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A B S T R A C T   

The yield strength of a crystalline structural material is a fundamental mechanical property predominantly 
governed by the critical stress for dislocation slip. This Critical Resolved Shear Stress (CRSS) is strongly influ-
enced by the character of the dislocation (e.g., screw, edge, or mixed) as shown in previous experimental studies. 
Existing analytical approaches for CRSS prediction assume an atomic row description of the slip plane and do not 
account for Wigner-Seitz (WS) cell area at each discrete lattice site. Further, inadequate consideration of the 
material’s elastic anisotropy and the presumed dislocation “core-width” level precludes correct CRSS determi-
nation. This study proposes a predictive model applied to Face Centered Cubic (FCC) materials addressing these 
shortcomings in predicting glide stress of a dissociated dislocation. The core-width is rigorously determined from 
the minimization of total energy comprised of continuum strain energy (ESTRAIN) and atomistic misfit energy 
(EMISFIT) of the dislocation’s core. The ESTRAIN is obtained from dislocation strain-fields calculated using the fully- 
anisotropic Eshelby-Stroh formalism. The EMISFIT is determined from the Generalized Stacking Fault Energy 
(GSFE) landscape of the slip plane. Previous EMISFIT calculations are restricted to slipped rows in ‘simple’ cubic 
lattices which do not represent the slip-planes in FCC crystals. The developed model is used to predict CRSS for a 
wide range of metallic materials correcting the overprediction of experimental CRSS levels. The results unveiled 
the remarkable dependence of CRSS on the dislocation character, revealing the non-trivial dependence on GSFE 
parameters. Thus, this study addresses a major void in structure-property prediction for structural materials.   

1. Introduction 

Plastic deformation of crystalline materials is largely accommodated 
by dislocation motion. These dislocations are either pre-existing in the 
material or nucleate from internal sources. The motion of these defects is 
controlled by the intrinsic flow resistance, i.e., CRSS which is an 
essential input to many crystal-plasticity models [1,2]. It governs the 
dislocation motion in fatigue leading to irreversibilities [3,4] and gages 
the fracture propensity in ductile/brittle transition [5]. Nonetheless, the 
field of materials science and mechanics is still lacking a parameter-free 
CRSS model that internalizes the correct crystallography of the 
slip-plane. Existing approaches focus primarily on pure dislocation 
characters (e.g., edge or screw) and adopt the classical methods to 
calculate the misfit energy of a dislocation for crystals that are not 
simple cubic [6–12]. However, such a direct transfer of the classical 
approach, which is originally developed for simple cubic crystals [13, 
14], fails to capture the lattice-dependent distribution of the discrete 
atomic positions on the slip-plane. The inaccuracy in this treatment is 
even more amplified for the dislocations with a mixed character as the 

correct atomic positions can be described neither by individual treat-
ment of the screw and edge components of the dislocation with the 
row-misfit approach nor by employing correction factors for core-width 
determination [7,15]. Further, many of the existing approaches assumed 
isotropy to circumvent the coupling between the edge and screw com-
ponents resulting in an inaccurate representation of the mixed disloca-
tions [10,16]. However, mixed dislocations are prevalent and constitute 
a significant fraction of the total dislocation density in metallic materials 
[17–19]. Additionally, in the case of Face Centered Cubic (FCC) crystals 
at least one of the Shockley partials of a dissociated dislocation has a 
mixed character due to the crystallography of the slip plane. Therefore, 
there is a need for a more generalized theory that is capable of analyzing 
different dislocation characters and a wide range of materials where the 
character effect reflects both the material anisotropy and the misfit 
energy. In this study, we propose a model that predicts CRSS for a 
dislocation with an arbitrary character as influenced by the elastic 
constants, the critical fault energies of the material intrinsically linked to 
the dislocation core-width. The analysis is free of empirical parameters 
and is based only on intrinsic lattice-dependent calculations. 
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1.1. Core structure fundamentals: Disregistry and Dislocation density 
distributions 

The required stress to move the dislocation on its slip plane is pri-
marily related to the intrinsic strength of the material. The onset of glide 
is achieved when the resolved stress on the dislocation exceeds the 
intrinsic lattice friction stress [14]. And it is primarily controlled by the 
core-properties of a dislocation, particularly by the width of the core 
[13]. It is well known that there is an inverse relationship between the 
core-width of a dislocation and the friction stress [20]. The size of the 
core is dominated by the material parameters, and it requires a detailed 
analysis to obtain the correct core-width of a dislocation. The 
well-established Peierls model quantitively describes the distribution of 
the dislocation core via disregistry function [13,14,20]. The disregistry 
function is solved from the balance of elastic forces due to the 
strain-field around the dislocation and the restoring atomic forces at the 
core of the dislocation. The sinusoidal restoring-force assumption yields 
the commonly used disregistry function for a full dislocation parame-
trized by the “half core-width” of the dislocation which predominantly 
dictates the CRSS [6,21]. However, a general robust framework to 
predict the core-width for a dislocation with an arbitrary character is 
currently unavailable, to the best of the authors’ knowledge, hence 
precluding a reliable prediction for the CRSS. The limitations of existing 
approaches are discussed in more detail in the following section and 
resolved in later sections with the proposed theory. 

1.2. Limitations of existing approaches 

1.2.1. Mixed dislocation character 
Prior studies on this topic focused mainly on edge or screw character 

dislocations. The vast majority of the spectrum of mixed dislocation 
characters is undiscovered. However, an arbitrary dislocation line in a 
material is randomly curved with varying characters along its length. As 
a consequence, to truly predict the yield strength of such a material, the 
behavior of the CRSS of the dislocation with an arbitrary character must 
be determined. 

1.2.2. Effect of atomistic fault energies on CRSS 
The core energy of the dislocation is governed by the associated fault 

energy barrier also known as the Generalized Stacking Fault Energy 
(GSFE) landscape [22]. In the case of FCC materials, the GSFE landscape 
is described by two critical points, namely, the stable intrinsic stacking 
fault energy γisf and the unstable stacking fault energy barrier γus. The 
CRSS is strongly dependent upon these critical values as it directly 
quantifies the core energy of a dislocation. However, this dependence is 
complex and is initially manifested in the misfit energy of the disloca-
tion. The individual effect of these critical points on the CRSS is not 
established to date and is unraveled in this study. Many previous studies 
used the ideal shear-strength, τmax, to describe the atomistic 
restoring-force relationship [23–25]. However, with a distributed 
dislocation core this relation is not accurate because the restoring force 
is due to the response of the crystal to the planar dislocation core 
distributed on the slip plane and cannot be described by a constant ideal 
shear strength, τmax. Therefore, the entire GSFE curve must be involved 
in the analysis for accurate calculation of the core energy of a disloca-
tion. This non-trivial dependence of CRSS on the GSFE landscape is 
unexplored and is unveiled in the current study. 

1.2.3. Effect of character on nature of motion 
Correct calculation of the CRSS requires the motion of the dislocation 

to be precisely known as the energy barrier for motion greatly depends 
on accurate sampling from the GSFE curve corresponding to the relative 
positions of the Shockley partials. This necessitates the respective po-
sitions of Shockley partials to be tracked throughout the motion. Pre-
viously, it was thought that the Shockley partials move together such 
that the fault-width between them stays constant when the barrier for 

motion is exceeded. In the present study, this assumption is challenged 
and is shown that energetically more favorable path is much more 
complex involving a “zig-zag” pattern rather than a simultaneous mo-
tion of the partials. To put it concisely, first the leading Shockley partial 
moves with the trailing partial stationary, which results in an increase in 
the stacking fault width. Then, the trailing partial follows with the 
leading partial fixed in position and the stacking fault width restores to 
its equilibrium value. Therefore, this results in a fluctuation in the 
stacking fault width as the dislocation moves. The magnitude of this 
fluctuation varies depending upon the material properties and disloca-
tion characteristics as dictated by the total energy landscape of the 
extended dislocation. 

1.2.4. Effect of changing lattice with character 
Existing models employing the Peierls-Nabarro framework inaccu-

rately handled the changing atomic arrangements on the slip-plane 
depending upon the lattice structure, dislocation character, or the slip 
system. They employed a one-dimensional row-misfit approach which 
involves a series summation for misfit-energy using a discrete parameter 
a′ in an effort to capture the periodicity of the lattice. However, correct 
understanding of the effect of dislocation character requires that the 
individual atomic-sites on the slip-plane be involved in the analysis. This 
necessitates two-dimensional consideration of the slip-plane as the 
atomic arrangements cannot be defined in one-dimension for crystals 
that are not simple-cubic. As a result, this led to unrealistically high 
friction stress predictions due to the oversimplification of this complex 
problem. And other studies recognized this error in representing the 
correct atom positions across the slip plane and tried to address these 
unrealistic results by using a correction factor in the commonly used 
exponential relation [15,26,27]. However, all these approaches failed to 
address the underlying problem. 

1.2.5. Asymmetric core structure of a mixed dislocation 
Full dislocations with a pure character (edge or screw) split into two 

partials, both of which have the same nature. Thus, they have a sym-
metrical distribution of the core as dislocations with the same characters 
have the same core-widths. On the other hand, dislocations with a mixed 
character split into Shockley partials with distinct characters and core- 
widths. Therefore, mixed dislocations have an asymmetric distribution 
of the cores, unlike pure dislocations [19]. If the character of the partial 
is closer to the edge, the dislocation has a much wider core as compared 
to the screw character which has the smallest core-width amongst all 
characters. This asymmetry imposes fundamental conditions on how the 
dislocation moves as the two partials have distinct barriers to glide. 
Thus, this asymmetry must be inherently incorporated into the theory 
when calculating the core energy of the dislocation. 

