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ABSTRACT: Rhodium-catalyzed C—H insertion by donor/acceptor carbenes is a highly atom-economical synthetic tool. However, the site-
selectivity of the C—H transformation on the target molecule is often a major issue. Site-selective C—H functionalizations of challenging 
substrates like N-aryl- and N-heteroaryl piperidines could be achieved through chiral rhodium carbene intermediates, leading to the formation 
of highly stereoselective C-2 products. In addition, N-aryl morpholines and piperazines were selectively reacted at the α position to the N-aryl 
group.      

C—H Functionalization offers an attractive strategy to access 
novel scaffolds for further derivatization into potential drug candi-
dates. 1-4 One such transformation is the rhodium-catalyzed insertion 
of aryldiazoacetates into C—H bonds by means of rhodium carbene 
intermediates. 5 The site-selectivity of the reaction can be controlled 
by choosing the appropriate catalyst and several chiral catalysts have 
been developed capable of achieving these reactions with high levels 
of asymmetric induction. The utility of the methodology to generate 
chiral scaffolds has been illustrated by means of functionalization of 
cyclobutanes, 6 silacycloalkanes7 and bicyclopentanes. 8 Reactions 
are preferred at electron-rich sites but this tendency can be over-
come by using sterically crowded catalysts. 9, 10 In general, sites a to 
oxygen and nitrogen are electronically preferred, whereas sites b to 
oxygen and nitrogen are disfavored due to the electron-withdrawing 
inductive effects. 11 

Considerable interest has been shown in developing methods for 
the site-selective functionalization of piperidine as it is a privileged 
scaffold for drug discovery. 12-19 The rhodium-carbene approach was 
studied early on during the seminal work on intermolecular C—H 
functionalization, because the reaction at C-2 of piperidine with a 
phenyldiazoacetate is a quick entry to the pharmaceutical drug 
methylphenidate. 20-22 Recently, site-selective C—H functionaliza-
tion on N-protected piperidine rings was controlled by different chi-
ral dirhodium catalysts for C-2 and C-4 selectivities. 23 The reaction 

of N-Boc piperidine with trichloroethyl aryldiazoacetate was cata-
lyzed by C4 symmetric catalyst, Rh2(R-TCPTAD)4, delivering highly 
site-selective C-2 product with good diastereo- and enantioselectiv-
ities (Scheme 1a). In the same report, Rh2(R-TPPTTL)4 also pro-
vided a good stereoselective outcome for the reaction of 1-[(4-bro-
mophenyl)sulfonyl]piperidine. Under similar reaction conditions, 
we observed no conversion in the reaction of N-Boc morpholine cat-
alyzed by Rh2(S-TPPTTL)4 (Scheme 1b). This represents a classic 
example of a system where the deactivating b-substituent interferes 
with activation influence of the a-substituent.11,23 Therefore, we de-
cided to determine, whether it would be possible to design systems 
in which C—H functionalization would occur even in the presence 
of a b-substituent. We reasoned that the nitrogen group would need 
to be more electron-donating than the N-Boc group that is typically 
used but cannot be a regular amine because it would react with the 
carbene or poison the catalyst. Previously, we had shown that N,N-
dimethylanilines were susceptible to C—H functionalization24 and 
so we explored N-aryl piperidines, morpholines, and piperazines as 
substrates (Scheme 1c). Notable features of our strategy include (i) 
simple reaction set up (ii) with 1:1 stoichiometric ratio of starting 
material, (iii) excellent regioselectivity at C2 or α-C position to nitro-
gen atom, (iv) good to high diastereo- and enantioselectivities, and 
(v) tolerance of a broad range of N-(hetero)aryl substrates. 

Scheme 1. C—H Functionalization by chiral dirhodium catalyst 



 

 

 
We commenced our studies by examining the C—H functionali-

zation of N-arylpiperidines 1 with 1,1,1-trichloroethyl (4-bromo-
phenyl)diazoacetate (2a) using Rh2(S-TPPTTL)4 as the catalyst, as 
shown in Scheme 2. The trichloroethyl derivative was used because 
it tends to give higher yields and enantioselectivity in C—H func-
tionalization reactions compared to the standard methyl ester.25 
Electron-deficient N-arylpiperidines 1a–1e were smoothly con-
verted to the desired C-2 products 3aa–3ea, with good to high dia-
stereo- and enantioselectivities, whereas electron-rich derivative 1f 
failed to provide any product 3fa. Presumably, this lack of reactivity 
is because the nitrogen is too electron rich and will interfere with the 
catalyst. The C—H transformation proved to be tolerant of a broad 
range of valuable functional groups, including nitro (3aa), cyano 
(3ba), ester (3da), and halide groups (3ea). 

