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Abstract—Output feedback control design for linear time-
invariant systems in the presence of sporadic measurements and
exogenous perturbations is addressed. To cope with the sporadic
availability of measurements of the output, a hybrid dynamic
output feedback controller equipped with a holding device whose
state is reset when a new measurement is available is designed.
The closed-loop system, resulting from the interconnection of the
controller and the plant, is augmented with a timer variable
triggering the arrival of new measurements and its properties
are analyzed using hybrid system tools. Building upon Lyapunov
theory for hybrid systems, sufficient conditions for internal and
Lo input-to-output stability are proposed. An LMI-based design
methodology for the co-design of the gains of the controller
and the parameters of the holding device is presented. The
effectiveness of the proposed LMI-based design approach is
showcased in a numerical example.

I. INTRODUCTION
A. Background

Over the last few decades, Networked Control Systems
(NCSs) have been attracting an increasing interest in the
research community; see, e.g., [1] and the references therein. A
key feature of NCSs is the capability of sharing information,
such as plant measurements and control signals, through a
network. Due to the network being digital and of limited
bandwidth, information exchanged between the plant and
the controller happens in a sporadic fashion. In this setting,
the classical paradigm assuming continuously or discretely
periodically-sampled data is no longer realistic. This has
brought to life an entire area of research aimed at analyzing
aperiodic sampled-data systems [1].

Three different main approaches have been developed in
the literature for the analysis of aperiodic sampled-data control
systems. In the input-delay approach [2], aperiodic sampling is
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modeled via a time-varying input delay. A different philosophy
is followed in the lifting approach [3], where the sampled-
data control problem is converted into an equivalent discrete
control problem with an infinite-dimensional input space. A
complete different modeling paradigm is considered in the
impulsive system approach [4], [5], in which the aperiodic
sampling mechanism is captured via an impulsive dynamical
system.

When only output measurements of the plant are available,
controller design is more challenging and one needs to rely
on output feedback strategies. In this setting, two architec-
tures are commonly considered in the literature: observer-
based controllers and dynamic output feedback controllers. An
observer-based controller relies on a dynamic state estimator
(or observer) and on a static state-feedback control law com-
puted using the estimated state. Most observer-based controller
architectures rely on the certainty equivalence principle. This
principle consists of plugging the estimate provided by the
observer into the controller as if it were the actual plant state;
see [6]. The certainty equivalence principle is adopted in [7],
where switched observer-based architectures are designed for a
distributed NCS. In [8], the authors propose a hybrid observer-
based controller to stabilize an LTI plant in the presence
of intermittent measurements and sporadic input access. The
approach therein relies on the use of a separation principle.
However, when it comes to enforce disturbance attenuation
properties, the use of separation principles is not appropriate
as it does not enable to ensure the satisfaction of a specific
input-output behavior. In this setting, the use of observer-based
architectures becomes less appealing. A typical approach to
overcome this drawback consists of considering a dynamic
output feedback controller that does not explicitly rely on a
state estimator. Indeed, it is worthwhile to notice that not all
full-order compensators are observer-based controllers; see [9].
In this setting, closed-loop performance specifications can be
imposed via Lyapunov-like conditions. This is an established
philosophy in H, control; see, e.g., [10]. Output feedback
controller design for sampled-data systems is addressed in
[11] via time-delay tools and in [12] via looped-functional
techniques.

One common feature of the approaches discussed so far
is that they rely on zero-order hold (ZOH) mechanisms to
generate an estimate of the plant output in between sampling
times. However, as shown in [13] more elaborated holding
devices can be employed to improve robustness and obtain
enlarged maximal admissible transmission intervals.

B. Contribution

In this paper, we consider closed-loop systems where the
sensing path of the system is subject to sporadic communi-



cation. In this setting, we propose a methodology for the co-
design of an output feedback dynamic controller along with
a general holding device. Notice that the setup considered in
this paper, known as one-channel feedback network control
system [1], constitutes a relevant case study since it can capture
several configurations of network control systems; see [I,
Section III.A]. The main contributions of this work are as
follows:

o We propose a hybrid control scheme constituted by the
cascade of a general holding device and a linear dynamic
output feedback controller. In particular, the controller
we consider is inspired by the literature of linear H .,
control and is of arbitrary structure, i.e., it is not issued
from an observer-based paradigm. This enables to ensure
the satisfaction of H, specifications. The holding device
is a hybrid system whose state is reset to the plant
measurement whenever a new transmission occurs and
generates a signal that feeds the controller.

e Using a hybrid system model of the closed-loop, we
propose results for the simultaneous design (co-design)
of the controller parameters and of the holding device
dynamics. The approach we pursue relies on Lyapunov
theory for hybrid systems in the framework of [14].

