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Abstract. We extend the method of controlled Lagrangians with kinetic shaping to those
mechanical systems on semidirect product Lie groups with broken symmetry, more specifically to the
Euler—Poincaré equations with advected parameters. We find a matching condition for the controlled
Lagrangian for such systems whose configuration manifold is a general semidirect product Lie group
G x V. Our motivating examples are a bottom-heavy underwater vehicle and a top spinning on a
movable base. Their configuration space is the special Euclidean group SE(3) = SO(3) x R3, where
the SE(3)-symmetry is broken by the gravity. The controls resulting from the matching condition
stabilize unstable equilibria of these examples. Furthermore, the matching helps us find additional
dissipative controls that asymptotically stabilize those unstable equilibria.
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1. Introduction.

1.1. Motivating examples. The goal of this paper is to extend the method
of controlled Lagrangians to a class of mechanical systems on semidirect product Lie
groups with broken symmetry in order to find controls that stabilize their unstable
equilibria. Our motivating examples are a bottom-heavy underwater vehicle and a
heavy top spinning on a movable base shown in Figure 1.

These system, although seemingly quite different, have a few features in common:

(i) Their configuration space is the semidirect product Lie group SE(3) := SO(3) x

R3.

(ii) One cannot decouple the dynamics into those in the rotational dynamics in SO(3)
and the translational dynamics in R? as in the standard rigid body dynamics due
to their interactions.

(iii) The gravity breaks their SE(3)-symmetry the system would otherwise possess.

Motivated by the first two features, we would like to consider mechanical systems
whose configuration manifold is a semidirect product Lie group S := G x V. If the
S-symmetry were not broken, the system would possess S-symmetry, and as a result,
one would be able to write the equations of motion as the standard Euler—Poincaré
equation (see, e.g., [29, Chapter 13]) on the Lie algebra s := g x V of S. However, the
broken symmetry mentioned in the last feature prevents one from performing such a
symmetry reduction.

In order to remedy the broken S-symmetry, one may introduce the so-called ad-
vected parameters to the formulation to recover the S-symmetry. Assuming that the
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(a) Bottom-heavy underwater vehicle (b) Heavy top spinning on movable
base

Fic. 1. Motivating examples.

advected parameters live in the dual X™* of a vector space X, the resulting FEuler—
Poincaré equations with advected parameters [20, 9] give differential equations on
5 X X*.

1.2. Controlled Lagrangians. The method of controlled Lagrangians was orig-
inally developed for those systems described by the Euler-Lagrange equations [31, 18,
19, 4, 5, 13] and was also applied to the standard Euler—Poincaré systems [2, 6, 3].
We also note that there is the Hamiltonian version developed in [35, 32, 17, 33, 1] (see
also [30, section 12.3]); the two approaches are known to be equivalent for a certain
class of systems [12].

We extend the method of controlled Lagrangians to the Euler—Poincaré equations
with advected parameters for those mechanical systems whose configuration manifold
is a semidirect product Lie group S = G x V—with a particular interest in the case
with S = SE(3) = SO(3) x R? motivated by the examples shown above.

The main advantages of the Euler—Poincaré equations with advected parameters
are the following:

1. The equations of motion are defined on the vector space s x X*.

2. It does not directly involve parametrizations of the group S such as the Euler
angles, which are known to cause difficulties in numerical computations [38, 24]
because of coordinate singularities.

3. The kinetic energy is typically defined in terms of a quadratic form defined on
the vector space.

These features, particularly the last one, are particularly desirable for the kinetic
shaping with the method of controlled Lagrangians because it boils down to consid-
ering a different quadratic form on the vector space. In other words, the matching
condition we seek here is less general than what is usually referred to as the matching
condition (see, e.g., Blankenstein, Ortega, and van der Schaft [1]) in which one obtains
a PDE for the controlled Lagrangian. We rather assume an ansatz for the controlled
Lagrangian as in [3, 4, 5] for the matching, and then perform a stability analysis to
ensure the stabilization of the unstable equilibrium of interest in each specific case.

We note that Chang and Marsden [10, 11] achieved stabilization of the heavy top
spinning on the ground by using internal rotors attached to the top. This is also
an example of the method of controlled Lagrangian applied to an Euler—Lagrange
equations with advected parameters. However, our second motivating example is

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 09/08/22 to 129.110.242.24 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

2686 CESAR CONTRERAS AND TOMOKI OHSAWA

different from theirs: First, ours is the heavy top spinning on a movable base as
opposed to the ground; hence our configuration space is SE(3) as opposed to SO(3)
in theirs. Second, our control is applied as an external force to the movable base as
opposed to a torque applied to the top via internal rotors.

We also note that our result on the underwater vehicle is different from those of
Leonard [26] and Woolsey and Leonard [37]. Our present work mainly focuses on the
kinetic shaping, whereas Leonard [26] focuses on the potential shaping—the topic of
our companion paper [16]. Woolsey and Leonard [37] use torques by internal rotors,
whereas our control involves external forces only. Our setting is more amenable to
those controls applied by, e.g., jets attached to the body.

2. Semidirect product Lie groups. We first give a brief summary of semidi-
rect product Lie groups with a particular attention to SE(3). This section overlaps
with the companion paper [16] but is included for completeness as well as to set the
notation.

2.1. Semidirect product Lie groups and Lie algebras. Let G be a Lie
group, V be a vector space, and GL(V) be the set of all invertible linear trans-
formations on V. Let A: G — GL(V) be a (left) representation of G on V, i.e.,
A(g192) = A(g1)A(g2) for any ¢1,92 € G. We then define the semidirect product Lie
group S := G X V under the multiplication

5182 = (g1,71) - (92, 72) = (9192, A(g1)72 + T1).

Let g be the Lie algebra of G. Then the representation A induces the Lie algebra
representation X' : g — gl(V) as follows:

d A
N(©vi= SN = Ng&®0h = € (0),
t=0

where &y is the infinitesimal generator on V' corresponding to £ € g. Then we have
the semidirect product Lie algebra s := g x V equipped with the commutator

(2.1) ad(g,v) (1, w) = [(§,0), (n,w)] = (adg n, N ()w = N (n)v).

One may also fix v € V in X (§)v to regard £ — X (§)v as a linear map A,: g — V,

ie.,

X,(€) = N (v = (Np®)e.
Then its dual (A})* defines the momentum map J: T*V = V x V* — g* as follows:
(I (v,a),€) = ((\,)"a, &) = {a, X\, (€)) = arAq,;v'€%,
which results in
(2.2) J(v,a) = )\’;jvjak.

This is nothing but the so-called diamond operator ¢: V x V* — g* (see Cendra et al.
[9], Holm, Marsden, and Ratiu [20] and Holm, Schmah, and Stoica [21, section 7.5]),
ie,voa=J(v,a).

Let us also find an expression for the dual X' (§)* of X' (&):

(N (©)*a,v) = (a, N (€)v) = (N(§) )’ = axA&E2",
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which gives
(2.3) (€)' a = A
We may now write the coadjoint representation on the dual s* of S as follows:
(24)  adigy(na) = (adg g — I(v,a), X(©)"a) = (a5 — Mol ar., Nyy&¥a).

Ezample 2.1 (SE(3) = SO(3) x R?). Consider the representation \: SO(3) —
GL(R3) = GL(3,R) defined by the standard matrix-vector multiplication, i.e.,

A(R)x = Rx.

