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ARTICLE INFO ABSTRACT

Keywords: The yield strength of a crystalline structural material is a fundamental mechanical property predominantly
Dislocations governed by the critical stress for dislocation slip. This Critical Resolved Shear Stress (CRSS) is strongly influ-
Core width

enced by the character of the dislocation (e.g., screw, edge, or mixed) as shown in previous experimental studies.
Existing analytical approaches for CRSS prediction assume an atomic row description of the slip plane and do not
account for Wigner-Seitz (WS) cell area at each discrete lattice site. Further, inadequate consideration of the
material’s elastic anisotropy and the presumed dislocation “core-width” level precludes correct CRSS determi-
nation. This study proposes a predictive model applied to Face Centered Cubic (FCC) materials addressing these
shortcomings in predicting glide stress of a dissociated dislocation. The core-width is rigorously determined from
the minimization of total energy comprised of continuum strain energy (Esrranv) and atomistic misfit energy
(Emsrir) of the dislocation’s core. The Egrpajy is obtained from dislocation strain-fields calculated using the fully-
anisotropic Eshelby-Stroh formalism. The Epyspr is determined from the Generalized Stacking Fault Energy
(GSFE) landscape of the slip plane. Previous Ep;spr calculations are restricted to slipped rows in ‘simple’ cubic
lattices which do not represent the slip-planes in FCC crystals. The developed model is used to predict CRSS for a
wide range of metallic materials correcting the overprediction of experimental CRSS levels. The results unveiled
the remarkable dependence of CRSS on the dislocation character, revealing the non-trivial dependence on GSFE
parameters. Thus, this study addresses a major void in structure-property prediction for structural materials.

Peierls stress
Stacking fault
Wigner-Seitz cell

1. Introduction

Plastic deformation of crystalline materials is largely accommodated
by dislocation motion. These dislocations are either pre-existing in the
material or nucleate from internal sources. The motion of these defects is
controlled by the intrinsic flow resistance, i.e., CRSS which is an
essential input to many crystal-plasticity models [1,2]. It governs the
dislocation motion in fatigue leading to irreversibilities [3,4] and gages
the fracture propensity in ductile/brittle transition [5]. Nonetheless, the
field of materials science and mechanics is still lacking a parameter-free
CRSS model that internalizes the correct crystallography of the
slip-plane. Existing approaches focus primarily on pure dislocation
characters (e.g., edge or screw) and adopt the classical methods to
calculate the misfit energy of a dislocation for crystals that are not
simple cubic [6-12]. However, such a direct transfer of the classical
approach, which is originally developed for simple cubic crystals [13,
14], fails to capture the lattice-dependent distribution of the discrete
atomic positions on the slip-plane. The inaccuracy in this treatment is
even more amplified for the dislocations with a mixed character as the
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correct atomic positions can be described neither by individual treat-
ment of the screw and edge components of the dislocation with the
row-misfit approach nor by employing correction factors for core-width
determination [7,15]. Further, many of the existing approaches assumed
isotropy to circumvent the coupling between the edge and screw com-
ponents resulting in an inaccurate representation of the mixed disloca-
tions [10,16]. However, mixed dislocations are prevalent and constitute
a significant fraction of the total dislocation density in metallic materials
[17-19]. Additionally, in the case of Face Centered Cubic (FCC) crystals
at least one of the Shockley partials of a dissociated dislocation has a
mixed character due to the crystallography of the slip plane. Therefore,
there is a need for a more generalized theory that is capable of analyzing
different dislocation characters and a wide range of materials where the
character effect reflects both the material anisotropy and the misfit
energy. In this study, we propose a model that predicts CRSS for a
dislocation with an arbitrary character as influenced by the elastic
constants, the critical fault energies of the material intrinsically linked to
the dislocation core-width. The analysis is free of empirical parameters
and is based only on intrinsic lattice-dependent calculations.
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1.1. Core structure fundamentals: Disregistry and Dislocation density
distributions

The required stress to move the dislocation on its slip plane is pri-
marily related to the intrinsic strength of the material. The onset of glide
is achieved when the resolved stress on the dislocation exceeds the
intrinsic lattice friction stress [14]. And it is primarily controlled by the
core-properties of a dislocation, particularly by the width of the core
[13]. It is well known that there is an inverse relationship between the
core-width of a dislocation and the friction stress [20]. The size of the
core is dominated by the material parameters, and it requires a detailed
analysis to obtain the correct core-width of a dislocation. The
well-established Peierls model quantitively describes the distribution of
the dislocation core via disregistry function [13,14,20]. The disregistry
function is solved from the balance of elastic forces due to the
strain-field around the dislocation and the restoring atomic forces at the
core of the dislocation. The sinusoidal restoring-force assumption yields
the commonly used disregistry function for a full dislocation parame-
trized by the “half core-width” of the dislocation which predominantly
dictates the CRSS [6,21]. However, a general robust framework to
predict the core-width for a dislocation with an arbitrary character is
currently unavailable, to the best of the authors’ knowledge, hence
precluding a reliable prediction for the CRSS. The limitations of existing
approaches are discussed in more detail in the following section and
resolved in later sections with the proposed theory.

1.2. Limitations of existing approaches

1.2.1. Mixed dislocation character

Prior studies on this topic focused mainly on edge or screw character
dislocations. The vast majority of the spectrum of mixed dislocation
characters is undiscovered. However, an arbitrary dislocation line in a
material is randomly curved with varying characters along its length. As
a consequence, to truly predict the yield strength of such a material, the
behavior of the CRSS of the dislocation with an arbitrary character must
be determined.

1.2.2. Effect of atomistic fault energies on CRSS

The core energy of the dislocation is governed by the associated fault
energy barrier also known as the Generalized Stacking Fault Energy
(GSFE) landscape [22]. In the case of FCC materials, the GSFE landscape
is described by two critical points, namely, the stable intrinsic stacking
fault energy y; and the unstable stacking fault energy barrier y,,. The
CRSS is strongly dependent upon these critical values as it directly
quantifies the core energy of a dislocation. However, this dependence is
complex and is initially manifested in the misfit energy of the disloca-
tion. The individual effect of these critical points on the CRSS is not
established to date and is unraveled in this study. Many previous studies
used the ideal shear-strength, 7., to describe the atomistic
restoring-force relationship [23-25]. However, with a distributed
dislocation core this relation is not accurate because the restoring force
is due to the response of the crystal to the planar dislocation core
distributed on the slip plane and cannot be described by a constant ideal
shear strength, 7.,,c. Therefore, the entire GSFE curve must be involved
in the analysis for accurate calculation of the core energy of a disloca-
tion. This non-trivial dependence of CRSS on the GSFE landscape is
unexplored and is unveiled in the current study.

1.2.3. Effect of character on nature of motion

Correct calculation of the CRSS requires the motion of the dislocation
to be precisely known as the energy barrier for motion greatly depends
on accurate sampling from the GSFE curve corresponding to the relative
positions of the Shockley partials. This necessitates the respective po-
sitions of Shockley partials to be tracked throughout the motion. Pre-
viously, it was thought that the Shockley partials move together such
that the fault-width between them stays constant when the barrier for

motion is exceeded. In the present study, this assumption is challenged
and is shown that energetically more favorable path is much more
complex involving a “zig-zag” pattern rather than a simultaneous mo-
tion of the partials. To put it concisely, first the leading Shockley partial
moves with the trailing partial stationary, which results in an increase in
the stacking fault width. Then, the trailing partial follows with the
leading partial fixed in position and the stacking fault width restores to
its equilibrium value. Therefore, this results in a fluctuation in the
stacking fault width as the dislocation moves. The magnitude of this
fluctuation varies depending upon the material properties and disloca-
tion characteristics as dictated by the total energy landscape of the
extended dislocation.

1.2.4. Effect of changing lattice with character

Existing models employing the Peierls-Nabarro framework inaccu-
rately handled the changing atomic arrangements on the slip-plane
depending upon the lattice structure, dislocation character, or the slip
system. They employed a one-dimensional row-misfit approach which
involves a series summation for misfit-energy using a discrete parameter
d in an effort to capture the periodicity of the lattice. However, correct
understanding of the effect of dislocation character requires that the
individual atomic-sites on the slip-plane be involved in the analysis. This
necessitates two-dimensional consideration of the slip-plane as the
atomic arrangements cannot be defined in one-dimension for crystals
that are not simple-cubic. As a result, this led to unrealistically high
friction stress predictions due to the oversimplification of this complex
problem. And other studies recognized this error in representing the
correct atom positions across the slip plane and tried to address these
unrealistic results by using a correction factor in the commonly used
exponential relation [15,26,27]. However, all these approaches failed to
address the underlying problem.