« We provide sufficient conditions in the form of matrix
inequalities to ensure:

— zero-input exponential stability;
— external £, stability from plant perturbations to a given
regulated output with prescribed £1-gain;

o An algorithm based on semidefinite programming (SDP)
tools is proposed for joint design of the controller and
the holding device.

This work extends our preliminary conference paper [15].
In [15], only exponential stabilization is considered. This
paper not only extends the results in [15] to Lo disturbance
attenuation, but also provides complete proofs (no proofs are
included in [15]), a less conservative and more systematic
approach towards design, and a different numerical example.
Compared to existing results, the main contribution of this
work consists of the co-design of an output feedback controller
and a general holding device.

The remainder of the paper is organized as follows. Sec-
tion II introduces the problem we solve and presents the
modeling of the closed-loop system. Section III presents
sufficient conditions for closed-loop stability. Control design
issues are addressed in Section IV. Finally, in Section V the
effectiveness of the approach is shown in a numerical example.

C. Notation

The symbol 91 denotes the set of strictly positive integers,
N = Ny U {0}, R is the set of real numbers, R>¢ is
the set of nonnegative real numbers. The Euclidean space of
dimension 7 is represented by R™ and JR"*" is the set of
n x m real matrices. Given 4 € R"*™ AT denotes the
transpose of A and, when n = m, A=T = (AT)~! when
A is nonsingular, He(A) = A + AT, and spec(A) stands
for the spectrum of A. The identity matrix (of appropriate
dimension) is denoted by I. The symbol S} represents the set

of n xn symmetric positive definite matrices. For a symmetric
matrix A, A = 0, A = 0, A < 0, and A < 0 means
that A is, respectively, positive definite, positive semidefinite,
negative definite, negative semidefinite. The symbols Ay, (A)
and Apax(A) denote, respectively, the smallest and the largest
eigenvalue of A. In partitioned symmetric matrices, the symbol
e represents a symmetric block. For a vector z € R", |z
denotes its Euclidean norm. Given two vectors  and y, we
use the equivalent notation (z,y) = [z',y']". Given a
vector z € R" and a nonempty set A € R", the distance
of z to A is defined as |z|4 = infyea |z — y|. For any
function z: R — R", we denote 2z(tT) = lim,_+2(s)
when it exists. Solutions to hybrid systems with inputs are
represented by pairs of hybrid signals (functions defined on
hybrid time domains) of the type (¢, u), where ¢ is a hybrid
arc and u is a hybrid input; see [16] for formal definitions
of hybrid signals, inputs, and arcs. Given a hybrid signal u,
domyu = {t € R>p: Jj € Ns.t. (¢,5) € domwu} and for
any s € dom; u, j(s) == min{j € MN: (s,7) € domu}.

II. PROBLEM STATEMENT AND SOLUTION OUTLINE
A. System Description

We consider a plant P described by a continuous-time linear

time-invariant system of the form
Iy = Apzp + Bpu + Wpd

Py =Cprp

Yo =
where x € R"» represents the state of the plant, u € R"
the control input, d € R"¢ is a nonmeasurable exogenous
disturbance, y € R™v is the measured output of the plant, and
Yo € Mo is the regulated output'. The constant matrices
Ap, By, Wy, Cp, and C,, are given and of appropriate
dimensions. We study a setup in which w is a continuous-time
signal, whereas y is measured only at some time instances
tr, k € IM~o, not known in advance. We assume that for the

sequence {tk},;“;l there exist two positive real scalars 71 < Th
such that

ey

opLp

0<t <To, Ti<tpp1 -t <To VEEINo. (2)

The lower bound on 7} in condition (2) introduces a strictly
positive minimum time in between consecutive measurements
shared after the first one. As such, this avoids the existence
of Zeno behavior, which are unwanted in practice. Moreover,
T5 defines the Maximum Allowable Transfer Interval (MATI).
For the considered setup, the problem we solve is as follows:

Problem 1. Design an output feedback controller ensuring
the following properties for the closed-loop system:

(P1) The set of points in which the plant and controller states
are zero® is globally exponentially stable when the input
d is identically zero;

IFor easiness of exposition, we select the regulated output to be dependent
only on the plant state. On the other hand, the approach we present can be
extended to more general regulated outputs.