Then we can define the special Euclidean group SE(3) := SO(3) x R? under the
following group multiplication:

(R1,x1) - (R2,x2) = (R1 Rz, Rixa + x1).
Another way of looking at SE(3) is that it is a matrix group

SE(3) = {(R7x) — Lﬁ ﬂ |RGSO(3),XGR3}

under the standard matrix multiplication. One then sees that the left translation of
(R,x%) € T(rx)SE(3) to the Lie algebra se(3) := T(7,0)SE(3) is

(25) L(R,x)—l(RaX) = (Rile Rilx) = (vi)a
where Q € 50(3) is the body angular velocity and v is the translational velocity in

the body frame. Note that we may identify Qe 50(3) with Q € R? via the hat map
defined as

R 0 —as a9
(2.6) (-): R® = s0(3); a—a:= | as 0 —-a
—as aq 0

So we may use (2,v) € R® x R? as coordinates for se(3).
Then we have

X R d X R ,
N(Q)v =N, (Q) = = exp(tQ)v|  =Qv=Q xv=cl,,0%"
t=0

Therefore, we have X', = e’,i, and so (2.2) and (2.3) give
J(v,P)=¢c",jv P, = v x P, N(Q)P =£F,Q%P, =P x Q.

Note that, using the above identification of R? with s0(3), the structure con-
stants satisfy ¢j, = g, as well. And so, using (2.4), we may write the coadjoint
representation as follows:

ad{g v)(IL,P) = (IIx Q+P x v, P x Q).

In Appendix A, we consider further semidirect products SE(3) x R? and SE(3) x R*,
which crop up in the formulations of our motivating examples.
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3. Euler—Poincaré equation with advected parameters.

3.1. Recovering broken symmetry of Lagrangian. Consider a mechani-
cal system defined on a semidirect product Lie group S = G x V with Lagrangian
Lr,: TS — R with parameters I'y € X*, where X* is the dual of a vector space X.
Specifically, we consider the Lagrangian of the following form:

N
Lr,(s,8) = 5«57 $) — Ury(s),
where (-, - ) is a left-invariant metric on T'S; i.e., for any s,s¢ € S and any § € TS,

«Tsl—so (3)’ Tsl—so (5)» = <<87 S»a

where L stands for the left translation, i.e., Ls,(s) = sos for any sg,s € S, and T'L is
its tangent lift. So the kinetic term is S-invariant.

Suppose, however, that the potential is not S-invariant; i.e., there exist sg,s € S
such that Ur,(sgs) # Ur,(s). This breaks the S-symmetry of the Lagrangian Lr,. We
further suppose that we can fix this in the following way: Define an extended potential
U:Sx X* — Rso that U(s,I'g) = Ur,(s) for any s € S, and let k: S — GL(X) be a
representation of S on X, and xk*: S — GL(X™*) be the induced representation on the
dual X*. We assume that we can find an appropriate x so that we can recover the
S-symmetry of the potential: For any sg,s € S and any I' € X*,

Ul(sos,k(s0)*T) =U(s,T).

Now let us define an extended Lagrangian L: TS x X* — R by setting
1
L(s,5,T) := 5({3, )y —=U(s,T)

and also define the action

U:Sx (TSx X*) =TS x X*;
(SOa (Sa S,F)) = \Ilso(sa S,F) = (SOS’TSLSO (S),H*(So)r)

Then we see that the extended Lagrangian now possesses the S-symmetry, i.e., L o
V., = L for any sg € S.

3.2. Euler—Poincaré equation with advected parameters. Defining, with
an abuse of notation, the reduced potential

U: X* >R, UT):=U(e, ),
we may define the reduced extended Lagrangian ¢: s x X* — R as
(31) 6(571)71—‘) = L(€7 (£7U)7F) = K(é.,’l)) - U(F)
with the kinetic energy term K defined as
1 1 o1 o
(32)  K(&v) = 5((&v), (€)= 5Gapte” + Gas€™v’ + S Gijv'e/,

where all these G’s are constant matrices, and G,g and G;; are assumed to be symmet-
ric. We also define G;3 := Gg; component-by-component so that G,;{“v’ = Gwvzgﬁ.
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Then we obtain the Euler—Poincaré equation with advected parameters (see [20, 9]
and [21, section 7.5])

d ol Y4 ol dr’
P — d* = Kl =.T il *T
dt(é(&@) i) 5e,0) (M’ ) ar =" ET

where we defined, for any smooth function f: E — R on a real vector space F, its
functional derivative §f/dx € E* at « € E such that, for any dz € E, under the
natural dual pairing (-, -): E* x E —» R,

<§£,5$> = %f(x—ktch:)

For example, if E = R™ with the dual pairing in terms of the dot product, §f/dx =
df/0x, i.e., the standard gradient. Note also that K: X x X* — ¢* = g* x V* is the
momentum map associated with the above action  defined in a similar manner to J:

t=0

K(LE,F) = (Kg* (JZ,F), Ky- (JL‘,F)) = (K‘/ )*Fv

xT

where we split the components of K into those in g* and V* as Ky« and Ky +. Then,
using the formula (2.4) for the coadjoint action on §*, we have

d (6¢ Y4 4 Y4
i (5e) =t 5 ~3 () + o (7).

d (60 50 50
3.3 L NV L .12
(3.3) dt(év) MO, T Ky <5r’r>’
ar
E—Kl(f,v) I

Ezample 3.1 (underwater vehicle [25, 26, 27]; see also [14, 34]). Consider the
underwater vehicle shown in Figure 2. The configuration space is S = SE(3), i.e.,
rotations about the center of buoyancy and its translational positions. Let {e;}?_;
and {E;}3_; be the orthonormal spatial/inertial and body frames, respectively. The
orientation R € SO(3) of the vehicle is defined so that E; = Re; for ¢ = 1,2,3. Note
that our definitions of e3 and Eg are the opposite of those in [25, 26, 27]. Letting
x € R? be the position of the center of buoyancy in the spatial frame, we have an
element (R,x) € SE(3) giving the orientation and the position of the vehicle.

We assume that the vehicle is neutral buoyant and the shape of vehicle is ellip-
soidal and also that the body frame is aligned with the principal axes of the body.
Let Ix be the position vector—I being its length and x being the unit vector for the

Fi1G. 2. Underwater vehicle.
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direction—of the center of mass measured from the center of buoyancy; see Figure 2.
Then we have

(34) Gaﬁ = diag([l,fg,jg), Gaj = ml)%, Gij = diag(ml,mg,mg).

We note that m; # mo # ma in general, and so G;; is not a constant multiple of the
identity matrix; see [25] for details.
Due to the neutral buoyancy, the potential term is given as

Ue, (R, x) = mgles - (Rx) = mglx - (R e3).
Hence we define the extended potential U: SE(3) x (R?)* — R by setting
U((R,x),T) := mglx - (R™'T)

so that U((R,x),e3) = Ue, (R, x).
Using the representation (A.6) of SE(3) on R? from Appendix A.2, we have (see
(A7)

k*(R,x)I' = RT,
and so, for any (Rg,Xo), (R,x) € SE(3) and any T' € R3,
U((Ro,x0) - (R,x), k" (Ro,%0)T) = U((R,x),T).
Hence the reduced potential U: (R?)* — R is
U(T):=U((1,0),T) = mglx - T,
and the reduced Lagrangian £: se(3) x (R3)* — R is
UQ,v,T) = K(Q,v) - U(T),

where © and v are defined in (2.5), and K is the kinetic energy defined in (3.2) using
the mass matrix from (3.4). Note that I' is the vertical upward direction (opposite of
the direction of gravitational force) in the body frame.

The representation x also gives (again see (A.7))

K (Q,v)*T =T x £,
as well as the momentum map

K(Yar) = (K50(3)*(yaI‘)’K(RS)*(yaI‘)) - (H;)*F = (y X ]-‘70)

As a result, the Euler—Poincaré equation (3.3) with advected parameters gives

i % —%xﬂ—l—%x —&-%XI‘
i\ )~ ov Y Tar
(3.5) dfoty _ ot
gl\av) “av <%
T‘:Fxﬂ,

as in [25, 26, 27].
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F1G. 3. Heavy top on a movable base.

