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Abstract— We consider the problem of stabilizing what we
call a pendulum skate, a simple model of a figure skater
developed by Gzenda and Putkaradze. By exploiting the sym-
metry of the system as well as taking care of the part of the
symmetry broken by the gravity, the equations of motion are
given as nonholonomic Euler–Poincaré equation with advected
parameters. Our main interest is the stability of the sliding and
spinning equilibria of the system. We show that the former is
unstable and the latter is stable only under certain conditions.
We use the method of Controlled Lagrangians to find a control
to stabilize the sliding equilibrium.

I. INTRODUCTION

The method of Controlled Lagrangians [17], [12], [13],
[5], [2] is a successful nonlinear control technique for stabi-
lizing mechanical systems described by the Euler–Lagrange
equations. It has been extended to those mechanical systems
on Lie groups with full symmetry using the Euler–Poincaré
formalism [3], [7], [4], and also more recently to those with
broken symmetry such as underwater vehicles [10], [9].

However, its extension to nonholonomic systems is lim-
ited to a very special class of Lagrange–d’Alembert equa-
tions [23], [24] (see also [6]). Also, to our knowledge, a
further extension to nonholonomic Euler–Poincaré equations
has been done only for a special case of the so-called
Chaplygin sphere [21].

Developing a general method of controlled Lagrangian for
nonholonomic systems is challenging for a couple of reasons:
(i) The nonholonomic constraints complicate the resulting
equations of motion due to the Lagrange multipliers arising
from the constraints. (ii) The equations of motion are not in
the Lagrangian/Hamiltonian form in the strict sense, although
they are still energy-preserving.

II. PENDULUM SKATE

A. Basic Setup

This work is a step towards developing the method of
Controlled Lagrangians for nonholonomic Euler–Poincaré
equations. Particularly, we consider what we call the “pendu-
lum skate” depicted in the Fig. 1. It is a simple model for a
figure skater developed in [11], and consists of a skate—
sliding without friction on the surface—with a pendulum
rigidly attached to it.

Following [11], we would like to describe the system using
a Lie group and exploit its symmetry so that the resulting
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equations of motion become a nonholonomic Euler–Poincaré
equation after symmetry reduction.

Let {𝒆1, 𝒆2, 𝒆3} and {𝑬1, 𝑬2, 𝑬3} be the spatial (inertial
and fixed) and the body (attached to the body) frame,
respectively, where {𝑬1, 𝑬2, 𝑬3} is aligned with the principal
axes of inertia with 𝑬1 being aligned with the edge of the
blade as shown in Fig. 1. These two frames are related by
the rotation matrix 𝑅(𝑡) ∈ SO(3) whose column vectors
represent the body frame viewed in the spatial one at time 𝑡.
The origin of the body frame is the blade-ice contact point,
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Let {e1, e2, e3} and {K1, K2, K3} be spatial (inertial and
fixed) and the body (attached to the body) frame, respec-
tively, where {K1, K2, K3} aligned with the principal axeses
of inertia with K1 being aligned with the edge of the
blade as shown in Fig. 1. These two frames are related by
the rotation matrix '(C) 2 SO(3) whose column vectors
represent the body frame viewed in the spatial one at time C.
The origin of the body frame is the blade-ice contact point,
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Fig. 1. Pendulum Skate

and has position vetor x(C) = (G1 (C), G2 (C), 0) at time C in the
spatial frame. Also in the body frame, the center of mass is
located at ;K3, which in spatial coordinates corresponds to
a(C) = x(C) + '(C);K3.
The configuration space is the semi-direct product Lie

group SE(3) := SO(3) n R3, or the matrix group

SE(3) =
⇢
(', x) :=


' x
0| 1

�
: ' 2 SO(3), x 2 R3

�

under the standard matrix multiplication. However, the sys-
tem does not possess the full SE(3)-symmetry, because the
gravity breaks the symmetry. To take this into account, we
introduce the advected parameter � := '

|e3 (the opposite of
the direction of gravity seen from the body frame), and ✓ is
the angle between K3 and �.
Let us find the Lagrangian of the system. If C 7! g(C) =

('(C), x(C)) is the dynamics of the system in SE(3), then

g�1 §g =


'
| §' '

| §x
0| 0

�
=:

b⌦ _
0| 0

�
=: (b⌦,_) 2 se(3),

where b⌦ := '
| §' is the body angular velocity; _ := '

| §x is
the velocity of the blade-ice contact point see from the body
frame; se(3) is the Lie algebra of SE(3).

Fig. 1. Pendulum Skate

and has position vector 𝒙(𝑡) = (𝑥1 (𝑡), 𝑥2 (𝑡), 0) at time 𝑡 in
the spatial frame. Also in the body frame, the center of mass
is located at 𝑙𝑬3, which in spatial coordinates corresponds
to 𝒂(𝑡) = 𝒙(𝑡) + 𝑅(𝑡)𝑙𝑬3.

The configuration space is the semi-direct product Lie
group SE(3) := SO(3) ⋉ R3, or the matrix group

SE(3) =
{
(𝑅, 𝒙) :=

[
𝑅 𝒙
0⊺ 1

]
: 𝑅 ∈ SO(3), 𝒙 ∈ R3

}

under the standard matrix multiplication. However, the sys-
tem does not possess the full SE(3)-symmetry, because the
gravity breaks the symmetry. To take this into account, we
introduce the advected parameter 𝚪 := 𝑅⊺𝒆3 (the opposite of
the direction of gravity seen from the body frame), and θ is
the angle between 𝑬3 and 𝚪.