2The closed-loop system resulting from our approach contains additional
state variables such as timers and memory states. These variables are required
to remain bounded in (PI).



(P2) The closed-loop system is Lo stable from the disturbance
d to the regulated output y, with a prescribed Lo gain
v > 0.

B. Outline of the Proposed Solution

To solve Problem 1, we propose an output feedback con-
troller that relies on a linear dynamic controller X augmented
with a general holding device J. In particular, the holding
device J, which is to be designed, is used to feed the
controller I in between measurements and its state is reset
to the value of the plant output any time a new measurement
gets available.

More in detail, the continuous-time dynamic controller /C
we design is given by

: {x e 3

u= Cezc+ D.9,

where z. € PR is the controller state and §j € PR™v is the state
of the holding device 7. By making use of the last received
measurement of the plant output and of the controller state,
the general holding device [J generates an intersample signal
that is used to feed the controller K. In particular, for a given
sequence {t}7° , satisfying condition (2), J is described by

g { 00 = i)+ Bret) ¥t £t
5t = y(® Vi = 1.

The operating principle of the holding device 7 is as follows.
The arrival of new measurements instantaneously updates ¢ to
y. In between updates, ¢ evolves according to the continuous-
time dynamics in (4) and its value is used by the controller

KC. The matrices
A. | B,
{Oc Dc}’[mm

are the parameters to be designed.

“)

(&)

C. Hybrid Modeling

The closed-loop system can be modeled as a linear system
with jumps in g. In particular, for all k¥ € 915 one obtains

iy = Aptp+ ByCoet ByDoij+Wpd

Te = ACI0+BCQ Vt#t}c

i) =Hj+ Eax.

p(th) = (1) (6)
. (tT) = z.(t) Vt=ty

Q(t+) = Cpap(t)
Yo(t) = Copyp(t).

To devise a design algorithm for the parameters of X and
J, we model the impulsive system in (6) into the hybrid
system framework in [14]. To this end, we augment the state
of the closed-loop system with the auxiliary variable 7 € >,
which is a timer that keeps track of the duration of intervals in
between transmissions of new measurement data. As in [17], to
enforce (2), we make 7 decrease as ordinary time ¢ increases
and, whenever 7 = 0, we reset it to any point in [T, T5].

Furthermore, to simplify the analysis, we consider the change
of coordinates n := Cpx, — 3. Hence, by taking as a state
z = (&,n,7) € R, with ny = n, +n.+ny + 1 and
Z = (zp, ), the closed-loop system can be represented by
the following hybrid system

&= f(z,d) (z,d)€C xR,
Hal 2t €G(x) ze€D, @)
Yo = Cojv

where C,, == [C,,, 0] and the flow and jump sets are defined,
respectively, as C := R Tt x [0, Ty], D = R ety x
{0}. The flow map is given for all x € C, d € R"™4 by

f(z,d) = (AZ + Bn + Vd,Jz + Hn + Wd, —1),

Ay + B,D.C, | B,C. } B { B,D, }
B.C, | A. I’ B, |

},J:: [ J1]J2 ], and W := C,W,, where

®)

with A = {
WP

|

Jl = OpAp + OpoDCOp - HCp,
H := C,B,D, — H.

JQ = CpoCc — E,

The jump map is defined for all x € D, as G(z) =
(z,0,[T1,T]). In particular, this set-valued jump map allows
to capture all possible transmission intervals of length within
T, and Ts. Specifically, the hybrid model (7) captures any
sequence satisfying (2). Since we are interested in ensuring
global exponential stability of the origin of the plant, our
approach to solve Problem 1 consists of designing the holding
device J and the parameters of controller K such that without
disturbances, i.e., d = 0 the set?

A= {0} x {0} x [0, T] C K" )

is exponentially stable for H.; in (7). This property is char-
acterized by the notion of 0-input global exponential stability
defined below, which is a direct adaptation of the notion of
global exponential stability as defined in [18].

