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ABSTRACT: Regio- and enantioselective functionalization of heteroarene C-H bonds in the absence of directing groups is a
long-standing challenge in the field of C-H activation. Herein, we present an approach involving nickel-catalyzed intermolec-
ular enantioselective C-H alkylation of heteroarenes. The process can be carried out under mild conditions using nickel(0)
catalysts with N-heterocyclic carbene (NHC) ligands in the absence of Lewis acid co-catalysts. A series of NHC nickel com-
plexes stabilized with 1,5-hexadiene were synthesized via an operationally simple approach, resulting in improved functional
group tolerance and heteroarene scope. Mechanistic investigations are consistent with a ligand-to-ligand hydrogen transfer
(LLHT) pathway where the C-H bond activation precedes a rate-determining reductive elimination step.

Heteroaromatic rings are common motifs in natural prod-
ucts and FDA approved pharmaceuticals.! Direct function-
alization of heteroaromatic C-H bonds has the potential to
streamline the synthesis of complex molecules by avoiding
the need for pre-functionalization steps.2 Despite their
prevalence, aromatic C—H bonds are relatively inert and of-
ten similar in reactivity, rendering their selective function-
alization challenging, especially in intermolecular, non-di-
rected processes.3 Over the past several decades, enormous
advances have been made in the field of selective C-H func-
tionalization through the exploration of transition metal ca-
talysis. These newly developed methods offer orthogonal
opportunities to existing strategies for the synthesis of nat-
ural products, functional materials as well as exploration of
structure-activity relationships by avoiding the pre-instal-
lation of functionalities required for traditional cross-cou-
plings.* Selective transformation of heteroaromatic C-H
bonds, however, typically rely on the use of directing groups
and second- or third-row transition metal catalysts.> To this
end, functionalizing heteroarenes that lack directing groups
using earth abundant transition metals remains underde-
veloped.6

Our interest in nickel-catalyzed C-H functionalization
stems from nickel’s relatively high earth abundance and
complementary reactivity compared with second and third-
row transition metals.” A nickel catalyzed C-H alkenylation
reaction that first reported by Nakao and Hiyama® was ex-
tensively explored computationally by Perutz and co-work-
ers.? The authors proposed that C—H activation proceeds
through a novel ligand-to-ligand hydrogen transfer (LLHT)
pathway rather than the formation of a discrete nickel-hy-
dride via oxidative addition. Under this framework, a vari-
ety of aromatic C-H bonds have been functionalized using
the combination of nickel(0) pre-catalysts and NHC or phos-
phorus-based ligands.l® Enantioselective LLHT processes
are more rare, with intramolecular asymmetric cyclization
being described by Yell, Cramer,'2 Ackermann!? and Shi!#

groups, enabled by the design of novel ligand scaffolds
(Scheme 1).In 2018, the Ye group reported a Ni-Al bimetal-
lic enantioselective C-H exo-selective cyclization of imidaz-
oles with alkenes promoted by secondary phosphine oxide
(SPO) ligands.!12 Shortly after, the Cramer group developed
a modular synthesis of IPhEt ligand family, which was first
reported by Galway and co-workers.!> These catalytic sys-
tems were successfully applied to the C-H functionalization
of pyridones!?a 12¢, pyrroles and indoles.!2d Independently,
the Ackermann group discovered that the combination of
nickel and JoSPOphos allowed for the asymmetric C-H func-
tionalization of imidazoles without the need of external
Lewis acids, and they further illustrated this novel catalysis
with a well-defined nickel(Il)-JoSPOphos complex.132 Re-
cently, Shi and co-workers reported the intermolecular en-
antio- and regioselective nickel-catalyzed C-H functionali-
zation of pyridines with styrenes,4c demonstrating the
unique selectivities of ANIPE-type ligands.1¢

Scheme 1. Nickel catalyzed asymmetric heteroaromatic

C-H alkylation via ligand-to-ligand hydrogen transfer
(LLHT)
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While important advances have been made in enantiose-
lective intramolecular cyclization processes, the corre-
sponding enantioselective intermolecular transformations
are underdeveloped and represent an important gap in the
field.1*c To address this challenge, we report herein a
method for the intermolecular enantioselective C-H alkyla-
tion of heteroarenes under mild conditions using a hin-
dered NHC ligand with backbone chirality. An NHC ligand
motif not previously utilized in enantioselective LLHT pro-
cesses is paired with a strategy for the utilization of discrete
1,5-hexadiene-supported nickel(0) complexes to improve
catalytic activity, increase functional group tolerance, and
widen substrate scope of the transformation.

