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Then, the Lagrangian L: TSE(3) — R, defined on the
tangent bundle TSE(3) of SE(3), is given by:

. 1 L.
L(R.x.R.%) = > TH(RIRT) + %nanz — mgela

I mp o~ 2 )
= 3 Tr@@") + EHY+ZQE3H — mgIT"E;,

where m is the total mass, g is the gravitational acceleration,
lw|l = VwTw, Vw € R3, and J is the inertia matrix.

Notice that the Lagrangian is written in terms of the
variables (ﬁ, Y) € se(3) as well as the advected parameter I.
Therefore, following [15], [8] and [16, §7.5], we may define
the reduced extended Lagrangian £: se(3) x (R?)* — R:

((Q,Y.T) :=K(Q,Y)-U(), (1a)

with the kinetic energy K: se(3) — R and the reduced
potential U: (R3)* — R defined as

— 1 —~ —
K@.Y) =3 QIR + %”Y +QUES|F, (b
U) := mgI"E3,

where we identify (R*)* with R3 via the dot product (v, w) :=
v-w so that T € (R®)* = R

We also identify Q = (Q;,Q,,Q3) € R? with Q € s50(3)
via the hat map [16, §5.3]:

— _ 0 -Q3 X
(o): R? > se(3); Q—-Q=| Q 0 -Qf,
-Q Q 0

whose inverse is written as (s): s0(3) — R3. Then we
have the following correspondence with the cross product:
ﬁy = Qxy,Vy € R’ So we may use (Q,Y) € R® xR3 as
coordinates for se(3) = R3xR3, and we have %Tr(ﬁﬂﬁT) =
3QTIQ, where I = Tr(J)1 - J = diag(/;, I, I3) is the (body)
moment of inertia tensor, and 1 is the 3 X 3 identity matrix;
see [16,87.1].

As a result, we can rewrite the reduced Lagrangian (by
notation abuse) as £: R3 x R3 xR3 — R, and (1) becomes:

€QY,T) = K(Q,Y) - U(T), (2a)
K(Q,Y) = %(m, Q)+ %”Y +IQXE|',  (2b)

U(T) := mgl(T', E3), (2¢)
which agrees with [11]. Notice also
. d . —
I'= E(RT)e3 =—R™RR"e3=-QI'=-QxI'=I'x Q

B. Constraints

The constraints considered in the model are [11]:
1) Pitch constancy: The blade does not rock back and
forth.
(Q,E| xTI'y =0. 3)

2) Continuous contact: The skate blade is in permanent
contact with the plane of the ice, already addressed before by
declaring x(t) = (x1(t),x2(¢),0), which means (x,e3) = 0.
Taking the time derivative,

(X,e3) =0 “

3) No side sliding: The skate blade moves without fric-
tion, but with a constraint that prohibits motions perpendic-
ular to its edge.

<X‘,RE1X€3>=0. (®)]

Note that {E, T, E; xXI'} forms an orthonormal frame (called
the hybrid frame in [11]), and (4) says Y L I'. So the above
constraint says that the velocity Y of the contact point seen
in the body frame must be aligned with the direction E;
along the edge of the blade, i.e.,

Y=YE{+Y,)I'+E, xI'=Y,E;. (6)

ITII. EQUATIONS OF MOTION (EOM)
A. Nonholonomic Euler—Poincaré Equation

The Lagrange—d’Alembert principle with the advected
parameter I' and the constraints (3)—(5) yields the nonholo-
nomic Euler-Poincaré equation [21], [14, §12.3], [11]:

d ot at at at

() faxZl s yxZ i 2l - (B xT
dt(69)+ a0 TV gy T gp = MEXD),

d (ot ot (7)
dz(aY) + QX0 = Jal + M (EyxT),

r=rxq.

Using the expression (2) for ¢, incorporating the con-
straints(3)—(6), and eliminating the Lagrange multipliers, we
obtain the following set of first order differential equations:

ml(gsin9+Y1S23)+Q§tan9(mlz+12—l3)
1= 5 , (8a)
ml +11
. QQstan 0 (I (sec? 0+ 1) — I
O3=- ( (2 )=5) (8b)
I, tan” 0 + I3
211,QQ; sec’ 0
| = _312—35&’ (8¢)
I tan?(0) + I3
0=0Q (8d)

along with the algebraic relations

Q;=Qstan(0), Yo, =Y3=0, I =(0,sin(0),cos(0)).