Let us find the Lagrangian of the system. If 𝑡 ↦→ g(𝑡) =
(𝑅(𝑡), 𝒙(𝑡)) is the dynamics of the system in SE(3), then

g−1 ¤g =

[
𝑅
⊺ ¤𝑅 𝑅

⊺ ¤𝒙
0⊺ 0

]
=:

[
𝛀̂ 𝒀
0⊺ 0

]
=: (𝛀̂,𝒀) ∈ 𝔰𝔢(3),

where 𝛀̂ := 𝑅
⊺ ¤𝑅 is the body angular velocity; 𝒀 := 𝑅

⊺ ¤𝒙
is the velocity of the blade-ice contact point seen from the
body frame; 𝔰𝔢(3) is the Lie algebra of SE(3).
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Then, the Lagrangian 𝐿 : TSE(3) → R, defined on the
tangent bundle TSE(3) of SE(3), is given by:

𝐿 (𝑅, 𝒙, ¤𝑅, ¤𝒙) :=
1
2

Tr( ¤𝑅J ¤𝑅⊺) + 𝑚
2
∥ ¤𝒂∥2 − 𝑚𝑔𝒆3

⊺
𝒂

=
1
2

Tr(𝛀̂J𝛀̂⊺) + 𝑚
2




𝒀 + 𝑙𝛀̂𝑬3




2
− 𝑚𝑔𝑙𝚪⊺𝑬3,

where 𝑚 is the total mass, 𝑔 is the gravitational acceleration,
∥𝒘∥ = √

𝒘⊺𝒘, ∀𝒘 ∈ R3, and J is the inertia matrix.
Notice that the Lagrangian is written in terms of the

variables (𝛀̂,𝒀) ∈ 𝔰𝔢(3) as well as the advected parameter 𝚪.
Therefore, following [15], [8] and [16, §7.5], we may define
the reduced extended Lagrangian ℓ : 𝔰𝔢(3) × (R3)∗ → R:

ℓ(𝛀̂,𝒀 ,𝚪) := 𝐾 (𝛀̂,𝒀) −𝑈 (𝚪), (1a)

with the kinetic energy 𝐾 : 𝔰𝔢(3) → R and the reduced
potential 𝑈 : (R3)∗ → R defined as

𝐾 (𝛀̂,𝒀) :=
1
2

Tr(𝛀̂J𝛀̂⊺) + 𝑚
2


𝒀 + 𝛀̂𝑙𝑬3



2
, (1b)

𝑈 (𝚪) := 𝑚𝑔𝚪⊺𝑙𝑬3,

where we identify (R3)∗ with R3 via the dot product ⟨𝒗, 𝒘⟩ :=
𝒗 · 𝒘 so that 𝚪 ∈ (R3)∗ � R3.

We also identify 𝛀 = (Ω1,Ω2,Ω3) ∈ R3 with 𝛀̂ ∈ 𝔰𝔬(3)
via the hat map [16, §5.3]:

(̂•) : R3 → 𝔰𝔢(3); 𝛀 ↦→ 𝛀̂ =


0 −Ω3 Ω2
Ω3 0 −Ω1

−Ω2 Ω1 0


,

whose inverse is written as (•)̌ : 𝔰𝔬(3) → R3. Then we
have the following correspondence with the cross product:
𝛀̂y = 𝛀 × y,∀y ∈ R3. So we may use (𝛀,𝒀) ∈ R3 × R3 as
coordinates for 𝔰𝔢(3) � R3 ×R3, and we have 1

2 Tr(𝛀̂J𝛀̂⊺) =
1
2𝛀
⊺
I𝛀, where I = Tr(J)𝟙 − J = diag(𝐼1, 𝐼2, 𝐼3) is the (body)

moment of inertia tensor, and 𝟙 is the 3 × 3 identity matrix;
see [16, §7.1].

As a result, we can rewrite the reduced Lagrangian (by
notation abuse) as ℓ : R3 × R3 × R3 → R, and (1) becomes:

ℓ(𝛀,𝒀 ,𝚪) = 𝐾 (𝛀,𝒀) −𝑈 (𝚪), (2a)

𝐾 (𝛀,𝒀) :=
1
2
⟨I𝛀,𝛀⟩ + 𝑚

2


𝒀 + 𝑙𝛀 × 𝑬3



2
, (2b)

𝑈 (𝚪) := 𝑚𝑔𝑙⟨𝚪, 𝑬3⟩, (2c)

which agrees with [11]. Notice also

¤𝚪 =
𝑑

𝑑𝑡

(
𝑅
⊺ )
𝒆3 = −𝑅⊺ ¤𝑅𝑅⊺𝒆3 = −𝛀̂𝚪 = −𝛀 × 𝚪 = 𝚪 ×𝛀

B. Constraints

The constraints considered in the model are [11]:
1) Pitch constancy: The blade does not rock back and

forth.
⟨𝛀, 𝑬1 × 𝚪⟩ = 0. (3)

2) Continuous contact: The skate blade is in permanent
contact with the plane of the ice, already addressed before by
declaring 𝒙(𝑡) = (𝑥1 (𝑡), 𝑥2 (𝑡), 0), which means ⟨𝒙, 𝒆3⟩ = 0.
Taking the time derivative,

⟨ ¤𝒙, 𝒆3⟩ = 0 (4)

3) No side sliding: The skate blade moves without fric-
tion, but with a constraint that prohibits motions perpendic-
ular to its edge.