Ezample 3.2 (heavy top on movable base). Consider the heavy top rotating on
a movable base shown in Figure 3. The configuration space is again SE(3): The
orientation R € SO(3) is defined in the same way as in Example 3.1 with respect to
the body frame attached to the top at the junction point with the base and is aligned
with the principal axes; x € R? is the position of the base, which is assumed to be a
point mass M for simplicity.

Let m be the mass of the heavy top, and m := m + M the total mass of the
system, I = diag(Iy, I, I3) the inertia tensor of the top, I the length of the line
segment connecting the origin of the body frame (junction of body and base) to the
center of mass of the top, x the unit vector pointing in that direction in the body
frame, and g the gravitational constant—mnot to be confused with the italic g used for
an element of Lie group G.

Let B C R3 be the domain occupied by the top in the body frame and pg: B — R
be the mass density of the top. Since the position ¢(t) in the spatial frame of any
point X € B at time ¢ is ¢(t) = R(t) X +x(t), the velocity of this point in the spatial
frame is ¢ = RX + x. Therefore, we have the following Lagrangian,

S 1 . 1 .
LRx, %) = | (200(X)||Q||2 — go0(X)(RX + x) ~e3)d3x + S MK — Mex - e
B

1
3 (m|v||2 +IQ-Q+2v- (2 x lxm)) —mglx - (R 'e3) —mgx - e3
= K(Q,v) — U, (R,x),
where the kinetic energy K is defined in (3.2) with
(36) (Graﬁ = diag(]l,fz,lg,), Gij =ml, Gaj = mly,
and the potential term is defined as
Uey (R,x) := mglx - (R "e3) + imgx - e3 = gm - (s7e3)
with

s=(R,x) = [(g )1(] € SE(3), m:= [mﬁix] cR*, e3 = [e03] c R

Notice that the potential U., depends not only on the orientation of the top but also
on the height of the system and hence is not SE(3)-invariant.
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Let us define the extended potential U: SE(3) x (R*)* — R by setting
U((R,x),I) :==gm- (s"T),

so that U((R,x),e3) = U.,(R,x). Using the representation r: SE(3) — GL(R?)
defined in (A.1) in Appendlx A.1, we have (see (A.2))

As a result, we have, for any sg, s € SE(3),
Ul(sps, k*(s0)T) =U(s,T).

Let us write I' = (T', h) € (R*)*. Note that I is the vertical upward direction (opposite
of the direction of gravitational force) in the body frame, whereas h is the height of the
base in the inertial frame. Then we may define the reduced potential U: (R*)* — R
as

(37) U(F, h) = U(e, (F, h)) =gm- (F, h) =mglx - T + mgh,
and thus we have the reduced Lagrangian £: se(3) x (R*)* — R as follows:
v, (T h) = K(Q,v)—U(T,h).

Then, using the expressions in (A.4) and (A.5), the Euler-Poincaré equation (3.3)
with advected parameters becomes

o0 89 ov 51" ’
d (ol ol ol
(3.8) dt(av) av < aT
I=rxQ,
h=T-v.

Remark 3.3. The above equations (3.8) are very similar to (3.5) for the underwa-
ter vehicle. Indeed, one may apply the control force

(3.9 ub = —@I‘ = mgl

to the second equation of (3.8) to cancel the extra term and, as a result, may discard
the height variable h from the formulation to reduce the system to the same equa-
tion (3.5) (with a slightly different kinetic energy metric). One can think of the above
control as the potential shaping that cancels the second term on the right-hand side
of (3.7); see the companion paper [16] for details.

4. Controlled Lagrangian and matching.

4.1. Controlled Euler—Poincaré equation with advected parameters.
Suppose that we would like to stabilize an unstable equilibrium of the system (3.3) by
applying an external (linear) force u* (the roman superscript “k” denotes kinetic, not
a coordinate index) to the system. Practically speaking, the system is either pushed
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by some external means or controlled by jets attached to the body; the latter is more
amenable to our formulation because our equations are written in the body frame.
Consider the controlled Euler—Poincaré equation with advected parameters:

d (6 Y4 Y4 Y4
dt(&f) —adééfg —J<U,6“) +Kg* ((SP,F>,

d (8¢ 8¢ 8¢
4.1 —_ R — = 4 * * P — k
(4.1) dt(av) N(©)' 5 + Ky <5F,F)+u,
ar
— = “T.
o = (&)

We would like to match this control system with the Euler-Poincaré equation with
advected parameters for a different reduced Lagrangian ¢, , ,: s x X* — R:

d (60, 5 50 50
- 7—707 — d* T,o',p_ T7(T7p :[<>‘< 7—707p F
dt< 65) e e J(”’ 6v)+9<6r’)’

d (s 50 50
4.2 2 ZDSP ) A€V 2T L K T.OP T
(4.2) dt( 51)) MO 5, +V(6F’>’
ar
< T,
L v

In other words, we would like to find the controlled Lagrangian ¢, , , such that (4.2)
gives (4.1). Then we determine the control u* such that (4.1) and (4.2) become
equivalent. As a result, the dynamics of the controlled system (4.1) is described by
the “free” system (4.2) with the new Lagrangian ¢, , ,.

4.2. Controlled Lagrangian. We would like to seek the controlled Lagrangian
of the form

(4.3) lrgp(& v, D)= K5 ,(&v)—U(T),

where K, , is the modified kinetic energy whose expression we now seek in the
following form as in [3]: Using the kinetic energy K and the metric tensor G from
(3.2) as well as constant matrices o, p, and 7 (¢ and p are symmetric) to be determined
below,

o 1
KT;@P(&'U) = K(€a71ﬂ + Téga) + 5
1 o | | | |

+5(pij = Gij) (0" + (G Gra + 12)E%) (v? + (C*Gig + 75)¢°)

1 . 1 o
= §(Ga6 + Aaﬁ)ﬁaﬁﬁ + (Gig + Aiﬂ)vlfﬁ + ipiﬂ/w

1 . 1 o
= K(é., U) + §Aaﬁ§a§B + valfﬁ + §AijUZU]

UijTéTéfaﬁﬁ

with
Dag = (Gig +0i73) 7o + Dig(G*Cra +74), A = pij (G7*Grp + 75) — Gig,
Agj = pij — Gy,

where G% stands for the inverse of the matrix G;;, and we use the same convention
for other matrices too.
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4.3. Matching condition. Clearly §¢/¢I' = 64, ,/dT, and so, in order to have
a matching, it is sufficient to impose

Orgp 0L 0 Slrey
(4.4) T J(v,év ot )_0.

Then (4.1) and (4.2) match under the control u* given as
d (ot & ol oL
k_ 2 (22 7ol ) ey 2 ZZTOP
T (51} ov ) ) (51} ov )

The first condition in (4.4) is equivalent to A,&” + A, jv? =0 for any € € g and
any v € V. Hence this reduces to Ayg = 0 and A,; = 0. Then A;z = 0 as well, but
then this gives
(MC1) 75 = (07 = GY)Gyg,
whereas substituting A;g = 0 into A,z = 0, we obtain

(Gm + UijTé)T(i =0.
We see that this is satisfied if G;g + O'Z‘jTg; = 0, but then this in turn is satisfied if
(MC2) o = GY — pY,
On the other hand, the second condition in (4.4) is written as, using (2.2),
)\Zj’l}j(Akﬂfﬂ + Akﬂ)l) =0.
Taking A;z = 0 and the expression for Ay; into account, we have

)\(klj(pkl — le)vjvl = 0.

