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ABSTRACT: Rhodium(II) catalyst-controlled site- and stereoselective carbene insertion into the distal allylic C(sp3)-H bond of allyl boro-
nates is reported. The optimum chiral catalyst for this reaction is Rh2(S-TPPTTL)4. The fidelity and asymmetric induction of this catalytic 
transformation allows for a highly diastereoselective and enantioselective C-C bond formation without interference from the allyl boronate 
functionality. The resulting functionalized allyl boronates are susceptible to stereoselective allylations, generating products with control of ste-
reochemistry at four contiguous stereogenic centers. 

Allylboronic acid derivatives are useful allylation reagents, capable of 
reacting with a variety of electrophilic substrates in a stereoselective 
manner.1  One of the most significant of these transformations is the 
allylation of aldehydes, which can be used to generate products with 
two new stereocenters in a highly diastereoselective manner.2-7 Ei-
ther chiral auxiliaries8-13 or chiral catalysts14-21 can achieve high levels 
of asymmetric induction. We have recently examined various sub-
strates for enantioselective catalyst-controlled intermolecular C–H 
functionalization by means of donor/acceptor carbene-induced C–
H insertion.22-31 In this study we examined the use of allylboronates 
as substrates for the carbene C–H functionalization and determined 
whether the resulting elaborate allyl boronates can then be used in  
stereoselective allylation reactions.  

Many synthetically useful reactions have been developed involv-
ing the reactions of transient metal carbenes with boron compounds.  
Representative examples include rhodium-catalyzed a-arylation 
and a-vinylation of rhodium(II) azavinyl carbenes  derived from N-
sulfonylimines,32 copper-catalyzed cross-coupling reactions be-
tween allylboronic acids and a-diazo carbonyls,33 and B–H insertion 
reactions.34, 35  In contrast, there are relatively few examples in which 
the boron functionality is compatible in the carbene chemistry and 
remains unchanged.36 Davies and co-workers showed pinacol-
borane-functionalized aryldiazoacetates are viable substrates for car-
bene reactions (Scheme 1).37 Murakami and coworkers reported a 
highly efficient and stereoselective cyclopropanation of allyl pinacol-
boranes using N-mesyltriazoles as carbene precursors.38 In this study 
we describe the stereoselective and site-selective carbene insertion 
into C(sp3)–H bonds of allyl boronic esters and demonstrate that 
the highly functionalized allylboronates can be employed in a subse-
quent allylation reaction. 

The first stage of the study explored whether allylboronic acid de-
rivatives were viable substrates for C–H functionalization with rho-
dium carbene intermediates.  A catalyst screen using the pinacolo-
boron derivative 1 as substrate with the standard trichloroethyl ar-
yldiazoacetate 223 was conducted (Table 1). All the standard chiral 
catalysts resulted in site selective reactions at the distal allylic posi-
tion to the boron functionality to form 3. Presumably, the electron-
withdrawing nature of the boronate group blocks C–H functionali-
zation at the proximal allylic position. 

 
Scheme 1. Carbene reactions with boron compounds 
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The diastereoselectivity of the reaction was dependent on the cat-
alyst.  Our original chiral catalyst, Rh2(R-DOSP)4 gave a 3.6:1 d.r. 
and many of the newer catalysts gave even worse results (entries 1-
5). Rh2(S-TPPTTL)4 was the only catalyst that gave a good diastere-
omeric ratio of 3 (9.6:1 d.r.) and it also resulted in reasonable levels 
of enantioinduction (80% ee) (entry 6).39 Recently, Rh2(S-
TPPTTL)4 has been shown to give enhanced enantioselectivity 
when HFIP or NFTB was used as an additive.28, 40, 41 Conducting the 
reaction with either additive (0.1 equiv) increased the enantioselec-
tivity to 92-93% ee (entries 7 and 8). Modifying the temperature of 
the reaction was not beneficial as the yield dropped at lower temper-
atures and the stereoselectivity dropped at higher temperatures (see 
SI for complete details). 

With the optimized catalyst in hand, we set to investigate the 
asymmetric Rh2(S-TPPTTL)4 catalyzed carbene C(sp3)–H func-
tionalization with a range of allyl boronic esters 4-8 (Scheme 2). In 
addition to the reactions at 2° sites, the reactions could be conducted 
at 1° sites, as illustrated in the formation of 9 and 10, and tertiary al-
lylic sites as seen with 11. In each case, the enantioselectivity was rel-
atively constant, between 93-95% ee. The formation of 10 illustrates 
the influence of steric control because the substrate has two allylic 
methyl groups but only the trans methyl group is functionalized. 
 