Definition 1. (0-input global exponential stability) Let A C
R"= be nonempty. The set A is 0-input globally exponentially
stable (0-input GES) for the hybrid system H.; if there exist
Kk, A > 0 such that each maximal solution pair* (¢,0) to H
is complete and satisfies

|6(t, )4 < ke 2FD]$(0,0)] 4, V(t,5) € domg. (10)

ITI. STABILITY ANALYSIS
A. Lyapunov-based Sufficient Conditions

To solve Problem 1, in this paper we consider the closed-
loop system H.; as the interconnection of the following two
systems: a continuous-time system Xz given as

5 {:b:Ax—i—Bn—i—Vd,

_ (11a)
Yo = CoZ,
3Notice that, by definition of system H.; and of the set .4, for all z € C,
one has |z|4 = [(Z,n)|. In particular, this shows that global exponential
stability of A for (7) implies the desired stability properties.
4A pair (¢, d) is maximal if its domain cannot be extended and complete
if its domain is unbounded.



and a hybrid system 3J,, given by
7 }_{ Hn + Jz + Wd }
+ =

-1

nt 0
o+ 6{ Ty, T } 7=0.
This equivalent representation of H; in (7) can be exploited to
formulate sufficient conditions for stability of the closed-loop
system H.; by employing an approach that is reminiscent of
an “input-to-state stability small gain” philosophy. A concep-
tually similar approach has been pursued in [19] to analyze
networked control systems via dissipation-like inequalities.

To take a first step towards the solution to Problem 1, let
us consider the following property:

T E [0, TQ],

5, (11b)

Property 1. Let v be given. There exist continuously dif-
ferentiable functions V1 : R tme — R and Vo: Rt —
R, positive definite functions py: Rt — Ry and
o1: R™ — Rso, functions pa: R™ — R, gg: Rt —
R, p3: R Tnetna 5 R g3: M — R, and positive scalars
ky,, kv, such that

C’U1 bl CU2 bl gyl ’ QU27

e, |Z)° < %(T) < Ty |7 VI e R, (12a)
CooInl® < Va(n,7) <Tplnf® V(n,7) € R (12b)
(V#1(z), Az + Bn+Vd) < —p1(Z)+p2(n)+p3(Z, d) (120)

V(z,m) € Retnet g c |,

(V¥ (n,7),Hn+Iz+Wd, —1)) < —01(n)+02(Z)+03(d)
V(n,7,%) € R™ x [0, Ty] x R d € R,

(12d)

—p1(Z) + 02(7) < —ky, 7[> VZ € R, (12¢)

—01(n) + pa(n) < —ky,In[* Yne R, (12)
p3(Z,d) +o3(d) < —z'C)C,z+~%d"d

(12¢)

VT € R the d e R
where C, = [Cop 0.

Remark 1. The satisfaction of (12a)-(12c) naturally requires
the stabilizability and detectability of the plant (1).

The following theorem employs Definition 1 and provides
sufficient conditions for the solution to Problem 1.

Theorem 1. Let Property I hold. Then:
(i) The set A in (9) is 0-input GES for the hybrid closed-loop
system Hep;
(ii) There exists o > 0 such that any solution pair (¢,d) to
He satisfies

Jz o (r, (r)[Pdr <al$(0,0)|a + 4/ [7|d(r, j(r))|Pdr

(13)
where T = domy ¢. ]

The proof of Theorem 1 basically shows that under Prop-
erty 1, the function ¥ (z) = % (Z) + Y2(n,T) satisfies a

suitable dissipation inequality; see [20, Appendix A] for a
detailed proof.

Remark 2. In principle, sufficient conditions for the solution
to Problem 1 could be derived by following a similar approach
as in [21]. However, because of the coupling between the
states T and m, this approach leads to conditions that are
difficult to handle from a numerical standpoint. This often hap-
pens in the construction of Lyapunov functions for feedback
interconnections and is the key factor leading to small-gain
approaches; see, e.g., [22].

Remark 3. Although inputs to (7) are represented by hybrid
signals, any purely continuous-time signal t — (t) can be
converted into a hybrid signal w on a given hybrid time
domain &€ by defining w(t,j) = w(t) for each (t,7) € E.

Remark 4. As opposed to [5], the stability conditions in
Theorem 1 do not depend on the value of T\, which is
only required to be strictly positive for Theorem 1 to hold’.
This is due to the fact that, by construction, the Lyapunov
Sfunction V' employed in the proof of Theorem 1 does not
increase at jumps and, for any maximal solution to (7), the
length of flow intervals is lower bounded by T. Although this
introduces some conservatism, following this approach leads
to conditions that are easier to handle for controller design.

