APRIL 2023

TABLE IV
ACCURACY OF U-NET ARCHITECTURES ON LITS DATASET WHERE FEATURE MAP DOUBLING STOPS AFTER A GIVEN DEPTH d.

IN EVERY CASE, WE SEE SMALL DIFFERENCES IN THE DISTRIBUTION OF THE RESULTING DICE SCORES

Fig. 4. Feature map activations in final layer before voxel-wise classification in a Pocket U-Net (top) and full U-Net (bottom) for the BraTS dataset.
In both cases, we see a similar number of features being activated with roughly the same intensities.

feature map activations in the final layer before voxel-wise
classification in full and Pocket U-Nets trained on BraTS data.
In this way, we can determine if both networks are capturing
similar features and information. For each image in the test
set, we examine the output of the activation functions from
the final layer before classification and measure the size of
the response towards the convolution feature, by taking the
channel-wise average of the resulting feature maps of the
activation output. This process is repeated for the entire test
set. More precisely, let Fi be the average of the i th feature map
resulting from activation outputs from the final layer before
classification over the entire test set. Let f j

i be the i th feature

map resulting from the activation functions for test patch j .
For each i = 1, . . . , 32, we have

Fi = 1

Ntest

Ntest∑
j=1

1

V j

V j∑
k=1

(
f j
i

)
k
,

where Ntest is the number patches in the test set, V j is the vol-
ume of test patch j , and

(
f j
i

)
k
is the intensity of the kth voxel

in f j
i . Figure 4 shows the averages of the resulting feature

maps. We see a similar number of features being activated
with similar intensities for both cases. This similarity suggests
that the full and Pocket U-Nets learn similar latent feature

CELAYA et al.: PocketNet: A SMALLER NEURAL NETWORK FOR MEDICAL IMAGE ANALYSIS 1181

Fig. 5. Testing results from using small subsets of data for PocketNet vs. full architectures on COVID��×�B classification and BraTS segmentation
challenges.

representations used for the final voxel-wise classification.
Note that we sort the mean feature activations from highest to
lowest for visual purposes. This order does not matter because
the indexing in any hidden layer can always be permuted by
the next layer.

E. Model Saturation

A possible concern is that PocketNet models, due to their
reduced parameter count, could saturate earlier during training
than do full-sized architectures, which could result in the com-
parable performance we observe in our results in Section III-A.
To test this, we repeat the experiments described above for the
COVIDx8B and BraTS data challenges using successively less
data in the training set. For every iteration, we keep a fixed
validation and test set. For the COVIDx8B dataset, we fix 10%
of the training data as a validation set and use the original test
set. Similarly, for the BraTS data, we take 20% of the training
data as a test set and use 10% of the remaining patients as a
validation set. Additionally, we do not use data augmentation
for this particular experiment. The results of this are shown in
Figure 5a and Figure 5b.

In Figure 5a, we see that the AUC values increase for
both the PocketNet and full architectures as the size of the
training set increases. Furthermore, we observe that these
AUC values plateau at 1.0 (i.e., perfect prediction), and
the PocketNet classifier saturates sooner than its full-sized
counterpart. These observations suggest that the reduced archi-
tecture resulting from the PocketNet paradigm learns faster
with fewer data points than its full-sized counterpart. Similarly,
Figures 5b, 5c, and 5d show that the segmentation accuracy
of the full and pocket U-Net architectures improves as the
training set size increases. Both architecture types show the
expected improvement in performance with each increase in
the dataset size, plateauing to similar distributions.

IV. DISCUSSION

Our results show that large numbers of parameters (millions
or tens of millions) may not be necessary for deep learning
in medical image analysis, as comparable performance is
achievable with substantially smaller networks using the same
architectures but without doubling the number of channels

1182 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 42, NO. 4, APRIL 2023

Fig. 6. Multi-class Pocket DenseNet segmentation on BraTS 2020
Validation image. Enhancing Tumor (ET), Whole Tumor (WT), and Tumor
Core (TC) Dice scores are in line with state-of-the-art predictions.

at coarser resolutions. This suggests that overparameteriza-
tion, which is increasingly regarded as a key reason why
neural networks learn efficiently, might not be as critical
as previously suggested [47], [48], [49]. However, we note
that our PocketNets may still be are overparameterized, and
the combination of our proposed PocketNet paradigm with
other model reduction techniques should be explored. For
example, replacing the traditional convolution layers with
DS convolution layers in our Pocket ResNet for LiTS liver
segmentation further reduces the number of parameters to
roughly 10,000. Pruning an already trained PocketNet model
may also potentially yield further parameter reductions.
The deep learning tasks presented in this study are all