Table 1. Catalyst optimization studies 

 
Entry L % yieldb r.r.c d.r.c % eed 

1 R-DOSP 89 >98:2 3.6:1 --- 

2 S-p-BrTPCP 76 >98:2 2.7:1 --- 

3 S-2-Cl-5-BrTPCP 82 >98:2 1.5:1 --- 

4 R-PTAD 65 >98:2 1:1 --- 

5 R-TCPTAD 74 >98:2 3:1 --- 

6 S-TPPTTL 95 >98:2 9:1 80 

7e S-TPPTTL 62g >98:2 8:1 92 

8f S-TPPTTL 54g >98:2 9:1 93 
(a)Reaction conditions: 1 (0.6 mmol), 2 (0.2 mmol), [Rh] catalyst 
(1 mol %), 3 h reaction time. (b)combined NMR yield of 3 and its 
diastereomer. (c)determined by crude NMR analysis. (d)determined 
by chiral HPLC analysis of the isolated major product 3. (e)0.1 equiv 
of HFIP (hexafluoro isopropanol). (f)0.1 equiv of NFTB (no-
nafluoro-tert-butyl alcohol). (g)Isolated yield of the major diastere-
omer 3.  

 
Figure 1. Selected catalysts for optimization 

Scheme 2. Scope of allyl boronic estersa 

 
Allyl boronates with a longer alkyl chain generate the desired prod-
uct 12 but the enantioselectivity (66% ee) and diastereoselectivity 
(3:1 d.r.) are considerably inferior. A brief study was also conducted 
to examine the influence of the boronate. As the boronate is well 
away from the site of C–H functionalization, it should have limited 
influence on the stereochemical outcome of the reaction and indeed  
13 was formed with similar stereocontrol as was seen for the pina-
colonate 3. Catecholborane, however, was not an effective substrate 
for this reaction because the monosubstituted aryl ring in catechol 
borane is prone to cyclopropanation. 

The study to date has been conducted on p-bromophenyldiazo-
acetate 2 but the reaction can be extended to a range of other aryldi-
azoacetates (14-22) as illustrated in the formation of 23-31 
(Scheme 3). In most instances, the enantioselectivity of the reaction 
was >85% ee. However, there were some distinctive trends in the di-
astereoselectivity.  Electron deficient substituents at the para posi-
tion caused a drop in diastereoselectivity, as seen in the formation of 
the nitro derivative 26, (4:1 d.r.) but it was formed with highest level 
of enantioselectivity (98% ee).  Aryldiazoacetates with meta-substit-
uents enhance the diastereoselectivity, with the methoxy derivative  
Scheme 3. Scope of aryldiazoacetatesa 
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29 giving the best result (15:1 d.r.). The compatibility of the current 
approach with heteroaryldiazoacetates was tested with carbene pre-
cursors containing pyridine functionality as well as dihydrobenzofu-
ran. In both cases, the products 30 and 31, were formed uneventfully 
with respectable levels of stereocontrol.  

One of the most useful applications of allyl boronates is in stere-
oselective allylations of aldehydes.  Typically, the reaction proceeds 
through a chair-like transition state leading to excellent diastere-
ocontrol.9 When chiral allylboronates are used, highly enantioselec-
tive reactions can be achieved.11, 12 Therefore, we decided to explore 
whether the two stereogenic centers generated in the C–H function-
alization steps can be followed by a stereoselective allylation to gen-
erate products with four contiguous stereogenic centers (Scheme 4).  
Also, we wished to determine whether the two chiral influences 
would operate independently of each other, in which case, the chiral 
catalyst would control two stereogenic centers and the chiral auxil-
iary on the boronate would control the other stereogenic centers. 
Scheme  4.  Proposed synthesis of four stereogenic centers 