⟨ ¤𝒙, 𝑅𝑬1 × 𝒆3⟩ = 0. (5)

Note that {𝑬1,𝚪, 𝑬1×𝚪} forms an orthonormal frame (called
the hybrid frame in [11]), and (4) says 𝒀 ⊥ 𝚪. So the above
constraint says that the velocity 𝒀 of the contact point seen
in the body frame must be aligned with the direction 𝑬1
along the edge of the blade, i.e.,

𝒀 = 𝑌1𝑬1 + 𝑌2𝚪 + 𝑌3𝑬1 × 𝚪 = 𝑌1𝑬1. (6)

III. EQUATIONS OF MOTION (EOM)

A. Nonholonomic Euler–Poincaré Equation

The Lagrange–d’Alembert principle with the advected
parameter 𝚪 and the constraints (3)–(5) yields the nonholo-
nomic Euler–Poincaré equation [21], [14, §12.3], [11]:




𝑑

𝑑𝑡

( 𝜕ℓ
𝜕𝛀

)
+𝛀× 𝜕ℓ

𝜕𝛀
+ 𝒀× 𝜕ℓ

𝜕𝒀
+ 𝚪× 𝜕ℓ

𝜕𝚪
= λ1 (𝑬1×𝚪),

𝑑

𝑑𝑡

( 𝜕ℓ
𝜕𝒀

)
+𝛀× 𝜕ℓ

𝜕𝒀
= λ2𝚪 + λ3 (𝑬1×𝚪),

¤𝚪 = 𝚪 ×𝛀.

(7)

Using the expression (2) for ℓ, incorporating the con-
straints(3)–(6), and eliminating the Lagrange multipliers, we
obtain the following set of first order differential equations:




¤Ω1=
𝑚𝑙 (𝑔 sin θ + 𝑌1Ω3) +Ω2

3 tan θ
(
𝑚𝑙2 + 𝐼2 − 𝐼3

)
𝑚𝑙2 + 𝐼1

, (8a)

¤Ω3 = −Ω1Ω3 tan θ
(
𝐼2

(
sec2 θ + 1

) − 𝐼3)
𝐼2 tan2 θ + 𝐼3

, (8b)

¤𝑌1 = −2𝑙 𝐼3Ω1Ω3 sec2 θ

𝐼2 tan2 (θ) + 𝐼3
, (8c)

¤θ = Ω1 (8d)

along with the algebraic relations

Ω2 = Ω3 tan(θ), 𝑌2 = 𝑌3 = 0, 𝚪 = (0, sin(θ), cos(θ)).
(9)

IV. EQUILIBRIUM POINTS AND STABILITY ANALYSIS

A. Equilibrium Points

By setting ¤Ω1 = ¤Ω3 = ¤𝑌1 = ¤θ = 0 and solving the RHS
of (8) for (Ω1,Ω3, 𝑌1, θ), we obtain a family of equilibrium
points (𝛀e,𝒀e,𝚪e) with

𝛀e = (0,Ω0 tan(θ0),Ω0), 𝒀 = (𝑌0, 0, 0),
𝚪e = (0, sin(θ0), cos(θ0)),

where Ω0, 𝑌0, θ0 are constants satisfying:

𝑌0Ω0 = − (𝑚𝑙2 + 𝐼2 − 𝐼3)
𝑚𝑙

tan(θ0)Ω2
0 − 𝑔 sin(θ0).

For θ0 = 0, we have 𝑌0Ω0 = 0 yielding two special
equilibrium points we are interested in: the sliding one, for
Ω0 = 0; and the spinning one, for 𝑌0 = 0.

1862
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Let us write our equations of motion (8) as

¤𝒛 = 𝒇 (𝒛) with 𝒛 := (Ω1,Ω3, 𝑌1, θ). (10)

The sliding equilibrium (𝛀,𝒀 , θ) = (0, 𝑌0𝑬1, 0) for (10) is
then

𝒛sl := (0, 0, 𝑌0, 0), (11)

whereas the spinning equilibrium (𝛀,𝒀 , θ) = (Ω0𝑬3, 0, 0)
for (8) is

𝒛sp := (0,Ω0, 0, 0). (12)

B. Spinning Equilibrium

Proposition 1 (Stability of spinning equilibrium):

1) If 𝑚𝑙2 + 𝐼3 − 𝐼2 < 0, then the spinning equilibrium (11)
is unstable.

2) If 𝑚𝑙2 + 𝐼3 − 𝐼2 > 0 and Ω0 >
√︁
𝑚𝑔𝑙/(𝑚𝑙2 + 𝐼3 − 𝐼2),

then the spinning equilibrium (11) is stable.
Proof: The Jacobian matrix at the spinning equilib-

rium (12) is

𝐽2 := 𝐽 (𝒛sp) =
©­­­­«

0 0 𝑚𝑙Ω0
𝑚𝑙2+𝐼1

𝑚𝑔𝑙+Ω2
0 (𝑚𝑙2+𝐼2−𝐼3)
𝑚𝑙2+𝐼1

0 0 0 0
−2𝑙Ω0 0 0 0

1 0 0 0

ª®®®®¬
.

Its eigenvalues are{
0, 0,±

√︃
𝑚𝑔𝑙 − (𝑚𝑙2 + 𝐼3 − 𝐼2)Ω2

0
/√︁
𝑚𝑙2 + 𝐼1

}
.