)

IV. EQUILIBRIUM POINTS AND STABILITY ANALYSIS
A. Equilibrium Points

By setting Q; = Q3 = ¥; = 6 = 0 and solving the RHS
of (8) for (Q1,Q3,Y1,0), we obtain a family of equilibrium
points (L, Y., I'¢) with

Qe = (07 QO tan(@o), QO)’ Y= (Y()7 07 0)7
I'e = (0, sin(8y), cos(6p)),

where Q, Yy, 6y are constants satisfying:

(I’f’ll2 + 12 — ]3)

ml

For 69 = 0, we have YyQy = 0 yielding two special

equilibrium points we are interested in: the sliding one, for
Qo = 0; and the spinning one, for ¥y = 0.

YoQo = tan(0) Q% — g sin(0p).
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Let us write our equations of motion (8) as

= f(Z) with z:= (91,93,Y1, 9) (10)

The sliding equilibrium (Q,Y,0) = (0,YyE,0) for (10) is
then

ZS] = (070’ Y()s 0)5 (11)

whereas the spinning equilibrium (Q,Y,0) = (QyE3,0,0)
for (8) is

Zsp = (0,90,0,0). 12)

B. Spinning Equilibrium
Proposition 1 (Stability of spinning equilibrium):
1) If mi?> + I — I, < 0, then the spinning equilibrium (11)
is unstable.
2) fml>+13—1, >0 and Qy > \Jmgl/(ml2 + 15 - 1),
then the spinning equilibrium (11) is stable.
Proof: The Jacobian matrix at the spinning equilib-
rium (12) is

mlQ mgl+§22(mlz+12—13)
0 0 mlz+(l)1 2nlz+l]
J2 = J(zsp) = 0 0
P 20Qy 0 0 0
1 0 0 0

Its eigenvalues are
{0, 0, £yfmgl — (ml? + I ~ ) QR [mI® + 11} .

If mi> + Is — I < 0, then by the Instability from Lineariza-
tion (IL) criterion [20,p.216], zy, is unstable.

If mi> + 13— I, > 0, then the linear analysis is inconclu-
sive, and so we would like to use the following nonlinear
method:

Theorem 2 (The Energy—Casimir Theorem [1]):

Consider a system of differential equations z = f(z)
on R" with f locally Lipschitz and f(p) = 0. Assume
that the system has k < n constants of motion 7;(z),
Jj = 1,...,k. Let each h; be C? and submersive at p.
Assume that the vectors Vh;(z), j = 2,...,k are linearly
independent at p. Then p is a stable equilibrium point if
there exist scalars us ..., ux such that:

(1) hy+ uohy + - -+ urhy is critical at p; and
(ii) the Hessian matrix D?(hy+usho+- - -+pihi)(p) is sign
definite for all vectors belonging to the tangent space
{y e R*": Vh;(p)-y =0,j =2,...,k} at p of the
submanifold defined by h;(z) = h;(p), j =2,...,k.
We also note that, despite its name, the above theorem
does not assume that the constants of motion {A j}f.zz are
Casimirs: any constants of motion—Casimirs or not—would
suffice.
Imposing the algebraic relations (9) or equivalently

Q= (Q,Qtan(0),Q3), Y = (¥1,0,0),
I' = (0, sin(0), cos(0)),

the kinetic and potential energies (2b) and (2c) become
K(Q1,Q3,Y)) = %(1295 tan(0) + [; Q3 + Q2
+m(I2Q2 + (193 tan(0) + Yl)z)),
U;(0) = mgl cos(0).
Set
hy = K, + Uy, hy := (I3 cos(0) + I, sin(0) tan(0))Qs3,

it can be verified that the derivatives of h; and
hy vanish along the vector field f(z), hence we
just found two constants of motion. Writing Q3 =
hy /(I3 cos(0) + I, sin(0) tan(0)), and substituting this into
(8¢)=(8d), we obtain:

v, _ ﬁ 2l sec?(0)
do 0 (Ltan?(0)+13)2’
sec3(0) d0

Y1+ 2holl ————— <~ =(Const. = h3,
! 2 3./ (Iztan2(6)+13)2 3

hy = Y, +1Q;3 (G(e) +tan(9)),
2 —1 ( Nh=I3sin(6)
cos(0) (I tan*(0) + I3) tan (%)
VL - GV

Notice that G is real-valued because we are assuming I, —
I3 > 0, which is reasonable with the geometry of the system;
see Fig. 1.