With the purpose of deriving constructive design algorithms
for the controller and the holding device, we perform a
particular choice for the functions #; and %2 in Property 1. In
particular, let P; € Siﬁn‘:, P, € S, and § a positive real
number. Inspired by [17], we operate the following selection:

Y1 (Z) = z' P, Ya(n, T) = ey Pon. (14)

B. Quadratic Analysis Conditions

The structure of the selected functions ¥; and ¥, allows
one to provide sufficient conditions for stability properties
required in Problem 1 in the form of matrix inequalities. This
is formalized in the result given next.

Proposition 1. If there exist P1,S,R € ST, P,,Q,0 €
Siy, positive real numbers §,71,72, and matrices A. €

Sﬁncxnc’ Bc c mncxny’ Oc c Sﬁnuxnc’ Dc c mnuxny,
H e R"w*™, and E € R™*", such that
Q—-0<0, (15a)
R-5<0, (15b)
He(PA)+S+CJC, PB PV
My = . —-Q 0 =0,
® [ ] —’}/11
(15¢)

5The proof of Theorem 1 (see [20, Appendix A]) shows that 77 has an
impact on the rate of exponential convergence towards the attractor A in (9).



M+ <9 (15¢)
where for all T € [0,T5]
(He(PH) — 0P2)e’™ + O PyJe’™  P,Wed™
My(T) = . -R 0
° ° -2l
(16)

Then, Property 1 holds.

Proof. Let ¥, and 7, be as defined in (14), pi(z) = ' SZ,
p2(n) =n"Qn, p3(z,d) =~z CJ CoT +md'd, o1 () =
n'On, 09(%) = Z'RZ, 03(d) = 72d"d. By selecting
Cy, = /\min(Pl)’ Cy; = )\max(Pl)’ Cyy = )\min(PQ)’ and
Ty, = )\max(Pg)e5T2, conditions (12a) and (12b) are respec-
tively satisfied. Regarding condition (12c) of Property 1, from
the definition of the flow map in (8), for each x € C, d € R"4,
one can define Q4(Z,n,d) = (V¥(Z), Az + Bn + Vd) +
ET(S + C';rcvo)j - UTQU - ’YIde = (@,n, d)TMl(:fv UE d)’
where the symmetric matrix M, is given in (15c). Therefore,
the satisfaction of (15c) implies (12c¢). Concerning condition
(12d) of Property 1, observe that from the definition of the
flow map in (8), for each = € C, d € R™, one can define
Qa(z,m, 7,d) = (V¥(z), (Hn + Jz + Wd, —1)) +n"On —
T'RT —yed'd = (n,2,d)" Ma(7)(n,Z,d), where the sym-
metric matrix Mo (7) is given in (16) for all 7 € [0,T5].
Furthermore, notice that it is straightforward to show that
there exists A: [0,75] — [0, 1] such that for each 7 € [0, T3],
Ma(1) = M7)M2(0) + (1 — A(7)) M2 (T3); see [17] for
further details. Therefore, one has that the satisfaction of (15d)
implies Mo (7) < 0, V7 € [0, T3], hence (12d). Concerning
conditions (12e) and (12f), select ky, = —Amax(R — 5),
kw, = —Amax(Q — O) and observe that these quantities
are strictly positive due to (15b) and (15a). Hence, one has
(R~ 8)T < —ku, [T, n7(Q — O)n < —ku,|n|* which,
respectively, read as (12e) and (12f). To conclude, observe
that, due to (15e), for all € Rt d € R one

gets p3(7,d) + o3(d) = —2"CJCoz + (71 + y2)d'd <
—z'CJ C,Z + v2d" d which reads as (12g). This concludes
the proof. O

IV. CONTROLLER DESIGN

A. Quadratic Design Conditions

Proposition 1 enables to recast the solution to Problem 1
into the feasibility of some matrix inequalities. However, the
conditions in Proposition 1 are nonlinear in the variables
P, P, A, B, C., D., H, E, and §. As such, those con-
ditions are difficult to exploit from a numerical standpoint to
solve Problem 1. In this section, we show that by employing
a plant-order controller, i.e., z. € R"» and by performing a
particular selection of the matrices H and E, the conditions
in Proposition 1 can be turned into a collection of constraints
that can be efficiently handled via SDP tools.