We began our efforts by exploring the alkylation of ben-
zoxazole with norbornene (nbe) using nickel catalysts. Af-
ter screening several common chiral ligands for enantiose-
lective nickel catalysis, we found that NHCs derived from
commercially available chiral diamines provided apprecia-
ble enantioinduction while maintaining good reactivity.
Upon optimization of the reaction conditions through vari-
ation of ligand structure, solvent, temperature, and addi-
tives (see supporting information), we set out to demon-
strate the utility of this method by exploring the scope of
heteroarenes (Scheme 2). The optimized conditions involve
in-situ preparation of an active chiral catalyst via the use of
5 mol % L5¢HBF4, KHMDS and Ni(COD)2. The process is tol-
erant of electron-neutral and electron-rich benzoxazoles
substituted at various positions (1a-1f) to give the alkyla-
tion products with good yields and enantioselectivities. Se-
lective functionalization of benzofurans was also observed
for C2 C-H bonds leaving functional groups such as boronic
esters intact (1g-1i). LLHT products were not observed
when using 5-bromobenzofuran as substrate (1j), which
could be attributed to the facile activation of C(sp2)-Br
bond in the presence of low-valent nickel catalyst. Benzim-
idazoles previously studied by Ackermann?32 and Ye!!2 for
enantioselective cyclizations were also reactive in the inter-
molecular system. We showed that nbe reacted with N-Me
and N-Ph benzimidazoles (1K, 11) to yield the C-H function-
alization products with moderate enantioselectivity at 60
°C (vide infra). Interestingly, a C5-alkylated 1,2,4-triazole

was exclusively obtained with high regio- and enantioselec-
tivity despite the more hindered environment (1m). Other
nitrogen containing heteroaromatic rings including caffeine
(1n) and 3-methylquinazolin-4(3H)-one (10) also under-
went efficient couplings to give the desired product in good
yields and 90:10 and 87:13 e.r. respectively. All of the alkyl-
ation products were obtained as a single, exocyclic diastere-
omer originating from steric biases.

Scheme 2. Enantioselective heteroaromatic C-H
functionalization scope 2
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aReactions were performed at 0.10 mmol scale and yields
were reported for isolated products. b Reaction was carried
out at 60 °C.

When examining benzoxazoles bearing electron-with-
drawing substituents, however, the desired alkylation
products were not obtained using the standard protocol de-
scribed above. We postulated that the increased acidity of
benzoxazole’s C-2 C-H bond could lead to deleterious side
reactions with 1,5-cyclooctadiene (COD) from the nickel
pre-catalyst, resulting in unproductive off-cycle intermedi-
ates. The diminished reactivity of benzoxazoles bearing
electron-withdrawing groups has similarly been observed
by Ong and co-workers in their study of hydroarylation of
cyclic dienes.’” The inhibitory effect of COD in C-H activa-
tions was previously described by our laboratory in the de-
velopment of alkyne hydroarylation reactions involving
LLHT pathways.”»7¢ This feature originates from the partic-
ipation of COD in a competing LLHT C-H activation that re-
sults in a stable off-cycle n-allyl complex that minimizes the
concentration of the active catalyst for productive catalysis.
This side reaction was prevented by employing 1,5-hexadi-
ene-supported nickel pre-catalysts!® leading to a more effi-
cient alkyne hydroarylation at reduced temperatures. Moti-
vated by this finding, we set out to develop the synthesis of
NHC nickel complexes stabilized by 1,5-hexadiene from eas-
ily accessible nickel precursors under operationally simple
conditions. Inspired by work done by Wilke and co-workers
on the synthesis of ‘bis(olefin)nickel-ligand complexes’?® as
well as Belderrain and Nicasio’s nickel bis-styrene com-
plex,2° we anticipated that ligand exchange from COD to 1,5-
hexadiene followed by trapping with free NHC ligands
would allow facile access to a variety of sterically demand-
ing NHC nickel complexes. Using this approach (see sup-
porting information), we were able to synthesize 1,5-
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hexadiene nickel complexes bearing IMes, IPrMe, [Pr*oMe ag
well as the optimal ligand for the enantioselective transfor-
mation described above (L5 in Scheme 2), whose structure
was unambiguously confirmed using x-ray crystallography
(Scheme 3).