Since this holds for any v € V, it implies that )\’;j (pri — Gyy) is skew-symmetric with
respect to the indices (4,1), i.e.,
(MC3) Aot (Prj — Grj) = =5 (pri — Gra).

To summarize, we have the following theorem.

THEOREM 4.1. Under the matching conditions (MC1)—(MC3) and the control law
uf = (Gij — pij)¥" — Ny(Gji, — pjw)§P0",

the controlled Euler—Poincaré equations (4.1) with advected parameters for the La-
grangian (3.1) and the Euler—Poincaré equations (4.2) with advected parameters for
the controlled Lagrangian (4.3) are equivalent.

Remark 4.2. For implementation purposes, we may get rid of the acceleration v
from the above feedback control law because we can rewrite (4.2) so that (£,0) is
given in terms of functions of (§,v,T'); see Example 4.4 below for an expression for
the case with S = SE(3).
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Remark 4.3. Let us give an intuitive interpretation of the matching conditions.
The conditions (MC1) and (MC2) imply that we “reshape” the kinetic energy by
replacing the mass matrix G;; by p;; only, i.e., no modifications of the other parts
of the mass matrix. This intuitively makes sense because we are applying controls
only to the “translational” part V. On the other hand, (MC3) imposes a restriction
on the form of p;; to ensure that the interaction term between the “rotational” and
“translational” parts (g and V, respectively) matches with the original system. This
also makes sense because their interactions are governed by the law of nature and
should not be affected by the control.

Ezample 4.4 (S =SE(3)). As seen in Example 2.1, A}, = &', in this case, and
so the third matching condition (MC3) becomes €* i (pr; — Gij) = —€¥0;(pri — Grar)-
One may select p so that p;; —G;; becomes a nonzero constant multiple of the identity
matrix, i.e.,

(45) Pij = Gij — IC(SZJ for some K € R\{O}

Then the above condition becomes €7, = —Elaj, which is trivially satisfied. The
feedback control then becomes

(4.6) =KV +Qxv).

Note that, as mentioned in the above remark, one may replace the acceleration term v
by a function of (€2, v,I") as follows: Using (4.2) along with the matching conditions,
we have

-

5. Stability analysis.

OxQ+Pxv—-—mglxy xT
with II:= LT’U”’, P = LT’U").
PxQ 119 ov

5.1. The energy—Casimir method. We would like to establish the stability of
equilibria of the systems from Examples 3.1 and 3.2 by constructing an appropriate
Lyapunov function. As mentioned in Remark 3.3, the system from Example 3.2
after the adhoc potential shaping control (3.9) reduces to (3.5) in Example 3.1 with
a slightly different Lagrangian. Therefore, we may write down both systems under
control force u* from (4.6) via the kinematic shaping as

i % —ﬁxﬂ+%x +%><I‘
a\on )~ an ov VY Tar
(5.1) d oty _ ot k
d\ay) T oy Rt
I'=TxQ,
or equivalently
d 887—0-/; aE‘r‘ap E‘rap a7'0'p
= LT e LYY ) .0 AT
dt< o0 > e T oo
(5.2) A (rop _ Orop o
dt\ ov T Tov
I'=TxQ,
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with the controlled Lagrangian
(53) eT,O’,p(Q7V7 F) = KT,O',,U(QﬂV) - U(F)

The main advantage of the method of controlled Lagrangians is that, thanks to
the matching, the controlled system possesses invariants (conserved quantities) such
as the energy and Casimirs, and is amenable to the energy—Casimir method (see, e.g.,
[29, section 1.7]). Its main idea is to use such invariants to construct an invariant &
that works as a control Lyapunov function to establish the stability of the equilibrium.

More specifically, the energy—Casimir method also prescribes a method to find
such a Lyapunov function £ using the energy of the system as well as Casimirs (or
some other invariants of the system) as follows: It is straightforward to show that the
energy

Er6p(Q,v,T) =K., ,(Q,v)+U(T)

associated with the controlled Lagrangian (5.3) is an invariant of the system (5.2).
Also, as mentioned in Appendix A.4, the system (5.2) has three Casimir functions
(see (A.8)) or in the Lagrangian variables,

2
667’0;} 2
= —2 F == F .
) CQ v ) 03 H ||

s o)

PP [

This implies that, for any smooth function ®: R? — R, the function
£ = ET,U,p + @(017 02; 03)

is also an invariant of the system (5.2) as well. Note that the actual form of £ varies
depending on whether the system has other invariants, as we shall see below.
Now, one determines ® so that £ provides a control Lyapunov function. Specifi-
cally, let (., be an equilibrium of the uncontrolled system (3.5), and proceed as follows:
1. Find the conditions under which the first variation (the gradient) DE vanishes
at the equilibrium (.
2. Calculate the second variation (the Hessian) D2& at (..
3. Find the conditions under which the Hessian D2?£((,) is definite.
As a result, there exists an open neighborhood U of (. such that £(¢) > £({.) (or
E(C) < E(Ce)) for any ¢ € U\{(.}. Note also that (. is an equilibrium of the controlled
system (5.2) as well because £ is an invariant of (5.2) and £({.) is a strict local
extremum.
As a result, £ gives a control Lyapunov function, and hence Lyapunov’s stability
theorem (see, e.g., Khalil [22, Theorem 4.1] and Logemann and Ryan [28, Theo-
rem 5.2]) implies that the equilibrium (, is stable.

5.2. Heavy top on movable base. Consider Example 3.2 (see also Figure 1(b))
with the Lagrange top; i.e., the inertia tensor I = diag(1Iy, I, I3) satisfies I = I # I3,
and its center of mass lies on the axis of symmetry with respect to the body frame, that
is, x = (0,0, 1). We would like to show that the top spinning upright on the stationary
base can be stabilized by the above control. Note that, combining G;; = m d;; from
(3.6) and p;; = G;; — K ;; from (4.5), we may set p;; = 00;; with o :=m —K € R.

This system has two additional invariants besides the energy and the Casimirs:
The first one is the well-known invariant 23 for the Lagrange top, and the second and

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 09/08/22 to 129.110.242.24 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

STABILIZATION OF EULER-POINCARE SYSTEMS I 2697

less obvious one is the energy-like invariant:

1
0 i 2 2 2
This implies that, for any constant ¢ € R and any smooth functions ®: R? — R and
¢o: R — R,

(5.5) = Brgp+ cEY+®(C1,C2, Cs) + ¢(Q3)

is also an invariant of the system as well.

The equilibrium corresponding to the top spinning upright on the stationary base
is
(56) (Qeavmre) = (QoEg,O,E3).

Note that the upright spinning Lagrange top with |Qg| > 2v/mglI; /I3 is known to be
stable [29, Theorem 15.10.1]. Therefore we assume that Q] < 21/mgll; /I3 here and
show that the equilibrium is stabilized regardless of the value of 2.

An interesting observation is that the above energy-like invariant E° is the energy
of the Lagrange top without the movable base—the only difference is that the gravita-
tional constant g is modified to be Ilgljﬁg. This observation suggests the following:
If we pick o € (0,m?I?/I;), then the modified gravitational constant ﬁg be-
comes negative and hence effectively turns the upright position of the top into the
vertical downward one for the controlled system. As a result, the upright position of
the controlled system becomes stable. Let us justify this intuitive argument using the
energy—Casimir method.

PROPOSITION 5.1 (stabilization of heavy top on a movable base). The unstable
equilibria (5.6) with |Qo| < 2v/mgll; /I3 of the heavy-top-on-movable-base system in
Ezample 3.2 are stabilized by applying to the second equation of (3.8) the control
u = uP + u¥, where uP is defined in (3.9) and u* is from (4.6) with K = m — o for
any o € (0,m?1%/1y).