Theorem 2. Given the plant P in (1), and positive scalars 6, 7,
and Ty, suppose there exist Py,0,Q € Siy, R, F,F; € Si_np,
X,Y c SZP, K € Sﬁnpxnp’ = Sﬁnpxny’ M € S)C{nuxnp,

N € B> J € WX, 7 ¢ R™WX"  qa nonsingular
matrix V € R™ ¥ and positive scalars 1, such that®:

Y 1
@._{I X}>—O, (17a)
Q-0<0, (17b)
R—F; <0, (17¢)
FF, =1, (17d)
He(A) T = &7 &TCT
N e« —Q 0 0 0
My = ° e —m,I 0 0 =<0,
° ° ° —F 0
° ° ° ° —I
(17¢)
M(0) <0, (17f)
Ma(Ty) <0, (17g)
M+ <97, (18)
where for all T € [0,T5]
e’ T(He(J) —6Py) + O e Myy " P,W
Mo(r) = . R 0
. . =72l
(19)
Y 1
= vT 0 }, Mg = [ PCpAp — JCp | —Z ]a
(20)
A_:{ AY +B,M A, + B,NC, } _— { B,N }
' K XA, +LC, | L |
- %,
== xw, |-
2D

Then, the matrix I — XY is nonsingular. Let U € R"»*"» be
any nonsingular matrix such that

XY 4+UVT =1 (22)

In turn, the conditions in Proposition 1 are satisfied. In
particular, Property 1 holds and selecting the controller and
holding parameters defined in (5) as in (23) (at the top of the
page) solves Problem 1.

Proof. Nonsingularity of I — XY follows from (17a). Indeed,
from [23, Proposition 2.8.3, page 116] one has det® =
det(Y) det(X —Y 1), which by using the symmetry of X and
Y, via some simple algebra, yields det ©® = det(Y X —I) =

6Theorem 2 can be equivalently restated by removing the constraint in
(17d), i.e., by replacing F; with F—1. However, this formulation of Theorem 2
is more suitable to derive the design algorithm outlined in Section IV-B.



{ A. | B, } B { U-' —-U'XB,
C.|D. | 0 1
H

[ E]

(=1)"r det(I — XY'). The remainder of the proof aims at
showing that the hypotheses of the theorem imply all the
conditions in the Proposition 1. After a preliminary step, the
satisfaction of (15b), (15¢), and (15d) is shown.
Preliminary step. Next, we select S = F~! and

X U

LUt Vv Y -YXY) VT
Proof of P, >~ 0. Let P; be selected as in (24). Notice that
® in (20) is nonsingular due to V' being nonsingular. Using

(22), it can be shown that © = ®T P, ®. Hence, (17a) implies
P = 0.

Py (24)

Proof of (15b). Combining (17c) and (17d) yields
R — F~! <0, which reads as (15b) with S = F~L.

Proof of (15c). By following an approach similar to [10],
we show that (17e) is equivalent to (15¢) for the proposed
selection of the controller parameters and of the variables P;
and S = F~!. By Schur complement, (15¢) is equivalent to

He(PLA) PB PV 1 CJ
o ° —-Q 0 0 0
M = ° e —mI O 0 =<0. (25
° ° ° -F 0
[ ] [ ) [ ] [} _I
Define
M, =diag{® ", I} M diag{®, I}
He(®TPA®) ®TPB TRV &7 &TCS
° —Q 0 0 0
= [ ) [ ] —")/11 0 0
. . . -F 0
. . . ° . |

(26)
Notice that M 1 differs from M 1 in (17e) only in the entries
(1,1), (1,2), (1,3), and their transposed (2,1) and (3,1).
Before showing that A = ®TPA®, II = TP B, and
==®"PV, we first invert the left equation in (23) as
{ K- XA)Y | L }
M | N

=[5 5]
@)

Using (22), by straightforward calculations one can obtain:

T PAD =

vVl o0
c,Yy 1

{APYJFBP(DCOPYJFCCVT) Ap,+B,D.C, }
r XA, +(XB,DAUB)C, )’

(28a)

el L= )
¢ PB= {XB,,DCJFUBc P BRYV="1xw, |
(28)

K—XAY V=T 0

I

|=[ CuBy,Cc+ Py Z | C,B,D. + Py 'J

I

M —C,YV-T 1

L
| N (23)
]

where T' == X (A, + B,D.C,)Y + U(B.CpY + A V") +
XB,C.VT. By employing (27), equations (28a) and (28b)
read as, respectively, A, II, and = in (21). This shows that
(17e) is equivalent to (15c) for the proposed selection of the
controller parameters and variables P, and S.