1.3. Current approach 

The present study addresses all these limitations and establishes an 
empirical-parameter-free predictive model for the CRSS of FCC mate-
rials. The developed framework models the a/2〈011〉 straight extended 
dislocation of a general mixed character in FCC materials, comprising 
two a/6〈112〉 Shockley partials separated by a stacking fault of finite 
width, where a represents the lattice constant of the FCC crystal. In the 
current study, we adopt an energy-based approach to predict the correct 
core-structure of a general extended dislocation. The equilibrium core 
structure of the partials is obtained from total energy minimization 
consisting of long-range elastic strain energy and short-range misfit 
energy of a dislocation. We employ a recent method developed by the 
authors and generalized it for varying dislocation character [28,29]. The 
elastic energy is calculated by employing the fully anisotropic 
Eshelby-Stroh (E-S) formalism. The strain field around the dislocation is 
computed using the E-S parameters, which allows accurate determina-
tion of the anisotropic interaction coefficients. The misfit energy is 
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computed by utilizing the GSFE landscape of the material by being 
faithful to the two-dimensional crystal lattice structure on the slip plane. 
Finally, the minimum energy pathway for the glide of partials on the 
slip-plane is obtained by independent treatment of the positions of the 
Shockley partials, subsequently used to calculate the CRSS. The meth-
odology of the predictive framework is presented next. 

2. Methodology and Results 

2.1. Core-structure of the a/2〈011〉 extended dislocation 

In FCC materials, full dislocation, b
→

F, tends to split into two 

Shockley partials on the slip plane, a leading partial, b
→

LP, and a trailing 

partial, b
→

TP, since it yields a lower energy structure for the dislocation 
and reduces dilation and compression on the sides of the slip plane [20, 
23]. The extended dislocation consisting of these two partials is illus-
trated in Fig. 1 (a). Depending upon the character of the parent full 
dislocation, the Shockley partials admit a certain character. The char-
acter of the full dislocation is determined from the angle between the 
dislocation line and the Burgers vector as shown by θ in Fig. 1 (c). As 
mentioned, in the case of pure edge and screw dislocations, Shockley 
partials have the same characters, which results in a symmetric dislo-
cation density distribution on the slip plane as depicted in Fig. 1 (b) for 
the edge case. On the other hand, for dislocations with a mixed char-
acter, the dislocation density distribution is asymmetric due to the 
distinct characters of the Shockley partials as illustrated in Fig. 1 (c). 

In the current analysis, the CRSS is predicted for the b
→

F = a/2[110]
dislocation dissociated on the (111) slip plane. The magnitude of the full 

dislocation b
→

F is represented by bF, and for the partials, it is given by bP. 
The center of the leading partial’s core is located at x1 = s1, while that of 
the trailing partial is at x1 = s2. The fault-width between them is 
computed by d = s1 + s2 as demonstrated in Figs. 1 (b, c). Hence, the 
core-structure of the extended dislocation is described by the disregistry 
function: 

f (x1) = bP + bP

π

(
tan−1

(
x1 + s2

ξTP

)
+ tan−1

(
x1 − s1

ξLP

))
(1) 

The dislocation density distribution ρ(x1) which is derivative of 
f(x1), is given by: 

ρ(x1) =
bP

π

(
ξTP

(x1 + s2)2 + ξ2
TP
+ ξLP

(x1 − s1)2 + ξ2
LP

)
(2) 

Burgers vectors for the Shockley partials are in different <121>
family directions on the slip-plane as shown in Fig. 1 (a). Thus, accurate 
representation of the dislocation distributions necessitates the decom-
position of this superposed function. This allows us to calculate the 
necessary energy components, especially the strain energies, more pre-
cisely by making a clear distinction between the cores of the two partials 
which partially overlap in some cases. The decomposition can be 
described by the relations fTP(x1) + fLP(x1) = f(x1) and ρTP(x1)+
ρLP(x1) = ρ(x1). Hence, we can write the core disregistry distribution of 
the leading and trailing partials, and their corresponding dislocation 
density distributions respectively by the equations: 

fTP(x1) = bP

2 + bP

π tan−1
(

x1 + s2
ξTP

)

ρTP(x1) = bP

π

(
ξTP

(x1 + s2)2 + ξ2
TP

) (3)  

fLP(x1) =
bP

2 + bP

π tan−1
(

x1 + s1
ξLP

)

ρLP(x1) = bP

π

(
ξLP

(x1 − s1)2 + ξ2
LP

) (4) 

The Eqs. (3, 4) completely describe the core structure of the extended 
dislocation as governed by parameters; the core-width ξTP of the trailing 
partial, core-width ξLP of the leading partial, and the stacking fault width 
d = s1 + s2. The determination of these parameters using an energy- 
minimization method is described next. 

2.2. The energy of the extended dislocation: Continuum-strain energy and 
Atomistic misfit energy 

The total energy of the a/2〈011〉 extended dislocation, ETOT , has two 
energy constituents: (i) strain energy due to continuum elastic strain- 
fields introduced by the dislocation, ESTRAIN, and (ii) atomistic misfit 
energy at the core of the dislocation, EMISFIT , due to stretching of the 
bonds. Hence, this relation is expressed as: 

Fig. 1. Dislocation core-structure: (a) extended dislocation and the atomic arrangements on the slip plane along with the directions of the Burgers vectors for the 
leading and trailing partials and for the full dislocation (screw case shown) (b) the x1 − x2 − x3 coordinate system attached to a pure dislocation with Burgers vector 

b
→

F , the dislocation line aligned with the x3 axis and on the slip plane with normal in the x2 direction; corresponding symmetric dislocation-density distribution, 
ρ(x1), of a dissociated dislocation indicating the core-widths ξTP,LP of the trailing and leading partials respectively (edge case shown). (c) the x1 −x2 −x3 coordinate 

system attached to a mixed dislocation with Burgers vector b
→

F , the dislocation line aligned with the x3 axis and on the slip plane with normal in the x2 direction; 
corresponding dislocation-density distribution, ρ(x1), of a dissociated mixed dislocation indicating the asymmetric core-widths ξTP,LP of the trailing and leading 
partials respectively. 
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ETOT (ξTP, ξLP, s1, s2) = ESTRAIN(ξTP, ξLP, s1, s2) + EMISFIT(ξTP, ξLP, s1, s2) (5) 

Calculation of the individual energy components is given in the 
following sections. 

2.2.1. Elastic strain-energy: Anisotropic formalism 
The elastic strain energy ESTRAIN(ξTP, ξLP, s1, s2) of the extended 

dislocation is obtained by utilizing the anisotropic Eshelby-Stroh (E-S) 
formalism [30,31]. Three anisotropic interaction coefficients K11, K22, 
and K12 representing the self-interaction of the leading partial, 
self-interaction of the trailing partial, and the interaction between the 
two partials, respectively, are tabulated for different dislocation char-
acters and materials on a case-by case basis. Accurate calculation of the 
strain energy of the extended dislocation necessitates that the 

coefficients be determined directly from the strain fields calculated 
based on the anisotropic E-S formalism. The procedure to calculate 
anisotropic interaction coefficients is elaborated in Appendix A. The 
obtained anisotropic interaction coefficients for Ni, FeNiCoCrMn, and 
Cu are provided in Tables 1-3 and the employed anisotropic elastic 
constants (C11 C12, and C44) for the considered materials are given in 
Table 4. Additionally, in Appendix B, comparison of the current method 
and the Stroh method for elastic interaction coefficient calculation is 
provided in detail to emphasize the necessity of employing the present 
method in this study. 

Consequently, the total continuum strain energy ESTRAIN(ξTP, ξLP, s1,
s2) for the extended dislocation can be determined by using the 
computed anisotropic interaction coefficients. The total strain energy 
involves the self-interaction energies of the leading and trailing partials 
(E11

elasticand E22
elastic, respectively) and the interaction energy between the 

two partials (E12
elastic). Thus, it is expressed as, 

ESTRAIN(ξTP, ξTP, s1, s2) = E11
elastic + E22

elastic + E12
elastic (6)  

where the terms on the RHS represent the elastic interaction energy 
between infinitesimal fractional dislocations belonging to the cores of 
the partials and they are calculated as: 

E11
elastic =

∫ ∞

−∞

∫ ∞

−∞
(K11/2π)ρTP(x)ρTP(y)ln|x − y|dxdy

E22
elastic =

∫ ∞

−∞

∫ ∞

−∞
(K22/2π)ρLP(x)ρLP(y)ln|x − y|dxdy

E12
elastic =

∫ ∞

−∞

∫ ∞

−∞
(K12/2π)ρTP(x)ρLP(y)(b̂TP.b̂LP)ln|x − y|dxdy

(7)  

2.2.2. Misfit energy: W-S cell model 
The misfit energy EMISFIT(ξTP, ξLP, s1, s2) of the extended dislocation 

associated with the disregistry functions fTP,LP(x1) Eqs. (3,4) is calcu-
lated employing a recently proposed novel Wigner-Seitz Cell Misfit (WS- 
M) model that accounts for the crystal structure and the Wigner-Seitz 
cell domain area at each atomic-site on the slip plane across which 
disregistry prevails [28]. This model accurately establishes the varying 
relative orientations of the crystal structure on the slip plane depending 
upon the character of the dislocation. The procedure involves a 
two-dimensional summation of the fault energies on the slip-plane. The 
fault energies γ(u) are sampled from the GSFE landscape of the slip 
system corresponding to the atomic-sites for the selected character. The 
rigid shear u corresponding to a specific lattice position is determined 
from the disregistry functions of the extended dislocation. The GSFE 
curve precisely quantifies the corresponding energy cost of such shear. 

Table 1 
Anisotropic interaction coefficients K11, K22, and K12 needed to compute the 
continuum strain-energy of the a/2〈011〉 extended dislocation for Ni (in units of 
×102 GPa).  