single-label segmentation or binary classification. The goal of
ongoing and future work using the PocketNet paradigm is to
test this approach on more complex domains such as BraTS
multi-class tumor segmentation and LiTS tumor segmentation.
Figure 6 shows an example of a multi-class segmentation
prediction mask produced by a Pocket DenseNet. Our
results for PocketNet architectures applied to the BraTS
multi-class segmentation task are available at https://www.
cbica.upenn.edu/BraTS20/lboardValidation.html under the
team name “aecmda” and will be updated periodically.
Regarding Section III-E and the results shown in Figure 5,

we note that the results for each task using 1.5% of the data
look surprisingly good. For the segmentation task (i.e., BraTS
tumor segmentation), a closer analysis reveals that while the
full and pocket U-Nets can identify brain tumors in the
BraTS dataset with a small percentage of the available training
data, they tend to produce rather noisy predictions. Figure 7
illustrates an example of these predictions. In both cases, the
networks erroneously predict brighter areas of the MR images
as tumors. We hypothesize that the images in the BraTS
dataset are similar enough that even with a small percentage
of available data, each network can learn to predict rough seg-
mentations of the target. This behavior, however, supports our
claim that the pocket and full-sized U-Nets behave similarly
with varying dataset sizes. Again, Figure 7 illustrates this by
showing an example prediction from each network for small
and large training sets. In both cases, we see similar behav-
ior, with both architectures producing noisy predictions with
fewer data and more accurate predictions as we increase the
dataset size.

Additionally, the Dice coefficient may be too forgiving of
a metric for this type of analysis. Even for noisy predictions,
we can achieve Dice scores of about 0.7. To mitigate this,
we compute the Hausdorff 95 and average surface distances for
each set of predictions in Figures 5c and 5d, respectively. With
the Hausdorff 95 metric, we see that predictions from training
on small datasets generally result in significant errors with
substantial variation. However, for larger datasets, we see that
for each network variant, the distribution of Hausdorff 95 dis-
tances converges to smaller values with reduced variance.
We again see similar behavior with the average surface dis-
tance. We see significant errors with considerable variance for
each network variant for smaller datasets. These distributions
plateau to smaller values with less variance with increased
training set size for both full and pocket networks. These cases
support our initial claim that both networks exhibit similar
behavior with different dataset sizes.
For the classification results in Figure 5, we again argue

that the images in the dataset are similar enough to each other
that even with a small percentage taken as a training set,
each architecture can roughly discriminate between the two
classes.
When we employ PocketNet models, we achieve similar

performance to full-sized networks while enjoying the advan-
tages of faster training times and lower memory requirements.
The smaller models produced by our proposed PocketNet
paradigm can potentially lower the entry costs (computa-
tional and monetary) of training deep learning models in
resource-constrained environments without access to special-
ized computing equipment. With less GPU memory required
for training, cheaper hardware can be purchased, or less
expensive cloud computing instances can be used to train deep
learning models for medical image analysis. The faster training
times for PocketNets can also reduce costs by reducing the
number of hours spent training models on cloud computing
instances.
As to why the PocketNet models perform at least compara-

ble to their counterpart full models, the similarity in intensities
of each signal in the final layer activation maps suggests that
the models ultimately learn the same representations. Despite
the reduced number of parameters, the approximation space
that the Pocket architectures can represent is comparable to
the approximation space that the full models can achieve.
This conjecture is supported by the ablation study results in
Table IV: the median Dice scores for e.g. U-Net is nearly
identical, regardless of the depth that the feature map stops
doubling. In this study, the additional features supplied at
depths where the doubling continued did not improve the
model’s performance, as the approximation spaces are all sim-
ilar regardless of whether the number of features was doubled
at that depth. This ablation study suggests that, since there is
no increased benefit of having larger models with the number
of features doubling per layer, that for these medical imaging
problems, doubling the number of channels is unnecessary and
PocketNet models can be used to achieve comparable accuracy
instead. Since these smaller models are just as expressive (and
capable) as their full counterparts, these models can be trained

CELAYA et al.: PocketNet: A SMALLER NEURAL NETWORK FOR MEDICAL IMAGE ANALYSIS 1183

Fig. 7. Example predictions for full and pocket U-Net on BraTS dataset with varying percentages of the dataset used for training. In both cases,
we see similar behavior, with both architectures producing noisy predictions with fewer data and more accurate predictions as we increase the
dataset size.

(and later, deployed) with cheaper hardware or by provisioning
smaller cloud instances, saving time, money, and effort by
institutions performing deep learning medical image analysis.

REFERENCES

[1] N. Sharma and L. M. Aggarwal, “Automated medical image segmenta-
tion techniques,” J. Med. Phys., vol. 35, no. 1, pp. 3–14, Jan. 2010.