Proof. Note first that, as mentioned above, we have p;; = ¢d;; with o :=m — K
here.

Let us use (-)|o to indicate that a function is evaluated at the equilibrium. The
first variation condition DE|, = 0 is satisfied if

m2? — (1+c)ho
2(I 0 — m21?)

(57) D2®‘e = O, DB(b'e = mgla d)/(QO) = _(1 + C)I3QOa
where D; stands for the derivative with respect to the ith variable.

By evaluating the leading principal minors of the Hessian D2€|,, we also find
that the following conditions—in addition to (5.7)—are sufficient for its positive-
definiteness:

D1¢’|e = D§2(I)|e = D%S(I)‘e = D§3q)|e = ¢”(QO) =0,

(5.8) 212 22
c >0, m <o< T
Therefore, we may take, for example,
(5.9)
m2l2 — (1+¢)I
O(Cy, Cy, Cs) = L Oe (= Cale)s 6(Q) = —(1+¢) I (s — Q).

2o — m22)
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1.0

(a) Body angular velocity (b) Base velocity v in body (c) Vertical upward direction T’
(£21,92) frame seen from body frame

Fia. 4. Simulation results for the heavy top on a movable base with M = 0.44 [kg], m = 0.7 [kg],
Iy = I = 02kg-m?, I3 = 0.24kg-m?, | = 0.215[m], g = 9.8 [m/s2], and o = 0.9m3I2/I1 with
initial condition €2(0) = (0.1,0.2,0.1), v(0) = 0, and I'(0) = (cos 6 sin ¢, sin Og sin g, cos o) with
0o = 7/3 and po = 7/20. The solutions are shown for the time interval 0 < t < 30. The blue dashed
line is for the system with only the control (3.9) coming from potential shaping, whereas the red solid
line is for the system with both the potential and kinetic shaping controls (3.9) and (4.6). Note that
the uncontrolled system with u = 0 involves a free fall and does not provide a good comparison to
illustrate the effect of stabilizing control u¥.

However, since we may take ¢ > 0 arbitrarily large, we can achieve stability for
any o € (0,m?1?/14). |

Figure 4 shows the results of simulations demonstrating the stabilizing control by
the kinetic shaping; see the caption for the parameters and initial condition. One can
see that the equilibrium (5.6) is unstable without control u* but is stabilized after
the control is applied to the system.

5.3. Underwater vehicle. Let us now consider the underwater vehicle from
Example 3.1. We assume, in addition to those assumptions mentioned in Example 3.1,
that the center of mass is aligned with the third principal axis E3 and below the center
of buoyancy, i.e., x = (0,0, —1), and so it is bottom-heavy.

The equilibrium of our interest is the steady translational motion along Eo, i.e.,

(510) (Qe7ve»re) = (O7UOE27E3)

with vg € R\{0}. According to Leonard [25, Theorem 2], this is an unstable equi-
librium of (3.5) if the vehicle is bottom-heavy and ms < m;y, which is the case if
the semimajor axis of the ellipsoidal hull along E, is longer than that along E; as
depicted in Figure 2; see [25, Appendix B] for details.

We can show that our control (4.6) stabilizes this equilibrium too.

PROPOSITION 5.2 (stabilization of underwater vehicle).  The unstable equilib-
ria (5.10) with vo € R\{0} of the underwater vehicle system (3.5) in Example 3.1 are
stabilized by applying to the second equation of (3.5) the control u = u* (as in (5.1)),
where u¥ is from (4.6) with any K satisfying

. ml?
(5.11) mo < I < min { mg,my — T M
2
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Proof. Let us seek the control Lyapunov function of the form
(5.12) EQ,v,T) :=E.,,(Q,v,T') + &(C1,Cs,Cs),

because this system does not seem to have any additional invariants besides the energy
and the Casimirs.

One can show that DE|, = 0 if
1 mgl

Dy®le =0,  D3®le = —.

1 .=
(5.13) D13, = :

(IC — mg) ’
On the other hand, by evaluating the leading principal minors of the Hessian D?&|,
one can show that it is positive-definite if, in addition to (5.13), all the components
of the Hessian of ® vanish except

1

D2 Dl = )
n®| (K —mg)3v3

and also the parameter K satisfies (5.11).
This implies that one may take, e.g.,

1/(Cy—C1le)?  Cp—Cile
14 ) = - — Csle
(5 ) (01,02,03) 2<(K—m2)3v3 ]C—mg —l—mgl(Cg C3| )
to satisfy the above conditions. ]

Remark 5.3. There must exist IC satisfying (5.11) for those underwater vehicles
of interest here. In fact, one can show that ms < m; and my < mg if the semimajor
axis of the ellipsoidal hull along E, is longer than those along E; and Ej3 as depicted
in Figure 2; see [25, Appendix B]. We would also have m; > m for any i = 1,2,3

ml?

(again see [25, Appendix B]) and mi?/Is < 1, and so ma < mj — em.

As a numerical example, consider an underwater vehicle whose hull is an ellip-
soidal shell with the outer semimajor axes (a1,as,a3) = (5,10,4) [m] and the inner
semimajor axes (a1 — h,as — h,as — h) with h ~ 0.1666 [m] made of steel with den-
sity 8000 [kg/m3]. For simplicity, we assume that all extra weight is concentrated
at the point 1 meter below the center of the ellipsoids as a point mass with 40%
of the weight of the shell; hence the center of mass is at Ix with | = 2/7[m] and
x = (0,0,—1) = —E3. Then the total mass of the vehicle is m = 835,245 [kg], and it
is neutrally buoyant assuming that the mass density of the water is 997 [kg/m?]—the
“thickness” h of the hull is determined that way. Using formulas from [25, Appen-
dix B], one obtains (m1,ms, m3) ~ (1.330,0.9860, 1.592) x 10° [kg] and (11, I2, I3) ~
(2.787,0.9020, 2.527) x 107 [kg - m?]. We set K ~ 1.239 x 10° so that (5.11) is satisfied.

We select an initial condition with a small perturbation to the equilibrium (5.10)
with vg = 30 [m/s] as follows:

©(0) = (0.5, 0.25, 0.5), v(0) = (1.5, 30, 1.5),
T'(0) = (cos bg sin g, sin Oy sin g, cos pg)
with 9() = 7'('/3 and Yo = 7T/40
Figure 5 shows the trajectories of 2, v, and I" for the uncontrolled and controlled
systems. The solution of the uncontrolled system (3.5) clearly shows that the equi-

librium is unstable, whereas that of the controlled system (5.1) stays close to the
equilibrium, indicating that the equilibrium is stabilized.
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----- Uncontrolled —— Controlled F20 51;9
5 0.0
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0 -1.0
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(a) Body angular velocity 2  (b) Base velocity v in body frame (c) Vertical upward direction T’
seen from body frame

Fic. 5. Simulation results comparing the uncontrolled underwater vehicle (3.5) (blue dashed)
and controlled underwater vehicle (5.1) (red solid) for the time interval 0 < t < 50.

6. Asymptotic stabilization.

6.1. Asymptotic stabilization by dissipative control. Now we would like
to introduce an additional dissipative control to have asymptotic stabilization.

We achieve this, as in [4, 5, 6], by applying an additional control u? to the
controlled system (5.2):

d (aem,p> oy oy Vo o Wy b

ANE GIY) ov or ’
(61) i ag‘rﬁ'vp _ 867—"77/3 d
dt ov T ov x 2+ u’,
I'=TxQ.

The system is defined on R? x R? x R3. However, since ||T'(¢)|| = 1 for any time ¢, we
consider the system on

M :=R> x R® x §?

instead. We shall restrict functions defined on R?® x R? x R3 to M if necessary
but without change of notation for brevity. We will also write the state variables
as ¢ = (Q,v,I') for short in what follows. Then we have the following result for
asymptotic stabilization.