If 𝑚𝑙2 + 𝐼3 − 𝐼2 < 0, then by the Instability from Lineariza-
tion (IL) criterion [20, p.216], 𝒛sp is unstable.

If 𝑚𝑙2 + 𝐼3 − 𝐼2 > 0, then the linear analysis is inconclu-
sive, and so we would like to use the following nonlinear
method:

Theorem 2 (The Energy–Casimir Theorem [1]):
Consider a system of differential equations ¤𝒛 = 𝒇 (𝒛)
on R𝑛 with 𝑓 locally Lipschitz and 𝒇 ( 𝒑) = 0. Assume
that the system has 𝑘 < 𝑛 constants of motion ℎ 𝑗 (𝒛),
𝑗 = 1, . . . , 𝑘 . Let each ℎ 𝑗 be 𝐶2 and submersive at 𝒑.
Assume that the vectors ∇ℎ 𝑗 (𝒛), 𝑗 = 2, . . . , 𝑘 are linearly
independent at 𝒑. Then 𝒑 is a stable equilibrium point if
there exist scalars 𝜇2 . . . , 𝜇𝑘 such that:

(i) ℎ1 + 𝜇2ℎ2 + · · · + 𝜇𝑘ℎ𝑘 is critical at 𝒑; and
(ii) the Hessian matrix 𝐷2 (ℎ1+𝜇2ℎ2+· · ·+𝜇𝑘ℎ𝑘) ( 𝒑) is sign

definite for all vectors belonging to the tangent space
{𝒚 ∈ R𝑛 : ∇ℎ 𝑗 ( 𝒑) · 𝒚 = 0, 𝑗 = 2, . . . , 𝑘} at 𝒑 of the
submanifold defined by ℎ 𝑗 (𝒛) = ℎ 𝑗 ( 𝒑), 𝑗 = 2, . . . , 𝑘 .

We also note that, despite its name, the above theorem
does not assume that the constants of motion {ℎ 𝑗 }𝑘𝑗=2 are
Casimirs: any constants of motion—Casimirs or not—would
suffice.

Imposing the algebraic relations (9) or equivalently

𝛀 = (Ω1,Ω3 tan(θ),Ω3), 𝒀 = (𝑌1, 0, 0),
𝚪 = (0, sin(θ), cos(θ)),

the kinetic and potential energies (2b) and (2c) become

𝐾r (Ω1,Ω3, 𝑌1) :=
1
2

(
𝐼2Ω

2
3 tan2 (θ) + 𝐼1Ω2

1 + 𝐼3Ω2
3

+ 𝑚 (
𝑙2Ω2

1 + (𝑙Ω3 tan(θ) + 𝑌1)2) ) ,
𝑈r (θ) = 𝑚𝑔𝑙 cos(θ).

Set

ℎ1 := 𝐾r +𝑈r, ℎ2 := (𝐼3 cos(θ) + 𝐼2 sin(θ) tan(θ))Ω3,

it can be verified that the derivatives of ℎ1 and
ℎ2 vanish along the vector field 𝒇 (𝒛), hence we
just found two constants of motion. Writing Ω3 =
ℎ2/(𝐼3 cos(θ) + 𝐼2 sin(θ) tan(θ)), and substituting this into
(8c)÷(8d), we obtain:

𝑑𝑌1
𝑑θ

=
¤𝑌1
¤θ = − 2ℎ2𝑙 𝐼3 sec3 (θ)(

𝐼2 tan2 (θ) + 𝐼3
) 2 ,

𝑌1 + 2ℎ2𝑙 𝐼3

∫
sec3 (θ) 𝑑θ(

𝐼2 tan2 (θ) + 𝐼3
) 2 = Const. =: ℎ3,

ℎ3 = 𝑌1 + 𝑙Ω3

(
𝐺 (θ) + tan(θ)

)
,

𝐺 (θ) :=
cos(θ) (𝐼2 tan2 (θ) + 𝐼3

)
tan−1

(√
𝐼2−𝐼3 sin(θ)√

𝐼3

)
√
𝐼2 − 𝐼3

√
𝐼3

.

Notice that 𝐺 is real-valued because we are assuming 𝐼2 −
𝐼3 > 0, which is reasonable with the geometry of the system;
see Fig. 1.

One can check that the derivative of ℎ3 vanishes along the
vector field 𝒇 (𝒛). Also, since

∇ℎ1 (𝒛sp) = (0,Ω0𝐼3, 0, 0),
∇ℎ2 (𝒛sp) = (0, 𝐼3, 0, 0), ∇ℎ3 (𝒛sp) = (0, 0, 1, 2𝑙Ω0),

setting 𝜇2 = −Ω0 and 𝜇3 = 0, we have

∇(ℎ1 + 𝜇2ℎ2 + 𝜇3ℎ3) (𝒛sp) = 0

as well as

HΩ0 := 𝐷2 (ℎ1 + 𝜇2ℎ2 (𝒛) + 𝜇3ℎ2) (𝒛sp)

=
©­­­«

𝑚𝑙2 + 𝐼1 0 0 0
0 𝐼3 0 0
0 0 𝑚 𝑚𝑙Ω0
0 0 𝑚𝑙Ω0 Ω2

0
(
𝑚𝑙2 + 𝐼3 − 𝐼2

) − 𝑚𝑔𝑙
ª®®®¬
.