Scheme 3. Synthesis of NHC nickel complexes stabilized
with 1,5-hexadiene 2
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With these novel catalysts in hand, we first tested their
reactivity using benzoxazole (1a), and comparable results
were obtained (Scheme 4). Moreover, the synthesis of en-
antioenriched alkylation products could be carried out us-
ing aslow as 2.5 mol % L5-Ni(C¢H10) at 1.0 mmol scale with-
out diminished enantioselectivity. We employed this cata-
lyst with previously problematic substrates including those
that feature electron-withdrawing substituents. While the
in-situ-generated chiral catalyst at 10 mol % loading gave
no reaction, 1p and 1q underwent alkylation smoothly to
give desired products using the discrete nickel catalyst L5-
Ni(CsH1o), where excellent enantioselectivities and clean re-
action profiles were observed. Most surprisingly, products
arising from chemoselective C-H functionalization were ob-
served as the sole product with 93:7 e.r. in the presence of
competing C-Cl bonds, which are susceptible to facile acti-
vation with low-valent nickel catalysts (1r). The corre-
sponding bromide substrate 1j (Scheme 2) was unreactive
under condition B with defined pre-catalyst L5eNi(CsH1o).
Lastly, substituted indoles and azaindoles could also be in-
cluded into the scope simply by raising the reaction temper-
ature to 60 °C (1s-u), thus demonstrating the broad func-
tional group compatibility of this Lewis acid free approach
to C2 alkylated heteroarenes.

Scheme 4. Broaden the scope with a pre-synthesized
1,5-hexadiene catalyst 2
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Enantioenriched 1,1-diaryl ethanes, which are recog-

nized as valuable units in active pharmaceutical ingredi-
ents, are challenging structural motifs to access.2 We hy-
pothesized that this newly developed enantioselective hy-
droarylation strategy could enable access to enantioen-
riched 1,1-diaryl ethanes and allow for a rapid buildup of
molecular complexity. As outlined in Scheme 5, an initial
screen of several chiral NHCs that showed activity in the
above studies revealed that ortho-substitution on the N,N-
diaryl imidazolium scaffold had a large effect on reactivity
and enantioselectivity. Though L5¢HBF. exhibited poor re-
gioselectivity control (linear to branched), steric effects
were important in the observed enantioselectivities. Chang-
ing the identity of the aryl groups on imidazolium in
L7«HBF4+improved regioselectivity, though enantioselectiv-
ity was diminished. Further decreasing the steric hinder-
ance with mono-substituted N,N-diaryl
L8¢HCI suppressed the formation of linear product while
increased the yield of the branched product, albeit with neg-
ligible improvements in enantioselectivity. As modification
of the mono-substituted arene of the imidazolium did not
give improved results (L9¢HCl), we opted to explore the
preliminary scope of this reaction with L8¢HCI, which gave
the best reactivity and regioselectivity. 1,1-diaryl product
4ab was formed in 80% yield and 66:34 e.r. when reacting
benzoxazole (1a) with styrene (2b). This method could be
applied to 1- and 2-vinyl naphthalenes (2d, 2c), accessing
exclusively the branched product with moderate control of
enantioselectivity. Excellent regioselectivity for the ben-
zylic position was observed with trans-fB-methylstyrene
(2e), albeit modest yield and enantioselectivity. While the
combination of regioselectivity and enantioselectivity of hy-
droarylations of simple styrenes falls short of the levels
needed for synthetic application in its current form, the in-
sights provided into the role of NHC structure in modulating
the reaction outcome will be useful in guiding further study.