One can check that the derivative of &3 vanishes along the
vector field f(z). Also, since

G(e) =

Vhi(zsp) = (0,Q013,0,0),
Vhay(zsp) = (0,13,0,0),  Vhs(zsp) = (0,0, 1,2[Q),

setting up = —Qo and u3 =0, we have

V(h + paha + pshs)(zsp) =0

as well as
Ho, = D*(h1 + paha(z) + u3ho) (zsp)
ml>+I1; 0 0 0
~ 0 Iy 0 0
- 0 0 m mlQq

0 0 miQy QF(ml*+1—L)-mgl

The relevant tangent space is the null space of the matrix

VhZ(Zsp)T _ 0 I3 0 0
ker(th(zsp)T =kerly 0 1 2

={y = (51,0,-21Q052,52)" | 51,52 € R}.
Hence we have the quadratic form
Y Hgyy = s%(ml2 +1) +s§ [Q(Z)(ml2 +I3-1) - mgl] ,

which is positive definite in (s, s2)" for the assumed con-
ditions mi®> + Iy = I, > 0 and Qo > \/mgl/(mi® + 5 — I).
|
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C. Sliding Equilibrium

Proposition 3 (Stability of sliding equilibrium): The slid-
ing equilibrium (11) is linearly unstable.
Proof: Calculating the Jacobian matrix J(z) of the RHS
of (10) at the sliding equilibrium z = zq from (11),

0 mlYy mgl
m12+11 ml2+11
n=deo=l 000
1

0 0 0

rotor, the only aesthefic change in_the n is in the
Hﬁggjgpqwﬂéﬁgseﬁggg){.(), 0, +ymgl/ \/ml§ + 1 }a, and the pres-
ence of a positive eigenvalue implies the assertion by the IL
critefioit 5?119% +J1(Q + §)? + 02093 + 03955

(37

1. .
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nkial) = (0.YEE i QP krths methoddolfeontrolied La-
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B

para‘i‘léﬂ)’tg2 zerdKﬂt?a@gﬁ 4ne Badntel 3P masE B the
Pﬁlﬂ%‘%é&(aﬁ? asndspigtesh it igotgr, the uncontrolled

s 22, Coumt A At s BT R S kate
Lagrangian is independent of ¢, the variation 8¢ is_totally
mibsneeﬂﬁ%mﬂ%noﬁpﬁﬁe DEERIDSES §£1,>< ﬁg(ér,\@kre s!
BEemdthentobantiie Measpiadin atikerothepomdbagrame,
dqnatiedsbwifi. prettieg nhedsnaie tse ((Apl (Ags @ pgostulum
skplecimg [lidbyg (thambteddihe ol ytechnnglatid the g.agitngian
i dontid totauivnal energy:

d (9¢, o, o0ty at,
%(g%i;) E‘%X(a T dor st e
u ly _
hﬁréﬁ)g %ﬁ% \ﬁigﬁrJT 8?3(:Elf<£)3) being the hents
0 in(s?ﬁa of the dofqr; with, principal axes aligngd, with
thoke' ofpthe ge?dldlmﬁ(r Skate! )Thg new reduced Lzrl](ig;ra)ngian
cql W R3 y R3 ¢ R3 :
to Tﬁe ?ﬁ&o)é ]gf éo@troﬂﬂée(RLlasgrangian consists of finding

a new Lagrangian £, : S! x R3 3xR3 SR strgh tha tgg
Euler! C%‘éYecE ti§n§%r+€§ Kh&fﬂ&qﬁé wiTl%fﬂ];

those for ¢, with torque. For details about the study of the
ceDIRties hatihelagiamgiande mdsesndantal 4. apd also
thatchagvarbeband ¢dscrdependant f [©1y[9f Hiackamations
angular kinetic energy is the same as in [20], we consider the
following family of Lagrangians parameterized by v € R:

6, =K, + ZY +1Q % E |2 + U(T) (42)

- 12 AT A LA AN A AN

0Q, 8Y, oI, OR, d6x. Hence the procedure from Section III-
A produces the same equations (7) with ¢ being replaced by
f()t

d (950 afo B[O 650 ~
i1l 53) + @xGg +YXGy +IXGE =M (ENXD). (130
d (0t aty

dt ( ay) +Qx— = hl'+ A3 (E <), (13b)
I'=rxQ. (136)

Assuming that a control torque u is applied to the new ¢
part of the equation, we also have

i(%)
dt\og
B. Controlled Lagrangian

d .
:uzz‘ll(d)+g])=u. (13d)

The method of Controlled Lagrangians consists of finding
a new Lagrangian £,: S' x R x R* x R} — R such that the
Euler—Poincaré equation for ¢, without control matches the
above controlled equation (13). Specifically, we follow [21]
and consider the following family of Lagrangians parame-
terized by v € R:

6, =K, + %HY +IQ % E3|? + U(D),

1/ Ji .

K, = 5(#4;2 F21Q$ + 019} + 0203 + 303). (14)
v

The Euler—Poincaré equation for ¢, is the same as (13a) and

(13c) with £y being replaced by ¢,:

d (0t ¢, at, e,
dt (ag) QX + VX s + X o = 4 (B xT), (152)
d (94, at,
dr(ay) +Qx—5 = bl + A (ExT), (15b)
r=rxQ. (150)
with only significant change in (15d):
d (0¢ d .
E(_'v) =0= 2 i@+ (1+1)Q) =0
o0 (15d)

d . .
= E.h(d) +Qp) = -v/J1Qy.

The equations (15) match the controlled ones (13) by
setting the rotor torque as u = —vJ;Q;. One sees in (15d) that
the momentum A€,/ is constant; hence we can assume
the rotor starts with no momentum of its own relative to the
pendulum skate:

ot
a
Substituting this into (14) yields:

=0=¢=-(1+v)Q.

1 1
K, = 5((11 — V)P + 6,02 + 639%) =9, Q
with
I, :=diag(oy,02,063) with o, :=1] —vJy, (16)

and so the controlled Lagrangian becomes

1
6= 00 %||Y+IQ x Es||*> - U(T).
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Notice that it is identical to (2) except the moment of
inertia I is replaced by I,. Therefore, we may eliminate
the Lagrange multipliers and obtain a reduced set of EOM
without multipliers just as before: we just have to replace

(I1, I, I5) by (o,,02,03):

& ml (gsin0 +Y1Q3) + Q3 tan 0 (ml? + 03 — ©3)

t mil? + o, ’
X QQ;tan 0 (o3 (sec> 0 + 1) — o3)
Q3 =- 5 ;

Gy tan” 0 + o3 (17)

Y _ 2[639]93 Se(:2 0

' (2] tan? 0 + 03
0=0.

We write this system as
z=fu(z) with

Notice that the sliding equilibrium zg from (11) is an
equilibrium of this system as well.

7= (Q1,93,71,0).

C. Stabilization of Sliding Equilibrium

Theorem 4 (Stabilization of sliding equilibrium): For the
controlled pendulum skate (17), the sliding equilibrium (11)

is stabilized if
mlz +1;

7 (18)

v >
Proof: Let us set

1
Kor(Q1,Q3,11) = 5 (029§ tan? 0 + 6,9 + 0302+

+m (P03 + (193 an 0 + 1)),
U,-(8) :=mglcosH,
hy == Kyr + Uyr,
hy := (63 cos 0 + 6, sin O tan 0)Q;3,

hy =Y + 193(6(9) + tan 9),

\/G2—035in 0 )

2 -1
cos 0 (o, tan® O + 63) tan ( 7=

V02 — 634/03
Notice that G is real-valued because we are assuming J, = J3
(see Fig. 2), which implies 0o — 063 =1, — I3 > 0.
Then hy, hy, h3 are constants of motion. So we again use
Theorem 2 along with these invariants. Since