Inspired by the preliminary results of piperidine derivatives 1, we 
replaced electron-poor aryl groups with heteroaryl groups, which are 
more valuable groups in pharmaceutical chemistry. The reaction of 
5-bromo-2-(piperidin-1-yl)pyrimidine (1g) under the condition of 
slow addition of diazo compound 2a over 90 min gave the expected 
product 3ga in high yield with a diastereomeric ratio of 12:1 
(Scheme 3). Further simplification and optimization of the reaction 
led to the following conditions: use of 1:1 stoichiometric ratio of 
compounds 1g and 2a, and one-portion addition of diazo com-
pound 2a, significantly increasing the yield of the corresponding 
product 3ga with a similar level of diastereoselectivity. 

Having the optimized reaction conditions for site-selective C—H 
functionalization of piperidine derivatives in hand, we then explored 
the scope of N-heteroarylpiperidines 1 (Scheme 4). The dirhodium 
catalytic reaction proved to be applicable to a wide range of het-
eroaryl groups, including pyridines (3ha), pyridazines (3ia), pyrim-
idines (3ga), pyrazines (3ja–3la), and purines (3ma). The site-se-
lectivity and stereoselectivity of the thus-obtained product 3ga was 
unambiguously confirmed by X-ray crystal structure analysis.  After-
wards, the scope of trichloroethyl aryldiazoacetates 2 was investi-
gated. 2-Naphthyl (2b) and p-substituted aryl groups (2c–2d) fur-
nished the C-2 products 3jb–3jd in good yields with high levels of 
diastereo- and enantioselectivities, whereas 3,4-disubstituted aryl 
groups resulted in slightly decreased enantioselectivities in their 
products 3je–3jf. The reaction of 1,1,1-trichloroethyl 2-(6-chloro-
pyridin-3-yl)-2-diazoacetate (2g) led to the formation of the corre-
sponding product 3jg in high stereoselectivity, albeit in low yield. 
While the reaction of 3-bromophenyl diazo compound 2h showed a 
significant decrease in stereoselectivity, the reaction of 2-bromo-
phenyl diazo compound 2i delivered the C-2 product 3ji as essen-
tially a racemate. The product 3jj was obtained with a moderate level 
of enantioselectivity when 2-fluoropheyl diazo compound 2j was 
employed in the reaction. It is noteworthy that the steric hindrance 
of substituents on arenes at the ortho- and meta-position has a great 
influence on the stereoselectivity of the corresponding product 3.

Scheme 2. Site-selective and stereoselective C—H functionalization of N-arylpiperidines 



 

 

 
Reaction condition: 1 (0.75 mmol), 2 (0.30 mmol), Rh2(S-TPPTTL)4 (0.5 mol %), CH2Cl2 (5 mL), 40 °C, 1 h.

 
Scheme 3. Simplified reaction set up for stereoselective C—H functionalization 

 
Reaction conditions: 1g (x equiv), 2a (0.30 mmol), Rh2(S-TPPTTL)4 (0.5 mol %), CH2Cl2 (5 mL), 40 °C. Yields and diastereomeric ratio (d.r.) were 
determined by 1H-NMR spectroscopy using 1,3,5-trimethoxybenzene as the internal standard.

 

 

 

 

Scheme 4. Dirhodium-catalyzed regioselective C—H functionalization of N-heteroarylpiperidines 



 

 

 
Reaction condition: 1 (0.30 mmol), 2 (0.30 mmol), Rh2(S-TPPTTL)4 (0.5 mol %), CH2Cl2 (5 mL), 40 °C, 1 h. 