The relevant tangent space is the null space of the matrix

ker
(∇ℎ2 (𝒛sp)⊺
∇ℎ3 (𝒛sp)⊺

)
= ker

(
0 𝐼3 0 0
0 0 1 2𝑙Ω0

)
=
{
𝒚 = (𝑠1, 0,−2𝑙Ω0𝑠2, 𝑠2)⊺ | 𝑠1, 𝑠2 ∈ R} .

Hence we have the quadratic form

𝒚
⊺HΩ0 𝒚 = 𝑠21 (𝑚𝑙2 + 𝐼1) + 𝑠22

[
Ω2

0 (𝑚𝑙2 + 𝐼3 − 𝐼2) − 𝑚𝑔𝑙
]
,

which is positive definite in (𝑠1, 𝑠2)⊺ for the assumed con-
ditions 𝑚𝑙2 + 𝐼3 − 𝐼2 > 0 and Ω0 >

√︁
𝑚𝑔𝑙/(𝑚𝑙2 + 𝐼3 − 𝐼2).
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C. Sliding Equilibrium

Proposition 3 (Stability of sliding equilibrium): The slid-
ing equilibrium (11) is linearly unstable.

Proof: Calculating the Jacobian matrix 𝐽 (𝒛) of the RHS
of (10) at the sliding equilibrium 𝒛 = 𝒛sl from (11),

𝐽1 := 𝐽 (𝒛sl) =
©­­­«

0 𝑚𝑙𝑌0
𝑚𝑙2+𝐼1 0 𝑚𝑔𝑙

𝑚𝑙2+𝐼1
0 0 0 0
0 0 0 0
1 0 0 0

ª®®®¬
.

Its eigenvalues are
{
0, 0,±

√︁
𝑚𝑔𝑙

/√︁
𝑚𝑙2 + 𝐼1

}
, and the pres-

ence of a positive eigenvalue implies the assertion by the IL
criterion.

V. STABILIZATION BY CONTROLLED LAGRANGIAN

A. Pendulum Skate Controlled by Rotor

We would like to stabilize the unstable sliding equilibrium
(𝛀,𝒀 , θ) = (0, 𝑌0𝑬1, 0) by the method of Controlled La-
grangians. Particularly, as is done in [21] for the Chaplygin
sphere, we apply the control by a rotor with rotation axis
parallel to 𝑬1 and attached to the center of mass of the
pendulum skate, as depicted in Fig. 2.

⌘2/(�3 cos(✓) + �2 sin(✓) tan(✓)), and substituting this into
(25c)÷(25d), we obtain:

3.1
3✓

=
§.1
§✓ = � 2⌘2; �3 sec3 (✓)�

�2 tan2 (✓) + �3
� 2 , (33)

.1 + 2⌘2; �3
π

sec3 (✓) 3✓�
�2 tan2 (✓) + �3

� 2 = Const. =: ⌘3, (34)

⌘3 = .1 + ;⌦3

⇣
⌧ (✓) + tan(✓)

⌘
, (35)

⌧ (✓) :=
cos(✓) ��2 tan2 (✓) + �3� tan�1 ⇣p�2��3 sin(✓)p

�3

⌘
p
�2 � �3

p
�3

. (36)

Notice that we are assuming �2� �3 > 0, which is reasonable
with the geometry of the system. Also it can be checked the
derivative of ⌘3 vanishes along the vector field f (z), and

r⌘2 (z) | (0,⌦0 ,0,0) = (0, �3, 0, 0),
r⌘3 (z) | (0,⌦0 ,0,0) = (0, 0, 1, 2;⌦0)

yield two linearly independent vectors. Furthermore, by
setting `2 = �⌦0, and `3 = � <6

2⌦0
, we have

r(⌘1 (z) + `2⌘2 (z) + `3⌘3 (z))
��
(0,⌦0 ,0,0) = 0.

as well as

H⌦0 := (⇡2⌘1 (z) + `2⇡2⌘2 (z) + `3⇡2⌘2 (z))
��
(0,⌦0 ,0,0)

=

©≠≠≠≠´

<;2 + �1 0 0 0
0 �3 0 �<6;

⌦0
0 0 < <;⌦0
0 �<6;

⌦0
<;⌦0 ⌦2

0
�
<;2 � �2 + �3

�
™ÆÆÆÆ̈ .

The relevant tangent space is the null space of the matrix✓
0 �3 0 0
0 0 1 2;⌦0

◆

given by y = (B1, 0, 2;⌦0B2, B2)|, 8B1, B2 2 R. Hence we have
the quadratic form

y
|H⌦0 y = B21 (<;2 + �1) + B22

h
8<;2⌦2

0 +⌦2
0 (<;2 + �3 � �2)

i
,

which is positive definite in (B1, B2)| for the assumed con-
dition <;2 + �3 � �2 > 0. Therefore the spinning equilibrium
is stable for ⌦0 >

p
<6;/(<;2 + �3 � �2).