Proof of (15d). Setting H = P, 'J + C,B,D. and E =
P{lZ + CpB,C, in (16) yields (19). This shows that (19) is
equivalent to (16). Hence, (17f)-(17g) is equivalent to (15d).
To conclude the proof, notice that conditions (18) and (15e)
coincide. O

Remark 5. The selection of the parameters H and F proposed
in Theorem 2 enables to decouple the holder parameters
from the controller ones. This permits the use of the typical
change of coordinates/congruence transformations used in
output feedback controller design [10].

Remark 6. Theorem 2 requires matrix V to be nonsingular.
Although this constraint is hard to formulate in a matrix in-
equalities setting, nonsingularity of V can be easily enforced,
e.g., by imposing V. + VT = 0. Alternatively, one can leave
V' unconstrained and, as a second step, slightly perturb it to
move away from singularity.

B. An SDP-based Design Algorithm

The conditions in Theorem 2 are generally hard to handle
from a numerical standpoint. In particular, the main sources of
difficulty come from the nonlinear dependence on the scalar
variable § in (17f)-(17g) and on the nonconvexity of (17d).
Next, we show how these two issues can be tackled via
SDP tools. In particular, the key observation is that when
0 is fixed, (17a), (17b), (17c), (17e), (17f), (17g), (18) are
genuine linear matrix inequalities (LMIs). On the other hand,
the constraint (17d) can be handled by relying on the so-called
Cone Complementarity (CC) algorithm outlined in [24]. The
CC algorithm can be applied in our context by relaxing the
nonconvex equality constraint (17d) into the following convex

inequality constraint:
F 1
L FJ .

At this stage, as in [24], the idea consists of “saturating”
the constraint (29) by minimizing trace(F F;). Following this
approach, the design of a controller solving Problem 1 can be
recast as the following optimization problem:

minimize trace(F'F;)
subject to  (17a), (17b), (17¢), (17e), (17f), (17g), (18), (29),
(30)

(29)

which, when § is fixed, can be efficiently solved by using the
linearization scheme proposed in [24]. Notice that, as indicated
in [24], solving (30) does not automatically guarantee the satis-
faction of (17d), which holds if and only if trace(FF;) = n.



Therefore, the satisfaction of the constraint R — F~1 < 0
needs to be checked a posteriori.

Concerning the variable 6§, unfortunately when this is a
decision variable, (17g) turns out to be a nonconvex constraint.
This prevents from devising a strategy to determine a feasible
value of § better than a mere line search. Nonethele\ss, it is
worth to remark that (17f) is quasi-convex, i.e., M3(0) is
affine in (J, P2, R,7¥2,Z,0) for ﬁxecl\é and it satisfies the
monotonicity condition A > u = M>(0[A) — M2(0[u) =
0, where, with a slight abuse of notation, M5(0]6) denotes
the matrix Ms(0) for a given value of §. Hinging upon this
observation, it is possible to determine a lower bound ¢ on ¢
such that feasibility of (30) cannot be guaranteed for § < 4.
In particular, § can be determined by solving the following
optimization problem:

minimize 9§

subject to  O(4) < oo, (D

where
O(0) = inf {trace(F'F;): (17a), (17b) ,

(17¢), (17¢), M5(0]8) < 0,(18),(29)} .

Due to the above mentioned quasi-convexity property, (31)
can be solved by performing a bisection on 4, while the inner
optimization problem in the definition of O(d) can be solved,
at each step of the bisection, by relying on the CC algorithm.
To summarize, by selecting a desired upper bound 6 > 0 on §
and a resolution r € (1, 00) for the line search, a solution to
Problem 1 can be obtained via Algorithm 1, given as follows:

Algorithm 1: Controller design for Problem 1

Input: Plant parameters, 75, v > 0, r € (1, 00), and
5> 0.
1 Solve, using bisection on ¢ and the CC algorithm, the
optimization problem (31).
2 if problem (31) is feasible then
3 | store the optimal value of d;
4 else
s | go toline 15
6 end
7 repeat
8 Given § from previous step, by using the CC
algorithm, solve the optimization problem (30);
9 if problem (30) is feasible and R — F~' < 0 then

