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Abstract—In this paper, we propose sufficient conditions to
guarantee that a linear temporal logic formula of the form
p Until ¢, denoted by pliq, is satisfied for a hybrid system.
Roughly speaking, the formula pl{q is satisfied means that
the solutions, initially satisfying proposition p, keep satisfying
this proposition until proposition ¢ is satisfied. To certify such
a formula, connections to invariance notions - specifically,
conditional invariance and eventual conditional invariance — as
well as finite-time convergence properties are established. As
a result, sufficient conditions involving the data of the hybrid
system and an appropriate choice of Lyapunov-like functions,
such as barrier functions, are derived. Examples illustrate the
results throughout the paper.

I. INTRODUCTION

Linear temporal logic (LTL) is a language used to express
complex temporal properties of dynamical systems in terms of
formulas. Each LTL formula is composed of a set of propo-
sitions related by temporal and logical operators. A required
temporal property, also called specification, is guaranteed for
a dynamical system if and only if the corresponding LTL
formula is true along the solutions of the considered system.
Hence, LTL provides a framework to formulate complex
dynamical properties, that go beyond stability, convergence,
or safety [1]-[4]. For example, in [3], LTL is employed to
express the safety-plus-stability specification; see also [5].

A widely used approach to certify formulas along solutions
to dynamical systems consists in using model-checking ap-
proaches [6]—[8]. In such approaches, the system is modeled
as a finite- (or infinite-) state automaton and existing model-
checking algorithms are able to answer about the satisfaction
of the formula. The disadvantage of these approaches lies
in their decidability; namely, whether the satisfaction of the
formula for the automaton is equivalent to its satisfaction for
the actual system [7]. Furthermore, when the system exhibits
hybrid phenomena, this problem remains mostly unsolved. In
other works, such as in [9], theorem provers are developed
to analyze LTL formulas by simulating a discretized version
of the system. As in every numerical tool, the sensitivity to
discretization and the dimension of the system is a drawback.

Other works use analytical approaches inspired by
Lyapunov-like techniques. For example, in [10], a class of LTL
formulas is modeled as a finite-state transition system, which
combined to the actual continuous-time control system form
a hybrid control system. The considered formula is verified
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by guaranteeing a recurrence property. In [11], an approach
combining automata-based tools with barrier functions is
introduced. This approach provides a collection of barrier
functions to certify the considered LTL formulas. In [12],
sufficient Lyapunov-like conditions to certify the always p and
the eventually p formulas are proposed.

Along the lines of [12], one can consider basic formulas
involving until operators. More precisely, we distinguish the
strong until (denoted U,) and the weak until (denoted £,,)
operators; see [13]-[15]. That is, given two propositions p
and ¢, the satisfaction of the formula pll;q implies that
proposition p is true until ¢ happens to be true, and ¢ must
become true eventually. For the weak version, the satisfaction
of the formula p,,q implies that proposition p is true until g
happens to be true; however, ¢ is not required to become true
as long as p remains true. Until operators are among the most
useful operators in LTL, and are a building block for more
complex formulae.

In this paper, sufficient conditions for the satisfaction of
the LTL formulas pl,q and pUsq along the solutions to
hybrid systems are proposed. The proposed sufficient condi-
tions are infinitesimal, involve only the data of the hybrid
system and appropriate choice of Lyapunov-like functions,
without requiring the computation of the solutions nor the
discretization of the right-hand side. With such tools, more
complex formulae can be certified through decomposition by
building a finite state automaton; see [12, Section 6.5] and
the references therein. A key intermediate step to deduce
the proposed sufficient conditions consists in establishing
sufficient and equivalent relationships between the satisfac-
tion of the considered formulas and the following dynamical
properties. 1) Conditional Invariance (CI), which suggests that
the solutions to the hybrid system remain in a set if they start
from a (likely different) set [16]. This property coincides with
safety, as defined in [17]. 2) Eventual Conditional Invariance
(ECI), which suggests that the solutions reach a given set
in finite time and remain in it, provided that they start from
a (likely different) given set [18]. 3) Finite-Time Attractivity
(FTA), which suggests that the solutions reach a set in finite
time [19].

In Section III, given a hybrid system denoted H [20],
we establish that CI for an auxiliary version of #, denoted
H., is sufficient for the satisfaction of the formula plf,q
for H. Moreover, we show that the formula pl,q is verified
for H if pU,q is satisfied and an auxiliary system, denoted
‘Hs, exhibits an ECI property. Finally, we show that the
satisfaction of pUsq for H is equivalent to the satisfaction
of pUy,q for H plus H, exhibiting an FTA property. In
Section IV, sufficient Lyapunov-like conditions, to guarantee
the satisfaction of the formulas pU,,q and pl,q, are deduced
by exploiting the relationships established in Section III and



the characterizations of ECI and FTA notions in [21]; see also
[22]. Finally, academic examples are provided all along the
paper to illustrate concepts and results.

A preliminary version of this work is in [19], where detailed
proofs and examples have been omitted.

Notation. Let R := [0,00) and N := {0, 1,...}. For z,
y € R”, 2T denotes the transpose of z, |z| the Euclidean norm
of z, |z|k := infyck | — y| defines the distance between x
and the nonempty set K, and (x,y) = x "y denotes the inner
product between x and y. For a set K C R"™, we use int(K)
to denote its interior, 0K to denote its boundary, cl(K) to
denote its closure, and U (K) to denote any open neighborhood
of K. The contingent cone at a point x € R™ of a set K is
given by T (z):=qv € R™ : liminf;,_,o+ % = 0. For
a set @ C R", K\(Q denotes the subset of elements of K
that are not in Q. By C!, we denote the set of continuously
differentiable functions. By F' : R™ == R", we denote a set-
valued map associating each element x € R™ to a subset
F(z) C R™. For a scalar function V : domV — R, Ly (r) :=
{z € domV : V(z) < r}, for some r € [0,00], is the -
sublevel set of V.