[2] D. Thomson et al., “Evaluation of an automatic segmentation algorithm
for definition of head and neck organs at risk,” Radiat. Oncol., vol. 9,
no. 1, pp. 1–12, Dec. 2014.

[3] E. Ermis et al., “Fully automated brain resection cavity delineation for
radiation target volume definition in glioblastoma patients using deep
learning,” Radiat. Oncol., vol. 15, no. 1, pp. 1–10, Dec. 2020.

[4] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional net-
works for biomedical image segmentation,” in Proc. Int. Conf. Med.
Image Comput. Comput.-Assist. Intervent. Cham, Switzerland: Springer,
2015, pp. 234–241.

[5] Ö. Çiçek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ronneberger,
“3D U-Net: Learning dense volumetric segmentation from sparse anno-
tation,” in Proc. Int. Conf. Med. Image Comput. Comput.-Assist. Inter-
vent. Cham, Switzerland: Springer, 2016, pp. 424–432.

[6] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jul. 2017, pp. 4700–4708.

[7] K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in deep
residual networks,” in Proc. Eur. Conf. Comput. Vis. Cham, Switzerland:
Springer, 2016, pp. 630–645.

[8] GPU Cloud, Workstations, Servers, Laptops for Deep Learning.
[Online]. Available: https://lambdalabs.com/

[9] Amazon AWS EC2 Pricing. [Online]. Available:
https://aws.amazon.com/ec2/pricing/

[10] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

[11] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Proc. Adv. Neural Inf.
Process. Syst., vol. 25, 2012, pp. 84–90.

[12] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” Commun. ACM, vol. 60, no. 6,
pp. 84–90, May 2017.

[13] K. Sun, B. Xiao, D. Liu, and J. Wang, “Deep high-resolution represen-
tation learning for human pose estimation,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 5693–5703.

[14] F. Isensee, P. F. Jaeger, S. A. A. Kohl, J. Petersen, and K. H. Maier-Hein,
“nnU-Net: A self-configuring method for deep learning-based biomed-
ical image segmentation,” Nature Methods, vol. 18, no. 2, pp. 203–211,
Dec. 2020.

[15] N. Siddique, S. Paheding, C. P. Elkin, and V. Devabhaktuni, “U-Net
and its variants for medical image segmentation: A review of theory
and applications,” IEEE Access, vol. 9, pp. 82031–82057, 2021.

[16] Y. Le Cun, J. S. Denker, and S. A. Solla, “Optimal brain damage,” in
Proc. Adv. Neural Inf. Process. Syst., vol. 2, 1989, pp. 598–605.

[17] R. Ye, F. Liu, and L. Zhang, “3D depthwise convolution: Reducing
model parameters in 3D vision tasks,” in Advances in Artificial Intelli-
gence. Springer, 2019, pp. 186–199.

[18] J. Van Der Putten, F. Van Der Sommen, and P. H. N. De With, “Influence
of decoder size for binary segmentation tasks in medical imaging,” in
Proc. SPIE, vol. 11313, 2020, pp. 276–281.

[19] Z. Zhou et al., “UNet++: A nested U-Net architecture for medical
image segmentation,” in Deep Learning in Medical Image Analysis and
Multimodal Learning for Clinical Decision Support. Springer, 2018,
pp. 3–11.

[20] Y. Weng, T. Zhou, Y. Li, and X. Qiu, “NAS-Unet: Neural architec-
ture search for medical image segmentation,” IEEE Access, vol. 7,
pp. 44247–44257, 2019.

[21] A. Feng-Ping and L. Zhi-Wen, “Medical image segmentation algorithm
based on feedback mechanism convolutional neural network,” Biomed.
Signal Process. Control, vol. 53, Aug. 2019, Art. no. 101589.

[22] F. Chollet, “Xception: Deep learning with depthwise separable convo-
lutions,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jul. 2017, pp. 1251–1258.

[23] A. G. Howard et al., “MobileNets: Efficient convolutional neural net-
works for mobile vision applications,” 2017, arXiv:1704.04861.

[24] N. Alalwan, A. Abozeid, A. A. ElHabshy, and A. Alzahrani, “Efficient
3D deep learning model for medical image semantic segmentation,”
Alexandria Eng. J., vol. 60, no. 1, pp. 1231–1239, Feb. 2021.

[25] K. Qi et al., “X-Net: Brain stroke lesion segmentation based on depth-
wise separable convolution and long-range dependencies,” in Medical
Image Computing and Computer Assisted Intervention—MICCAI. Cham,
Switzerland: Springer, 2019, pp. 247–255.

[26] T. F. Chan and J. J. Shen, Image Processing and Analysis: Variational,
PDE, Wavelet, and Stochastic Methods, vol. 94. Philadelphia, PA, USA:
SIAM, 2005.