10 | return controller parameters (23);
1 else

12 | 64— 7rxd;

13 end

14 until § > §;
15 return No feasible solution is found

V. NUMERICAL EXAMPLE

In this section, we showcase the proposed design approach
by considering, as plant, the unicycle model linearized about

the origin presented in’ [28]. The state of the unicycle is
defined as z, = (xp1,Tp2,Tp3), Where z,1 and z,o are,
respectively, the heading angle and its time derivative, and
Tp3 is the distance from the line to follow. The control input
u denotes the torque input, the exogenous input d represents
a disturbance torque acting on the unicycle’s actuator. We
assume that the plant measured output is y = (zp1, Zp3). The
numerical values of the matrices defining the dynamics of the
unicycle are as follows:

[AP|BP|WP|CPT|COTP]:

0 1 0 0 0 10 0
0 —-0.01 O 1 1 0 0 0
1 0 0 0 0 01 1

Assuming that the output y is aperiodically sampled as in (2)
with parameters 77 = 0.1 and 75 = 1, we design a controller
that stabilizes the unicycle, while reducing the effect of the
disturbance torque d on y, = ,3. Solving® Problem 1 via
Algorithm 1 with v = 10 yields 6 = 3.1611 and the following
results for the controller and holder parameters as denoted in’

)

4.74 —-1.04 -1.54 —0.27 0.522
—-106 16.8  20.1 3.06 —5.75
120 —-20.7 -25.5 —4.01 7.6 ’
—215 35.7 435 | 6.84 —13
—0.0634  0.889 —0.959 —0.0787  0.121
0.00323 —0.0103 0.00532 0.971  —0.0211

(32)
It is interesting to notice that spec(H) = {—0.3935,0.2937},
i.e., the dynamics of the holding device are exponentially
unstable. To showcase the performance of the designed con-
troller, in Fig. 1 we show numerical solutions of the closed-
loop system'® (7) without disturbance from the initial condi-
tion z,(0,0) = (0.8,0.1,—0.52), z.(0,0) = 0, §(0,0) = 0,
7(0,0) = T». In Fig. 2, we report the response of the regulated
output y, from zero initial conditions for the open and closed-
loop systems and of the control input to an energy-bounded
disturbance. As expected, the proposed controller is effective
in reducing the effect of the disturbance on the output, which
for the open-loop system diverges exponentially. Concerning
the impact of 75 on the smallest achievable gain -, numerical
tests show that, as long as v is large enough (y > 20),
Algorithm 1 returns feasibility for 75 up to 1.6.

VI. CONCLUSION

In this paper, we studied the problem of designing output
feedback controllers for linear time-invariant systems in the
presence of measurements that are available in an intermittent

7Numerical solutions to LMIs are obtained through the solver SDPT3 [25]
and coded in Matlab via YALMIP [26]. Simulations of hybrid systems are
performed in Matlab via the Hybrid Equations (HyEQ) Toolbox [27].

8 According to standard practice, to avoid the occurrence of overly fast
modes in the controller dynamics, some additional constraints on the real part
and damping ratio of the eigenvalues of A have been added in the solution
to (30).

9The parameters of Algorithm 1 are selected as follows: 7 = 1.1 and
& = 10. The tolerance of the bisection in step 1 is 0.1. All numerical values
obtained in the example are reported in [20, Appendix B].

101n this simulation, transmission intervals are selected between T} and Th
accordingly to a sinusoidal law with frequency 10.5.
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Fig. 1: Evolution of x, 7, and u with zero disturbance. Solid,
dashed, and dotted lines indicate, respectively, the first, second,
and third component of each state.
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Fig. 2: Top picture: evolution of y, for the open-loop (dashed-
line) and the closed-loop systems (solid line) in response to
the disturbance d (dotted-line) from zero initial conditions.
Bottom picture: evolution of the control input.

aperiodic fashion. In particular, the controller we propose
ensures O-input global exponential stability and Lo external
stability from plant disturbances to a regulated output, with
prescribed Lo-gain. A procedure based on SDP tools is pro-
posed for the design of the controller. The effectiveness of
the proposed approach is showcased in a numerical example.
The results presented in this paper open the door to several
interesting future directions. In particular, we envision to
adapt the proposed controller architecture in an event-triggered
control scheme. In addition, analysis of actuator saturation and
robustness with respect to measurement noise for the setup
studied in the paper are currently part of our research.
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