II. PRELIMINARIES

Following the modeling framework proposed in [20], we
consider hybrid systems modeled as

| & € F(x)
Tt { zte G(x)
with the state variable x € R", the flow set C C R"™, the
jump set D C R", and the flow and jump maps, respectively,
F:R*"= R" and G: R" = R".

A solution ¢ to H is parameterized by an ordinary time vari-
able t € R>( and a discrete jump variable j € N; see [22, Def-
inition 2.1]. The hybrid time domain of ¢, dom ¢, is such that
for each (T, J) € dom ¢, dom¢ N ([0,7] x {0,1,...,J}) =
U/_o ([t;,t541] x {j}) for a sequence {tj};];rol, such that
tjy1 > t; and tg = 0. A solution ¢ to H is said to be maximal
if there is no solution ¢’ to H such that ¢(¢,j) = ¢'(t, j) for
all (t,7) € dom¢ with dom¢ a proper subset of dom ¢'.
It is said to be nontrivial if dom ¢ contains at least two
elements. A solution ¢ is said to be complete if its domain is
unbounded. It is eventually discrete if 7T'=sup, dom ¢ < oo
and dom ¢ N ({T'} x N) contains at least two elements. See
[20] for more details about hybrid dynamical systems.

For convenience, we define the range of a solution ¢ to
H as rge¢ := {¢(t,7) : (t,5) € dom¢}. We use Sy (z) to
denote the set of maximal solutions to # starting from z €
cl(C) U D. Given a set A C R", R(.A) denotes the (infinite-
horizon) reachable set from A; i.e., R(A) := {é(¢,7) : ¢ €
SH(-A)a (t’j) € dom ¢}

Definition 2.1 (Settling-time function). Given a closed set
A C R" and a solution ¢ to H starting from cl(C) U D, the
settling-time function T4 : Sy (cl(C)UD) — Rsq is given by

00 if R(¢(0,0)) N A=1

reC

x €D, M

Ta(9) = min t+j otherwise. @
b(t,5)€A
(t,j)€dome

Given a solution ¢ to H starting from R™\ A, the function
T4 provides (when finite) the first hybrid time at which the
solution ¢ reaches the set A.

A. LTL and Until Operators

An atomic proposition p is a statement on the system state
x that is either True (= 1) or False (= 0). A proposition
p is treated as a (single-valued) function of z, that is, as the
function z — p(x) € {0,1}. The set of all possible atomic
propositions is denoted by P.

In the following, given two atomic propositions p,q € P,
we introduce the LTL formulas studied in this paper:

e pUsq : A solution ¢ to H satisfies pUsq if either

q(¢(0,0)) = 1; or,

— there exists (t*,5*) € dom ¢ such that t* + j* > 0,
g(@(t", %)) = L, and p(é(s, k) = 1 for all (s,k) €
dom ¢ such that 0 < s+ k < t* 4 j*.

e pUy,q : A solution ¢ to H satisfies plfy, g if either ¢
satisfies pUs q; or p(¢(s,k)) = 1 for all (s, k) € dom ¢

such that s + & > 0.

Remark 2.2. The formula pUsq is satisfied for H if, for each
maximal solution ¢ to H with p(¢(0,0)) + q(¢(0,0)) > 1,!
pUsq is satisfied. Similarly, the formula pU,,q is said to be
satisfied for H if, for each maximal solution ¢ to H with

p(¢(0,0)) + ¢(¢(0,0)) > 1, pUyq is satisfied.

B. Set Invariance and Attractivity Notions

Given the sets K C R", X, C K, O C cl(C)U D, and
A C R"™, we introduce the following notions:?

o Forward (pre-)invariance. A set K is forward pre-
invariant for ‘H if, for each solution ¢ starting from K,
rge ¢ C K. It is forward invariant for ‘H if it is forward
pre-invariant for H and every maximal solution ¢ starting
from K is complete.

« Conditional invariance. The set K is CI with respect
to the set &, for H if, for each solution ¢ starting from
X,, rge ¢ C K.

o ECL The set A is ECI with respect to O for H if, for
each maximal solution ¢ starting from O, there exists a
hybrid time (¢*,5*) € dom ¢ such that ¢(¢,j) € A for
all (¢,7)€dom ¢ such that t + j >t* + j*.

o Pre-ECI. The set A is pre-ECI with respect to O for H if,
for each complete solution ¢ starting from O, there exists
a hybrid time (¢*, j*) € dom ¢ such that ¢(¢,5) € A for
all (¢,7)€dom ¢ such that t 4 j >t* + 5*.

o FTA. The closed set A is finite-time attractive (FTA) with
respect to O for A if, for each solution ¢ € Sy (0O),
Ta(¢) < oo.

o Pre-FTA. The closed set A is pre-finite-time attractive
(pre-FTA) with respect to O for H if, for each complete
solution ¢ € Sy (0), Ta(¢) < .

ISince the functions p and q map to {0, 1}, p(¢(0,0)) + q(¢(0,0)) >1

implies that p(¢(0,0))=1 or q(¢(0,0))=1.

2Since H can have maximal solutions that are not complete, the pre-

ECI notion requires the ECI property for complete solutions only. A similar

comment applies to pre-FTA. Moreover, unlike CI, ECI of .4 with respect to
O for ‘H, with A C O, does not imply that solutions remain in O U .A.



Remark 2.3. Due to space constraints, sufficient infinitesimal
conditions for CI, ECI, and FTA can be found in [22, Section
1V]; see also the references therein.

III. FORMULATING pUq IN TERMS OF CI, ECI, AND FTA

First, we illustrate our approach on the constrained differen-
tial inclusion, modeling the continuous-time dynamics of H,
given by

& € F(x)

x e C. 3)

To this end, we introduce the sets
P={zeR":p(x)=1}, Q:={z eR":¢q(x) =1}. 4

Note that P and () collect the set of points where the
atomic propositions p and ¢ are satisfied, respectively. For the
purposes of this discussion, we impose that the sets C, P, and
Q are closed and P C C.