imidazolium

Scheme 5. Asymmetric alkylation with styrene and its
derivativesa
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Having established this catalytic system to efficiently per-
form alkylation of heteroarenes with nbe and styrenes, we
next turned our attention to investigating the mechanism of
the transformation. Based on previous nickel-catalyzed
C(sp?)-H functionalization studies, we hypothesized that
this reaction operates through a ligand-to-ligand hydrogen
transfer (LLHT) mechanism where a concerted oxidative
addition, migratory insertion bypasses the formation of a
discrete nickel-hydride intermediate.® C-H functionaliza-
tion that proceed through LLHT often exhibit a characteris-
tic fast, reversible C-H activation and rate-determining re-
ductive elimination.’e To probe this characteristic, we con-
ducted parallel KIE experiments with deuterium-labelled 5-
phenylbenzofuran at 50 °C. The absence of kinetic isotope
effect (KIE=1.0) suggests that C-H activation is not involved
in the rate-determining step, as expected in the LLHT mech-
anism (Scheme 6a).

“Same excess” experiments were performed by maintain-
ing the absolute concentration difference between nbe and
arene to gain initial insights about the reaction progres-
sion.22 As shown in Scheme 6b, the overlay of three kinetic
profiles indicates that neither catalyst deactivation nor
product inhibition were occurring. Next, varying the con-
centration of each component, the rate of the reaction was
determined to be first order in arene and catalyst, and in-
verse first order in nbe (see supporting information for de-
tails).

Scheme 6a) Parallel KIE experiments.
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Parallel three experiments were run with initial 1h-F concen-
tration [1h-F]o=0.30,0.20 and 0.10 M respectively ([2a] - [1h-
F] = 0.10M). Reactions were monitored with 19F NMR, time ad-
justed.

Scheme 6¢) Proposed mechanism.
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Based on the above observations and by drawing analogy
with previous mechanistic studies,? 9 10h.13b we propose the
following mechanism for the enantioselective C-H alkyla-
tion of heteroarenes (Scheme 6c). The catalytic cycle is ini-
tiated by ligand exchange between nbe and heteroarene to
form intermediate II, which then undergoes reversible lig-
and-to-ligand hydrogen transfer (LLHT),?3 resulting in the
generation of aryl-bound nickel(Il) species III. Previous
studies by Hartwig and others have shown that the isomer-
ization of III to a T-shaped intermediate IV precedes reduc-
tive elimination.1°h 2¢ From intermediate IV, rate-determin-
ing reductive elimination delivers V, which, upon a fast lig-
and exchange with nbe, regenerates the catalyst, which is in
good agreement with the result from “same excess” experi-
ments that show no product inhibition.

The inverse first-order dependence in nbe is consistent
with the dissociation of nbe in the I to Il conversion, and the
order analysis additionally indicates that nbe does not reas-
sociate with the nickel center in the conversion of from in-
termediate III to IV (Scheme 6c). This absence of reassocia-
tion of alkene has also been observed by Hartwig and co-
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workers in their studies of anti-Markovnikov hydroaryla-
tion reactions.1%! [n contrast, previous studies by our group
described a zero-order dependence in alkyne in the hy-
droarylation of alkynes, which was attributed to association
of the alkyne to the nickel center prior to reductive elimina-
tion through a mechanism that otherwise patterns that de-
scribed for nbe hydroarylation.”

In conclusion, a strategy for the intermolecular enanti-
oselective hydroarylation of alkenes using a nickel-cata-
lyzed ligand-to-ligand hydrogen transfer approach has been
developed.[23]1 The strategy involves an operationally simple
approach using structurally well-defined NHC nickel(0)
complexes that incorporate 1,5-hexadiene as ligand to im-
prove reactivities. The method was applied to the enanti-
oselective C-H functionalization under mild conditions
with a wide heteroarene scope. This method was further ex-
amined with simple styrene derivatives, delivering 1,1-di-
aryl ethanes in good yields and modest enantioselectivities.
The identification of a well-defined, sterically demanding
C2-symmetric chiral NHC complex allows for intermolecu-
lar alkylation of a wider range of heteroarenes to occur
without the need for Lewis acid additives. Mechanistic in-
vestigations are described by mapping the fundamental
steps via kinetic profiles, which further support a LLHT
pathway to activate the heteroaryl C-H bond and illustrate
mechanistic differences that result from the nature of n-sys-
tems employed. This study provides important insights into
the features that optimize catalyst performance in the en-
antioselective intermolecular functionalization of C(sp?)-H
bonds and explores a range of arenes and alkenes that par-
ticipate in the transformation.
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