1184 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 42, NO. 4, APRIL 2023

[27] J. H. Bramble, Multigrid Methods. Evanston, IL, USA: Routledge, 2018.
[28] Y. Saad, Iterative Methods for Sparse Linear Systems. Philadelphia, PA,

USA: SIAM, 2003.
[29] J. He and J. Xu, “MgNet: A unified framework of multigrid and convolu-

tional neural network,” Sci. China Math., vol. 62, no. 7, pp. 1331–1354,
Jul. 2019.

[30] P. Bilic et al., “The liver tumor segmentation benchmark (LiTS),” 2019,
arXiv:1901.04056.

[31] B. Puccio, J. P. Pooley, J. S. Pellman, E. C. Taverna, and R. C. Craddock,
“The preprocessed connectomes project repository of manually corrected
skull-stripped T1-weighted anatomical MRI data,” GigaScience, vol. 5,
no. 1, p. 45, Dec. 2016.

[32] B. H. Menze et al., “The multimodal brain tumor image segmenta-
tion benchmark (BRATS),” IEEE Trans. Med. Imag., vol. 34, no. 10,
pp. 1993–2024, Oct. 2015.

[33] S. Bakas et al., “Identifying the best machine learning algorithms for
brain tumor segmentation, progression assessment, and overall survival
prediction in the BRATS challenge,” 2018, arXiv:1811.02629.

[34] S. Bakas et al., “Advancing the cancer genome atlas glioma MRI
collections with expert segmentation labels and radiomic features,” Sci.
Data, vol. 4, no. 1, Dec. 2017, Art. no. 170117.

[35] L. Wang, Z. Q. Lin, and A. Wong, “COVID-Net: A tailored deep
convolutional neural network design for detection of COVID-19 cases
from chest X-ray images,” Sci. Rep., vol. 10, p. 19549, Nov. 2020.

[36] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2014, arXiv:1412.6980.

[37] B. C. Lowekamp, D. T. Chen, L. Ibáñez, and D. Blezek, “The design
of SimpleITK,” Front. Neuroinform., vol. 7, p. 45, Dec. 2013.

[38] Z. Yaniv, B. C. Lowekamp, H. J. Johnson, and R. Beare, “SimpleITK
image-analysis notebooks: A collaborative environment for education
and reproducible research,” J. Digit. Imag., vol. 31, no. 3, pp. 290–303,
Jun. 2018.

[39] R. Beare, B. Lowekamp, and Z. Yaniv, “Image segmentation, registration
and characterization in R with SimpleITK,” J. Stat. Softw., vol. 86, no. 8,
pp. 1–35, 2018.

[40] J. A. Actor, D. T. Fuentes, and B. Rivière, “Identification of kernels
in a convolutional neural network: Connections between the level set
equation and deep learning for image segmentation,” in Proc. SPIE,
vol. 11313, 2020, Art. no. 1131317.

[41] F. Chollet et al., “Keras,” Software available from Keras.org,
Tech. Rep., 2015.

[42] M. Abadi et al., “TensorFlow: Large-scale machine learning on
heterogeneous systems,” Software available from tensorflow.org,
Tech. Rep., 2015.

[43] K. Rungsuptaweekoon, V. Visoottiviseth, and R. Takano, “Evaluating the
power efficiency of deep learning inference on embedded GPU systems,”
in Proc. 2nd Int. Conf. Inf. Technol. (INCIT), Nov. 2017, pp. 1–5.

[44] R. Xu, F. Han, and Q. Ta, “Deep learning at scale on NVIDIA
V100 accelerators,” in Proc. IEEE/ACM Perform. Model., Benchmarking
Simul. High Perform. Comput. Syst. (PMBS), Nov. 2018, pp. 23–32.

[45] S. Mittal, “A survey on optimized implementation of deep learning
models on the NVIDIA Jetson platform,” J. Syst. Archit., vol. 97,
pp. 428–442, Jan. 2019.

[46] L. Mai, A. Koliousis, G. Li, A.-O. Brabete, and P. Pietzuch, “Taming
hyper-parameters in deep learning systems,” ACM SIGOPS Operating
Syst. Rev., vol. 53, no. 1, pp. 52–58, Jul. 2019.

[47] Z. Allen-Zhu, Y. Li, and Z. Song, “A convergence theory for deep
learning via over-parameterization,” in Proc. Int. Conf. Mach. Learn.,
2019, pp. 242–252.

[48] S. Arora, N. Cohen, and E. Hazan, “On the optimization of deep
networks: Implicit acceleration by overparameterization,” in Proc. Int.
Conf. Mach. Learn., 2018, pp. 244–253.

[49] L. Rice, E. Wong, and Z. Kolter, “Overfitting in adversarially robust
deep learning,” in Proc. Int. Conf. Mach. Learn., 2020, pp. 8093–8104.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