By definition, when pl,,q is satisfied for (3), it follows that,
for each solution ¢ to (3) starting from P U (), at least one of
the following properties holds:

1) The solution ¢ remains in the set P for all time.

2) The solution ¢ starts and remains in the set P up to when
it reaches the set Q.

3) The solution ¢ starts from the set ().

Based on items 1)-3), each solution to (3) starting from
the set P\Q needs to either remain in P for all time or
remain in P until reaching @ (if it happens); namely, solutions
starting from P\ should satisfy either item 1) or item 2).
Interestingly, the satisfaction of either item 1) or item 2) can
be guaranteed, in an equivalent way, via CI of P U @ with
respect to P\Q for the following auxiliary system:

{ e F(z) x € C\Q

T =2 T € Q.

System (5) is used to characterize the behavior of system (3)
outside the set ). Furthermore, when pl,q is satisfied for (3),
it follows that, for each solution ¢ to (3) starting from PUQ,
at least one of the following properties holds:

®)

1) The solution ¢ starts and remains in the set P until it
reaches the set (Q in finite time.
2) The solution ¢ starts from the set Q.

The satisfaction of plsq requires, additionally to pl,,q being
satisfied, that every maximal solution ¢ to (3) starting from
P\Q actually reaches () in finite time. When the set P U Q
is CI with respect to P\Q for (5), plsq is guaranteed if and
only if @ is ECI with respect to the set P U (@ for the system

{meF(m) re(C\Q)NP

zt =2 z € Q.

Note that system (6) can be viewed as the restriction of (5) to
PuUQ.

Now, we extend the proposed approach to hybrid systems.
To do so, we introduce the following assumption.

(6)

Assumption 3.1. The sets C, P, and @) are closed, and P C
CuUD.

Following (5), we introduce the auxiliary hybrid system
Hw = (C'UH F’w7 Dwa Gw) given by

Fy(x):=F(x) . 0
x I zec
G (@) := {G(:c) it 2eD\Q

which is used to characterize the behavior of H outside the
set (). Indeed, the solutions to H are the solutions to #,, (and
vice versa) up to when they reach (if they do) the set (). We
will show that having PUQ being CI with respect to P\Q for
‘H., is sufficient for pU,,q. Furthermore, when the set P U Q)
is CI with respect to P\Q@ for H,,, we show that pUq is
guaranteed if @ is ECI with respect to P U@ for the auxiliary
hybrid system Hs = (Cs, Fs, Ds, G) given by

Fy(z):=F(x) reCs:=(C\Q)NP

oz ifze@ .

Gs(z):= {G(:ﬁ) otherwise r€Dg:=(DNP)UQ.
As opposed to the continuous-time case, the equivalences
for constrained differential inclusions stated above Assump-
tion 3.1 do not hold in the hybrid case.

z€C,:=C\Q,

re D, :=DUQ, )

®)

Remark 3.2. The hybrid system Hs, similar to the system in
(6), is just the restriction of H,, in (7) to PUQ. It is easy to
see that Cs = C, N (PUQ) and Dy = D,, N (P U Q).

The satisfaction of plf,,q for H can also be guaranteed by
showing CI of P U @ with respect to P U (Q (namely, forward
invariance of P U Q) for H,,. Furthermore, the satisfaction of
pUsq for H,, can be guaranteed (in an equivalent way) by
showing FTA of ) with respect to P U @ for #, instead of
ECI of @ with respect to P U @ for H,.

Example 3.3 (Timer). Consider a hybrid system H =
(C,F,D,G) modeling a constantly evolving timer with the
state ¢ € R and

F(z):=1
G(z) =0

Vo e C:=10,1],
Ve € D :=[1,00).

Define the atomic propositions p and q as

|1 ifzell/2,1] |1 ifxell,oo)
p(z) = { 0 otherwise, () = { 0 otherwise,

for each x €R™. The sets P and @ in (4) and the system H.,
in (7) are given by Q = D, P =[1/2,1], and
Fy(z):=1
Gy(x) ==z

Vz e Cy :=[0,1),
Vre D, :=D=Q.

We notice that each solution to H., starting from P\Q =
[1/2,1) flows in P and reaches x=1 € Q. Once a solution
reaches x = 1, it jumps according to the jump map G, (zr)=x
and stays at {1} € Q by jumping since it cannot flow back to
P\Q. Hence, the solutions to H,, starting from P\Q never
leave the set PUQ), which implies that the set PUQ is CI with
respect to P\Q for H.,. Note that CI of PUQ with respect to
P\Q does not hold for H since once a solution to H reaches
Q, it jumps outside P U Q. Therefore, the formula f=pUy,q
is satisfied for H since the solutions to H starting from P\Q
remain in P until reaching the jump set D =(Q). A



A. Sufficient Conditions for pU,,q using CI

The following result characterizes the satisfaction of pl,,q
using CI for hybrid systems.

Theorem 3.4 (pU,,q via CI). Consider a hybrid system H =
(C,F,D,QG). Given atomic propositions p and q, let the sets
P and Q be given as in (4), and let the system H.,, be as in
(7). The formula pU,q is satisfied for H if PUQ is CI with
respect to P\Q for M.

Proof. Suppose that PUQ is CI with respect to P\Q for H,,.
We show that, for each solution ¢ to #H such that ¢(0,0) €
P\Q, ¢ stays in PUQ up to when @ is reached. Indeed, let
be a maximal solution to H,, such that ¥ (¢, ) = ¢(¢, j) for all
(t,j) € dom ¢ up to when @ is reached; such a solution ¢ to
‘H., always exists since the systems # and #,, share the same
data outside the set (). Furthermore, since P U @ is CI with
respect to P\Q for H,,, we conclude that ¢(¢,j) € PUQ
for all (¢,7) € dom1. Therefore, ¢(t,5) € P UQ for all
(t,j) € dom ¢ up to when it reaches ), which completes the
proof. O

Note that having plf,,q satisfied for H does not necessarily
imply that P U @ is CI with respect to P\Q for H,,.