THEOREM 6.1 (asymptotic stabilization). Let (. € M be an equilibrium of the
uncontrolled system (3.5), and £: M — R be the Lyapunov function obtained by the
energy—Casimir method, i.e., € is an invariant of (5.2), DE((e) = 0, and D?*E((.) is
positive definite. Let £: M — R3 be a smooth function, and consider the controlled
system (6.1) with the feedback u? = £(¢):

d ( azw,,,> 0oy oy ron o, Wros o

dt\ o0 o0 ov or ’
(6.2) d (0rop\ iy
da\ ov ) ov xR +£(Q,v,T),
I'=TxQ,
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and suppose that £ satisfies the following:

(i) £(¢) =0.

(ii) The directional (Lie) derivative € of € along the solutions of (6.2) gives £(¢) <0

for any ¢ € M.

Let E71(0) == {¢ € M | £(¢) =0}, and U be an open neighborhood of C. such that the
only invariant set of (6.2) in UNE(0) is UNT for some T C M. Then there exists
a compact neighborhood ¥ C U of (. such that any solution to (6.2) starting in X3 at
t =0 approaches Y NI (which contains () as t — oo.

Proof. Let us first show that (. is an equilibrium of the dissipative controlled
system (6.2). Recall from section 5.1 that (. is an equilibrium of (5.2) or equivalently
(6.1) with u? = 0. However, since f((,) = 0 by assumption, (. is an equilibrium of
(6.2) as well.

Note also that £ is a Lyapunov function for (6.2) as well because the only change
due to the dissipative control is that we now have £(¢) < 0 instead of £(¢) = 0.
So it still implies the Lyapunov stability of {, and hence the existence of a compact
neighborhood ¥ C U such that any solution to (6.2) starting in ¥ at ¢ = 0 stays in X
for any t > 0.

Therefore, LaSalle’s invariance principle [23] along with the assumption on the
invariant set Z implies that any solution starting in ¥ at ¢ = 0 approaches X NZ as
t — 0.

Note that (. € 5"*1(0) due to the condition 6.1, and so clearly (, € Z because it
is an equilibrium of (6.2). Hence (. € ¥ NZ. o

6.2. Asymptotic stabilization of heavy top on movable base. Let
(63) Z:tmb = {(QoE3,07E3) | Qo € R}

be the set of equilibria of the form (5.6). Notice that each point in this set corresponds
to the top spinning at angular velocity €2 in the upright position on a stationary base.

We shall prove that the solution starting near ZMmP at ¢+ = 0 converges to the
point in ZM™P determined by setting Qg equal to the initial value of 3; see Figure 6.
This is not quite the asymptotic stability in the conventional sense where any point
in a neighborhood of a single equilibrium converges to that equilibrium. As we shall
explain in Remark 6.3 below, this subtlety is not a drawback of our control law but
is rather due to a nature of this particular control system. In fact, such a subtlety is
not present in the two other examples to follow in the next subsections.

PROPOSITION 6.2 (asymptotic stabilization of heavy top on a movable base).
Consider the controlled system (6.1) for the heavy top on a movable base from Eram-
ple 3.2, where

1
(6.4 wl = A (v s O ) ) = i)
with an arbitrary negative-definite matriz N'; this is equivalent to applying to the
second equation of (3.8) the control u = uP + u* + u?, where u? and u* are those
from Proposition 5.1. For each (. € ZM™P  there exists a compact neighborhood
¥ C R3 x R® x S? of (, such that any solution starting in ¥ with Q3(0) = Qo att =0
approaches the equilibrium (QoEsz,0, E3) € ZMmb g5 ¢ — oo.

Remark 6.3. Notice that (. may not be the same as (29Es,0,E3). The reason
for this subtlety is that 3 is an invariant of the system even with controls. So if
03(0) # Qo, then Q3(t) would not converge to Qy as t — oo. In other words, the
equilibrium to converge to is determined by the initial value of 23 as shown in Figure 6.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 09/08/22 to 129.110.242.24 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

2702 CESAR CONTRERAS AND TOMOKI OHSAWA

Q3
(QE3, 0, E;) Q3 =

htmb

Fic. 6. Schematic of Proposition 6.2. Subset Zé‘tmb is the collection of all upright equilibria of
the top spinning with varying value of angular velocity Q3 on stationary base. For any (o € Zhtmb,
one can find a neighborhood U (ball in the figure) so that the following is satisfied: For any point
in U whose Q3-value is Qq, the solution starting at the point converges to equilibrium (QoEs3,0,E3)
(upright spinning with angular velocity Qo on stationary base) as t — oo.

We also emphasize that we would have the same issue no matter what control u one
applies to the second equation of (3.8), because it still gives Qs = 0. In other words,
one just cannot control the spinning velocity Q3 of the top however hard one pushes
the base. So this is rather a nature of this particular control system than an issue
specific to our control law.

It is an interesting future work to look into the controllability of mechanical
systems with broken symmetry in conjunction with the stabilizability discussed here;
see Wei, Burkhardt, and Burdick [36] on the controllability of an aerial manipulator
as an example of a mechanical system with broken symmetry.

Proof of Proposition 6.2. Recall that our control Lyapunov function £ was given
in (5.5). Taking the directional derivative (denoted by (-)) of £ along the vector field
of the system (6.1),

E=F,p,+cE’+®+4,
it is easy to see that ¢ = ¢/(Q3)Q3 = 0. Also, straightforward calculations yield
. . Iyml
_ d 0 _ 1
Erop=v-u’, E —m

We also have ® = 0 because we have D@ = Dy® = 0 (see (5.9)) as well as C = 0.
Hence we obtain

: cmll

(x x ) -u.

Let us consider the feedback control u? = fi,¢,,(¢) as shown in (6.4). Then e
clearly satisfies the conditions 6.1 and 6.1 on f stated in Theorem 6.1. Additionally,
Lemma B.1 from Appendix B says that there exists a neighborhood U of (. such that
U N ZMmb s the only invariant set in U N E~1(0).

Therefore, taking Z = ZP™ Theorem 6.1 implies that there exists a compact
neighborhood ¥ of (, such that any solution starting in > at ¢ = 0 approaches ¥ N
Zhtmb a5¢ — 0o, However, since (23 is an invariant of the system, this implies that any
solution starting in ¥ with Q3(0) = Qg approaches the equilibrium (Q¢Es5,0,E3). 0O

Figure 7 shows the simulation results with the dissipative control, now with ¢y =
1

Q—?W; i.e., the axis of the top is near the horizontal position. We see that the control

manages to steer the system towards the upright position.
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(a) Body angular velocity 2  (b) Base velocity v in body frame (c) Vertical upward direction T'
seen from body frame

Fic. 7. Simulation results for the heavy top on a movable base with dissipative control; the
parameters are same as Figure 4 except that po = %ﬂ' (near horizontal), ¢ = 1, and N = 7%1,
The equilibrium is now asymptotically stable.

6.3. Asymptotic stabilization of underwater vehicle. For the underwater
vehicle, we have the asymptotic stability in the conventional sense.

PROPOSITION 6.4 (asymptotic tabilization of underwater vehicle). Consider the
controlled system (6.1) for the underwater vehicle from Example 3.1 where

(6.6) ud N<v+2D1q>(cl,02,03)3£557”> = Fee (€)

with an arbitrary negative-definite matrix N'; this is equivalent to applying to the
second equation of (3.5) the control u = u¥ +ud, where u* is from Proposition 5.2.
Let

(67) Z::WV = {(O,UoEQ, Eg) | Vo € R\{O}}

be the set of equilibria of the form (5.10). For each {, € ZXY, use ® from (5.14) with
Cile = C1(&) and Cs|e = C3(¢e) in the control (6.6). Then, there exists a compact
neighborhood ¥ C R? x R? x S? of (. such that any solution starting in ¥ approaches
the equilibrium (. as t — oo.