V. STABILIZATION BY CONTROLLED LAGRANGIAN

resume hereTODO

In order to apply the Controlled Lagrangian tech-
nique, let’s consider stabilizing the unstable sliding point
(⌦ = 0,_ = .0K1, ✓ = 0). Following a similar approach as in
[20], we consider the control action by a rotor with rotation
axis parallel to K1 and attached to center of mass of the
pendulum skate, as depicted in Fig. 2. The configuration
space becomes S1 ⇥ SE(3) where S1 refers to the rotor
angle, measured relative to the body frame, denoted by �.
Considering < already the total mass of pendulum skate +

rotor, the only aesthetic change in the Lagrangian is in the
angular kinetic energy:

 D :=
1
2

⇣
�1⌦

2
1 + �1 (⌦1 + §�)2 + �2⌦

2
2 + �3⌦

2
3

⌘
=
1
2

⇣
�1 §�2 + 2�1⌦1 §� + �1⌦

2
1 + �2⌦

2
2 + �3⌦

2
3

⌘ (37)

where �8 = �8 + �8 , and �8 , 8 = 1, 2, 3 are the mo-
ments of inertia for the rotor with principal axis aligned
with those of the pendulum skate. The new reduced La-
grangian ✓D : S1 ⇥ R3 ⇥ R3 ⇥ R3 ! R, called uncontrolled
Lagrangian, is:

✓D ( §�,⌦,_ ,�) =  D + <2 k_ + ;⌦ ⇥ K3 |2 +* (�). (38)

Notice that, by condition on the rotor, the uncontrolled

K1

K2

K3
�

✓
§�

Fig. 2. Control Rotor attached to Pendulum Skate

Lagrangian is independent of �, the variation �� is totally
independent of any of the variations �⌦, �_ , ��, �',
�x, hence the procedure for obtaining the Euler–Poincaré
equations will produce the same as (??), (??), (24) just
replacing ✓ by ✓D and adding the term related to §� with
a control torque D:

8>>>>>>>><
>>>>>>>>:

3

3C

⇣ m✓D
m⌦

⌘
+⌦⇥ m✓D

m⌦
+ _⇥ m✓D

m_
+ �⇥ m✓D

m�
= �1 (K1⇥�) (39)

3

3C

⇣ m✓D
m_

⌘
+⌦⇥ m✓D

m_
= �2� + �3 (K1⇥�) (40)

3

3C

⇣ m✓D
m §�

⌘
= D ) 3

3C
�1 ( §� +⌦1) = D (41)

The method of Controlled Lagrangian consists of finding
a new Lagrangian ✓⌫ : S1 ⇥R3 ⇥R3 ⇥R3 ! R, such that the
Euler–Poincaré equations for ✓⌫ without torque will match
those for ✓D with torque. For details about the study of the
geometry of systems toward the modifications on ✓D and
matching procedure, we refer the reader to [6], [3]. Since the
angular kinetic energy is the same as in [20], we consider the
following family of Lagrangians parameterized by ⌫ 2 R:

✓⌫ =  ⌫ + <2 k_ + ;⌦ ⇥ K1k2 +* (�) (42)

 ⌫ =
1
2

⇣ �1
1 + ⌫

§�2 + 2�1⌦1 §� + �1⌦
2
1 + �2⌦

2
2 + �3⌦

2
3

⌘
(43)

Fig. 2. Control Rotor attached to Pendulum Skate

The configuration space becomes S1 × SE(3) where S1

refers to the rotor angle, measured relative to the body frame,
denoted by ϕ. Letting 𝑚 denote the total mass of pendulum
skate including the rotor, the only change in the Lagrangian
is in the rotational energy:

𝐾rot :=
1
2

(
𝐼1Ω

2
1 + 𝐽1 (Ω1 + ¤ϕ)2 + σ2Ω

2
2 + σ3Ω

2
3

)
,

where σ𝑖 := 𝐼𝑖 + 𝐽𝑖 with 𝐽𝑖 (𝑖 = 1, 2, 3) being the moments
of inertia of the rotor with principal axes aligned with
those of the pendulum skate. The new reduced Lagrangian
ℓ0 : S1 × R3 × R3 × R3 → R is

ℓ0 ( ¤ϕ,𝛀,𝒀 ,𝚪) := 𝐾rot + 𝑚2 ∥𝒀 + 𝑙𝛀 × 𝑬3 |2 −𝑈 (𝚪).

Notice that the Lagrangian ℓ0 is independent of ϕ, and also
that the variation δϕ is independent of any of the variations

δ𝛀, δ𝒀 , δ𝚪, δ𝑅, δ𝒙. Hence the procedure from Section III-
A produces the same equations (7) with ℓ being replaced by
ℓ0:




𝑑

𝑑𝑡

( 𝜕ℓ0
𝜕𝛀

)
+𝛀× 𝜕ℓ0

𝜕𝛀
+ 𝒀× 𝜕ℓ0

𝜕𝒀
+ 𝚪× 𝜕ℓ0

𝜕𝚪
= λ1 (𝑬1×𝚪), (13a)

𝑑

𝑑𝑡

( 𝜕ℓ0
𝜕𝒀

)
+𝛀× 𝜕ℓ0

𝜕𝒀
= λ2𝚪 + λ3 (𝑬1×𝚪), (13b)

¤𝚪 = 𝚪 ×𝛀. (13c)

Assuming that a control torque 𝑢 is applied to the new ϕ
part of the equation, we also have

𝑑

𝑑𝑡

( 𝜕ℓ0
𝜕 ¤ϕ

)
= 𝑢 ⇒ 𝑑

𝑑𝑡
𝐽1 ( ¤ϕ +Ω1) = 𝑢. (13d)

B. Controlled Lagrangian

The method of Controlled Lagrangians consists of finding
a new Lagrangian ℓν : S1 × R3 × R3 × R3 → R such that the
Euler–Poincaré equation for ℓν without control matches the
above controlled equation (13). Specifically, we follow [21]
and consider the following family of Lagrangians parame-
terized by ν ∈ R:

ℓν = 𝐾ν + 𝑚2 ∥𝒀 + 𝑙Ω × 𝑬3∥2 +𝑈 (𝚪),

𝐾ν =
1
2

( 𝐽1
1 + ν

¤ϕ2 + 2𝐽1Ω1 ¤ϕ + σ1Ω
2
1 + σ2Ω

2
2 + σ3Ω

2
3

)
. (14)

The Euler–Poincaré equation for ℓν is the same as (13a) and
(13c) with ℓ0 being replaced by ℓν:




𝑑

𝑑𝑡

( 𝜕ℓν
𝜕𝛀

)
+𝛀× 𝜕ℓν

𝜕𝛀
+ 𝒀× 𝜕ℓν

𝜕𝒀
+ 𝚪× 𝜕ℓν

𝜕𝚪
= λ1 (𝑬1×𝚪), (15a)

𝑑

𝑑𝑡

( 𝜕ℓν
𝜕𝒀

)
+𝛀× 𝜕ℓν

𝜕𝒀
= λ2𝚪 + λ3 (𝑬1×𝚪), (15b)

¤𝚪 = 𝚪 ×𝛀. (15c)

with only significant change in (15d):

𝑑

𝑑𝑡

( 𝜕ℓν
𝜕 ¤ϕ

)
= 0 ⇒ 𝑑

𝑑𝑡
𝐽1 ( ¤ϕ + (1 + ν)Ω1) = 0

⇒ 𝑑

𝑑𝑡
𝐽1 ( ¤ϕ +Ω1) = −ν𝐽1 ¤Ω1.

(15d)

The equations (15) match the controlled ones (13) by
setting the rotor torque as 𝑢 = −ν𝐽1 ¤Ω1. One sees in (15d) that
the momentum 𝜕ℓν/𝜕 ¤ϕ is constant; hence we can assume
the rotor starts with no momentum of its own relative to the
pendulum skate:

𝜕ℓν

𝜕 ¤ϕ = 0 ⇒ ¤ϕ = −(1 + ν)Ω1.

Substituting this into (14) yields:

𝐾ν =
1
2

(
(𝐼1 − ν𝐽1)Ω2

1 + σ2Ω
2
2 + σ3Ω

2
3

)
=

1
2
𝛀⊺Iν 𝛀

with

Iν := diag(σν , σ2, σ3) with σν := 𝐼1 − ν𝐽1, (16)

and so the controlled Lagrangian becomes

ℓν =
1
2
𝛀⊺Iν 𝛀 + 𝑚

2
∥𝒀 + 𝑙𝛀 × 𝑬3∥2 −𝑈 (𝚪).
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Notice that it is identical to (2) except the moment of
inertia I is replaced by Iν . Therefore, we may eliminate
the Lagrange multipliers and obtain a reduced set of EOM
without multipliers just as before: we just have to replace
(𝐼1, 𝐼2, 𝐼3) by (σν , σ2, σ3):


¤Ω1 =
𝑚𝑙 (𝑔 sin θ + 𝑌1Ω3) +Ω2

3 tan θ
(
𝑚𝑙2 + σ2 − σ3

)
𝑚𝑙2 + σν

,

¤Ω3 = −Ω1Ω3 tan θ
(
σ2

(
sec2 θ + 1

) − σ3
)

σ2 tan2 θ + σ3
,

¤𝑌1 = −2𝑙σ3Ω1Ω3 sec2 θ

σ2 tan2 θ + σ3
,

¤θ = Ω1.

(17)

We write this system as

¤𝒛 = 𝒇ν (𝒛) with 𝒛 := (Ω1,Ω3, 𝑌1, θ).
Notice that the sliding equilibrium 𝒛sl from (11) is an
equilibrium of this system as well.

C. Stabilization of Sliding Equilibrium

Theorem 4 (Stabilization of sliding equilibrium): For the
controlled pendulum skate (17), the sliding equilibrium (11)
is stabilized if

ν >
𝑚𝑙2 + 𝐼1
𝐽1

. (18)

Proof: Let us set

𝐾ν𝑟 (Ω1,Ω3, 𝑌1) :=
1
2

(
σ2Ω

2
3 tan2 θ + σνΩ

2
1 + σ3Ω

2
3+

+𝑚 (
𝑙2Ω2

1 + (𝑙Ω3 tan θ + 𝑌1)2) ) ,
𝑈ν𝑟 (θ) := 𝑚𝑔𝑙 cos θ,
ℎ1 := 𝐾ν𝑟 +𝑈ν𝑟 ,

ℎ2 := (σ3 cos θ + σ2 sin θ tan θ)Ω3,

ℎ3 := 𝑌1 + 𝑙Ω3

(
𝐺 (θ) + tan θ

)
,

𝐺 (θ) :=
cos θ

(
σ2 tan2 θ + σ3

)
tan−1

(√
σ2−σ3 sin θ√

σ3

)
√
σ2 − σ3

√
σ3

.

Notice that 𝐺 is real-valued because we are assuming 𝐽2 = 𝐽3
(see Fig. 2), which implies σ2 − σ3 = 𝐼2 − 𝐼3 > 0.