1.2.5. Asymmetric core structure of a mixed dislocation

Full dislocations with a pure character (edge or screw) split into two
partials, both of which have the same nature. Thus, they have a sym-
metrical distribution of the core as dislocations with the same characters
have the same core-widths. On the other hand, dislocations with a mixed
character split into Shockley partials with distinct characters and core-
widths. Therefore, mixed dislocations have an asymmetric distribution
of the cores, unlike pure dislocations [19]. If the character of the partial
is closer to the edge, the dislocation has a much wider core as compared
to the screw character which has the smallest core-width amongst all
characters. This asymmetry imposes fundamental conditions on how the
dislocation moves as the two partials have distinct barriers to glide.
Thus, this asymmetry must be inherently incorporated into the theory
when calculating the core energy of the dislocation.

1.3. Current approach

The present study addresses all these limitations and establishes an
empirical-parameter-free predictive model for the CRSS of FCC mate-
rials. The developed framework models the a/2(011) straight extended
dislocation of a general mixed character in FCC materials, comprising
two a/6(112) Shockley partials separated by a stacking fault of finite
width, where a represents the lattice constant of the FCC crystal. In the
current study, we adopt an energy-based approach to predict the correct
core-structure of a general extended dislocation. The equilibrium core
structure of the partials is obtained from total energy minimization
consisting of long-range elastic strain energy and short-range misfit
energy of a dislocation. We employ a recent method developed by the
authors and generalized it for varying dislocation character [28,29]. The
elastic energy is calculated by employing the fully anisotropic
Eshelby-Stroh (E-S) formalism. The strain field around the dislocation is
computed using the E-S parameters, which allows accurate determina-
tion of the anisotropic interaction coefficients. The misfit energy is



O.K. Celebi et al.

(a)

Fig. 1. Dislocation core-structure: (a) extended dislocation and the atomic arrangements on the slip plane along with the directions of the Burgers vectors for the
leading and trailing partials and for the full dislocation (screw case shown) (b) the x; — x; — x3 coordinate system attached to a pure dislocation with Burgers vector

=
b r, the dislocation line aligned with the x5 axis and on the slip plane with normal in the x; direction; corresponding symmetric dislocation-density distribution,
p(x1), of a dissociated dislocation indicating the core-widths & ;p of the trailing and leading partials respectively (edge case shown). (c) the x; —x; —x3 coordinate

=
system attached to a mixed dislocation with Burgers vector b r, the dislocation line aligned with the x5 axis and on the slip plane with normal in the x; direction;
corresponding dislocation-density distribution, p(x;), of a dissociated mixed dislocation indicating the asymmetric core-widths &;p;p of the trailing and leading

partials respectively.

computed by utilizing the GSFE landscape of the material by being
faithful to the two-dimensional crystal lattice structure on the slip plane.
Finally, the minimum energy pathway for the glide of partials on the
slip-plane is obtained by independent treatment of the positions of the
Shockley partials, subsequently used to calculate the CRSS. The meth-
odology of the predictive framework is presented next.

2. Methodology and Results

2.1. Core-structure of the a/2(011) extended dislocation

In FCC materials, full dislocation, ?F, tends to split into two
Shockley partials on the slip plane, a leading partial, ?Lp, and a trailing

partial, E)Tp, since it yields a lower energy structure for the dislocation
and reduces dilation and compression on the sides of the slip plane [20,
23]. The extended dislocation consisting of these two partials is illus-
trated in Fig. 1 (a). Depending upon the character of the parent full
dislocation, the Shockley partials admit a certain character. The char-
acter of the full dislocation is determined from the angle between the
dislocation line and the Burgers vector as shown by 6 in Fig. 1 (c). As
mentioned, in the case of pure edge and screw dislocations, Shockley
partials have the same characters, which results in a symmetric dislo-
cation density distribution on the slip plane as depicted in Fig. 1 (b) for
the edge case. On the other hand, for dislocations with a mixed char-
acter, the dislocation density distribution is asymmetric due to the
distinct characters of the Shockley partials as illustrated in Fig. 1 (c).

In the current analysis, the CRSS is predicted for the ?F = a/2[110]
dislocation dissociated on the (111) slip plane. The magnitude of the full

dislocation Fp is represented by by, and for the partials, it is given by bp.
The center of the leading partial’s core is located at x; = s1, while that of
the trailing partial is at x; = s,. The fault-width between them is
computed by d = s; + s as demonstrated in Figs. 1 (b, c¢). Hence, the
core-structure of the extended dislocation is described by the disregistry
function:

fx1) =bp +b;” <tan’1 (x'; S2> +tan”! <x'; S')) 1)

The dislocation density distribution p(x;) which is derivative of
f(x1), is given by:

bp & Cir
e 2
plx) P <(xl+sz)2+§§p+(xl —51)2+§§P> ?

Burgers vectors for the Shockley partials are in different <121>
family directions on the slip-plane as shown in Fig. 1 (a). Thus, accurate
representation of the dislocation distributions necessitates the decom-
position of this superposed function. This allows us to calculate the
necessary energy components, especially the strain energies, more pre-
cisely by making a clear distinction between the cores of the two partials
which partially overlap in some cases. The decomposition can be
described by the relations frp(x1) + fip(3x1) =f(x1) and ppp(x:1) +
prp(x1) = p(x1). Hence, we can write the core disregistry distribution of
the leading and trailing partials, and their corresponding dislocation
density distributions respectively by the equations:

bp bp 1 (X + 52
- = — 4+ AT
Sre(x1) + pu an :

2 TP

bp & ©
prp(x1) = 7 (m)

bp ip @
Prp(x1) - ((xl . fil’)

The Egs. (3, 4) completely describe the core structure of the extended
dislocation as governed by parameters; the core-width &, of the trailing
partial, core-width &;;, of the leading partial, and the stacking fault width
d = s+ s;. The determination of these parameters using an energy-
minimization method is described next.

2.2. The energy of the extended dislocation: Continuum-strain energy and
Atomistic misfit energy

The total energy of the a/2(011) extended dislocation, Etor, has two
energy constituents: (i) strain energy due to continuum elastic strain-
fields introduced by the dislocation, Esrramn, and (ii) atomistic misfit
energy at the core of the dislocation, Eyyspr, due to stretching of the
bonds. Hence, this relation is expressed as:



O.K. Celebi et al.

Table 1

Anisotropic interaction coefficients Ki;, Ky2, and Kj5 needed to compute the
continuum strain-energy of the a/2(011) extended dislocation for Ni (in units of
x10% GPa).

Table 4
Material constants for FCC metals used in this study: intrinsic y;y; unstable y,¢
fault energies; lattice constant a, anisotropic elastic constants Cq7, Cy2, and Caq
[32-41].

Material Char. angle () K K2 Kiz

Ni 0° -0.932 -0.932 -0.666
6.58° -0.903 -0.969 -0.679
8.94° -0.895 -0.983 -0.689
13.9° -0.881 -1.014 -0.719
23.4° -0.868 -1.072 -0.799
30° -0.867 -1.109 -0.865
36.58° -0.866 -1.140 -0.935
46.09° -0.881 -1.176 -1.043
60° -0.932 -1.198 -1.198
73.9° -1.014 -1.176 -1.310
83° -1.073 -1.140 -1.346
90° -1.109 -1.109 -1.353

Table 2

Anisotropic interaction coefficients K11, K22, and Ki2 needed to compute the
continuum strain-energy of the a/2(011) extended dislocation for FeNiCoCrMn
(in units of x10% GPa).

Material Char. angle (6) K11 Koo Kio

FeNiCoCrMn 0° -0.862 -0.862 -0.538
6.58° -0.834 -0.900 -0.560
8.94° -0.828 -0.916 -0.577
13.9° -0.823 -0.954 -0.626
23.4° -0.827 -1.026 -0.746
30° -0.830 -1.069 -0.829
36.58° -0.827 -1.106 -0.906
46.09° -0.823 -1.150 -1.019
60° -0.860 -1.181 -1.180
73.9° -0.954 -1.150 -1.282
83° -1.026 -1.106 -1.306
90° -1.069 -1.069 -1.309

Table 3

Anisotropic interaction coefficients K11, K22, and Ki2 needed to compute the
continuum strain-energy of the a/2(011) extended dislocation for Cu (in units of
x10% GPa).

Material Char. angle (6) Ku1 Koo K12

Cu 0° -0.441 -0.441 -0.239
6.58° -0.423 -0.468 -0.251
8.94° -0.418 -0.478 -0.261
13.9° -0.411 -0.501 -0.288
23.4° -0.408 -0.544 -0.356
30° -0.407 -0.572 -0.407
36.58° -0.407 -0.595 -0.458
46.09° -0.411 -0.624 -0.534
60° -0.442 -0.644 -0.644
73.9° -0.501 -0.624 -0.714
83° -0.545 -0.595 -0.733
90° -0.571 -0.571 -0.736

ETOT(fTnyL[MSlySZ) = ESTRAIN(frp-,-fLm Sl,Sz) + EM[SFIT(frm pr,S17~Y2) 5)

Calculation of the individual energy components is given in the
following sections.