Material Char. angle (θ) K11 K22 K12 

Ni 0◦ -0.932 -0.932 -0.666  
6.58◦ -0.903 -0.969 -0.679  
8.94◦ -0.895 -0.983 -0.689  
13.9◦ -0.881 -1.014 -0.719  
23.4◦ -0.868 -1.072 -0.799  
30◦ -0.867 -1.109 -0.865  
36.58◦ -0.866 -1.140 -0.935  
46.09◦ -0.881 -1.176 -1.043  
60◦ -0.932 -1.198 -1.198  
73.9◦ -1.014 -1.176 -1.310  
83◦ -1.073 -1.140 -1.346  
90◦ -1.109 -1.109 -1.353  

Table 2 
Anisotropic interaction coefficients K11, K22, and K12 needed to compute the 
continuum strain-energy of the a/2〈011〉 extended dislocation for FeNiCoCrMn 
(in units of ×102 GPa).  

Material Char. angle (θ) K11 K22 K12 

FeNiCoCrMn 0◦ -0.862 -0.862 -0.538  
6.58◦ -0.834 -0.900 -0.560  
8.94◦ -0.828 -0.916 -0.577  
13.9◦ -0.823 -0.954 -0.626  
23.4◦ -0.827 -1.026 -0.746  
30◦ -0.830 -1.069 -0.829  
36.58◦ -0.827 -1.106 -0.906  
46.09◦ -0.823 -1.150 -1.019  
60◦ -0.860 -1.181 -1.180  
73.9◦ -0.954 -1.150 -1.282  
83◦ -1.026 -1.106 -1.306  
90◦ -1.069 -1.069 -1.309  

Table 3 
Anisotropic interaction coefficients K11, K22, and K12 needed to compute the 
continuum strain-energy of the a/2〈011〉 extended dislocation for Cu (in units of 
×102 GPa).  

Material Char. angle (θ) K11 K22 K12 

Cu 0◦ -0.441 -0.441 -0.239  
6.58◦ -0.423 -0.468 -0.251  
8.94◦ -0.418 -0.478 -0.261  
13.9◦ -0.411 -0.501 -0.288  
23.4◦ -0.408 -0.544 -0.356  
30◦ -0.407 -0.572 -0.407  
36.58◦ -0.407 -0.595 -0.458  
46.09◦ -0.411 -0.624 -0.534  
60◦ -0.442 -0.644 -0.644  
73.9◦ -0.501 -0.624 -0.714  
83◦ -0.545 -0.595 -0.733  
90◦ -0.571 -0.571 -0.736  

Table 4 
Material constants for FCC metals used in this study: intrinsic γisf ; unstable γus 
fault energies; lattice constant a, anisotropic elastic constants C11, C12, and C44 
[32–41].  

Materials a [Å] C11 
[GPa] 

C12 
[GPa] 

C44 
[GPa] 

γus [mJ/ 
m2] 

γisf [mJ/ 
m2] 

Ni 3.52 261 151 132 292 134 
Cu 3.61 171.2 123.8 75.6 180 41 
Au 4.08 201 170 46 134 33 
Al 4.05 114 62 32 162 130 
Ag 4.09 131.5 97.3 51.1 133 18 
Pb 4.95 55.5 45.4 19.4 87 49 
Pd 3.89 234.1 176.1 71.2 287 168 
Pt 3.92 357 253 78 339 324 
Ni97Co3 3.5224 251.9 152.7 124.4 303 129 
Ni90Co10 3.5215 251.7 153.1 126.1 285 112 
Ni80Co20 3.52 251.3 153.7 128.9 270 92 
Ni33Co67 3.52 238.7 155.3 131.5 205 20 
Ni90Ti10 3.52 261 151 132 220 126 
Ni80Ti20 3.52 261 151 132 140 112 
FeNiCrCoMn 3.6 221 152 165 439 8 
Fe96N4 3.57 487 251 118 510 ~0  
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The GSFE curve can be obtained by employing first-principles methods 
such as Density Functional Theory (DFT) or by using other atomistic 
simulations including Molecular Statics (MS). For more detailed 
coverage of the GSFE curve and its derivation, the reader is referred to 
[22,32]. 

The GSFE curve of FCC materials is dictated by two critical points, 
the unstable stacking fault energy barrier, γus, and the stable intrinsic 
stacking fault energy barrier, γisf , and they are provided in Table 4 for 
the materials considered in this study. With the commonly used sinu-
soidal restoring-force assumption, the GSFE curve is described by the 
following function: 

γ(u) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

γus
2

(
1 − cos

(2πu
bP

))
, for 0 ≤ u ≤ bP

2 or 3bP

2 ≤ u ≤ 2bP

γisf +
(γus − γisf

2
)(

1 − cos
(2πu

bP

))
, for bP

2 ≤ u ≤ 3bP

2

(8) 

It is more convenient to partition the full GSFE curve for the two 
Shockley partials as they have distinct Burgers vectors along different 
<121>-family directions allowing a precise determination of the asso-
ciated energy cost for each partial. Thus, it is expressed for the trailing 
and leading partials respectively as: 

γTP(u) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

γus
2

(
1 − cos

(2πu
bP

))
, for 0 ≤ u ≤ bP

2

γisf +
(γus − γisf

2
)(

1 − cos
(2πu

bP

))
, for bP

2 ≤ u ≤ bP

(9)  

γLP(u) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

γisf +
(γus − γisf

2
)(

1 − cos
(2πu

bP

))
, for 0 ≤ u ≤ bP

2
γus
2

(
1 − cos

(2πu
bP

))
, for bP

2 ≤ u ≤ bP

(10) 

After defining the individual energy curves for the Shockley partials, 
the next step is calculating the misfit energy for an extended dislocation 
comprising two distinct Burgers vectors with a total dislocation line 
length of L. As briefly mentioned, this is fulfilled by finding the corre-
sponding energy cost of the rigid shear introduced by the disregistry 
function and performing a spatial summation over the discrete lattice 
sites on the slip plane. The energy cost of such shear is sampled from the 
GSFE curve using the Eq. (8). The details of this calculation employing 
the WS-M model are described next. 

The WS-M model designates two crystallographic lattice-vectors a→1 

and a→2 on the slip plane such that the relation x→(m,n) = m a→1 + n a→2, for 
integers m,n ∈ Z, describes all the atomic sites on the slip plane. These 
two lattice-vectors depend on the crystal structure and the crystallog-
raphy of the slip-plane as illustrated in Figs. 2 (a, b) for the FCC structure 
on the {111} slip-plane. A primitive-cell on the slip plane is designated 
by these two lattice-vectors as shown by the shaded regions in Figs. 2 (c, 
d). Thus, the total misfit-energy of the dislocation described by the 
disregistry function f , is calculated as, 

EWS−M
MISFIT =

∑∞

m=−∞

∑∞

n=−∞
γ
(

f
(

m a→1 + n a→2

))
(ΔA) (11)  

where ΔA is the area of the W-S cell around each atomic site at position 

x→(m,n) = m a→1 + n a→2, γ is given by Eq. (8) and f by Eq. (1). Note that 

Fig. 2. The lattice structure of the {111} slip 
plane, for 9◦ and 60◦ character of the a/2〈011〉
extended dislocation: (a) the lattice vectors a→1, 
a→2 and respective coordinate system are shown 
for the 9◦ mixed dislocation. The dislocation 
line is parallel to the x3 direction and direction 
of motion is along x1. Two equivalent configu-
rations for the dislocation along the direction of 
motion are shown by ζ1 and ζ2. (b) the lattice 
vectors a→1, a→2 and respective coordinate sys-
tem are shown for the 60◦ mixed dislocation. 
The dislocation line is parallel to the x3 direc-
tion and direction of motion is along x1. Two 
equivalent configurations for the dislocation 
along the direction of motion are shown by ζ1 
and ζ2. (c) The misfit energy summation is 
performed along the band bounded by the 
dashed lines at each Wigner-Seitz Cell area 
shown by the shaded region. 9◦-case slip-plane 
lattice structure can be reproduced by periodic 
repetition of the emphasized atomic-sites 
within a band of length L2D = a/2|[651]| along 
the dislocation line. (d) The misfit energy 
summation is performed along the band boun-
ded by the dashed lines at each W-S area shown 
by the shaded cell. 60◦-case slip-plane lattice 
structure can be reproduced by periodic repe-
tition of the emphasized atomic-sites within a 

band of length L2D =
⃒⃒
⃒⃒ a→2

⃒⃒
⃒⃒ along the dislocation 

line.   
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depending on the character of the extended dislocation, the orientation 
of the lattice with respect to the global x1 − x2 − x3 axes varies as 
demonstrated in Figs. 2 (a, b) for 9◦ and 60◦ dislocations. Thus, the 
relative atomic sites also change depending upon the character of the 
dislocation. The direction of motion for the dislocation is shown in 
Figs. 2 (a, b), and two equivalent positions are shown by ζ1 and ζ2. As the 
dislocation moves, it passes through the dashed lines and reaches the 
subsequent equivalent position (refer Figs. 2 (a, b)). The interplanar 
spacing along the direction of motion is shown by anorm on the (111)
slip-plane for the two example cases. Note that, anorm differs signifi-
cantly with character, which has critical implications on the CRSS and 
will be elaborated further in the following sections. 

The misfit energy expression can be further simplified by exploiting 
the high symmetry of the slip plane without a loss of generalization. In 
fact, it is sufficient to perform the spatial summation over the atomic- 
sites within the bands with a spacing of L2D shown in Figs. 2 (c, d) as 
these bands repeat periodically along the dislocation line. L2D is half 
periodicity along dislocation line direction, x3, and determined by L2D =
a/2|〈lmn〉|, where 〈lmn〉 is the crystallographic direction along x3. Thus, 
utilizing this symmetry the misfit energy expression simplifies to, 

EMISFIT(ξTP, ξTP, s1, s2)

= 1
L2D

∑∞

m=−∞

∑N1

n=−N0

γ
(

f
(

m a→1 + n a→2

))
(ΔA)

(12)  

where (L2D,N0,N1) = (a/2|[651]|,3, 4) for the case of a/2〈011〉 9◦

dislocation, and (L2D,N0,N1) = (| a→2|, 0,0) for the 60◦ dislocation case, γ 
is given by Eq. (8) and f by Eq. (1). The energy is normalized by the 
length L2D so that the misfit-energy measure is normalized per unit 
length of the dislocation line. 