Example 3.5. Let H = (C, F, D, G) with

z =F(z):=1 x € C:=10,00)
zt=G(x) =0 z € D:=[1,00).
Define atomic propositions p and q such that

_ {1 ifzel-1,0
() = 0 otherwise.

The sets P and () in (4) and the data of H., in (7) are given
by P=[1/2,00),Q = [-1,0], and

Fy(z):=F(z) Vo e Cy=(0,00)

Gw(x)::{g Z:ié F_f‘g] Vo€ Dy =[1,0]U[L, 00).
Each solution to H starting from P\Q(= P) either flows in
P or reaches {0} €Q after a jump. Hence, the formula pU,,q
is satisfied for H. Now, each solution to H,, starting from
P\Q(=P) is also a solution to H up to when it reaches Q,
by reaching {0} after a jump. Once a solution to H,, lands
on {0}, both jumps according to x* =G, (z) =z and flows
according to & = F,(x) = 1 are allowed by the concept of
solution; see [22, Definition 2.1]. In particular, the solution
to H, flowing from {0} is nontrivial and leaves the set PUQ.
Hence, we conclude that the satisfaction of pU,,q for H does
not imply that P U Q is CI with respect to P\Q for H,. A

(@) ::{ 1 ifzell/2,0)

0 otherwise,

B. Sufficient Conditions for pUsq using pU,q plus ECI

The following result characterizes the satisfaction of pUsq
using ECI in addition to the satisfaction of plf,,q.

Theorem 3.6 (pUsq via pUyq + ECI). Consider a hybrid
system H = (C, F, D, G). Given atomic propositions p and g,
let the sets P and Q) be given as in (4) such that Assumption
3.1 holds, and let the data of Hs be given as in (8). The
Sformula pUsq is satisfied for H if

1) the formula pU,q is satisfied for H; and
2) the set Q is ECI with respect to P U Q for Hs.

Proof. By definition of Hg, if the formula pl,,q is satisfied
for H by item 1), each solution to H, starting from P\Q
remains in P U @. Furthermore, when additionally ) is ECI
with respect to P U @ for Hs, each maximal solution to H
starting from P\ remains in the set P U () and reaches the
set () in finite hybrid time. The proof is completed if we show
that each maximal solution ¢ to H starting from P\Q stays
in PUQ for all (¢,j) € dom ¢ such that t + j < To(¢), and
To(¢) < oco. To this end, let ¢ be a maximal solution to H
starting from P\Q. By item 1), ¢ remains in P\ up to when
it reaches () (if that ever happens). Next, since both H and H
share the same data on P\(Q), there always exists a solution
1 to Hs such that ¥(t,j) = ¢(t,4) for all (¢,5) € dom¢
provided that t + j < Tq(¢) = Tq(¢). Furthermore, by item
2), we know that Tgo(v¥) = To(¢) < oo. Then, since we
already know that ¥(¢,7) € P UQ for all (t,5) € dom1 by
item 1), we conclude that ¢(t,5) = ¥(t,j) € PUQ for all
(t,j) € dom¢ provided that ¢t + j < To(¢) = To(v); and
thus, the proof is completed. O

~— —

The following example shows that having pl,q satisfied
for # does not necessarily imply that ) is ECI with respect
to PUQ for H,.

Example 3.7. Consider the hybrid system H in Example 3.5
with p and q therein replaced by p and q, respectively,

N | if ©e[0,1+¢]

plz) = { 0 otherwise,

. J1 if x€[-1,00U[l+¢,00)
q(z) = { 0 otherwise,

with 0 < & < 1. Let P and QQ be as in (4) with p and § instead
of p and q, respectively. The system Hs in (8) is given by

Fy(x):=F(x) VeeCs=(0,1+¢)
Gs(a:)::{g iyfﬂfefwgél_ﬂg) VeeDg=[-1,0] U [1, 00).

Each solution to H starting from P\Q= (0, 1+¢) either flows
in P and reaches [1 + &,00) C Q or reaches {0} € Q after a
Jump from (1,1+¢) C D. Hence, the formula pU,q is satisfied
Sor H. Now, we consider a solution to H starting from P\Q
that reaches Q) for the first time by jumping from [1,14+€) C D
to {0}. Such a solution is also a solution to Hs up to when
it reaches {0} € Q for the first time, from where, both the
jump according to xT = G,(x) = x and the flow according
to & = Fs(x) = 1 are allowed by the concept of solution; see
[22, Definition 2.1]. In particular, the solution flowing from
{0} is nontrivial and leaves the set Q. Hence, we conclude
that the satisfaction of pUsq for H does not necessarily imply
that Q is ECI with respect to P U Q for Hs. AN

C. Equivalence Between pUsq and pU,q plus FTA
The following result characterizes the satisfaction of plsq
using FTA in addition to the satisfaction of pif,q.

Theorem 3.8 (pUsq via pU,q + FTA). Consider a hybrid
system H = (C, F, D, G). Given atomic propositions p and q,



let the sets P and Q) be as in (4) such that the set Q is closed
and let the data of Hs be given in (8). The formula pUsq is
satisfied for H if and only if

1) the formula pU,,q is satisfied for H,; and

2) the set Q is FTA with respect to P U Q for H,.