2.2.1. Elastic strain-energy: Anisotropic formalism

The elastic strain energy Esrramv(&p, Erp,$1,52) of the extended
dislocation is obtained by utilizing the anisotropic Eshelby-Stroh (E-S)
formalism [30,31]. Three anisotropic interaction coefficients K11, K2z,
and Kj» representing the self-interaction of the leading partial,
self-interaction of the trailing partial, and the interaction between the
two partials, respectively, are tabulated for different dislocation char-
acters and materials on a case-by case basis. Accurate calculation of the
strain energy of the extended dislocation necessitates that the

Materials a [A] Cn Cia Cas yus (MJ/ i [mI/
[GPa] [GPa] [GPa] m?] m?]
Ni 3.52 261 151 132 292 134
Cu 3.61 171.2 123.8 75.6 180 41
Au 4.08 201 170 46 134 33
Al 4.05 114 62 32 162 130
Ag 4.09 131.5 97.3 51.1 133 18
Pb 4.95 55.5 45.4 19.4 87 49
Pd 3.89 234.1 176.1 71.2 287 168
Pt 3.92 357 253 78 339 324
Nig;Cogz 3.5224 251.9 152.7 124.4 303 129
NigoCo19 3.5215 251.7 153.1 126.1 285 112
NiggCoso 3.52 251.3 153.7 128.9 270 92
Ni33Coe7 3.52 238.7 155.3 131.5 205 20
NigoTi1o 3.52 261 151 132 220 126
NigoTizo 3.52 261 151 132 140 112
FeNiCrCoMn 3.6 221 152 165 439 8
FeggN4 3.57 487 251 118 510 ~0

coefficients be determined directly from the strain fields calculated
based on the anisotropic E-S formalism. The procedure to calculate
anisotropic interaction coefficients is elaborated in Appendix A. The
obtained anisotropic interaction coefficients for Ni, FeNiCoCrMn, and
Cu are provided in Tables 1-3 and the employed anisotropic elastic
constants (Cy; Cig, and Cy44) for the considered materials are given in
Table 4. Additionally, in Appendix B, comparison of the current method
and the Stroh method for elastic interaction coefficient calculation is
provided in detail to emphasize the necessity of employing the present
method in this study.

Consequently, the total continuum strain energy Esrramv(érp, Erp, S1,
sy) for the extended dislocation can be determined by using the
computed anisotropic interaction coefficients. The total strain energy
involves the self-interaction energies of the leading and trailing partials

(EYL.and E22 ., respectively) and the interaction energy between the
two partials (E}2;.)- Thus, it is expressed as,
Estraiv(§zp, Exp» S1582) = Ezl'lla.\fic’ + Ezlzm-ric + Eell%:.mc (6)

where the terms on the RHS represent the elastic interaction energy
between infinitesimal fractional dislocations belonging to the cores of
the partials and they are calculated as:

E:,Ellasn'c = / / (K11 /270)pp(x)prp(y)In|x — y|dxdy
Eleamc = / / (K2 /27)p1p(xX)pp(y)In|x — y|dxdy 7
B = [ [ /2000010 0) Ban Bl —slasay

2.2.2. Misfit energy: W-S cell model

The misfit energy Enusrir(Erp, &1p,51,52) of the extended dislocation
associated with the disregistry functions frpzp(x1) Egs. (3,4) is calcu-
lated employing a recently proposed novel Wigner-Seitz Cell Misfit (WS-
M) model that accounts for the crystal structure and the Wigner-Seitz
cell domain area at each atomic-site on the slip plane across which
disregistry prevails [28]. This model accurately establishes the varying
relative orientations of the crystal structure on the slip plane depending
upon the character of the dislocation. The procedure involves a
two-dimensional summation of the fault energies on the slip-plane. The
fault energies y(u) are sampled from the GSFE landscape of the slip
system corresponding to the atomic-sites for the selected character. The
rigid shear u corresponding to a specific lattice position is determined
from the disregistry functions of the extended dislocation. The GSFE
curve precisely quantifies the corresponding energy cost of such shear.
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(a) Mixed, 9° (b)
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Direction of motion

Fig. 2. The lattice structure of the {111} slip
plane, for 9° and 60° character of the a/2(011)
extended dislocation: (a) the lattice vectors a7y,
@', and respective coordinate system are shown
for the 9° mixed dislocation. The dislocation
line is parallel to the x3 direction and direction
of motion is along x;. Two equivalent configu-
rations for the dislocation along the direction of
° motion are shown by ¢; and ¢,. (b) the lattice
vectors @, @ and respective coordinate sys-
tem are shown for the 60° mixed dislocation.
The dislocation line is parallel to the x3 direc-
tion and direction of motion is along x;. Two
equivalent configurations for the dislocation
along the direction of motion are shown by (;
and (5. (c) The misfit energy summation is
performed along the band bounded by the
dashed lines at each Wigner-Seitz Cell area
shown by the shaded region. 9°-case slip-plane
lattice structure can be reproduced by periodic
repetition of the emphasized atomic-sites
within a band of length Lop = a/2|[651]| along
the dislocation line. (d) The misfit energy
summation is performed along the band boun-
ded by the dashed lines at each W-S area shown
by the shaded cell. 60°-case slip-plane lattice
structure can be reproduced by periodic repe-
\\ tition of the emphasized atomic-sites within a

\\
\\~ ® \\ .
\‘\ N line.

‘\\1 Lyp = |az]
AY

\-4

@@~
°

@
)

Anorm

band of length Lap = | @ | along the dislocation

The GSFE curve can be obtained by employing first-principles methods
such as Density Functional Theory (DFT) or by using other atomistic
simulations including Molecular Statics (MS). For more detailed
coverage of the GSFE curve and its derivation, the reader is referred to
[22,32].

The GSFE curve of FCC materials is dictated by two critical points,
the unstable stacking fault energy barrier, y,,, and the stable intrinsic
stacking fault energy barrier, y;y, and they are provided in Table 4 for
the materials considered in this study. With the commonly used sinu-
soidal restoring-force assumption, the GSFE curve is described by the
following function:

) 2 bp 3b
%(1 7cos<bilnu>>,f0r0§u SforTPS u < 2bp

}’(M) ) 3 (€)]
Yus — Vit mu bp bp
A . < <
7M+< 2 )(1 cos( P)),for y SUS—

It is more convenient to partition the full GSFE curve for the two
Shockley partials as they have distinct Burgers vectors along different
<121>-family directions allowing a precise determination of the asso-
ciated energy cost for each partial. Thus, it is expressed for the trailing
and leading partials respectively as:

) 2 b
%(1 7cos<bipu>>7for0§ u S%

rrp(U) = B o b )
Yist + (%) (1 — cos(ﬁ>>7for EP <u<bp

Yus = Vist 27u bp
isf — — S| — <u<—
7,Sf+( ) )(1 co%(bp>),f0r0_u_ 2

2
%(l—cos(%)),for %gugbp

After defining the individual energy curves for the Shockley partials,
the next step is calculating the misfit energy for an extended dislocation
comprising two distinct Burgers vectors with a total dislocation line
length of L. As briefly mentioned, this is fulfilled by finding the corre-
sponding energy cost of the rigid shear introduced by the disregistry
function and performing a spatial summation over the discrete lattice
sites on the slip plane. The energy cost of such shear is sampled from the
GSFE curve using the Eq. (8). The details of this calculation employing
the WS-M model are described next.

The WS-M model designates two crystallographic lattice-vectors @
(mn)

}’LP(") = (10)

and @, on the slip plane such that the relation x =ma, +naj,for
integers m,n € Z, describes all the atomic sites on the slip plane. These
two lattice-vectors depend on the crystal structure and the crystallog-
raphy of the slip-plane as illustrated in Figs. 2 (a, b) for the FCC structure
on the {111} slip-plane. A primitive-cell on the slip plane is designated
by these two lattice-vectors as shown by the shaded regions in Figs. 2 (c,
d). Thus, the total misfit-energy of the dislocation described by the
disregistry function f, is calculated as,

Ept =Y. > y<f<m7, +n72>>(AA)

m=—00 n=-00

an

where AA is the area of the W-S cell around each atomic site at position

—s(m,n)

X = ma; + nds, y is given by Eq. (8) and f by Eq. (1). Note that
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(2)
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Fig. 3. (a) Anisotropic interaction coefficient K;5 is plotted for Cu, Ni, and FeNiCoCrMn vs. dislocation character suggesting a stronger elastic repulsion between the
partials for the edge character; (b) Misfit energy vs. dislocation character is plotted for Ni, FeNiCoCrMn, and Cu indicating a monotonic trend for the spectrum

between the screw and edge characters.

depending on the character of the extended dislocation, the orientation
of the lattice with respect to the global x; — x; — x3 axes varies as
demonstrated in Figs. 2 (a, b) for 9° and 60° dislocations. Thus, the
relative atomic sites also change depending upon the character of the
dislocation. The direction of motion for the dislocation is shown in
Figs. 2 (a, b), and two equivalent positions are shown by ¢; and ¢,. As the
dislocation moves, it passes through the dashed lines and reaches the
subsequent equivalent position (refer Figs. 2 (a, b)). The interplanar
spacing along the direction of motion is shown by ayom on the (111)
slip-plane for the two example cases. Note that, anom differs signifi-
cantly with character, which has critical implications on the CRSS and
will be elaborated further in the following sections.