Proof. Using the control Lyapunov function (5.12), we have
; rop d
(68) £ = V+2D1¢(01702>C3)ﬁ -ua.

Hence we consider the feedback control u? = fi,(¢) as shown in (6.6). Then one
easily sees that f. satisfies the condition 6.1 on f stated in Theorem 6.1 using an
expression from (5.13) and p = diag(my — K, ma — K, m3 — K). It also clearly satisfies
the other condition 6.1 by construction.

The rest of the argument is essentially the same as the proof of Proposition 6.2
using Lemma B.2; note, however, that Lemma B.2 says that the invariant set Z is
the equilibrium (, itself as opposed to a family of equilibria. Hence Theorem 6.1 with
T = {(.} gives the desired result. 0

See Figure 8 for the simulation result with the dissipative control. We see that
the initial disturbance is damped out so that the solution approaches the equilibrium
asymptotically.

6.4. Swinging up the spherical pendulum. As an application of the same
control law to a problem with a slightly different flavor, let us consider the problem
of swinging up a spherical pendulum on a movable base; see Figure 9.
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— Q Qs

Q v r
0.5 30 1.0
0.4 25 0.8
0.3 20 0.6
0.2 15 0.4 2\
0.1 10 0.2

f/ ®
0.1

- - t
7207 30 40 50
R N 1 O'QEW

F1c. 8. Time evolution of underwater vehicle with dissipative control with N' = — diag(2, 1, 2) x
106, Note that v is plotted for a shorter time interval because it is damped much faster than the
other two quantities.

€1

F1G. 9. Spherical pendulum on a movable base. We would like to swing up the pendulum from
the (almost) vertical downward position to the upright position by applying a control to the base.

— Qy . — Vo v — I Ty Iy

1I x: 1.0
JAN L - 0.5
A U 2 — JET0 15 2
-1 -2 S TV R R
2W e -0.5
-3 -6 -1.0

Fic. 10. Simulation results for swinging up spherical pendulum on a movable base with M =
0.44 [kg], m = 0.14 [kg], I = 0.215 [m] (taken from [4]), and 0 = 0.9m with initial condition £(0) = 0,
v(0) = 0, and I'(0) = (cos O sin ¢, sin g sin g, cos pg) with Og = w/3 and o = 0.997; i.e., I'(0) is
near the vertical downward position (0,0, —1); also ¢ =1 and N' = —I for dissipative control. The
pendulum is swung up and asymptotically approaches the upright position T' = (0,0, 1).

Following [38], we treat the pendulum as a degenerate top that does not rotate
about its rod. Specifically, we set the third components of the inertia tensor I and
of the angular velocity 2 to zero, i.e., I3 = 0 and Q3 = 0. Assuming that the rod is
massless and denoting the bob mass by m and the pendulum length by [, the inertia
tensor I becomes I = [ 101 |= [”612 02| because we got rid of 23 from the formulation.

Since this is the special case of the heavy top with I; = Iy = mi?, we have the same
stability condition under this simplification. Specifically, we can achieve stability for
any o € (0,m). Furthermore, since 23 = 0 here, the set of equilibria Z}™ from (6.3)
becomes a single point. Hence Proposition 6.2 applied to this special case implies the
asymptotic stability in the conventional sense: The solution approaches the upright
equilibrium as t — oo.

Figure 10 shows the results of simulations. Note that the initial condition is
chosen so that the pendulum is almost downward (o = 0.997) as opposed to exactly
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downward (¢ = 7 or T'(0) = (0,0, —1)) because the exact downward position is an
equilibrium of the controlled system. One sees that the pendulum is swung up and
asymptotically stabilized towards the upright position.

Appendix A. Semidirect product SE(3) x R%. This appendix gives a
brief summary of the semidirect product Lie groups SE(3) x R* and SE(3) x R? used
throughout the paper.

A.1. SE(3)-action on R%. Let x: SE(3) — GL(R*) be the left representation
of SE(3) on R* defined by the standard matrix-vector multiplication: Writing s =
(R, X) = [ i x]v

ol 1

(A1) K(s)y = sy = Lﬁ ’1‘] m - [Ry;gx] .

We note in passing that it was also used in the optimal-control formulation of the
Kirchhoff elastic rod under gravity by Borum and Bretl [7, 8].

Let (R*)* be the dual of R*. We identify (R*)* with R* via the dot product
(v,w) := v-w. Then the induced left representation x*: SE(3) — GL((R*)*) is
defined as

(k" (s)T,y) :== <ﬁ(3_1)*1",y> = <F,/<;(s_1)y> = <F7s_1y> = <5_T1",y>,

and therefore, writing I' = (T, h) € (R*)*, we have

O T | [ -39

We may identify the Lie algebra se(3) = s0(3) x R? with R® x R3 via the hat
map (2.6):

[OQT g] € 5¢(3) & (2, v) € R® x R3,

Then we may write the induced action of se(3) on R?* as

a3 @y — L%’ ‘(ﬂ m _ [nggv} _ [Qx;(r)+§v]

This induces the Lie algebra action on the dual (R*)* as follows:
<H/(Q,V)*F,y> = <Fa H/(Q,V)y> =I.: (Q Xy+ gV) = (F X Q) "y + (F ’ V)g7
that is,

(A.4) W (V)T = [F x Q] .

T v

For any y € R?*, define a linear map x,,: se(3) — R* by

QXy+gv
@(Q,v)::m'(ﬂ,v)y:[ }6 y].
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Using its dual x5 : (R*)* — se(3)*, we define the momentum map K: R* x (R*)* —
se(3)* as

K(y,T) := HZ(F).

To make it more concrete, let us identify se(3)* with se(3) via the following inner
product on se(3):

(Q,v),(E,w)) =Q-BE+v-w.
Then we have, for any (£2,v) € se(3) and (y,I') € R* x (R*)*,

<K(yvr)a (vi)> = <H;(F)v (vi)> = <Fa Hy(QaV»
ST @y b V) = (y <) Q4 (D) v,

which gives
(A.5) K(y,T) = (y x T, T).

A.2. SE(3)-action on R3. Setting § = 0 above yields the representation
(A.6) #: SE(3) — GL(R?); k(s)y = k(R,x)y = Ry.

Note that this is not the standard SE(3)-action on R3 by rotation and translation.
As a result, we have

k*(R,x)T' = RT, K (Q,v)y = ry (2, v) = Q2 xy,

(A7)
K(Q,v)T =T x Q, K(y,I')=y xT.

A.3. Lie brackets and coadjoint operator. Let us find the Lie bracket as-
sociated with the semidirect product Lie algebra se(3) x R*. Let ((1,w1), (Co,ws) €
se(3) x R%, where

(Clawl) - ((Qlavl)a (Wl,'l:[)l)), (CQ,U}Q) = ((Q2,V2), (WQ,'(I)Q)).