Proof. Suppose that pUsq is satisfied for H. By definition of
pUsq, pU,q is satisfied for H. Next, we show that () is FTA
with respect to PUQ for H. To do so, we consider a maximal
solution ¢ to H starting from P\ Q. Since plU,,q is satisfied
for H, the solution ¢ either reaches () in finite time or remains
in P\Q. To exclude the latter case, we show that when ¢
remains in P\Q, then ¢ is a maximal solution to #. Indeed,
assume the existence of a solution ¢ to H that is a nontrivial
extension of ¢; namely, there exists I C R>oxN such that I #
and dom ¢ = dom ¢ U I. Note that ¢)(dom ¢) = ¢(dom ¢) C
P\Q. Also, since ¥ must remain in P\ @ up to when it reaches
@, we can choose I such that ¢»(dom ¢ U I) C P\Q. Hence,
1 is a solution to Hs, which contradicts the fact that ¢ is a
maximal solution to H. Furthermore, since pU,q is satisfied
for H, we conclude that ¢, being a maximal solution to H,
must reach () in finite hybrid time.

Now, suppose that the formula pf,,q is satisfied for 4. This
implies that each maximal solution ¢ to H remains in P\Q
for all hybrid time; otherwise, ¢ remains in P\Q up to when
it reaches @ in finite hybrid time. To exclude the first scenario,
we note that when ¢ remains in P\@ for all hybrid time, it
follows that ¢ is also a maximal solution to . However, by
item 2), the maximal solutions to H, must reach Q. O

IV. MAIN RESULTS

In this section, we combine the results from Section III
and the Lyapunov-like conditions for CI, ECI, and FTA that
are reported in [22, Sections IV and V] to propose sufficient
infinitesimal conditions certifying the formulas pif,q and
pUsq.

Our results hold under the following mild assumption® on
the data of the hybrid system H.

Assumption 4.1. The map F is outer semicontinuous and
locally bounded with nonempty and convex values on C, and
the map G has nonempty images on D.

A. Certifying pU,,q using Sufficient Conditions for CI

First, we present sufficient conditions that guarantee the
satisfaction of the formula pi/,,q by employing the sufficient
conditions for CI in [22, Proposition 4.2].

Theorem 4.2 (pU,,q via Cl). Consider a hybrid system H=
(C,F,D,G). Given atomic propositions p and q, let the sets
P and Q be as in (4) such that Assumptions 3.1 and 4.1 hold.
Then, the formula pU,,q is satisfied for H if there exists a C!
function B : R™ — R such that

{ B(z) <0 Vo € P\Q ©)
B(z) >0 Vr e (CUD)N(R™"\(PUQ)),

3The properties of F' in Assumption 4.1 reduce to just continuity when
F' is single valued, see [23], [24]. Note that, unlike [20], our results do not
require the jump map to be outer semicontinuous and locally bounded.

the set K :== {x € CUDUQ : B(z) <0} is closed, and the
following hold:
1) (VB(x),n) <0 forall z € (C\Q) N (U(OK)\K) and
all n € F(x) NTeng(o).
2) B(n) <0 forall z € KN (D\Q) and all n € G(z).
3) G(z) cCuDUQ forall z € KN (D\Q).

Proof. Let the system H,, = (Cy, Fi, Dy, Gy) be as in (7).
Since K ={z €¢ CUDUQ : B(z) < 0} and B satisfies
B(z) <0 for all x € P\Q and B(z) > 0 for all z € (C'U
D\(PUQ) = (CUDUQ)\(PUQ), we conclude that B is a
barrier function candidate with respect to (P\Q,R"\(PUQ))
for H,, in (7); see [22, Definition 4.1]. Furthermore, item 1)
implies that (VB(z),n) < 0 for all x € (U(OK)\K) N C,,
and all n € F(z) N T, (z). Item 2) implies that B(n) < 0
for all x € K N (D\Q) and all n € G, (x). Furthermore,
when x € KN Q, Gy(x)=2 and B(z)<0. Hence, B(n) <0
for all x € KND,, and all n € G, (x). Item 3) implies that
Go(KN(D\Q)) C Cy, U D,,. Furthermore, G.,(KNQ) C
KnQ@cC,UD,. Hence, G,(K N D,,) CCy U D,,. Thus,
using item 1) in [22, Proposition 4.2] with O and X, therein
replaced by P\Q@ and R™\ (P UQ), respectively, we conclude
that P U Q is CI with respect to P\@ for H,,. Hence, using
Theorem 3.4, we conclude that pl,,q is satisfied for 7. [

B. Certifying pUsq using ECI via Flows and Jumps

In this section, we present sufficient conditions to guarantee
the satisfaction of the formula pl/;q by using the sufficient
conditions for ECI in [22, Theorem 4.4].

Theorem 4.3 (pUsq using ECI). Consider a hybrid system
H=(C,F,D,G). Let the system Hs = (Cs, Fs, Ds,Gs) be
as in (8). Given atomic propositions p and q, let the sets P and
Q be as in (4) such that Assumptions 3.1 and 4.1 hold. Then,
the formula pUsq is satisfied for H if the following hold:
1) The formula pU,q is satisfied for H.
2) There exist a C' function v : R — R, a locally Lipschitz
function f. : R — R, and a constant vy > 0 such that
the following hold:

2.1) (Vu(x),n) < fo(v(z)) for all x € cl(Cs) and for all
n € F(z) N T, (@)

2.2) v(n) <wv(z) for all x € DN P and for all n € G(x);

2.3) The solutions to § = f.(y), starting from v(P\Q),

converge to (—oo,r1) in finite time.

3) There exist a C* function w : R™ — R, a nondecreasing
function f; : R — R, and a constant ro > 0 such that
the following hold:

3.1) (Vw(x),n) < 0 for all x € cl(Cs) and for all n €

F(z) N Tac.) ()

3.2) w(n) < fa(w(x)) for all x € DNP and for all n€ G(x);

3.3) The solutions to z+ = f4(z), starting from w(P\Q),

converge to (—oo,T9) in finite time.