The misfit energy expression can be further simplified by exploiting
the high symmetry of the slip plane without a loss of generalization. In
fact, it is sufficient to perform the spatial summation over the atomic-
sites within the bands with a spacing of Lyp shown in Figs. 2 (c, d) as
these bands repeat periodically along the dislocation line. Lyp is half
periodicity along dislocation line direction, x3, and determined by Lop =
a/2|(Imn)|, where (Imn) is the crystallographic direction along xs. Thus,
utilizing this symmetry the misfit energy expression simplifies to,

EMISFIT(§TP7 Erpy 51,52)

© N 12
:l% Z Z y(f(m71+n72>>(AA) a2

m=——co n=—Np

where (Lap,Ny,N;1) = (a/2|[651]|,3,4) for the case of a/2(011) 9°
dislocation, and (Lap, No,N1) = (| @2, 0, 0) for the 60° dislocation case, y
is given by Eq. (8) and f by Eq. (1). The energy is normalized by the
length Lyp so that the misfit-energy measure is normalized per unit
length of the dislocation line.

Rewriting the total misfit energy expression with the partitioned
fault-energies (given by Egs. (9) and (10)) for the individual Shockley
partials (described by Egs. (3) and (4)) as,

S Y sl () @a)

1 n=—Ny m=—Mmay

EM/SI-‘IT(fwaTthSz) = E M Mo - 13)
et Z ZVLP(fLP (xlm.n ))(AA)
n=-—Ny m=0
where x™" = (md; + nd3).¢. A large summation limit of My, is

chosen, in the order of 10%, so that computed misfit energy Enusrrr(E7p,
&1p,$1,52) is sufficiently converged. The misfit-energy given by Eq. (13)
is calculated per unit length of the dislocation line. Consequently, the

misfit-energy of the extended dislocation can be calculated as a function
of four parameters (E7p, &rp, $1,52) using the Eq. (13).

2.3. Determination of core-structure parameters

Having computed the continuum elastic energy Esrramv(érp, Erp, S1,
s3) and the atomistic misfit energy Enyspir(E1p, &1p,51,52) as a function of
the dislocation core widths (&7p, £;p) and the positions of the partials (s;,
s2), one can now determine the total energy of the extended dislocation
Eror(érp, Epy$1,52) from the Eq. (5). The core-parameters of the
extended dislocation (&2, £2,, 59, 59) that minimizes the total energy Eror
are determined by solving the equations:

OEror OEror OEror OEror
=0 =0 =0 =0 a4
0&7p 0%1p s,

" Os,
For more detailed coverage of how each energy component changes
with the core-parameters readers are referred to the authors’ previous

study [28]. The minimizing parameters (£2,, &5, 9, 59) are then used to
determine the CRSS as described in the following sections.

2.4. Effect of dislocation character on energy constituents

The character of the dislocation influences its CRSS through modi-
fications on the two main aspects. First, the strain energy varies with
dislocation character, which is reflected in the computed anisotropic
interaction coefficients. Second, the misfit-energy changes significantly
with the character of the dislocation. The effect of these individual en-
ergy terms is discussed next.

2.4.1. Effect of mixed character on strain energy

The anisotropic interaction coefficients for the two partials are
shown in Fig. 3 (a) for the entire range between the edge and screw
dislocations. K1, being negative implies that the interaction between the
partials is repulsive so the strain energy decreases as the separation of
the partials increases. The trend is similar for the three materials shown
in the figure. In all cases, the edge character has the lowest interaction
coefficient meaning that the repulsive force between the partials is the
highest in that case. Note that, Kj5 lies in a similar range for Ni and
FeNiCoCrMn, and, in fact, they almost overlap in a certain range
covering the mixed character. This is a combined outcome of the elastic
constants and the effect of dislocation character on the computed strain
fields.
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Fig. 4. Total-energy landscape of the a/2(011) extended dislocation for a screw-dislocation in FeNiCoCrMn (a) Plot of total-energy Eror against the position of the

Shockley partials (s;,s2) indicating possible paths traversing across the energy minima O = (s?,59), 01 = (s),5,); the dashed-line represents a straight-path in which
the partials move together such that stacking-fault width between them is conserved i.e. s; + s = C, is constant; the solid-line represents a zig-zag Minimum-Energy
Path (MEP) where the partials move intermittently, passing through an intermediate transition state S (b) Schematic representation of the motion of the partials along
the MEP, in which the leading partial moves first, increases the fault-width from d to d + Ad and then the trailing partial follows; a plot of the variation of the
stacking-fault width during the motion is given (c) Plot of the total energy variation along the MEP.

2.4.2. Effect of mixed character on misfit energy

Misfit-energy shows a monotonic trend with the character as plotted
in Fig. 3 (b) for the three materials. It is controlled by the critical points
on the GSFE curve together with the core-widths of the partials and the
stacking fault width. The misfit-energy is mainly dominated by the
stacking fault width and a similar trend can be seen in the stacking fault-
width vs. character plot as will be given in the following sections.
Further, the edge character has the highest misfit energy of all three
materials. This is due to two main reasons: (i) it implies a much wider
core (ii) the stacking fault width is the highest for the edge compared to
other characters.

2.5. CRSS of a/2(011) extended dislocation

The Peierls-Nabarro (P-N) framework is the standard method
employed to determine the CRSS [42]. However, this method cannot be
directly applied in the present case due to several critical aspects: (i) it
doesn’t account for the motion of the individual Shockley partials and
only considers the full dislocation, (ii) the contribution from the elastic
strain energy is ignored and only the misfit-energy is considered, (iii)
effect of character cannot be correctly captured because the actual
atomic-sites are not involved in the calculation. Thus, in this study, we
utilize the recently proposed method to calculate the CRSS that is
faithful to the crystal structure and considers the individual motion of
the partials contributing to the overall CRSS, as established in detail in
the authors’ previous study and briefly described here for the readers’
convenience [28]. One of the main challenges in the field for CRSS
calculation has been the accurate calculation of the dislocation
core-width. The glide stress of a dislocation is highly sensitive to the

employed core-width value. Thus, there has been numerous attempts to
address this by proposing different approaches for core-width determi-
nation [6,43-45]. The precise calculation of core-width requires that the
total energy of the dislocation is minimized to give the equilibrium core
structure of the dislocation. Thus, the elastic and misfit energies need to
be precisely captured for the total energy minimization to yield the
correct core-width of the dislocation.

The total energy, Eror, against the position of the Shockley partials
(s1,82) is plotted in Fig. 4 for the screw character a/2(011) extended
dislocation in FeNiCoCrMn. The energy surface has multiple
energetically-degenerate minima as illustrated in Fig. 4 by points O =
(s9,59), O1 = (s1,5,). These minima represent energetically equivalent
configurations for an extended dislocation on the slip plane. Note that S
is not an equivalent configuration as it implies a different stacking fault
width (s; +s2) compared to the points O = (s9,5) and O; = (s}, sy).
However, in the case of very low stacking fault energy materials e.g.
FeNiCoCrMn, these points have very similar energy values as a small
increase or decrease in the stacking fault width does not alter the total
energy as much compared to high stacking fault energy materials.
Subsequently, to calculate the CRSS, the pathway containing these
minima must be determined so that the energy-trajectory corresponding
to the specific path representing the motion of a/2(011) extended
dislocation can be drawn from the landscape. Finally, the CRSS of the
extended dislocation is determined from the maximum gradient on the
energy-trajectory of the obtained pathway by considering the individual
motion of each partial.

For the a/2(011) extended dislocation in FeNiCoCrMn the energy-
trajectory is shown in Fig. 4 (a) by the solid line which passes through
0, S, and Oy, in the given order. The energy-trajectory represents the
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Fig. 5. Effect of dislocation character on CRSS, core-width and stacking fault width (a) A schematic of the a/2[110] extended dislocation, its edge/screw components
and its Shockley partials; the angles 6, a, and f are defined indicating the mixed nature of the full dislocation and the individual partials respectively (b) Variation of
CRSS of the extended dislocation against ¢ (c) Variation of stacking fault width of the extended dislocation against 6.

motion of individual Shockley partials as their positions (s;,s2) vary
from one energetically-degenerate position, O, to the next one, O;. Thus,
these variations in the positions of individual Shockley partials (s1,s2)
dictate the path taken by the a/2(011) extended dislocation. The energy
trajectory is determined by utilizing the “Minimum-Energy Path” (MEP)
which implies the least resistance for the motion of the a/2(011)
extended dislocation. To describe this periodic path we utilize a Fourier-
series based approach that is expressed by the following equations,

si(r) =i+ (é) <t+co +ick(1 —cosZC’D)

5:(1) = 55 + <£ <1 - cosi,?))