Then, the Lie bracket is given by, using &’ from (A.3) (see also (2.1)),

[(C1,w1), (G2, wa)] = ad (¢, ) (G2, w2) = ([Ch@]%l(ﬁ)wz - fi/(Cz)Uh)
= ([(917‘/1)’ (Q2,v2)], K (1, v1)(Wa, Wa) — H’(Q27V2)(W17w1))
= ((Ql X ﬂg,ﬂl X Vo — QQ X Vl)7

(Ql X Wo + ’lZ)QVl — QQ X W1 — ’u~)1V2,0)>7
and for se(3) x R3,
[(Chwl), (C27W2)} = ((91 X Qo, Q1 X vy — Dy X v1), Q1 X wy — Qy X Wl)-

A.4. Lie-Poisson brackets on (se(3) x R*)* and (se(3) x R3)*. Using
coordinates

(M’ F) - ((Hv P)a (I‘ﬂ h))
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for (se(3) x R*)* =2 R3 x R? x R?*, the (—)-Lie-Poisson bracket on (se(3) x R*)* is

given by
(.6 ) = =000 | 7575 5 )

where, using the Lie brackets from the previous subsection,

oy )

<8F oG OF 0G oG 8F)
o(p, ) 0(p, T) ’

oI * OIl' oI1 ~ 9P oIl oP
OF 0G 0GOF G OF OF0G
OI1 =~ oI O6h OoP OII = O Oh OP’ '

Hence more concretely,

OF 0G OF 0G 0G _OF
{F,G}((IL,P),(T",h)) = —II- (61'1 X 81'[) -P. (81_1 X 5p ~ a1 ¥ 6P>
(2500 060 06 or_roG)
oIl ~ oI ohoOP OII O OhOP
Then, one easily sees that C; = ||T||? and Cy = ||P xT||? are Casimirs, i.e., {F,C;} = 0
for any F € C*((se(3) x R")*) and i = 1,2.
On the other hand, the Lie-Poisson bracket on (se(3) x R?)* is

(F,G}((IL,P),T) = — _(8F 8G)_P.<8F oG 0G 8F)

oIl * BIl o “ op ol oP
oIl ~ or oI~ or /)
In this case, we have an additional Casimir:

(A.8) Ci=|PI*>, C;=P-T, C3=|T|*

Appendix B. Some lemmas on invariant sets.

LEMMA B.1. Consider the system (6.1) with the dissipative control (6.4) for the
heavy top on a movable base (Example 3.2), and define the set

£71(0) = {g cR3 xR x §? | £(C) = o}

with the Lyapunov function (5.5). Then, for each equilibrium (. € ZXWV (defined
in (6.3)), there exists an open neighborhood U of (. such that the only invariant set
inside U N E71(0) is U N Zhtmb,

Proof. In view of (6.4) and (6.5), we have
E=(v+ _emih (x x Q) TN v—|—7cmll1 (x x Q)
N I, 0 — m2[2 X I, 0 — m2[2 X ’
and since N is assumed to be negative-definite,

(B.1) EQ) =0 <= v= omil (x x Q) <= fiemp(¢) = 0.

-~ Lio—m22
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Since x = (0,0,1), this implies that v3 = 0. But then the equations of motion
satisfying (B.1) gives

(1+c¢)lio—m?l?
Ilg — mZ2[2

03 = ml (QF +Q3).

The fraction on the right-hand side is nonzero because of the condition on g from
(5.8). Hence the solution in the invariant set necessarily satisfies ; = Q9 = 0. It also
implies via (B.1) that v1 = v = 0 as well, i.e., v = 0. Then the equations of motion
now give

Ql = mgng, Qg = —mglFl.

However, since 21 = Q9 = 0, we have I'y = I's = 0, and hence I'3 = £1 because
T[] = 1. We may then take a neighborhood U of (. to exclude I'; = —1. As a result,
T = (0,0,1), and thus U N ZMP is the only invariant set in U N E~1(0). 0

LEMMA B.2. Consider the system (6.1) with the dissipative control (6.6) for the
underwater vehicle (Example 3.1), and define the set £~(0) with the Lyapunov func-
tion € from (5.12). Then, for each equilibrium {, € ZMV (defined in (6.7)), there
ezists an open neighborhood U of (. such that the only invariant set inside UOS*I(O)

is {Ce}-
Proof. In view of (6.6) and (6.8), one sees

ol 5
E)=0 < v= —2D1<I>(Cl702,03)87;7’” — fu(¢) =0.
However, using (5.14),

Cy — Cile 1
(K —mg)3v  2(K—ma)
Also, using the expression for Cy in (5.4) and (6.2), we see that

D,1®(Cy,C5,C5) =

. ol
=2-1%L. v =Y,
Gy o (€ =0

because we have fi,,({) = 0 now. Hence D1®(C4,Cs,C3) is constant if & =0. Now,

since

0lr.o.p
ov
with p = diag(m; — K, mq — K, mg — K), we have

= pv +ml(2 x x),

(BQ) vV = 72D1©(01, 02, Cg)(pV + ml(ﬂ X X))
< (I + 2D1‘I’(Cl, CQ, C’g)p)v = —2ml Dl(I)(Ol, CQ, Cg)(ﬂ X X)
Particularly, since x = (0,0, —1), the second and third components give
701701% vg = —ml €1~ Cile L Q vg3 =10
(K —m2)?v3 2 (K —=m2)3v3 ~ 2(K —ma) b S

In what follows, we consider two cases depending on the value of C7, which takes
the form

C1 = ((m1 — K)vy — mi)* + (g — K)va + mi)* + ((ms — K)vs)*.
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Case 1: Cy # Cile.
In this case, one may use (B.2) to express 1 and Q9 as constant multiples of v
and vy, respectively. Then the equations of motion give

d o] wg(K —mg)? —vy
(B?)) dt |:’U2:| B 201 — (’C — m2)2?}8 QS (%} ’

and hence
(B.4) v? + v3 = v° for some v € R.
It also gives

U3 = a1v? + agv?

with some constants aj,as € R with a; # as. However, because vs = 0, we have
a1v? +agv3 = 0; this along with (B.4) then implies that both v; and v, are constant.
Therefore, the right-hand side of (B.3) vanishes, i.e., either Q5 # 0 and v; = vy =0
or Q23 =0.

In the former case, we also have ; = Qo = 0, and this implies that C; = 0.
Therefore, we may take a small enough neighborhood U of the equilibrium (at
which Cy = Oyl = (K — m2)?v3 > 0) so that C; > 0 on U to exclude this case.

In the latter case, setting 23 = 0 gives

Ql = —mgng, Qg = mglF1

However, since ; and )y are constant, we have I'y = I's = 0, and so I's = +1.
Either way, setting 1 = ¥9 = 0 again leads to v; = vo = 0 because of (B.3), and
hence €7 = Q5 = 0. As a result, C; = 0 again, and so we may exclude this case as
well.
Case 2: C1 = C1le.
In this case, (B.2) gives
my1p — Mo

O =0, Qy = ——y, vz = 0,
ml

and as a result, the equations of motion satisfying (B.2) gives

(m1 — m2>(m2 — ’C) ’U%.

U3 =
ml

Since my # mg for our case and K > my because of (5.11) as well as v3 = 0, it
follows that v;1 = 0, and hence 25 = 0 as well. This in turn implies

Ql = —mgng, QQ = ml(gI‘1 — 1)293), 1.)1 = (mg — ’C)’UQQg.

The first equation with €7 = 0 from above implies I'y = 0. The second with Q5 =0
implies v2Q23 = gI'1, and substituting this to the last equation from above,

’l'}l = (mg — lC)gFl,

but then, since v = 0, we have I'1 = 0, and so v223 = 0 as well. Since I'y =T'5 = 0,
we have I's = +1. Taking a small enough neighborhood U of the equilibrium to

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 09/08/22 to 129.110.242.24 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

2710 CESAR CONTRERAS AND TOMOKI OHSAWA

exclude I's = —1, we have I's = 1. Now, since v; = v3 = Q; = Qy = 0, we have
C1 = (K — mg)*v3. However, we are assuming that C; = Cy|, = (K — m2)?vd, we
have vo = vy # 0. Again, taking U small enough, we have vy = vg. ]
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