4) One of the following conditions holds:

4a) Each complete solution to H starting from P\Q is
eventually continuous and, with r1 coming from item
2),

S1:={xecC):v(x)<rm}cCQ.  (0)



4b) Each complete solution to H starting from P\Q is
eventually discrete and, with ro coming from item 3),

Sy :={z € Ds:w(x) <r:} CQ. (11)

4c) Each complete solution to H starting from P\Q is
eventually continuous, eventually discrete, or has a
hybrid time domain that is unbounded in both the t
and the j direction and, with r1 and ro coming from
item 2) and item 3) respectively, (10) and (11) hold.
4d) With r1 and ro coming from item 2) and item 3) respec-
tively, (10) and (11) hold, and G(S2) Ncl(Cy) C Si.
5) No maximal solution to H has a finite escape time in
(P\Q) N C.
6) Every maximal solution to H from ((P\Q) N OC)\D is
nontrivial.

Proof. By item 1), every maximal solution to H starting from
P U Q satisfies pU,,q. Hence, it remains to show that every
maximal solution to H starting from P\(Q reaches Q. To this
end, note that each maximal solution ¢ to H from P\ must
satisfy one of the following conditions:

a) ¢ reaches @ in finite hybrid time;

b) ¢ is not complete and does not reach @ in finite hybrid

time; or

¢) ¢ is complete and does not reach @) in finite hybrid time.

In the rest of the proof, we show that ¢ can only satisfy
case a). To do so, we first show that case b) is not possible,
due to items 5) and 6), using contradiction. That is, suppose
¢ is not complete and never reaches @); in particular, dom ¢
is bounded. Let (T, J) = sup dom ¢. Due to the fact that ¢
never reaches Q) and since ¢ satisfies pf,,q, we conclude that
¢ remains in P\(@Q. Moreover, under item 5), the maximal
solution ¢ does not have a finite escape time inside (P\Q)NC,
which implies that (7', J) € dom ¢. Now, by the definition of
solutions to H, ¢(T, J) € cl(C)UD. First, let (T, J) € D. In
this case, ¢ can be extended via a jump. Next, let ¢(T,J) €
cl(C)\D. In this case, when ¢(T,J) € int(C)\D, we use
Assumption 4.1 to conclude that ¢ can be extended via flow;
and for the case when ¢(T,J) € OC\D, we use item 6)
to conclude that ¢ can be extended via flow. Therefore, if
(T, J) € dom ¢, then ¢ can be extended via flow or a jump.
This contradicts maximality of ¢; and thus, case b) is not
possible.

Next, we show that case c¢) is not possible due to items
2)-4) using contradiction. Suppose that items 2), 3), and 4a)
hold. Suppose that there exists a complete solution ¢ to H
that does not reach @ in finite hybrid time. By [22, Lemma
6.4], ¢ is also a maximal solution to Hs. However, using the
arguments in a) in the proof of [22, Theorem 4.4], there must
exist (t*,5*) € dom ¢ such that ¢(¢,5) € S; C Q for all
(t,j) €dom ¢ and ¢ + j >t* + j*. This implies that ¢ must
reach (Q in finite hybrid time via flow. Next, suppose that items
2), 3), and 4b) hold. Proceeding as when 4a) holds, we use [22,
Lemma 6.4] to conclude that ¢ is a maximal solution to Hs.
Furthermore, using the arguments in b) in the proof of [22,
Theorem 4.4], we conclude the existence of (t*,;*) € dom ¢
such that ¢(t, j) €S2 C Q for all (¢, j) edom ¢ and t+j >t*+
7*. This implies that ¢ must reach @ in finite hybrid time by

jumps. Similarly, suppose that items 2) and 3) hold and either
item 4c) or item 4d) holds. Using [22, Lemma 6.4] and the
arguments in the proof of [22, Theorem 4.4], we conclude that
there exists (¢*, j*) € dom ¢ such that ¢(¢, j) €.51USy CQ for
all (¢,j)€dom ¢ and t+ j >t* + j*. This implies that ¢ must
reach () in finite hybrid time via flow or jumps. Therefore, we
conclude that case c) is not possible. O

Remark 4.4. We note that sufficient conditions for the satis-
faction of pUsq for H do not require solutions to H to stay
in the target set Q) after reaching it. Hence, when sufficient
conditions that guarantee ECI are employed to derive suffi-
cient conditions for strong until, item 4 in Theorem 4.3 can
be relaxed since item 4 is for guaranteeing solutions to H
to stay in the target set (Q after reaching it. In particular,
G(S2) Ncl(Cs) C Sy, as in item 4b in Theorem 4.3, is not
really needed since it requires solutions to ‘H to stay in Q after
reaching So C Q). Note that the properties of solutions in items
4c, 5, and 6 can be checked without solution information using
results in [20] and [25].

The following example illustrates Theorem 4.3.

Example 4.5 (Thermostat). Consider a hybrid system H =
(C,F,D,G) modeling a controlled thermostat system. The
variable h denotes the state of the heater, i.e., h=1 implies the
heater is on and h=0 implies the heater is off. The variable
z is the room temperature, z, denotes the temperature outside
the room, and z, denotes the capacity of the heater to raise
the temperature such that z, < Zmin < Zmax < 2o + 2. The
system H with the state x := (h,z) € {0,1} x R is given by

F@):=[0 —z+z+2ah] VzeC:i=CoUC
G(x):=[1-h Z]T Vr € D:= DyU Dy,

where Cy := {x € R? : h = 0,2 > zpmin}, C1 = {x € R? :
h=1,2< zZmax}, Do :={x € R? : h = 0,2 < znin}, and
Dy :={x €R?:h=1,2 > 2yax}. Define, for each x € R?,
the atomic propositions p and q as

if x € {1} X (—00, Zmax]
otherwise,
if x € {0} X [2min, +00)
otherwise.