Rewriting the total misfit energy expression with the partitioned 
fault-energies (given by Eqs. (9) and (10)) for the individual Shockley 
partials (described by Eqs. (3) and (4)) as, 

EMISFIT(ξTP, ξTP, s1, s2) =
1

L2D

⎡

⎢⎢⎢⎢⎢⎣

∑N1

n=−N0

∑−1

m=−Mmax

γTP

(
fTP

(
x(m,n)

1

))
(ΔA)

...+
∑N1

n=−N0

∑Mmax

m=0
γLP

(
fLP

(
x(m,n)

1

))
(ΔA)

⎤

⎥⎥⎥⎥⎥⎦
(13)  

where x(m,n)
1 = (m a→1 + n a→2).ê1. A large summation limit of Mmax is 

chosen, in the order of 104, so that computed misfit energy EMISFIT(ξTP,
ξLP, s1, s2) is sufficiently converged. The misfit-energy given by Eq. (13) 
is calculated per unit length of the dislocation line. Consequently, the 

misfit-energy of the extended dislocation can be calculated as a function 
of four parameters (ξTP, ξLP, s1, s2) using the Eq. (13). 

2.3. Determination of core-structure parameters 

Having computed the continuum elastic energy ESTRAIN(ξTP, ξLP, s1,

s2) and the atomistic misfit energy EMISFIT(ξTP, ξLP, s1, s2) as a function of 
the dislocation core widths (ξTP, ξLP) and the positions of the partials (s1,

s2), one can now determine the total energy of the extended dislocation 
ETOT(ξTP, ξLP, s1, s2) from the Eq. (5). The core-parameters of the 
extended dislocation (ξ0

TP, ξ0
LP, s0

1, s0
2) that minimizes the total energy ETOT 

are determined by solving the equations: 

∂ETOT

∂ξTP
= 0; ∂ETOT

∂ξLP
= 0; ∂ETOT

∂s1
= 0; ∂ETOT

∂s2
= 0 (14) 

For more detailed coverage of how each energy component changes 
with the core-parameters readers are referred to the authors’ previous 
study [28]. The minimizing parameters (ξ0

TP, ξ
0
LP, s0

1, s0
2) are then used to 

determine the CRSS as described in the following sections. 

2.4. Effect of dislocation character on energy constituents 

The character of the dislocation influences its CRSS through modi-
fications on the two main aspects. First, the strain energy varies with 
dislocation character, which is reflected in the computed anisotropic 
interaction coefficients. Second, the misfit-energy changes significantly 
with the character of the dislocation. The effect of these individual en-
ergy terms is discussed next. 

2.4.1. Effect of mixed character on strain energy 
The anisotropic interaction coefficients for the two partials are 

shown in Fig. 3 (a) for the entire range between the edge and screw 
dislocations. K12 being negative implies that the interaction between the 
partials is repulsive so the strain energy decreases as the separation of 
the partials increases. The trend is similar for the three materials shown 
in the figure. In all cases, the edge character has the lowest interaction 
coefficient meaning that the repulsive force between the partials is the 
highest in that case. Note that, K12 lies in a similar range for Ni and 
FeNiCoCrMn, and, in fact, they almost overlap in a certain range 
covering the mixed character. This is a combined outcome of the elastic 
constants and the effect of dislocation character on the computed strain 
fields. 

Fig. 3. (a) Anisotropic interaction coefficient K12 is plotted for Cu, Ni, and FeNiCoCrMn vs. dislocation character suggesting a stronger elastic repulsion between the 
partials for the edge character; (b) Misfit energy vs. dislocation character is plotted for Ni, FeNiCoCrMn, and Cu indicating a monotonic trend for the spectrum 
between the screw and edge characters. 
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2.4.2. Effect of mixed character on misfit energy 
Misfit-energy shows a monotonic trend with the character as plotted 

in Fig. 3 (b) for the three materials. It is controlled by the critical points 
on the GSFE curve together with the core-widths of the partials and the 
stacking fault width. The misfit-energy is mainly dominated by the 
stacking fault width and a similar trend can be seen in the stacking fault- 
width vs. character plot as will be given in the following sections. 
Further, the edge character has the highest misfit energy of all three 
materials. This is due to two main reasons: (i) it implies a much wider 
core (ii) the stacking fault width is the highest for the edge compared to 
other characters. 

2.5. CRSS of a/2〈011〉 extended dislocation 

The Peierls-Nabarro (P-N) framework is the standard method 
employed to determine the CRSS [42]. However, this method cannot be 
directly applied in the present case due to several critical aspects: (i) it 
doesn’t account for the motion of the individual Shockley partials and 
only considers the full dislocation, (ii) the contribution from the elastic 
strain energy is ignored and only the misfit-energy is considered, (iii) 
effect of character cannot be correctly captured because the actual 
atomic-sites are not involved in the calculation. Thus, in this study, we 
utilize the recently proposed method to calculate the CRSS that is 
faithful to the crystal structure and considers the individual motion of 
the partials contributing to the overall CRSS, as established in detail in 
the authors’ previous study and briefly described here for the readers’ 
convenience [28]. One of the main challenges in the field for CRSS 
calculation has been the accurate calculation of the dislocation 
core-width. The glide stress of a dislocation is highly sensitive to the 

employed core-width value. Thus, there has been numerous attempts to 
address this by proposing different approaches for core-width determi-
nation [6,43–45]. The precise calculation of core-width requires that the 
total energy of the dislocation is minimized to give the equilibrium core 
structure of the dislocation. Thus, the elastic and misfit energies need to 
be precisely captured for the total energy minimization to yield the 
correct core-width of the dislocation. 

The total energy, ETOT, against the position of the Shockley partials 
(s1, s2) is plotted in Fig. 4 for the screw character a/2〈011〉 extended 
dislocation in FeNiCoCrMn. The energy surface has multiple 
energetically-degenerate minima as illustrated in Fig. 4 by points O =
(s0

1, s0
2), O1 = (s′1, s

′

2). These minima represent energetically equivalent 
configurations for an extended dislocation on the slip plane. Note that S 
is not an equivalent configuration as it implies a different stacking fault 
width (s1 +s2) compared to the points O = (s0

1, s0
2) and O1 = (s′1, s′2). 

However, in the case of very low stacking fault energy materials e.g. 
FeNiCoCrMn, these points have very similar energy values as a small 
increase or decrease in the stacking fault width does not alter the total 
energy as much compared to high stacking fault energy materials. 
Subsequently, to calculate the CRSS, the pathway containing these 
minima must be determined so that the energy-trajectory corresponding 
to the specific path representing the motion of a/2〈011〉 extended 
dislocation can be drawn from the landscape. Finally, the CRSS of the 
extended dislocation is determined from the maximum gradient on the 
energy-trajectory of the obtained pathway by considering the individual 
motion of each partial. 

For the a/2〈011〉 extended dislocation in FeNiCoCrMn the energy- 
trajectory is shown in Fig. 4 (a) by the solid line which passes through 
O, S, and O1, in the given order. The energy-trajectory represents the 

Fig. 4. Total-energy landscape of the a/2〈011〉 extended dislocation for a screw-dislocation in FeNiCoCrMn (a) Plot of total-energy ETOT against the position of the 
Shockley partials (s1, s2) indicating possible paths traversing across the energy minima O = (s0

1,s0
2), O1 = (s′1,s

′

2); the dashed-line represents a straight-path in which 
the partials move together such that stacking-fault width between them is conserved i.e. s1 + s2 = C, is constant; the solid-line represents a zig-zag Minimum-Energy 
Path (MEP) where the partials move intermittently, passing through an intermediate transition state S (b) Schematic representation of the motion of the partials along 
the MEP, in which the leading partial moves first, increases the fault-width from d to d + Δd and then the trailing partial follows; a plot of the variation of the 
stacking-fault width during the motion is given (c) Plot of the total energy variation along the MEP. 
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motion of individual Shockley partials as their positions (s1, s2) vary 
from one energetically-degenerate position, O, to the next one, O1. Thus, 
these variations in the positions of individual Shockley partials (s1, s2)
dictate the path taken by the a/2〈011〉 extended dislocation. The energy 
trajectory is determined by utilizing the “Minimum-Energy Path” (MEP) 
which implies the least resistance for the motion of the a/2〈011〉
extended dislocation. To describe this periodic path we utilize a Fourier- 
series based approach that is expressed by the following equations, 

s1(t) = s0
1 +

( 1̅ ̅̅
2

√
)(

t + C0 +
∑n

k=1
Ck

(
1 − cos 2πt

CP

))

s2(t) = s0
2 +

( 1̅ ̅̅
2

√
)(

− t + C0 +
∑n

k=1
Ck

(
1 − cos 2πt

CP

)) (15)  

where the maximum number of periodic functions is set to be n = 4, 
sufficient to reach the desired level of accuracy. t is the parametrization 
variable so that the positions of the partials are given by (s1(t), s2(t))
with O being the origin and (C0,C1,C2,C3,C4,CP) is a set of parameters 
that defines the path which connects the energetically degenerate po-
sitions (e.g. O and O1) implying equivalent configurations for the 
extended dislocation on the total energy landscape. The origin O is a 
minimum point that represents a stable configuration for the extended 
dislocation at which t = 0, s0

1 = s1(0) and s0
2 = s2(0). Note that, the 

straight-path connecting O and O1 is modeled by setting the parameter 
values C0 = C1 = C2 = C3 = C4 = 0, and for any CP ∕= 0 as illustrated 
by the dashed line in Fig. 4 (a). Nevertheless, for any other set containing 
non-zero parameter values the path is not straight but zig-zag in nature 
as shown by the solid-line in Fig. 4 (a). The energy trajectory of the path 

is calculated at discretized points by letting ti = iΔt, where Δt = 0.01A
o
. 