> ( —t+ G+ Y G
k=1

where the maximum number of periodic functions is set to be n = 4,
sufficient to reach the desired level of accuracy. t is the parametrization
variable so that the positions of the partials are given by (s;(t),s2(t))
with O being the origin and (Cy, C1, C2, Cs3, C4, Cp) is a set of parameters
that defines the path which connects the energetically degenerate po-
sitions (e.g. O and O;) implying equivalent configurations for the
extended dislocation on the total energy landscape. The origin O is a
minimum point that represents a stable configuration for the extended
dislocation at which t = 0, s =s5;(0) and sJ = s2(0). Note that, the
straight-path connecting O and O, is modeled by setting the parameter
values Cp = C; = C; = C3 = C4 =0, and for any Cp # 0 as illustrated
by the dashed line in Fig. 4 (a). Nevertheless, for any other set containing
non-zero parameter values the path is not straight but zig-zag in nature
as shown by the solid-line in Fig. 4 (a). The energy trajectory of the path

(15)

o
is calculated at discretized points by letting t; = iAt, where At = 0.01A.
Finally, the total cumulative energy of the path is computed by the
objective function expressed as:

T
Epari(Co, Cy...,Cp) = Z Eror (Sl (t:), 52(t:), 5(;;” fgp) (16)
i=1

A large enough upper limit, 2000, is chosen for the summation that is
sufficient to capture the periodicity of the MEP. The set of parameters
(Co,C1,Cs,C3,C4q,Cp) defining the Minimum Energy Path (MEP) is
determined by the minimization of the total cumulative energy of the
path, Epary, using MATLAB®. As shown by the solid line in Fig. 4 (a), the
MEP is not straight but involves a zig-zag pattern avoiding the higher
energy peaks to achieve the least resistance to glide. Additionally, as the
extended dislocation moves tracing this path the stacking fault width,
given by d(t) = s;(t) + s2(t), fluctuates as shown in Fig. 4 (b). The
amplitude of this fluctuation, given by Ad, is specific to the case and
controlled by properties such as elastic constants, fault energy barrier,
and dislocation character.

Finally, the CRSS of the extended dislocation is determined utilizing
the Optimum-Energy-Trajectory (OET) approach for CRSS prediction for
FCC materials. This approach enables accurate calculation of the CRSS
of an extended dislocation by individual treatment of the Shockley
partials. For more detailed coverage of the OET approach and its deri-
vation reader is referred to [28]. In the current analysis, uniaxial tensile
load is applied in the V||[132] direction leading to a global stress tensor
given by 6, = 6,(V® V). This direction is chosen so that both leading

and trailing partials have the same Schmid factors. Consequently, the
CRSS is obtained by resolving the critical applied stress along the slip
system of the extended dislocation, which is expressed as,

T = SFpy max ! L dEror
ro e SF.ps 1 (1) — SFrps 2 () \br  dt

where SF;p and SFyp are the Schmid factors for the leading and trailing

17

partials respectively, and s; (t), s2(t) parametrize the MEP. SFry1;, = (V.

ﬁsh»p)(?gp) is the Schmid factor for the full extended dislocation on its
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Fig. 6. Core-widths of the leading (£;p) and trailing partials (¢7p) are plotted against the character angle, 9, measured from the color-bar and corresponding CRSS.
Four example cases for dissociated dislocation structures schematically shown indicating the Burgers vector directions of the partials and the associated 6 angle.

slip system, with by representing the unit vector along the direction of
the Burgers vector ?F The Schmid factors are given by the equations
SFip = (?.ﬁslip)(ﬁ.ﬂp) and SFrp = (ﬁ.ﬁshp)(ﬁ.grp), where Brp and ELP are
unit vectors along the Burgers vectors of the trailing and leading partials
respectively, and fig;, = 1 /v/3[111] is the slip plane normal.

2.6. Effect of character on CRSS

The developed framework can analyze mixed dislocations with
arbitrary characters. This is made possible through advancements on
two fronts: (a) the use of the Eshelby-Stroh formalism (Section 2.2.1)
that is capable of determining the strain-fields, and consequently the
strain-energy, of a dislocation with arbitrary character and (b) propo-
sition of calculation of the misfit energy accounting for the correct
atomic-sites on the slip plane for the chosen dislocation character.
Existing approaches have by and large focused only on special cases of
dislocation character, namely of “edge” and “screw” types. The primary
reason, in the authors’ opinion, is the simplifications afforded by these
assumptions in their respective frameworks, either in determining the
strain-field, calculation of misfit energy, and consequently the core-
widths. This limits the predictability since dislocations in real mate-
rials are curved with varying characters along their length. However, the
proposed framework can determine this maximum CRSS by analyzing
all characters. The efficacy of the framework in this regard is illustrated
by calculating the core-parameters and the CRSS for the a/2(011)
dislocation covering the spectrum between “screw” and “edge” charac-
ters. The results are presented in Fig. 5. Note that the CRSS exhibits a
non-trivial fluctuation between edge and screw natures (refer Fig. 5 (a)).
In fact, it exhibits a maximum in the CRSS for the 60°-mixed character of
dislocation that would otherwise have been missed if only the screw and
edge natures were considered. Available experimental data for FeNi-
CoCrMn and Ni are in agreement with the results of the present study.
For instance, for FeNiCoCrMn our prediction of 178 MPa for the 60° case
is within 5% of the experimental value of 172 MPa obtained from ex-
periments done on single crystals [46,47]. Also, experimental mea-
surements for edge dislocations in Ni lie in 4.7-9 MPa which is in close
agreement with the current prediction of 8.6 MPa [42,48].

The developed framework employs the average fault energetics of
the material. One should note that, in the case of alloys there could be
other factors contributing to the CRSS such as local solute distribution

and short-range ordering [49-51]. Moreover, the input material prop-
erties are taken for O K as they can be reliably obtained from DFT sim-
ulations. For extension to finite-temperatures, the predicted
energy-barriers along with MEP could serve as the activation-energy
in an Arrhenius-type expression to predict CRSS at finite temperatures
[52,53].

In this study, our focus is on the character effect which is incomplete
for mainly two reasons: (a) The Wigner-Seitz cell based integration for
misfit-energy is missing and prior treatments that treat the actual lattice
as a simple cubic will indeed produce a much higher CRSS. The Wigner-
Seitz cell naturally brings a dislocation character dependence that dif-
fers from the formulas based on a simple cubic lattice. We highlight the
differences in Appendix D. The formulas for character effect in the
literature give a smooth variation of the properties contrary to our
findings in this paper and also trends given in FCC based alloys [54], (b)
the intermittent motion of the partials (one partial moves first followed
by the other) depends on the dislocation character and lowers the CRSS
levels by avoiding higher energy peaks in the total energy surface as
shown in Fig. 4 (a). We note that the intermittent motion (b) also de-
pends on the relative unstable and intrinsic fault energies and is far more
significant in the low y; cases. Such non-trivial variations are depen-
dent on the balance between the continuum strain-energy and
misfit-energy for that character, which is controlled by the elastic
anisotropy, underlying fault energies, and respective crystal orientation
for the character. The proposed framework is able to model and predict
the sensitivity of CRSS with character complementing prior studies [49,
55]. Further, it is an experimentally very demanding task to precisely
capture these variations, which underscores the importance and prac-
ticality of the analytical predictive model. Also, note that the stacking
fault width also exhibits dramatic changes of similar nature (Fig. 5 (b)),
exhibiting a near doubling of the fault width for Ni and FeNiCoCrMn
across the spectrum of characters as consistent with experimental ob-
servations [56,57]. Such a thorough analysis of the effect of character is
important and necessary to predict the CRSS, and consequently the yield
strength of material reliably.

2.6.1. Character-dependent asymmetry of core-widths and its effect on the
CRSS

Another complexity of the mixed dislocations is their asymmetric
dislocation density distributions on the slip plane as briefly discussed in
Section 1 (refer Fig. 1 (c)). This asymmetry is due to the distinct core-
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Fig. 8. (a) Atomic arrangements on the slip plane for (i) screw, (ii) 60-degree, and (iii) edge cases. Relative orientations of the Burgers vectors are shown for leading
and trailing partials by the black arrows and for full dislocations by the dashed blue arrow. The character of the dislocation is measured by the angle ¢ as shown for
each case. (b) The variation of CRSS and a,rm is plotted against the character of the dislocation indicating the correlation between the two parameters.
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Fig. 10. Dependence of the amplitude of fluctuation Adbp in SFW during motion of an extended dislocation on the fault energy barriers, illustrating a coupled
dependence on both the unstable stacking fault energy y,; and intrinsic stacking fault energy y;. (i), (ii) are schematic representations of the intermittent motion of

the partials for an extended dislocation.

widths of the individual partials as plotted for a range of characters in
Fig. 6 for FeNiCoCrMn. Each bar in Fig. 6 represents a specific disloca-
tion character, and the corresponding CRSS value is measured from the
z-dimension. The x-y axes are showing the equilibrium core-widths of
the leading and trailing partials for different dislocation characters, and
it has a doughnut-looking shape when plotted for the entire spectrum
between the edge and screw dislocations. As mentioned, the partials and
the parent full dislocation have distinct characters as the dissociation
dictates. This is illustrated for four cases in Fig. 6 where the character of
the full dislocation is expressed by 6 and Burgers vector directions of the
partials are shown by the red arrows. For instance, in the case of 60°-

mixed dislocation, the trailing partial is of edge character whereas the
leading partial is a 30°-mixed dislocation. On the contrary, for the 60°
case it is vice-versa. Further, for the pure edge and screw dislocations,
the partials are 30° and 60°-mixed, respectively.