Then ℎ1, ℎ2, ℎ3 are constants of motion. So we again use
Theorem 2 along with these invariants. Since

∇ℎ1 (𝒛sl) = (0, 0, 𝑚𝑌0, 0),
∇ℎ2 (𝒛sl) = (0, σ3, 0, 0), ∇ℎ3 (𝒛sl) = (0, 0, 1, 0),

setting 𝜇2 = 0 and 𝜇3 = −𝑚𝑌0, we have

∇(ℎ1 + 𝜇2ℎ2 + 𝜇3ℎ3) (𝒛sl) = 0

as well as

H𝑌0 := 𝐷2 (ℎ1 + 𝜇2ℎ2 + 𝜇3ℎ2) (𝒛sl)

=
©­­­«

𝑙2𝑚 + σν 0 0 0
0 σ3 0 −𝑚𝑙𝑌0
0 0 𝑚 0
0 −𝑚𝑙𝑌0 0 −𝑚𝑔𝑙

ª®®®¬
.

The relevant tangent space is the null space of the matrix

ker
(∇ℎ2 (𝒛sl)⊺
∇ℎ3 (𝒛sl)⊺

)
=

(
0 σ3 0 0
0 0 1 0

)
=
{
𝒚 = (𝑠1, 0, 0, 𝑠2)⊺ | 𝑠1, 𝑠2 ∈ R} .

Hence we have the quadratic form

𝒚
⊺H𝑌0 𝒚 = (𝑚𝑙2 + σν)𝑠21 − 𝑚𝑔𝑙𝑠22,

which is negative definite in (𝑠1, 𝑠2)⊺ if 𝑚𝑙2 + σν < 0 or
equivalently (18) in view of (16).

VI. SIMULATIONS

As a numerical example, consider the pendulum skate with
mass 𝑚 = 2.00 [Kg], 𝑙 = 0.80 [m], 𝑔 = 9.80 [m · s−2],
I = diag(0.35, 0.35, 0.004) [Kg · m2].
A. Sliding Equilibrium—Uncontrolled

For the sliding equilibrium (𝛀 = 0,𝒀 = 𝑌0𝑬1, θ = 0),
we select an initial condition with a small perturbation as
follows:

𝛀(0) = (0.1, 0.1 tan(0.1), 0.1), 𝒀 (0) = (1, 0, 0),
𝚪(0) = (0, sin(0.1), cos(0.1)), (19)

Figure 3 shows the result of the simulation of the uncon-
trolled system (8) with the above initial condition. It clearly
exhibits instability as the pendulum skate falls down, i.e.,
Γ2 = 1 at 𝑇 = 1.025 [s].
B. Sliding Equilibrium—Controlled

We also solved the controlled system (17) with the same
initial condition (19). For this simulation, the rotor mass is
1 [Kg], hence the total mass is 𝑚 = 3 [Kg], 𝐽1 = 0.005 [Kg ·
m2], 𝐽2 = 𝐽3 = 0.0025 [Kg · m2]. According to (18), the
control parameter 𝜈 must satisfy ν > 454 for stability; hence
we take ν = 500.

Figure 4 shows the result of the simulation. Notice that the
solution stays close to the equilibrium with small oscillations,
indicating that the pendulum skate keeps sliding without
falling.

(a) Body linear velocity (b) Vertical upward direction compo-
nents Γ2 and Γ3

(c) Blade trajectory

Fig. 3. Uncontrolled dynamics.
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(a) Body linear velocity (b) Vertical upward direction compo-
nents Γ2 and Γ3

(c) Blade trajectory

Fig. 4. Controlled dynamics.

VII. CONCLUSION AND FUTURE WORKS

A. Conclusion

We analyzed the stability of the pendulum skate—a simple
model of a figure skater developed by [11]. Specifically,
we built on their model and derived the reduced set of
equations (8) without Lagrange multipliers. We found the
equilibrium points corresponding to the sliding and spinning
of the figure skater, and analyzed their stability. Finally, we
found a control that stabilizes unstable sliding equilibria by
the method of Controlled Lagrangians.

B. Future Works

This work is our first step towards a more general treat-
ment of Controlled Lagrangians applied to nonholonomic
Euler–Poincaré equations with broken symmetry. Our goal
in future works is to extend our previous works [9], [10]
on Euler–Poincaré equations with broken symmetry to those
with nonholonomic constraints. Also, the proposed control
by the Controlled Lagrangian method only sought stability
in the sense of Lyapunov. In future studies, we will seek
asymptotic stability by applying an additional dissipative
control, possibly switching to the Hamiltonian picture and
using the IDA-PBC formalism [19], [18], [22].
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equations and semidirect products with applications to continuum
theories. Advances in Mathematics, 137(1):1–81, 1998.

[16] D. D. Holm, T. Schmah, and C. Stoica. Geometric mechanics and
symmetry: from finite to infinite dimensions. Oxford texts in applied
and engineering mathematics. Oxford University Press, 2009.

[17] R. Ortega, J. Perez, P. Nicklasson, and H. Sira-Ramirez. Passivity-
based Control of Euler–Lagrange Systems: Mechanical, Electrical
and Electromechanical Applications. Communications and Control
Engineering. Springer London, 1998.

[18] R. Ortega, M. W. Spong, F. Gomez-Estern, and G. Blankenstein.
Stabilization of a class of underactuated mechanical systems via
interconnection and damping assignment. IEEE Transactions on
Automatic Control, 47(8):1218–1233, 2002.

[19] R. Ortega, A. van der Schaft, B. Maschke, and G. Escobar. Inter-
connection and damping assignment passivity-based control of port-
controlled hamiltonian systems. Automatica, 38(4):585–596, 2002.

[20] S. Sastry. Nonlinear Systems: Analysis, Stability, and Control. Inter-
disciplinary Applied Mathematics. Springer New York, 1999.

[21] D. Schneider. Non-holonomic Euler–Poincaré equations and stability
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