Finally, the total cumulative energy of the path is computed by the 
objective function expressed as: 

EPATH(C0,C1...,CP) =
∑Tmax

i=1
ETOT

(
s1(ti), s2(ti), ξ0

TP, ξ
0
LP
)

(16) 

A large enough upper limit, 2000, is chosen for the summation that is 
sufficient to capture the periodicity of the MEP. The set of parameters 
(C0,C1,C2,C3,C4,CP) defining the Minimum Energy Path (MEP) is 
determined by the minimization of the total cumulative energy of the 
path, EPATH, using MATLAB®. As shown by the solid line in Fig. 4 (a), the 
MEP is not straight but involves a zig-zag pattern avoiding the higher 
energy peaks to achieve the least resistance to glide. Additionally, as the 
extended dislocation moves tracing this path the stacking fault width, 
given by d(t) = s1(t)+ s2(t), fluctuates as shown in Fig. 4 (b). The 
amplitude of this fluctuation, given by Δd, is specific to the case and 
controlled by properties such as elastic constants, fault energy barrier, 
and dislocation character. 

Finally, the CRSS of the extended dislocation is determined utilizing 
the Optimum-Energy-Trajectory (OET) approach for CRSS prediction for 
FCC materials. This approach enables accurate calculation of the CRSS 
of an extended dislocation by individual treatment of the Shockley 
partials. For more detailed coverage of the OET approach and its deri-
vation reader is referred to [28]. In the current analysis, uniaxial tensile 
load is applied in the v̂‖[132] direction leading to a global stress tensor 
given by σa = σa(v̂ ⊗ v̂). This direction is chosen so that both leading 
and trailing partials have the same Schmid factors. Consequently, the 
CRSS is obtained by resolving the critical applied stress along the slip 
system of the extended dislocation, which is expressed as, 

τF = SFFULLmax
( 1

SFLPs′
1(t) − SFTPs′

2(t)

( 1
bF

dETOT

dt

))
(17)  

where SFLP and SFTP are the Schmid factors for the leading and trailing 
partials respectively, and s1(t), s2(t) parametrize the MEP. SFFULL = (v̂.
n̂slip)(v̂.b̂F) is the Schmid factor for the full extended dislocation on its 

Fig. 5. Effect of dislocation character on CRSS, core-width and stacking fault width (a) A schematic of the a/2[110] extended dislocation, its edge/screw components 
and its Shockley partials; the angles θ, α, and β are defined indicating the mixed nature of the full dislocation and the individual partials respectively (b) Variation of 
CRSS of the extended dislocation against θ (c) Variation of stacking fault width of the extended dislocation against θ. 
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slip system, with b̂F representing the unit vector along the direction of 

the Burgers vector b
→

F. The Schmid factors are given by the equations 
SFLP = (v̂.n̂slip)(v̂.b̂LP) and SFTP = (v̂.n̂slip)(v̂.b̂TP), where b̂TP and b̂LP are 
unit vectors along the Burgers vectors of the trailing and leading partials 
respectively, and n̂slip = 1/

̅̅̅
3

√
[111] is the slip plane normal. 

2.6. Effect of character on CRSS 

The developed framework can analyze mixed dislocations with 
arbitrary characters. This is made possible through advancements on 
two fronts: (a) the use of the Eshelby-Stroh formalism (Section 2.2.1) 
that is capable of determining the strain-fields, and consequently the 
strain-energy, of a dislocation with arbitrary character and (b) propo-
sition of calculation of the misfit energy accounting for the correct 
atomic-sites on the slip plane for the chosen dislocation character. 
Existing approaches have by and large focused only on special cases of 
dislocation character, namely of “edge” and “screw” types. The primary 
reason, in the authors’ opinion, is the simplifications afforded by these 
assumptions in their respective frameworks, either in determining the 
strain-field, calculation of misfit energy, and consequently the core- 
widths. This limits the predictability since dislocations in real mate-
rials are curved with varying characters along their length. However, the 
proposed framework can determine this maximum CRSS by analyzing 
all characters. The efficacy of the framework in this regard is illustrated 
by calculating the core-parameters and the CRSS for the a/2〈011〉
dislocation covering the spectrum between “screw” and “edge” charac-
ters. The results are presented in Fig. 5. Note that the CRSS exhibits a 
non-trivial fluctuation between edge and screw natures (refer Fig. 5 (a)). 
In fact, it exhibits a maximum in the CRSS for the 60◦-mixed character of 
dislocation that would otherwise have been missed if only the screw and 
edge natures were considered. Available experimental data for FeNi-
CoCrMn and Ni are in agreement with the results of the present study. 
For instance, for FeNiCoCrMn our prediction of 178 MPa for the 60◦ case 
is within 5% of the experimental value of 172 MPa obtained from ex-
periments done on single crystals [46,47]. Also, experimental mea-
surements for edge dislocations in Ni lie in 4.7-9 MPa which is in close 
agreement with the current prediction of 8.6 MPa [42,48]. 

The developed framework employs the average fault energetics of 
the material. One should note that, in the case of alloys there could be 
other factors contributing to the CRSS such as local solute distribution 

and short-range ordering [49–51]. Moreover, the input material prop-
erties are taken for 0 K as they can be reliably obtained from DFT sim-
ulations. For extension to finite-temperatures, the predicted 
energy-barriers along with MEP could serve as the activation-energy 
in an Arrhenius-type expression to predict CRSS at finite temperatures 
[52,53]. 

In this study, our focus is on the character effect which is incomplete 
for mainly two reasons: (a) The Wigner-Seitz cell based integration for 
misfit-energy is missing and prior treatments that treat the actual lattice 
as a simple cubic will indeed produce a much higher CRSS. The Wigner- 
Seitz cell naturally brings a dislocation character dependence that dif-
fers from the formulas based on a simple cubic lattice. We highlight the 
differences in Appendix D. The formulas for character effect in the 
literature give a smooth variation of the properties contrary to our 
findings in this paper and also trends given in FCC based alloys [54], (b) 
the intermittent motion of the partials (one partial moves first followed 
by the other) depends on the dislocation character and lowers the CRSS 
levels by avoiding higher energy peaks in the total energy surface as 
shown in Fig. 4 (a). We note that the intermittent motion (b) also de-
pends on the relative unstable and intrinsic fault energies and is far more 
significant in the low γisf cases. Such non-trivial variations are depen-
dent on the balance between the continuum strain-energy and 
misfit-energy for that character, which is controlled by the elastic 
anisotropy, underlying fault energies, and respective crystal orientation 
for the character. The proposed framework is able to model and predict 
the sensitivity of CRSS with character complementing prior studies [49, 
55]. Further, it is an experimentally very demanding task to precisely 
capture these variations, which underscores the importance and prac-
ticality of the analytical predictive model. Also, note that the stacking 
fault width also exhibits dramatic changes of similar nature (Fig. 5 (b)), 
exhibiting a near doubling of the fault width for Ni and FeNiCoCrMn 
across the spectrum of characters as consistent with experimental ob-
servations [56,57]. Such a thorough analysis of the effect of character is 
important and necessary to predict the CRSS, and consequently the yield 
strength of material reliably. 

2.6.1. Character-dependent asymmetry of core-widths and its effect on the 
CRSS 

Another complexity of the mixed dislocations is their asymmetric 
dislocation density distributions on the slip plane as briefly discussed in 
Section 1 (refer Fig. 1 (c)). This asymmetry is due to the distinct core- 

Fig. 6. Core-widths of the leading (ξLP) and trailing partials (ξTP) are plotted against the character angle, θ, measured from the color-bar and corresponding CRSS. 
Four example cases for dissociated dislocation structures schematically shown indicating the Burgers vector directions of the partials and the associated θ angle. 
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Fig. 7. Variation of continuum strain-energy and atomistic misfit-energy as a function of core-width for an isolated Shockley partial (a) The strain-energy, given by 
ESTRAIN−SP, reduces with increasing core-width owing to a more spread-out core; this reduces the repulsive interaction between infinitesimal fractionals within the 
core leading to lower strain energy (b) Plot of the disregistry distribution fSP at low and high core-widths, presented along with a schematic atomic-structure sur-
rounding the dislocation (c) The misfit energy, given by EMISFIT−SP, increases with increasing core-width owing to larger area of misfit on the slip plane; the total 
energy ETOT given by the sum of the strain-energy and misfit-energy varies as shown by the dashed line exhibiting a clear minimum at the equilibrium core-width ξ0

SP. 

Fig. 8. (a) Atomic arrangements on the slip plane for (i) screw, (ii) 60-degree, and (iii) edge cases. Relative orientations of the Burgers vectors are shown for leading 
and trailing partials by the black arrows and for full dislocations by the dashed blue arrow. The character of the dislocation is measured by the angle θ as shown for 
each case. (b) The variation of CRSS and anorm is plotted against the character of the dislocation indicating the correlation between the two parameters. 
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widths of the individual partials as plotted for a range of characters in 
Fig. 6 for FeNiCoCrMn. Each bar in Fig. 6 represents a specific disloca-
tion character, and the corresponding CRSS value is measured from the 
z-dimension. The x-y axes are showing the equilibrium core-widths of 
the leading and trailing partials for different dislocation characters, and 
it has a doughnut-looking shape when plotted for the entire spectrum 
between the edge and screw dislocations. As mentioned, the partials and 
the parent full dislocation have distinct characters as the dissociation 
dictates. This is illustrated for four cases in Fig. 6 where the character of 
the full dislocation is expressed by θ and Burgers vector directions of the 
partials are shown by the red arrows. For instance, in the case of 60◦- 

mixed dislocation, the trailing partial is of edge character whereas the 
leading partial is a 30◦-mixed dislocation. On the contrary, for the 60◦

case it is vice-versa. Further, for the pure edge and screw dislocations, 
the partials are 30◦ and 60◦-mixed, respectively. 