Moreover, this asymmetry of the density distribution dictates the
energy path taken by the extended dislocation as the two partials have
distinct barriers to glide. For instance, in the case of 60°-mixed dislo-
cation, the trailing partial is of edge character and has a lower barrier for
motion since it has a wider spread core that reduces its friction stress.
However, the other Shockley partial is a 30°-mixed dislocation, hence it
has a smaller core-width and a higher resistance to glide. Thus, the edge
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Table B1 Table C1

Anisotropic interaction coefficients computed from the current method (K77 and
Ki2), and the Stroh method (K%, and K%,) in GPa.

Calculated and measured Stacking fault widths (d), core-widths (égp;p), and
friction stresses (zr) in pure Al

Materials [ Kj1 [GPa] K%, [GPa] K;2 [GPa] K%, [GPa]
Ni 0° -93.2 -66.3 -66.6 -4.1
Ni 90° -110.9 -65.8 -135.3 0
FeNiCoCrMn 0° -86.2 -65.5 -53.8 -7.4
FeNiCrCoMn 90° -106.9 -63.7 -130.9 0

Table B2

Prelogarithmic energy factors computed from the current method (G1; and Gi2),
and the Stroh method (G%, and G&,) in GPa x A2

Materials 4 G11 [GPa x G, [GPa x G2 [GPa x G, [GPa x
A% A% A% A
Ni 0° -30.6 -15.9 -10.9 -5.1
Ni 90° -36.4 -19.8 -22.2 -12.6
FeNiCoCrMn 0° -29.6 -15.3 -9.2 -4.1
FeNiCrCoMn 90° -36.9 -20.0 -22.6 -12.9
Table B3

Core-widths (é7p;p), Stacking fault widths (d), and friction stresses (zr) for Ni
(screw) using both anisotropic interaction coefficient methods.

Material Character K-Method Erprp [;\] SFW [.7\] 7 [MPa]
Ni Screw Stroh method (3.65, 3.65) 6.8 37.4
Ni Screw Current study (3.52, 3.52) 7.6 18.7

partial is more mobile than the 30° partial creating an asymmetry for the
motion of the extended dislocation which is inherently incorporated
within the proposed framework. This complex interplay between the
partials and their interaction controls the total energy landscape of the
extended dislocation, which is then used to predict the CRSS by finding
the corresponding MEP for the specific case. This complexity precludes
devising a simple empirical relationship between the CRSS and char-
acter and entails that the CRSS be calculated on a case-by-case basis
employing the proposed framework.

3. Discussion

The present study establishes a predictive analytical framework for
the CRSS of a/2(011) extended dislocation with an arbitrary character in
FCC materials While the model can be extended to other crystal struc-
tures, there are certain complexities that must be considered. For

Pure Al Method Character  d, A Emim A T,
MPa
This study PN based 0° 0 (undis.) (2.8, 87.8
2.8)
60° 6.05 (3.9, 58.3
2.8)
90° 7.65 (3.5, 13.9
3.5)
Experiments TEM 0° [
Studies % (undis.)
60° 5.5"
90° 8.0¢
Bulatov et al. PN based 0° (2.1, 256.4
(DFT) [65] 2.1)
60° (3.0, 97.7
2.9)
90° (3.5, 3.2
3.2)
Bulatov et al. PN based 0° 3.7, 88.1
(EAM) [65] 3.4)
60° (5.4, 44.9
5.7)
90° (6.4, 24.0
5.2)
PN based 0° 0 (undis.)
Schoeck [75] 90° 7.4
Carter et al. [76] OFDFT 0° 0 (undis.) 355
90° 20.4 1.6
Beyerlein et al. PFDD 0° 2.6 77.8
[771
90° 6.3 19.7
Woodward et al. DFT 0° 5.0
[78] 90° 7.0
Olmsted et al. [64] EAM 0° 16
60° 21
90° 2

2 _ experiment [79]
ar . experiment, private communication with T. Waitz, University of Vienna
[80]
b experiment [81]
¢ — experiment [79]
undis. — undissociated

instance, in HCP crystals W-S cell area would differ depending on basal,
prismatic, and pyramidal systems. Additionally, the distinction between
the dense and loose planes, and highly distorted GSFE profiles deviating
from simple sinusoidal description need to be addressed [58-61].
Further, in BCC crystals the dislocation core is spread on multiple planes
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Fig. C1. Dislocation density distributions for screw, 60°, and edge cases for pure Al. Note the asymmetry of the core widths for the 60° case and the symmetry of the
core widths for the edge case. Also, note the prediction of an undissociated dislocation for the screw case.
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Fig. D1. CRSS (in MPa units) as a function of orientation for pure Ni from: (a) original P-N model (b) present method. Note that the original P-N model gives stress
levels near 1000 MPa while the current model provides CRSS levels less than 40 MPa.

requiring a non-planar description of the core structure [62,63]. The
model does not rely on any empirical parameters and provides a method
for the CRSS that captures the characteristics of a dislocation with an
arbitrary character. The extended dislocation is described by four pa-
rameters, specifically the core widths of the Shockley partials (¢ and
£,p) and the individual positions of these partials (s; and s3). These pa-
rameters are determined from an energy minimization method that in-
corporates the elastic and misfit energies of dislocations and finds the
optimum parameters that minimize the total energy. The elastic energy
is obtained by utilizing the fully anisotropic E-S framework. The strain
fields are calculated to obtain the correct strain energy density for the
interaction yielding the accurate anisotropic interaction coefficient for
the elastic energy calculations. The core energy of the dislocation is
computed by the novel WS-M approach that accounts for the actual
atomic positions on the slip plane. Thus, the proposed framework pre-
sents an accurate determination of the energy components of a general
extended dislocation, advancing over existing approaches to the best of
the authors’ knowledge.

The behavior of the continuum strain-energy and the atomistic misfit
energy is further elaborated below, using the isolated Shockley partial as
an example. The analysis is performed for an isolated partial so that the
coupled effect due to the other partial is eliminated. The variation of
both the strain-energy Egsrramv-sp(ésp) and the misfit-energy
Ensrir—sp(Egp) for an isolated Shockley partial as a function of its core-
width &g are schematically illustrated in Fig. 7. As a general rule,
dislocation has a wider core (e.g., &) if the edge component is more
dominant than the screw component since the edge component tends to
widen the core to reduce its high elastic energy. This is due to the fact
that the infinitesimal fractions within the dislocation core are spaced out
further at higher core-widths, reducing their repulsive energy of inter-
action. Consequently, the strain-energy Esrram-sp reduces with

increasing core-width and the misfit energy Eujspr_sp behaves in a
contrasting manner. At low core-width (e.g., &), the misfit within the
core is concentrated in a smaller region, and thus exhibits low misfit
energy. Conversely, at high core-width, the misfit is more spread out on
the slip plane, increasing the total misfit energy. Thus, the misfit energy
increases with core-width in direct contrast with the strain-energy. A
minimum of the total energy Eror is achieved at an optimal balance
between the two energies. The corresponding core-width is the equi-
librium core-width of the dislocation.

The varying character of a dislocation is closely related to the
changing atomic arrangements on the slip plane with respect to the
dislocation line direction. This is illustrated in Fig. 8 for different sce-
narios showing the crystal orientation of the slip plane for screw, 60°,
and edge cases. The dashed arrow shows the direction of the Burgers
vector of the full dislocation which in combination with the dislocation
line direction decides the character as quantified by the angle 8 shown in
Fig. 9. Notice that, the orientation of the W-S cell domain area changes
with character and so does the integration limits, which play a critical
role in the spatial misfit energy summation given in Eq. (13). The effect
of changing lattice is internalized by the key quantity, anorm, as defined
in Section 2.2.2. a@porm is effectively linked to the interplanar spacing
along the direction dislocation moves. Thus, it has a direct connection to
the periodicity of the energy trajectory that is passed through by the
dislocation. The relevance of this parameter, anorm, is demonstrated
more vividly in Fig. 8 (b) by the close correlation between the CRSS and
Qnorm VS. character. Although anorm is closely linked to the observed
CRSS value, that itself is not sufficient to predict the correct CRSS as the
correlation is not direct and affected by other properties involved in the
analysis. Note that, aporm is the largest for the screw and 60° cases
creating a larger barrier for slip. The 60° case is especially critical as it
has the highest CRSS amongst all the characters and as a mixed
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dislocation, it has asymmetric density distribution which also contrib-
utes to its CRSS. Al is an exception to this behavior mainly because of the
undissociated structure of the screw dislocation as obtained from the
present analysis. The results for Al and comparison with the literature is
provided in Appendix C. The non-trivial dependence of the CRSS on
dislocation character is an outcome of the complex interplay between
the material properties and the crystallography as captured with the
present analysis. Previous studies recognized the non-symmetric dislo-
cation density distributions and limited number of them noted the non-
monotonic variation of CRSS with character to the best of authors’
knowledge [64,65]. However, the current framework differs from these
approaches primarily because of the novel W-S cell based misfit-energy
integration.