The sets P and Q in (4) are given by P={1}x(—00, Zmax|
With zmax > 0 and Q={0}X[zmin, 00). To show the satisfac-
tion of pUsq for H, we apply Theorem 4.3. First, consider
the barrier function candidate B(z) := (—1)"(zmax — 2).
Indeed, B is a barrier function candidate with respect to
(P\Q, ({0, 1} xR)\(PUQ)) for H since for all x € P\Q =P,
B(z) =2 — zmax < 0; and for all x € (CUD)\(PUQ) =
({0} x (=00, 2Zmin) )U({1} X (2max, 0)), B(x)>0. Moreover,
for all x € C\Q = {1} x (=00, Zmax)» B(x) = 2— zZmax < 0;
and thus, (C\Q) N (U(OK)\K) = 0. Furthermore, for all
€ KN(D\Q)={(1, zmax)}, G(2) ={(0, 2Zmax) } CCUDUQ
and B(G(z))=0; hence, items 1) - 3) in Theorem 4.2 hold.
It follows that the formula pU,,q is satisfied for H; and thus,
item 1) holds. Next, consider the functions v(x)=—z+z,+za
and f.(y) = —y. Recall that zmax < 2o+ 2a. For all
zecl(Cq)={1}x (=00, Zmax), (Vv(x), F(2))=2—2,—2a <



fe(v(z))=2—2,—2; hence, item 2.1) holds. Moreover, for
all z € DN P ={(1,zmax)}, v(G(z))—v(x) = 0; hence,
item 2.2) holds. Furthermore, the solutions to y= f.(y) from
V(P\Q) = [20+2A — Zmax, 00) reach (—00, 2o+ 2A — Zmax)s
and thus, item 2.3) holds for ri =z,+2A — Zmax. Moreover,
S ={z € cl(Cs) : v() < 2o+ 2ZA — Zmax} IS emprty.
On the other hand, for the functions w(x) = —z+ zmax and
fa(z)=2/2, for all x € cl(Cs), (Vw(x), F(z)) =2—25—2a <0
since zZmax < zo+2za; and for all x € D N P ={(1, zmax) },
w(G(x))=0= f.(w(x)). Hence, we conclude that items 3.1)
and 3.2) hold. Moreover, the solutions to 2 = f4(2) starting
Jfrom w(P\Q) = (0,00) reach (—00, Zmax — Zmin)s and thus,
item 3.3) holds for r9 = Zmax—Zmin. Moreover, every complete
solution to H is eventually discrete due to the jump map G
and So={0}X(2min, 00) C Q. Hence, with S1 and Ss satisfying
(10) and (11), item 4c) holds. Furthermore, since the flow map
F has global linear growth on (P\Q) N C, the solutions to
H do not have a finite escape time inside (P\Q) N C; hence,
item 5) holds. Finally, since (P\Q) N 0C =, item 6) holds.
Thus, we conclude that pUsq is satisfied for H. A

C. Certifying pUsq using ECI via Flows

The following result follows from [22, Proposition 4.9], and
considers the case where the set () is reached by flows only.

Theorem 4.6 (pUsq using ECI via flows). Consider a hybrid
system H=(C, F, D, Q). Given atomic propositions p and g,
let the sets P and @ be as in (4) such that Assumptions 3.1
and 4.1 hold. Let Cy and D be as in (8). Then, the formula
pUsq is satisfied for H if the following hold:
1) The formula pU,q is satisfied for H.
2) There exist a C* function v : R — R, a locally Lipschitz
function f.: R — R, and a constant vy > 0 such that
the following hold:

2.1) (Vu(x),n) < fe(v(x)) for all € cl(Cs) and for all
ne F() N Tue, (o);
2.2) v(n) <wv(x) for all z € DN P and for all n € G(x);
2.3) The solutions § = f.(y) starting from v(P\Q) con-
verge to (—oo,r1) in finite time, and S; = {x €
cl(Cy) s v(z) <ri} C Q.
3) For each solution ¢ € Sy (P\Q), there exists a solution
y to y = fe(y) starting from v($(0,0)) such that there
exists t* > 0 satisfying:

t* <sup{t: (t,j) €edom ¢}, y(t) € (—o0,m1) Vt > t*. (12)

Proof. Consider the system H, introduced in (8). Using [22,
Theorem 3.6], we show that @) is ECI with respect to P\Q
for H, to conclude that pl,q is satisfied for H. To this end,
we show that @ is ECI with respect to P\Q for H, via [22,
Theorem 4.16]. First, we show that items 1) and 3) in [22,
Proposition 4.9], required in [22, Theorem 4.16], hold for H.
Notice that under item 2), item 1) in [22, Proposition 4.9]
holds for H,. Moreover, item 3) in [22, Proposition 4.9] is
verified for H since solutions jumping from () remain in @
due to the definition of the jump map G, which is G, (z) ==z
for all x € ). Finally, to show that @) is ECI with respect to
P\Q for H via [22, Theorem 4.16], we show that, for each

maximal solution ¢ to H starting from P\(Q, there exists a
solution y to § = f.(y) starting from v(¢(0,0)) satisfying
y(t) € (—oo,r1] for all ¢ > t*, for some nonnegative t* <
sup{t : (t,j) € dom¢}. To show this, we first use item 1)
and the construction of H,, to conclude that, each maximal
solution ¢ to H, starting from P\ remains in PU(Q). Hence,
either ¢ reaches @ in finite time, or ¢ remains in P\(Q. Next,
by [22, Lemma 6.4], we conclude that ¢ is a maximal solution
to H. Finally, using item 3), we conclude the existence of a
solution y to y = f.(y) starting from v(¢(0,0)) such that,
for some t* > 0, (12) holds; and thus, we conclude that @)
is ECI with respect to P\Q for H, via [22, Theorem 4.16].
Therefore, via [22, Theorem 3.6], the formula pl,q is satisfied
for H, which completes the proof. O

D. Certifying pUsq using ECI via Jumps

The following result follows [22, Proposition 4.10], and
considers the case where the set () is reached by jumps only.