Moreover, this asymmetry of the density distribution dictates the 
energy path taken by the extended dislocation as the two partials have 
distinct barriers to glide. For instance, in the case of 60◦-mixed dislo-
cation, the trailing partial is of edge character and has a lower barrier for 
motion since it has a wider spread core that reduces its friction stress. 
However, the other Shockley partial is a 30◦-mixed dislocation, hence it 
has a smaller core-width and a higher resistance to glide. Thus, the edge 

Fig. 9. Dependence of the CRSS of a/2[110] extended dislocation, τF, on the fault energy barriers, illustrating a coupled dependence on both the unstable stacking 
fault energy γus and intrinsic stacking fault energy γisf . 

Fig. 10. Dependence of the amplitude of fluctuation Δd/bP in SFW during motion of an extended dislocation on the fault energy barriers, illustrating a coupled 
dependence on both the unstable stacking fault energy γus and intrinsic stacking fault energy γisf . (i), (ii) are schematic representations of the intermittent motion of 
the partials for an extended dislocation. 
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partial is more mobile than the 30◦ partial creating an asymmetry for the 
motion of the extended dislocation which is inherently incorporated 
within the proposed framework. This complex interplay between the 
partials and their interaction controls the total energy landscape of the 
extended dislocation, which is then used to predict the CRSS by finding 
the corresponding MEP for the specific case. This complexity precludes 
devising a simple empirical relationship between the CRSS and char-
acter and entails that the CRSS be calculated on a case-by-case basis 
employing the proposed framework. 

3. Discussion 

The present study establishes a predictive analytical framework for 
the CRSS of a/2〈011〉 extended dislocation with an arbitrary character in 
FCC materials While the model can be extended to other crystal struc-
tures, there are certain complexities that must be considered. For 

instance, in HCP crystals W-S cell area would differ depending on basal, 
prismatic, and pyramidal systems. Additionally, the distinction between 
the dense and loose planes, and highly distorted GSFE profiles deviating 
from simple sinusoidal description need to be addressed [58–61]. 
Further, in BCC crystals the dislocation core is spread on multiple planes 

Fig. A.1. Schematic representation of the inte-
gration setup to compute the elastic strain- 
energy of a two-dislocation system in an 
anisotropic media; the Burgers vectors of the 

two dislocations are given by b
→

TP and b
→

LP 
respectively positioned at O2(−R/2, 0) and 
O1(R/2,0) respectively. The strain-energy den-
sity is numerically integrated to yield the en-
ergy of interaction E⊥−⊥(R) as a function of the 
separation distance R, and the slope of variation 
of this function yields the anisotropic coeffi-
cient K12 (corresponding to the interaction be-
tween the trailing partial and leading partial).   

Table B1 
Anisotropic interaction coefficients computed from the current method (K11 and 
K12), and the Stroh method (KE

11 and KE
12) in GPa.  

Materials θ K11 [GPa] KE
11 [GPa] K12 [GPa] KE

12 [GPa] 

Ni 0◦ -93.2 -66.3 -66.6 -4.1 
Ni 90◦ -110.9 -65.8 -135.3 0 
FeNiCoCrMn 0◦ -86.2 -65.5 -53.8 -7.4 
FeNiCrCoMn 90◦ -106.9 -63.7 -130.9 0  

Table B2 
Prelogarithmic energy factors computed from the current method (G11 and G12), 
and the Stroh method (GE

11 and GE
12) in GPa × Å2.  

Materials θ G11 [GPa ×
Å2] 

GE
11 [GPa ×

Å2] 
G12 [GPa ×
Å2] 

GE
12 [GPa ×

Å2] 

Ni 0◦ -30.6 -15.9 -10.9 -5.1 
Ni 90◦ -36.4 -19.8 -22.2 -12.6 
FeNiCoCrMn 0◦ -29.6 -15.3 -9.2 -4.1 
FeNiCrCoMn 90◦ -36.9 -20.0 -22.6 -12.9  

Table B3 
Core-widths (ξTP,LP), Stacking fault widths (d), and friction stresses (τF) for Ni 
(screw) using both anisotropic interaction coefficient methods.  

Material Character K-Method ξTP,LP [Å] SFW [Å] τF [MPa] 

Ni Screw Stroh method (3.65, 3.65) 6.8 37.4 
Ni Screw Current study (3.52, 3.52) 7.6 18.7  

Table C1 
Calculated and measured Stacking fault widths (d), core-widths (ξTP,LP), and 
friction stresses (τF) in pure Al.  

Pure Al Method Character d, Å ξTP,LP , Å τF, 
MPa 

This study PN based 0◦ 0 (undis.) (2.8, 
2.8) 

87.8 

60◦ 6.05 (3.9, 
2.8) 

58.3 

90◦ 7.65 (3.5, 
3.5) 

13.9 

Experiments TEM 
Studies 

0◦ 0 a, 

a*(undis.)   
60◦ 5.5b   

90◦ 8.0c   

Bulatov et al. 
(DFT) [65] 

PN based 0◦ (2.1, 
2.1) 

256.4 

60◦ (3.0, 
2.9) 

97.7 

90◦ (3.5, 
3.2) 

3.2 

Bulatov et al. 
(EAM) [65] 

PN based 0◦ (3.7, 
3.4) 

88.1 

60◦ (5.4, 
5.7) 

44.9 

90◦ (6.4, 
5.2) 

24.0  

Schoeck [75] 
PN based 0◦ 0 (undis.)   

90◦ 7.4   
Carter et al. [76] OFDFT 0◦ 0 (undis.)  355   

90◦ 20.4  1.6 
Beyerlein et al. 

[77] 
PFDD 0◦ 2.6  77.8   

90◦ 6.3  19.7 
Woodward et al.  

[78] 
DFT 0◦ 5.0   

90◦ 7.0   
Olmsted et al. [64] EAM 0◦ 16 

60◦ 21 
90◦ 2  

a – experiment [79] 
a* - experiment, private communication with T. Waitz, University of Vienna 

[80] 
b – experiment [81] 
c – experiment [79] 

undis. – undissociated 
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requiring a non-planar description of the core structure [62,63]. The 
model does not rely on any empirical parameters and provides a method 
for the CRSS that captures the characteristics of a dislocation with an 
arbitrary character. The extended dislocation is described by four pa-
rameters, specifically the core widths of the Shockley partials (ξTP and 
ξLP) and the individual positions of these partials (s1 and s2). These pa-
rameters are determined from an energy minimization method that in-
corporates the elastic and misfit energies of dislocations and finds the 
optimum parameters that minimize the total energy. The elastic energy 
is obtained by utilizing the fully anisotropic E-S framework. The strain 
fields are calculated to obtain the correct strain energy density for the 
interaction yielding the accurate anisotropic interaction coefficient for 
the elastic energy calculations. The core energy of the dislocation is 
computed by the novel WS-M approach that accounts for the actual 
atomic positions on the slip plane. Thus, the proposed framework pre-
sents an accurate determination of the energy components of a general 
extended dislocation, advancing over existing approaches to the best of 
the authors’ knowledge. 

The behavior of the continuum strain-energy and the atomistic misfit 
energy is further elaborated below, using the isolated Shockley partial as 
an example. The analysis is performed for an isolated partial so that the 
coupled effect due to the other partial is eliminated. The variation of 
both the strain-energy ESTRAIN−SP(ξSP) and the misfit-energy 
EMISFIT−SP(ξSP) for an isolated Shockley partial as a function of its core- 
width ξSP are schematically illustrated in Fig. 7. As a general rule, 
dislocation has a wider core (e.g., ξ2) if the edge component is more 
dominant than the screw component since the edge component tends to 
widen the core to reduce its high elastic energy. This is due to the fact 
that the infinitesimal fractions within the dislocation core are spaced out 
further at higher core-widths, reducing their repulsive energy of inter-
action. Consequently, the strain-energy ESTRAIN−SP reduces with 

increasing core-width and the misfit energy EMISFIT−SP behaves in a 
contrasting manner. At low core-width (e.g., ξ1), the misfit within the 
core is concentrated in a smaller region, and thus exhibits low misfit 
energy. Conversely, at high core-width, the misfit is more spread out on 
the slip plane, increasing the total misfit energy. Thus, the misfit energy 
increases with core-width in direct contrast with the strain-energy. A 
minimum of the total energy ETOT is achieved at an optimal balance 
between the two energies. The corresponding core-width is the equi-
librium core-width of the dislocation. 

The varying character of a dislocation is closely related to the 
changing atomic arrangements on the slip plane with respect to the 
dislocation line direction. This is illustrated in Fig. 8 for different sce-
narios showing the crystal orientation of the slip plane for screw, 60◦, 
and edge cases. The dashed arrow shows the direction of the Burgers 
vector of the full dislocation which in combination with the dislocation 
line direction decides the character as quantified by the angle θ shown in 
Fig. 9. Notice that, the orientation of the W-S cell domain area changes 
with character and so does the integration limits, which play a critical 
role in the spatial misfit energy summation given in Eq. (13). The effect 
of changing lattice is internalized by the key quantity, anorm, as defined 
in Section 2.2.2. anorm is effectively linked to the interplanar spacing 
along the direction dislocation moves. Thus, it has a direct connection to 
the periodicity of the energy trajectory that is passed through by the 
dislocation. The relevance of this parameter, anorm, is demonstrated 
more vividly in Fig. 8 (b) by the close correlation between the CRSS and 
anorm vs. character. Although anorm is closely linked to the observed 
CRSS value, that itself is not sufficient to predict the correct CRSS as the 
correlation is not direct and affected by other properties involved in the 
analysis. Note that, anorm is the largest for the screw and 60◦ cases 
creating a larger barrier for slip. The 60◦ case is especially critical as it 
has the highest CRSS amongst all the characters and as a mixed 

Fig. C1. Dislocation density distributions for screw, 60◦, and edge cases for pure Al. Note the asymmetry of the core widths for the 60◦ case and the symmetry of the 
core widths for the edge case. Also, note the prediction of an undissociated dislocation for the screw case. 