G(0) :=

Vhl (le) = (O’ 0’ mYO’ 0)9
Vhy(zg) =(0,03,0,0), Vhi(zg) =(0,0,1,0),

setting up =0 and u3 = —mYy, we have
V(hy + p2hy + uzhs)(zq) =0
as well as

Hy, := D*(hy + uahy + p3ha) (z41)
’m+o0, 0 0 0

_ 0 03 0 —le()
B 0 0 m 0
0 -mlYy 0 -—-mgl

The relevant tangent space is the null space of the matrix
()=l © 1 o)
={y =(51,0,0,50)" | 51,52 € R}.
Hence we have the quadratic form
¥y Hy,y = (ml* + 6,)s7 — mgls3,
which is negative definite in (sq,s2)" if m/> + 6, < 0 or
equivalently (18) in view of (16). |

VI. SIMULATIONS

As a numerical example, consider the pendulum skate with
mass m = 2.00[Kg], [ = 0.80[m], g = 9.80 [m - s72],
I = diag(0.35,0.35,0.004) [Kg - m?].

A. Sliding Equilibrium—Uncontrolled

For the sliding equilibrium (Q = 0,Y = YyE,0 = 0),
we select an initial condition with a small perturbation as
follows:

Q(0) = (0.1,0.1tan(0.1),0.1), Y (0) =(1,0,0),
I'(0) = (0, sin(0.1), cos(0.1)),
Figure 3 shows the result of the simulation of the uncon-
trolled system (8) with the above initial condition. It clearly

exhibits instability as the pendulum skate falls down, i.e.,
Ib=1at7T=1.025[s].

19)

B. Sliding Equilibrium—Controlled

We also solved the controlled system (17) with the same
initial condition (19). For this simulation, the rotor mass is
1 [Kg], hence the total mass is m = 3 [Kg], J; = 0.005 [Kg-
m?], J, = J3 = 0.0025 [Kg - m?]. According to (18), the
control parameter v must satisfy v > 454 for stability; hence
we take v = 500.

Figure 4 shows the result of the simulation. Notice that the
solution stays close to the equilibrium with small oscillations,
indicating that the pendulum skate keeps sliding without
falling.

1.0
Yi(r) Ts(t)

0999 08

0.098 T =1.025s 06
0997 04

0.996 02 Ty(1) T =1.025s

0.995
b 02

04 I 06 08 T f 02 04 [ 06 08 T

(a) Body linear velocity (b) Vertical upward direction compo-

nents I, and I'3

0.025} x(T) = (1.021,0

0.020 ’

0015
0.010+

éx(()) =

0.005

0.2 0.4 0.6 0.8 1.0

(c) Blade trajectory

Fig. 3. Uncontrolled dynamics.
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Ia(1)
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(a) Body linear velocity (b) Vertical upward direction compo-

nents ['; and I'3

x(1) = (x1(1),x0(1))

20

0.5

x(0 0,0)

2 4 6 8 10

(c) Blade trajectory

Fig. 4. Controlled dynamics.

VII. CONCLUSION AND FUTURE WORKS
A. Conclusion

We analyzed the stability of the pendulum skate—a simple
model of a figure skater developed by [11]. Specifically,
we built on their model and derived the reduced set of
equations (8) without Lagrange multipliers. We found the
equilibrium points corresponding to the sliding and spinning
of the figure skater, and analyzed their stability. Finally, we
found a control that stabilizes unstable sliding equilibria by
the method of Controlled Lagrangians.

B. Future Works

This work is our first step towards a more general treat-
ment of Controlled Lagrangians applied to nonholonomic
Euler-Poincaré equations with broken symmetry. Our goal
in future works is to extend our previous works [9], [10]
on Euler-Poincaré equations with broken symmetry to those
with nonholonomic constraints. Also, the proposed control
by the Controlled Lagrangian method only sought stability
in the sense of Lyapunov. In future studies, we will seek
asymptotic stability by applying an additional dissipative
control, possibly switching to the Hamiltonian picture and
using the IDA-PBC formalism [19], [18], [22].
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