 
The a-pinene-derived auxiliary developed by Brown13, 42-47 and 

others7, 48, 49 was used in the study because it has been shown to cause 
high asymmetric induction in the allylation step and was expected to 
be compatible with the rhodium(II) carbene reaction.  The asym-
metric induction in Rh2(TPPTTL)4-catalyzed C–H 

functionalization of 32 was controlled by the catalyst (Scheme 5). 
Both  Rh2(S-TPPTTL)4 and the Rh2(R-TPPTTL)4-catalyzed  reac-
tions were highly stereoselective.  In the Rh2(S-TPPTTL)4-cata-
lyzed reactions, the isomer ratio for the two newly generated stereo-
genic centers was 9:76:3:12 d.r. and the asymmetric induction was 
88:12 (peaks 2 and 4 versus peaks 1 and 3).  Very similar stereo-
chemical results were obtained in the Rh2(R-TPPTTL)4-catalyzed 
reaction to form 36 (76:12:10:2 d.r.) with an asymmetric induction 
of 86:14 (peaks 1 and 3 versus peaks 2 and 4).  Thus, the chiral aux-
iliary has little influence on the asymmetric induction generated by 
the catalyst during the C–H functionalization.  

The allyl boronate 33 was then applied to the allylation of benzal-
dehyde to form the homoallylic alcohol 34 which has four contigu-
ous stereogenic centers in 53% isolated yield and excellent enanti-
oselectivity (91% ee).  The ratio of the two major diastereomers in 
34 was 24:1 d.r. The shielding effect of the phenyl rings in the NMR 
allowed a tentative assignment  of the major diastereomer as drawn. 
(see supporting information for details)  Confirmation of this as-
signment was made by conversion of the major diastereomer of 34 
to lactone 35 (75% yield), which generated suitable single crystals 
for an X-ray crystallographic determination of the relative and abso-
lute stereochemistry. A similar allylation with 36 was expected to 
generate a different major diastereomer to 34.   The NMR of the re-
sulting product 37, however, was identical to 34, leading to an initial 
tentative assignment of 37 as the enantiomer of 34.  This was subse-
quently confirmed by converting the major diastereomer of 37 to 
lactone 38, which was shown by single crystal X-ray crystallography 
to be the lactone enantiomer of 35.  

.
 

Scheme 5.  Allylation of C–H functionalization product
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These results indicate that the stereochemistry of the two newly 
formed stereogenic centers during allylation was controlled by the 
configuration of the two stereogenic centers generated by the C–H 
functionalization.  The boron chiral auxiliary played virtually no role 
in the stereochemical outcome of the allylation.  To test this hypoth-
esis, the allylation of benzaldehyde was conducted on the pinacolone 
boronate 3, lacking a chiral auxiliary.  The reaction gave rise to 34 
with control of  the relative stereochemistry at the four stereogenic 
centers in a similar way to the outcome with the chiral auxiliary 

These results demonstrate that stereogenic centers at the distal al-
lylic position in allyl boronic esters are able to exert excellent stere-
ocontrol on the allylation. Even though extensive studies on the ste-
reoselectivity of allylation with allyl boronates have been con-
ducted,50, 51 relatively few examples have been reported with stereo-
genic centers adjacent to the distal allyl group relative to the boron 
functionality,52 presumably because such chiral allyl boronates 
would not be readily accessible.  A reasonable explanation for the 
stereocontrol is illustrated in the presumed chair-like transition state 
of the allylation.1, 53  The bulky group would be aligned anti- to the 
allyl group and then there is competition for attack on the side of the 
methyl group or the hydrogen.  A chair transition state with the ben-
zaldehyde approaching on the side of the hydrogen (TS1) is con-
sistent with the observed stereochemical outcome.  

In conclusion these studies demonstrate that allylic C–H func-
tionalization of allyl boronates with aryldiazoacetates at the distal al-
lylic position to the boronate is a favorable process.  The optimized 
catalyst, Rh2(S-TPPTTL)4 is capable of functionalizing 1°, 2° and 3° 
C–H bonds with good enantiocontrol.  Furthermore, in the case of 
2° C–H  functionalization, good diastereocontrol is also possible.  
The resulting chiral allylboronates can undergo allylation of benzal-
dehyde to generate a product with four contiguous stereogenic cen-
ters.  The asymmetric induction in the allylation is controlled by the 
two stereogenic centers generated in the C–H functionalization 
step.  These studies further demonstrate the versatility of the dirho-
dium-catalyzed C–H functionalization by donor/acceptor carbenes 
and illustrate how the corresponding products can be applied to 
even more elaborate synthetically useful products. 
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