Fig. D1. CRSS (in MPa units) as a function of orientation for pure Ni from: (a) original P-N model (b) present method. Note that the original P-N model gives stress 
levels near 1000 MPa while the current model provides CRSS levels less than 40 MPa. 
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dislocation, it has asymmetric density distribution which also contrib-
utes to its CRSS. Al is an exception to this behavior mainly because of the 
undissociated structure of the screw dislocation as obtained from the 
present analysis. The results for Al and comparison with the literature is 
provided in Appendix C. The non-trivial dependence of the CRSS on 
dislocation character is an outcome of the complex interplay between 
the material properties and the crystallography as captured with the 
present analysis. Previous studies recognized the non-symmetric dislo-
cation density distributions and limited number of them noted the non- 
monotonic variation of CRSS with character to the best of authors’ 
knowledge [64,65]. However, the current framework differs from these 
approaches primarily because of the novel W-S cell based misfit-energy 
integration. 

Another crucial advantage of the developed framework is the ca-
pacity to selectively analyze the effect of fault energetics on the CRSS, 
without the effect of elastic constants. Information of such nature is 
critical in conceiving how sensitive the CRSS is to the unstable and stable 
stacking fault energy barriers. For this analysis, the elastic constants of 
FeNiCoCrMn are employed and maintained constant while the fault 
energies are varied. The character is fixed at 60◦ as it is shown to have 
the highest CRSS amongst all characters, thus useful in predicting the 
overall yield strength of a material. Such a selective parametric study is 
only made possible by the availability of an analytical framework as 
proposed in this study. The underlying fault energy barriers are varied 
across a 16 × 16 grid of values and at each grid point, the core- 
parameters and CRSS values are determined. The results are plotted in 
Fig. 9 as a spline surface fit and the results for the shown materials are 
provided as a supplementary material. The strong role of the unstable 
fault energy γus is established. The sensitivity of dependence between 
the CRSS and the underlying core-width is dictated by γus. If γus is large, a 
small reduction in the core-widths can dramatically raise the CRSS, and 
vice versa. This barrier has a more dominant role than the intrinsic 
energy barrier γisf in dictating the CRSS. However, CRSS is also influ-
enced by γisf , yielding an increased magnitude of CRSS for higher γisf . 
The reduced core-width is because the misfit energy associated with the 
intrinsic stacking fault between the partials drives the partials to have 
smaller cores in an effort to lower the misfit energy. For low γisf values, 
one can expect that this reduction would not be as significant. However, 
when the unstable energy γus is high, such a small reduction of width 
results in a dramatic increase in the CRSS as referred to before. The 
effect of varying γisf for materials with a relatively lower γus is shown 
more clearly by the plot showing the CRSS vs γisf at a fixed value of γus 
= 300 mJ/m2 in Fig. 9. There is a drastic increase in the CRSS with 
increasing γisf , thus we can conclude that the effect of increasing γisf is 
more significant for materials with a relatively lower γus. Thus, it is a 
non-trivial coupled effect between the γus and γisf fault energies of the 
partials that leads to the higher CRSS of the extended dislocation, τF. 
Such an explanation of the dependencies of CRSS on the underlying fault 
energies has not been made thus far to the best of the authors’ knowl-
edge and is a direct consequence of the developed analytical framework. 

The intermittent motion of the partials to avoid higher energy peaks 
result in a fluctuation in SFW as shown in the Section 2.5. The amplitude 
of this fluctuation, denoted by Δd, is not unique and depends on material 
properties and dislocation characteristics. Fig. 10 illustrates the varia-
tion of Δd with the critical fault energy barriers, namely, unstable 
stacking fault energy γus and intrinsic stacking fault energy γisf . The 
elastic constants of FeNiCoCrMn are employed and maintained constant 
while the fault energies are varied, and the dislocation character is fixed 
at 60◦. This zig-zag motion, schematically depicted in (i) and (ii), is more 
substantial in materials with a high γus and low γisf , which corresponds to 
the region where many high entropy alloys lie. For instance, for FeNi-
CoCrMn Δd is higher than bP implying a more substantial intermittent 
motion of the partials. Further, for the majority of pure elements, this 

effect is relatively modest. Despite that, even a small fluctuation in 
stacking fault width is crucial for avoiding higher energy peaks to yield a 
lower CRSS closer to the experimental observations. Thus, the present 
analysis is essential in predicting the CRSS values more accurately. 

Regarding the model for high entropy alloy cases, we note that our 
CRSS formulation relies on the fault energies associated with multi- 
elements on the slip plane (in our case the Wigner-Seitz lattice). We 
are calculating the lattice resistance of 60◦ and screw dislocation for 
Cantor alloy as 178 MPa and 147 MPa respectively, in general agree-
ment with the experiments (172 MPa) on single crystals [46]. The range 
of CRSS (145-175 MPa) has been confirmed in other experimental works 
and reviews [47,66,67] as well. Our results show that an additional 
solute hardening contribution term for the screw and 60◦ cases, beyond 
the role of multi-elements in modifying the GSFE curves, may not be 
necessary. For the edge case, we calculate CRSS of 13.75 MPa, a rather 
low lattice resistance. If we did not seek the maximum lattice resistance 
orientation, one could argue that solute hardening must substantially 
contribute to CRSS based on consideration of the edge case alone. 
Twinning can activate at stress levels close to slip in FeNiCoCrMn, hence 
extra care must be taken for differentiating slip from twinning in ex-
periments [46]. Another material where single crystal data is available is 
NiCoCr with a CRSS value of 140 MPa [68], and the GSFE calculations 
give a negative SFE [69–71]. Short Range Order (SRO) effect was ruled 
out in one study [72] while it was discussed as a major contributing 
factor in others [51,73]. So, the debate on the strengthening contribu-
tions continues. We emphasize that one must evaluate the lattice resis-
tance as a baseline prior to attributing other contributions. We will show 
in a later publication that finite width of correct magnitude and correct 
CRSS are predicted based on our lattice resistance calculations on NiC-
oCr accounting for the dislocation character effects. 

4. Conclusions 

The present study establishes a predictive analytical framework for 
CRSS calculation of extended dislocation in FCC materials with an 
arbitrary character and all the inputs to the model can be obtained from 
first-principles calculations. The following critical remarks can be 
deduced,  

1. An extension to the Wigner-Seitz-Cell-Misfit (WS-M) model is 
established that is capable of analyzing dislocations with arbitrary 
characters incorporating the actual atomic arrangements on the two- 
dimensional slip-plane of the lattice for any chosen character.  

2. The variation of core-widths, SFW and CRSS values across the entire 
spectrum of characters between the screw and edge nature are pre-
sented. It is shown that the CRSS of the dislocation can exhibit a 
maximum at a non-trivial mixed character that is neither edge nor 
screw, depending upon the elastic anisotropy and the fault energetics 
of the material.  

3. The proposed framework is further utilized to reveal the complex 
dependencies of the CRSS on the underlying fault energies, namely 
the unstable stacking fault energy γus and intrinsic stacking fault 
energy γisf . It is shown that both energy barriers exhibit a coupled 
influence to elevate the CRSS of the extended dislocation.  

4. The individual behaviors of strain and misfit energies are elaborated 
using the isolated partial case as an example. The trend with varying 
core-width is elucidated revealing that the minimum total energy is 
achieved with the contribution from both energy components. 

5. The Minimum-Energy-Path (MEP) for the dislocation motion ex-
hibits an intermittent motion of partials implying a fluctuation in the 
stacking fault width during motion. The amplitude of this fluctuation 
is strongly controlled by the fault energy barriers and shown to be 
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higher for materials with high unstable stacking fault energy γus and 
low intrinsic stacking fault energy γisf barriers.  

6. The challenging case of pure Al was analyzed, and the stacking fault 
widths were predicted as zero for pure screw case and 6.05 Å and 
7.65 Å for 60◦ and pure edge cases respectively in agreement with 
experiments. 
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Appendix A: Calculation of the elastic interaction coefficients 

A brief description of the E-S formalism is provided here, and the reader is referred to [31] for a more detailed explanation of the analysis. Using 

this framework, the displacement field, u, for a dislocation with arbitrary Burgers vector, b
→

, is analytically expressed as, 

ui(x1, x2) =
1

2π
̅̅̅̅̅̅̅
−1

√
∑6

α=1
ηαAiαLsαbsln(x1 + pαx2) (A.1)  

where ηα = 1 for α ∈ {1,2, 3} and ηα = −1 for α ∈ {4, 5, 6}, and {pα,Aiα, Lsα} are the E-S constants. The E-S constants are determined from the 
equations: 

‖ Cijkm(δi1 + pαδi2)(δm1 + pαδm2) ‖= 0 (A.2)  

Cijkm(δi1 + pαδi2)(δm1 + pαδm2)Akα = 0 (A.3)  

Ljα = −δi2Cijkm(δm1 + pαδm2)Akα (A.4)  

where Cijkm is the anisotropic elastic tensor in the x1 − x2 − x3 coordinate system and δij is the Kronecker delta function. The elastic constants of the 
FCC materials considered in this study are listed in Table 4. Then, the strain-field is calculated using the relation, 

εij =
1
2

(∂ui

∂xj
+ ∂uj

∂xi

)
(A.5) 

Thus, the strain-field in terms of computed E-S constants is expressed as, 

εij(x1, x2) =
1

4π
̅̅̅̅̅̅̅
−1

√
∑6

α=1

ηαLsαbs

(x1 + pαx2)
(
Aiα

(
δ1j + pαδ2j

)
+Ajα(δ1i + pαδ2i)

)
(A.6) 

The current analysis involves two distinct Burgers vectors, b
→

TP and b
→

LP, forming the extended dislocation. These partials can have different 
characters and, hence, must be treated individually. Thus, the anisotropic E-S constants are computed separately for these partials, which are utilized 
to compute the strain-fields corresponding to trailing and leading partials, εTP

ij (x1, x2) and εLP
ij (x1, x2) respectively, from the equations (A.1-A.6). The 

core-region within radius r0 = 5bP around the center of each partial is excluded as continuum formalism does not hold in this core region where the 
strains are large. The superposition of these individual strain-fields yields the total net strain-field expressed as, 