Having established the reaction on N-arylpiperidines, we examined 
the reaction of N-arylmorpholines. We were delighted to observe 

that these substrates were susceptible to C—H functionalization a 
to nitrogen. Thus, the working hypothesis that the use of a less 



 

 

electron-withdrawing group at the nitrogen does allow C—H func-
tionalization to occur even in the presence of electron-withdrawing 
b-heteroatoms is valid. Electron-rich and electron-poor substituents 
on N-arylmorpholines 4 provided the corresponding C-2-substi-
tuted products 5 in moderate to good yields (Scheme 5). Unfortu-
nately, the reactions are no longer highly stereoselective as both the 
diastereoselectivity and enantioselectivity with all substrates are low. 
To ameliorate the stereoselectivity outcome of morpholine products 
5, we investigated other commercially available chiral dirhodium 
catalysts in this transformation. It was found that Rh2(R-p-Br-
TPCP)4

25 furnished the corresponding C-2 product 5aa with a mod-
erate level of enantioselectivity, albeit lower yield. This generally of-
fers the potential for achieving the desired outcome for a given 

substrate of interest by matching it with a suitable catalyst and reac-
tion conditions. 

Even though N-arylmorpholines are capable of generating the 
C—H functionalization products, the overall yield and stereochem-
ical outcome is very different from the results with N-arylpiperi-
dines.  We wondered whether the C—H functionalization of mor-
pholines 4 may not be proceeding by the traditional C—H insertion 
mechanism (transition state C, Scheme 6).26 The C—H bond may 
be sufficiently deactivated by the b-oxygen that rhodium-nitrogen-
ylide (intermediate D) forms instead.  A subsequent proton transfer 
would generate iminium H and enolate intermediate F/G that 
would react together to form the formal C—H insertion product 5. 

 

Scheme 5. Site-selective C—H functionalization of N-arylmorpholines 

 
Reaction condition: 4 (0.30 mmol), 2 (0.30 mmol), Rh2(S-TPPTTL)4 (0.5 mol %), CH2Cl2 (5 mL), 40 °C, 1 h. a Rh2(R-p-Br-TPCP)4 and b Rh2(S-
DOSP)4 were used instead of Rh2(S-TPPTTL)4. 

 
To test this hypothesis, we performed intermolecular competition 

KIE experiments (Scheme 7). Both experiments of piperidines (1c 
and 1c-D10) and morpholines (4a and 4a-D8) gave KIE values of 2.2. 
These are similar to the typical value for the reaction with cyclohex-
ane, which cannot involve ylide intermediates.27 Therefore, we 

propose both reactions proceed through a direct C—H functionali-
zation reactions but the nature of the substrate has a profound influ-
ence on the stereoselectivity of the reaction. 



 

 

The catalyst-controlled C—H functionalization was also effective 
on the diaryl-substituted piperazine 6 (Scheme 8). The reaction was 
highly site-selective, forming the C—H functionalization product 7 
in moderate yield and with a moderate level of stereoselectivity.  The 

reaction preferentially occurs at the site adjacent to the more elec-
tron-rich N-aryl group, which would be expected to be most effective 
at stabilizing positive charge build up during the C—H functionali-
zation.

 

Scheme 6. Catalytic cycles for C—H insertion and ylide formation 

 
 

Scheme 7. Kinetic isotope effects 



 

 

 
Scheme 8. Site-selective C—H functionalization of N,N’-diarylpiperazines 

 
Reaction condition: 6 (0.30 mmol), 2a (0.30 mmol), Rh2(S-TPPTTL)4 (0.5 mol %), CH2Cl2 (5 mL), 40 °C, 1 h. 

In summary, we reported a general method for site-selective C—
H functionalization of N-(hetero)aryl piperidines, morpholines, and 
piperazines via a simple reaction set up and in a highly atom-eco-
nomical manner. The transformation occurred regioselectively at 
the α C—H bond next to the nitrogen atom, even though the β het-
eroatom bond in morpholines and piperazines would deactivate this 
position. The reaction of piperidines delivered highly stereoselective 
outcomes. Extension of the method, however, to morpholines and 
piperazines furnished lower levels of stereoselectivities with the sys-
tems tested. This work further illustrates the potential of C—H 
functionalization by donor/acceptor carbenes controlled by dirho-
dium tetracarboxylate catalysts and demonstrates its use for the 
rapid synthesis of pharmaceutically relevant chiral scaffolds.   
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