Another crucial advantage of the developed framework is the ca-
pacity to selectively analyze the effect of fault energetics on the CRSS,
without the effect of elastic constants. Information of such nature is
critical in conceiving how sensitive the CRSS is to the unstable and stable
stacking fault energy barriers. For this analysis, the elastic constants of
FeNiCoCrMn are employed and maintained constant while the fault
energies are varied. The character is fixed at 60° as it is shown to have
the highest CRSS amongst all characters, thus useful in predicting the
overall yield strength of a material. Such a selective parametric study is
only made possible by the availability of an analytical framework as
proposed in this study. The underlying fault energy barriers are varied
across a 16 x 16 grid of values and at each grid point, the core-
parameters and CRSS values are determined. The results are plotted in
Fig. 9 as a spline surface fit and the results for the shown materials are
provided as a supplementary material. The strong role of the unstable
fault energy 7, is established. The sensitivity of dependence between
the CRSS and the underlying core-width is dictated by 7. If 7, is large, a
small reduction in the core-widths can dramatically raise the CRSS, and
vice versa. This barrier has a more dominant role than the intrinsic
energy barrier y; in dictating the CRSS. However, CRSS is also influ-
enced by y;, yielding an increased magnitude of CRSS for higher 7.
The reduced core-width is because the misfit energy associated with the
intrinsic stacking fault between the partials drives the partials to have
smaller cores in an effort to lower the misfit energy. For low y; values,
one can expect that this reduction would not be as significant. However,
when the unstable energy y,, is high, such a small reduction of width
results in a dramatic increase in the CRSS as referred to before. The
effect of varying y; for materials with a relatively lower y,, is shown
more clearly by the plot showing the CRSS vs y; at a fixed value of y
=300 mJ/m? in Fig. 9. There is a drastic increase in the CRSS with
increasing y;,, thus we can conclude that the effect of increasing y; is
more significant for materials with a relatively lower y,,. Thus, it is a
non-trivial coupled effect between the y, and y; fault energies of the
partials that leads to the higher CRSS of the extended dislocation, 7f.
Such an explanation of the dependencies of CRSS on the underlying fault
energies has not been made thus far to the best of the authors’ knowl-
edge and is a direct consequence of the developed analytical framework.

The intermittent motion of the partials to avoid higher energy peaks
result in a fluctuation in SFW as shown in the Section 2.5. The amplitude
of this fluctuation, denoted by Ad, is not unique and depends on material
properties and dislocation characteristics. Fig. 10 illustrates the varia-
tion of Ad with the critical fault energy barriers, namely, unstable
stacking fault energy y,, and intrinsic stacking fault energy y;;. The
elastic constants of FeNiCoCrMn are employed and maintained constant
while the fault energies are varied, and the dislocation character is fixed
at 60°. This zig-zag motion, schematically depicted in (i) and (ii), is more
substantial in materials with a high 7, and low y;, which corresponds to
the region where many high entropy alloys lie. For instance, for FeNi-
CoCrMn Ad is higher than bp implying a more substantial intermittent
motion of the partials. Further, for the majority of pure elements, this

effect is relatively modest. Despite that, even a small fluctuation in
stacking fault width is crucial for avoiding higher energy peaks to yield a
lower CRSS closer to the experimental observations. Thus, the present
analysis is essential in predicting the CRSS values more accurately.

Regarding the model for high entropy alloy cases, we note that our
CRSS formulation relies on the fault energies associated with multi-
elements on the slip plane (in our case the Wigner-Seitz lattice). We
are calculating the lattice resistance of 60° and screw dislocation for
Cantor alloy as 178 MPa and 147 MPa respectively, in general agree-
ment with the experiments (172 MPa) on single crystals [46]. The range
of CRSS (145-175 MPa) has been confirmed in other experimental works
and reviews [47,66,67] as well. Our results show that an additional
solute hardening contribution term for the screw and 60° cases, beyond
the role of multi-elements in modifying the GSFE curves, may not be
necessary. For the edge case, we calculate CRSS of 13.75 MPa, a rather
low lattice resistance. If we did not seek the maximum lattice resistance
orientation, one could argue that solute hardening must substantially
contribute to CRSS based on consideration of the edge case alone.
Twinning can activate at stress levels close to slip in FeNiCoCrMn, hence
extra care must be taken for differentiating slip from twinning in ex-
periments [46]. Another material where single crystal data is available is
NiCoCr with a CRSS value of 140 MPa [68], and the GSFE calculations
give a negative SFE [69-71]. Short Range Order (SRO) effect was ruled
out in one study [72] while it was discussed as a major contributing
factor in others [51,73]. So, the debate on the strengthening contribu-
tions continues. We emphasize that one must evaluate the lattice resis-
tance as a baseline prior to attributing other contributions. We will show
in a later publication that finite width of correct magnitude and correct
CRSS are predicted based on our lattice resistance calculations on NiC-
oCr accounting for the dislocation character effects.

4. Conclusions

The present study establishes a predictive analytical framework for
CRSS calculation of extended dislocation in FCC materials with an
arbitrary character and all the inputs to the model can be obtained from
first-principles calculations. The following critical remarks can be
deduced,

1. An extension to the Wigner-Seitz-Cell-Misfit (WS-M) model is
established that is capable of analyzing dislocations with arbitrary
characters incorporating the actual atomic arrangements on the two-
dimensional slip-plane of the lattice for any chosen character.

2. The variation of core-widths, SFW and CRSS values across the entire
spectrum of characters between the screw and edge nature are pre-
sented. It is shown that the CRSS of the dislocation can exhibit a
maximum at a non-trivial mixed character that is neither edge nor
screw, depending upon the elastic anisotropy and the fault energetics
of the material.

3. The proposed framework is further utilized to reveal the complex
dependencies of the CRSS on the underlying fault energies, namely
the unstable stacking fault energy y,, and intrinsic stacking fault
energy v, It is shown that both energy barriers exhibit a coupled
influence to elevate the CRSS of the extended dislocation.

4. The individual behaviors of strain and misfit energies are elaborated
using the isolated partial case as an example. The trend with varying
core-width is elucidated revealing that the minimum total energy is
achieved with the contribution from both energy components.

5. The Minimum-Energy-Path (MEP) for the dislocation motion ex-
hibits an intermittent motion of partials implying a fluctuation in the
stacking fault width during motion. The amplitude of this fluctuation
is strongly controlled by the fault energy barriers and shown to be
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higher for materials with high unstable stacking fault energy 7, and
low intrinsic stacking fault energy y; barriers.

6. The challenging case of pure Al was analyzed, and the stacking fault
widths were predicted as zero for pure screw case and 6.05 A and
7.65 A for 60° and pure edge cases respectively in agreement with
experiments.
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Appendix A: Calculation of the elastic interaction coefficients

A brief description of the E-S formalism is provided here, and the reader is referred to [31] for a more detailed explanation of the analysis. Using

N
this framework, the displacement field, u, for a dislocation with arbitrary Burgers vector, b, is analytically expressed as,

1
27y —1

6
ui(x1,x,) = Z 7141Aiz1Lmb.\'ln(xl + Pa2)
a=1

(A.1)

where 5, =1 for @ € {1,2,3} and 5, = —1 for a € {4,5, 6}, and {p,,Ais,Ls.} are the E-S constants. The E-S constants are determined from the

equations:

| Cijin (611 + Pabiz) (8t + Pab2) ||=0
Cijn (811 + Pabi2) (81 + Pabi2)Aka = 0

L, = *51'2Czjkm(5m + Pabm2 )Ara

(A.2)
(A.3)

(A.4)

where Cjj, is the anisotropic elastic tensor in the x; — x2 — x3 coordinate system and &; is the Kronecker delta function. The elastic constants of the
FCC materials considered in this study are listed in Table 4. Then, the strain-field is calculated using the relation,

1 (ou; Ou
Ej = 5 (0_x,+6_)c,> (A.5)

Thus, the strain-field in terms of computed E-S constants is expressed as,

U alabs
4my/—1 2= (X1 + paxa)

€(x1, ) = (Aia (81 + Padsy) + Aja(81: + Pudai)) (A.6)

The current analysis involves two distinct Burgers vectors, ?Tp and ?LP, forming the extended dislocation. These partials can have different
characters and, hence, must be treated individually. Thus, the anisotropic E-S constants are computed separately for these partials, which are utilized
to compute the strain-fields corresponding to trailing and leading partials, egp (1,x5) and efjp (1, x,) respectively, from the equations (A.1-A.6). The
core-region within radius ro = 5bp around the center of each partial is excluded as continuum formalism does not hold in this core region where the
strains are large. The superposition of these individual strain-fields yields the total net strain-field expressed as,