εij(x1, x2,R) = εTP
ij (x1 +R/2, x2) + εLP

ij (x1 −R/2, x2) (A.7)  

where (0,−R/2) is the position of the trailing partial and (0,R/2) is the position of the leading partial as schematically depicted in Fig. A.1. Subse-
quently, the strain energy density distribution corresponding to the net strain field created due to the two partials is obtained as, 

eel(x1, x2,R) =
1
2Cabcdεab(x1, x2,R)εcd(x1, x2,R) (A.8)  

where Cabcd is the anisotropic elastic tensor in the x1 − x2 − x3 coordinate system. Consequently, the strain-energy per unit length of the dislocation 
line is computed by integrating the spatial strain-energy density distribution, eel, expressed as, 
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E⊥−⊥(R) =
∫Xmax

−Xmax

∫Xmax

−Xmax

eel(x1, x2,R)dx1dx2 (A.9) 

The integral in eqn. A.9 is computed numerically, over a discretized grid employing a sufficiently fine grid size (Δx1/bP = Δx2/bP ≈ 0.2) and large 
limit of integration (Xmax = 150bP) for convergence. Finally, the equation capturing the variation in total strain-energy with the separation distance is 
expressed as, 

E⊥−⊥

(
b→LP, b→TP,R

)
= C0 + K12

⃒⃒
⃒ b→LP. b→TP

⃒⃒
⃒

2π lnR (A.10)  

where C0 is the constant and K12 is the anisotropic interaction coefficient. Note that, E⊥−⊥(R) varies linearly with (lnR) as plotted in Fig. A.1 for three 
cases with different dislocation characters. The linear trend seen in Fig. A.1 is independent of the selection of R. It is clear that if one uses larger R 
values, the integration limits should be increased accordingly and the coefficient K12 remains the same. Thus, K12 is determined from the slope of the 
curve and utilized to capture the elastic interaction between the partials. Similarly, the self interaction coefficients for the trailing and leading partials, 

K11 and K22, are determined by repeating the procedure by considering the interaction between two dislocations with same Burgers vectors ( b
→

LP or 

b
→

TP). 

Appendix B: Comparison of two methods for interaction coefficient calculation 

In this appendix, we compare two methods for calculating interaction energy of a dislocation. The K interaction coefficients denote the coefficients 
determined in this study. On the other hand, the self-energy coefficient (henceforth named KE to distinguish) is to be obtained from the Stroh method 
[31]. The self-energy coefficient KE is pertinent in the calculation of total-energy of a single Volterra dislocation inside an anisotropic medium. 
However, in this study, the interaction coefficient K is pertinent to the interaction energy between two dislocations within an anisotropic medium. 
Computing this interaction coefficient, K, involves the determination of strain-energy of two dislocations E⊥−⊥(R) as a function of the distance of 
separation between them, R. 

Consider the example of the “11” component: The interaction coefficient K11 is employed to determine the interaction energy between identical 

dislocations with the same Burgers vectors b
→

LP located within an anisotropic medium with a separation distance R between them. On the other hand, 
the Stroh self-energy coefficient KE

11 is the pre-factor to one of the summands in the self-energy equation involving the 1st component of the Burgers 

vector b
→

LP. 
Expressing the above distinction in terms of equations, present method computes, 

E⊥−⊥

(
b→LP,R

)
= C0 + K11

⃒⃒
⃒ b→LP. b→TP

⃒⃒
⃒

2π lnR (B.1)  

which is analogous to Eq. (7) in the manuscript. Letting G11 = K11
| b
→

LP . b
→

TP |
2π and rewriting Eq. (B.1) we obtain, 

E⊥−⊥

(
b→LP,R

)
= C0 + G11lnR (B.2)  

where G11 is the prelogarithmic energy factor obtained from the current method. Whereas the Stroh method uses the coefficients KE
ij to determine the 

self-energy of a single dislocation within an anisotropic medium as [31,74], 

ESTROH
(

b→LP

)
=

(
KE

11
2π

(
b→LP.ê1

)(
b→LP.ê1

)
+KE

12
2π

(
b→LP.ê1

)(
b→LP.ê2

)
+ ...

)
ln Router

r0
(B.3)  

where ̂ei (i= 1, 2,3) are the unit orthonormal vectors along the coordinate system axes x1 − x2 − x3 and Router, r0 being the outer and inner cutoff radii, 
respectively.KE is the inverse of the matrix F, whose elements are, 

Fij =
∑3

α=1

(
AiαMαj +AjαMαi

)
(B.4)  

where M is the inverse of L which is obtained from Eq. (A.4). 

Hence, for a dislocation with Burgers vector b
→

, Eq. (B.3) is expressed as, 

ESTROH
(

b→
)
=

KE
ij bibj

2π ln Router

r0
(B.5) 

Letting GE =
KE

ijbibj

2π , the Eq. (B.5) can be rewritten as, 

ESTROH
(

b→
)
= GEln Router

r0
(B.6) 
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where GE is the prelogarithmic energy factor for a single Volterra dislocation. 
For the quantitative comparison of interaction coefficients of these two approaches, we present the results for Ni and FeNiCoCrMn in Table B1. 

Additionally, we provide the values for prelogarithmic energy factors, G and GSTROH computed from both methods in Table B2. 
The two energies E⊥−⊥ and ESTROH are computing physically different strain-energies and only the former computation is relevant in this study to 

determine the correct core-widths. Only through the calculation of the interaction coefficients Kij in our study can the variation of strain-energy with 
changing core-widths be captured accurately. Thus, the original Stroh calculation is not applicable to the current problem. Since these two energies 

and corresponding K-coefficients are distinct, one cannot replace K12

⃒⃒
⃒⃒ b
→

LP. b
→

TP

⃒⃒
⃒⃒ in Eq. (B.1) with an expression involving Stroh-coefficients of the form 

KE
ijbibj. 

We would like to point out that the equilibrium core-width strongly depends on the elastic interaction coefficient and small deviations in core- 
width can significantly affect the calculated CRSS. This has been a major issue in the field for CRSS determination as this sensitivity to core-width 
necessitates a precise determination of the core-width. The isotropic assumption results in significant errors in the magnitude of core-width and 
consequently in CRSS calculations even if it were to capture the behavioral trend of core-width versus character. Therefore, an anisotropic calculation 
as proposed in this study is necessary. To illustrate this, we summarize the results obtained by employing both methods in Table B3. 

Appendix C: Results for Al and comparison with the literature 

Regarding the model capabilities we offer the following comments on separation of partials and dislocation cores widths (see Table C1). 

Separation of Partials 

For pure Al, in our study, the highest CRSS is observed for the screw character, and we obtain a stable minimum in our total energy curve at zero 
separation width (undissociated), i.e., d = 0 Å and this observation is in agreement with experiments [79]. Also, for the screw case, we predict a 
dislocation core width of 2.83 Å and a corresponding CRSS of 88 MPa. There are experimental findings that point to such high CRSS values at low 
temperatures and various experimental findings are reviewed in [76]. In agreement with our result, no dissociation of partials was noted for screw 
dislocation in Al [76,82] and this case results in high CRSS levels widely known in experiments. In contrast, other works predict a finite separation 
width [64,65,77,78,83] not observed in TEM experiments [79,80]. Interestingly, in [76] the possibility of finite separations for the screw case, though 
not common, was raised. We do predict such a clear metastable point in energy at 3.5 Å (not absolute minimum) (also discussed in [76]) with 
potentially higher CRSS values (125 MPa). This points to the need for extreme care in simulations for small stacking fault widths. On the other hand, 
for the case of edge dislocations the separation width in Al in our study is finite (7.65 Å) which is in close agreement to experimental studies of 8 Å 
[79]. We predict a CRSS of 13.9 MPa for the edge case with symmetric partial core widths. Also, for the 60◦ case, we predict a stacking fault separation 
of 6.05 Å which is also in close agreement with reported experimental SFW of 5.5 Å [81] confirming the capability of the current model. 

Dislocation Core Widths 

To assess the CRSS model, one must also check two fundamental quantities: (a) the magnitude of the core-widths, and (b) the asymmetry of the 
core-widths among the partials. Regarding (a), the magnitude of the core-widths varies widely in the literature, say for aluminum [64,65,77,78]. This 
is partly due to the potentials and partly due to the simulation methodology (boundary conditions, simulation size, and elastic strain energy calcu-
lations and treatment of anisotropy) used. The non-symmetric dislocation core-widths for the 60◦ case are predicted as (3.9 Å, 2.8 Å) in our model. We 
predicted (3.53 Å, 3.53 Å) for the edge case for the partials and (2.83 Å, 2.83 Å) for the screw case. The dislocation density distributions for screw, 60◦, 
and edge cases are given in Fig. C1. The dislocation core widths are difficult to measure experimentally compared to stacking fault widths; also, many 
of the simulations do not provide them. Regarding (b), we make two points: (1) the mixed character cases must result in non-symmetric leading and 
trailing partial core widths. On the other hand, (2) it is necessary to have symmetric core widths for the screw and pure edge characters which is not 
obeyed in some of the previous works [65]. Such results are crucial to assess the theory and simulations [65]. As stated above, in most works, the core 
widths are not provided [64,76,78], and would facilitate better comparisons among different studies in the future. 

Appendix D: Comparison of character dependence of CRSS between the original P-N model and the current approach 

The original P-N method yields [6,20,54], 

σP = 2κexp
(
− 4πξ(θ)

bF

)
(D.1)  

where σP is the friction stress calculated from the original P-N model, κ = μ{cos2(θ) + [1 /(1 − ν)]sin2(θ)}, ξ(θ) = κd
2μ is the core-width of the dislocation, 

d is the interplanar spacing of the {111} planes and bF is the Burgers vector magnitude. For Ni, we take μ = 76 GPa and ν = 0.31 [84]. These results are 
compared in Fig. D1. Fig. D1 (a) provides the original P-N model and Fig. D1 (b) provides current model results. 
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