&;(x1, 32, R) = €l (x1 + R/2, %) + €57 (x1 = R/2, x2) (A7)
where (0, —R/2) is the position of the trailing partial and (0, R/2) is the position of the leading partial as schematically depicted in Fig. A.1. Subse-
quently, the strain energy density distribution corresponding to the net strain field created due to the two partials is obtained as,

1
eq(x1,%,R) = Ecubvdgab (x1,%2, R)€ca(x1, X2, R) (A.8)

where Cg,q is the anisotropic elastic tensor in the x; — x2 — x3 coordinate system. Consequently, the strain-energy per unit length of the dislocation
line is computed by integrating the spatial strain-energy density distribution, e,;, expressed as,
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Xogx X
E, 1 (R)= / /eel(xthaR)dxlde (A.9)
X X

The integral in eqn. A.9 is computed numerically, over a discretized grid employing a sufficiently fine grid size (Ax; /bp = Ax,/bp ~ 0.2) and large
limit of integration (X,,,, = 150bp) for convergence. Finally, the equation capturing the variation in total strain-energy with the separation distance is
expressed as,

— =
bp.bp

2n

— =
E | < bip, b TP7R> =Cy+ K, InR (A.10)

where Cj is the constant and K; is the anisotropic interaction coefficient. Note that, E, _ | (R) varies linearly with (InR) as plotted in Fig. A.1 for three

cases with different dislocation characters. The linear trend seen in Fig. A.1 is independent of the selection of R. It is clear that if one uses larger R

values, the integration limits should be increased accordingly and the coefficient K7, remains the same. Thus, K;5 is determined from the slope of the

curve and utilized to capture the elastic interaction between the partials. Similarly, the self interaction coefficients for the trailing and leading partials,
—

Kj1 and Ky, are determined by repeating the procedure by considering the interaction between two dislocations with same Burgers vectors (b p or

—
b 1p).
Appendix B: Comparison of two methods for interaction coefficient calculation

In this appendix, we compare two methods for calculating interaction energy of a dislocation. The K interaction coefficients denote the coefficients
determined in this study. On the other hand, the self-energy coefficient (henceforth named K to distinguish) is to be obtained from the Stroh method
[31]. The self-energy coefficient K¥ is pertinent in the calculation of total-energy of a single Volterra dislocation inside an anisotropic medium.
However, in this study, the interaction coefficient K is pertinent to the interaction energy between two dislocations within an anisotropic medium.
Computing this interaction coefficient, K, involves the determination of strain-energy of two dislocations E, _, (R) as a function of the distance of
separation between them, R.

Consider the example of the “11” component: The interaction coefficient K;; is employed to determine the interaction energy between identical
dislocations with the same Burgers vectors FLP located within an anisotropic medium with a separation distance R between them. On the other hand,
the Stroh self-energy coefficient K%, is the pre-factor to one of the summands in the self-energy equation involving the 1** component of the Burgers
vector ?LP-

Expressing the above distinction in terms of equations, present method computes,

— =
BB

E | <?LP7R> =Gy + Ky InR (B.1)

- —

which is analogous to Eq. (7) in the manuscript. Letting G1; = Kuw and rewriting Eq. (B.1) we obtain,
E <?LP1R> =Cy + GInR (B.2)

where G is the prelogarithmic energy factor obtained from the current method. Whereas the Stroh method uses the coefficients Kf, to determine the
self-energy of a single dislocation within an anisotropic medium as [31,74],

7 K K7 > Rouer
grorn (5 ) = (B (G e N (Bpe ) +22 (b pe V[ B ) +... JIn—2er (B.3)
2r 2z To

where ¢; (i= 1,2, 3) are the unit orthonormal vectors along the coordinate system axes x; — x2 — X3 and Rouer, To being the outer and inner cutoff radii,
respectively.K? is the inverse of the matrix F, whose elements are,

Fy =" (A +AjaMs) (B.4)

a=

where M is the inverse of L which is obtained from Eq. (A.4).

N
Hence, for a dislocation with Burgers vector b, Eq. (B.3) is expressed as,

E

pon (F) - Kibib; | Rouer (B.5)
2r o

E
Letting GF = %, the Eq. (B.5) can be rewritten as,
¥ R{)ll er
[ESTROH (?) — GEn o (B.6)
To
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where GF is the prelogarithmic energy factor for a single Volterra dislocation.

For the quantitative comparison of interaction coefficients of these two approaches, we present the results for Ni and FeNiCoCrMn in Table B1.
Additionally, we provide the values for prelogarithmic energy factors, G and GS™R°H computed from both methods in Table B2.

The two energies E; _; and ESTROH are computing physically different strain-energies and only the former computation is relevant in this study to
determine the correct core-widths. Only through the calculation of the interaction coefficients Kj; in our study can the variation of strain-energy with
changing core-widths be captured accurately. Thus, the original Stroh calculation is not applicable to the current problem. Since these two energies

- =
and corresponding K-coefficients are distinct, one cannot replace Ky3| b 1p. b 7p| in Eq. (B.1) with an expression involving Stroh-coefficients of the form

Kgbibj.

We would like to point out that the equilibrium core-width strongly depends on the elastic interaction coefficient and small deviations in core-
width can significantly affect the calculated CRSS. This has been a major issue in the field for CRSS determination as this sensitivity to core-width
necessitates a precise determination of the core-width. The isotropic assumption results in significant errors in the magnitude of core-width and
consequently in CRSS calculations even if it were to capture the behavioral trend of core-width versus character. Therefore, an anisotropic calculation
as proposed in this study is necessary. To illustrate this, we summarize the results obtained by employing both methods in Table B3.

Appendix C: Results for Al and comparison with the literature
Regarding the model capabilities we offer the following comments on separation of partials and dislocation cores widths (see Table C1).
Separation of Partials

For pure Al, in our study, the highest CRSS is observed for the screw character, and we obtain a stable minimum in our total energy curve at zero
separation width (undissociated), i.e., d = 0 A and this observation is in agreement with experiments [79]. Also, for the screw case, we predict a
dislocation core width of 2.83 A and a corresponding CRSS of 88 MPa. There are experimental findings that point to such high CRSS values at low
temperatures and various experimental findings are reviewed in [76]. In agreement with our result, no dissociation of partials was noted for screw
dislocation in Al [76,82] and this case results in high CRSS levels widely known in experiments. In contrast, other works predict a finite separation
width [64,65,77,78,83] not observed in TEM experiments [79,80]. Interestingly, in [76] the possibility of finite separations for the screw case, though
not common, was raised. We do predict such a clear metastable point in energy at 3.5 A (not absolute minimum) (also discussed in [76]) with
potentially higher CRSS values (125 MPa). This points to the need for extreme care in simulations for small stacking fault widths. On the other hand,
for the case of edge dislocations the separation width in Al in our study is finite (7.65 A) which is in close agreement to experimental studies of 8 A
[79]. We predict a CRSS of 13.9 MPa for the edge case with symmetric partial core widths. Also, for the 60° case, we predict a stacking fault separation
of 6.05 A which is also in close agreement with reported experimental SFW of 5.5 A [81] confirming the capability of the current model.

Dislocation Core Widths

To assess the CRSS model, one must also check two fundamental quantities: (a) the magnitude of the core-widths, and (b) the asymmetry of the
core-widths among the partials. Regarding (a), the magnitude of the core-widths varies widely in the literature, say for aluminum [64,65,77,78]. This
is partly due to the potentials and partly due to the simulation methodology (boundary conditions, simulation size, and elastic strain energy calcu-
lations and treatment of anisotropy) used. The non-symmetric dislocation core-widths for the 60° case are predicted as (3.9 A, 2.8 A) in our model. We
predicted (3.53 A, 3.53 ;\) for the edge case for the partials and (2.83 A, 2.83 A) for the screw case. The dislocation density distributions for screw, 60°,
and edge cases are given in Fig. C1. The dislocation core widths are difficult to measure experimentally compared to stacking fault widths; also, many
of the simulations do not provide them. Regarding (b), we make two points: (1) the mixed character cases must result in non-symmetric leading and
trailing partial core widths. On the other hand, (2) it is necessary to have symmetric core widths for the screw and pure edge characters which is not
obeyed in some of the previous works [65]. Such results are crucial to assess the theory and simulations [65]. As stated above, in most works, the core
widths are not provided [64,76,78], and would facilitate better comparisons among different studies in the future.

Appendix D: Comparison of character dependence of CRSS between the original P-N model and the current approach

The original P-N method yields [6,20,54],

op = 2Kexp< — 4715&> (D.1)

F

where o5 is the friction stress calculated from the original P-N model, k = u{cos?(6) + [1 /(1 —v)]sin?(6)}, £(6) = % is the core-width of the dislocation,

d is the interplanar spacing of the {111} planes and by is the Burgers vector magnitude. For Ni, we take 4 = 76 GPa and v = 0.31 [84]. These results are
compared in Fig. D1. Fig. D1 (a) provides the original P-N model and Fig. D1 (b) provides current model results.
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