Theorem 4.7 (pUsq using ECI via jumps). Consider a hybrid
system H = (C, F, D, G). Given atomic propositions p and q,
let the sets P and Q) be as in (4) such that Assumptions 3.1
and 4.1 hold. Let Cy and D be as in (8). Then, the formula
pUsq is satisfied for H if the following hold:

1) The formula pU,q is satisfied for H.

2) There exist a C' function w : R® - R, f; : R = R
which is nondecreasing, and a constant ro > 0 such that
the following hold:

2.1) (Vw(z),n) < 0 for all z € cl(Cy) and for all n €

F(z) N Tac,)(z);
2.2) w(n) < fa(w(x)) for all x € DNP and for all n€ G(x);
2.3) The solutions to 2T = fq(2) starting from w(P\Q)
converge to (—oo,rs) in finite time, and Sy = {x €
D, Ucl(Cy) :w(z) <re} C Q.

3) For each solution ¢ € Sy (P\Q), there exists a solution
z to 2zt = f4(z) starting from v(¢(0,0)) such that there
exists 7* € N satisfying:

J* < sup{j: (t,j) € domg}, 2(j) € (—o0,12) Vj = 5"

Proof. The proof follows the exact same steps used to prove
Theorem 4.6 while using [22, Theorem 4.17] instead of [22,
Theorem 4.16]. O

Remark 4.8. When the lengths of the flow interval between
successive jumps is approximately known, we can employ the
conditions for pre-ECI in [22, Theorem 4.14], that use single
scalar Lyapunov-like function; see [22, Theorem 6.8].

E. Certifying pUsq using FTA via Flows and Jumps

Along the lines of Remark 4.4, we propose sufficient con-
ditions that guarantee the satisfaction of pfsq using sufficient
conditions for FTA in [22, Theorem 5.1].

Theorem 4.9 (pUsq using FTA). Consider a hybrid system
H = (C, F, D, Q). Given atomic propositions p and q, let the
sets P and Q) as in (4) be such that Assumptions 3.1 and 4.1
hold. For N' an open neighborhood of QQ, we suppose that
there exist functions V : N'— R>q and W : N' — Rx that



are positive definite with respect to QQ and such that P\Q C
Ly(r)n(CUD)CN and P\Q C Lw(r)Nn(CUD) CN,
for some v > 0. Then, the formula pUq is satisfied for H if
the following hold:

1) The formula pU,q is satisfied for H.

2) There exist constants ¢1 > 0 and ¢z € [0,1) such that

(VV(z),n) < —aV=(z)
Vze(CNNNPN\Q,VneF(z)NTa(x), (13)
V(n)—V(z) <0 Vze(DNNNP\Q,VneG(x).

3) There exists a constant ¢ > 0 such that

(VW (z),n)<0 Ve (CNNNP\Q,VneF(z)NTc(x),
W(n) — W(z) <—min{c, W(z)}
Vee(DNNNP\Q, YneG(a)

4) No maximal solution to H has a finite escape time in
(P\@)NC.

5) Every maximal solution to ‘H from ((P\Q) N 9C)\D is
nontrivial.

Proof. Consider the system #H, introduced in (8). Using [22,
Theorem 5.1] for H under items 2) and 3), we conclude that
Q is pre-FTA with respect to P\Q for H,. Next, we show
that P U @ is forward invariant for H exactly as we did in
the proof of Theorem 4.3. Thus, using Theorem [22, Theorem
5.10], we conclude that @) is FTA with respect to P\@Q for
‘Hs. Finally, the proof is completed using Theorem 3.8. [

Example 4.10 (Thermostat). Consider the hybrid system in
Example 4.5 with the state x := (h,z) € {0,1} xR. Let the
propositions p and q given as in Example 4.5. To show the
satisfaction of pUsq for H, we apply Theorem 4.9. We already
showed in Example 4.5 that the formula pU,,q is satisfied for
H,; and thus, item 1) in Theorem 4.9 holds. Next, consider
the functions V(x) = W(x) = zZmin — 2. For all z € (C' N
PN\Q = {1} x (=00, Zmax), (VV(x),F(x)) =2—2o—2a <
Zmax—Zo—2A. Moreover, for all x € (DNP)\Q={(1, zmax) }»
V(G(x)) — V(x) = 0. Hence, item 2) holds for ¢1 = zmax —
zo—2za and ca=0. On the other hand, for all x € (C N P)\Q,
(VW (), F(z))=2z—20—2a < 0 since zo+2za > Zmax, and
for all x € (DN PN\Q={(1, 2max)}, W(G(z)) — W(z) =
0 < —W (x). Hence, we conclude that item 3) holds for ¢ =
Zmax — Zmin. Furthermore, since the flow map F' has global
linear growth on (P\Q) N C, the solutions to H do not have
a finite escape time inside (P\Q) N C; hence, item 4) holds.
Finally, since (P\Q)NOC = (), item 5) holds. Thus, Theorem
4.9 implies that pUsq is satisfied for H. A

Remark 4.11. As in Theorems 4.6 and 4.7, we can formulate
sufficient conditions for pUsq using sufficient conditions for
FTA via flows, or for FTA via jumps. Due to space constraints,
those results are reported to [22, Theorems 6.13 and 6.14].

V. CONCLUSION

Lyapunov-like techniques are introduced to certify the
pU,q and pUsq formulas for hybrid systems. In the first place,
sufficient and equivalence relationships are established be-
tween the satisfaction of the considered formulas and specific

invariance and attractivity notions, such as CI, ECI, and FTA.
Then, using sufficient infinitesimal conditions guaranteeing the
aforementioned invariance and attractivity notions, sufficient
infinitesimal conditions for the satisfaction of the pif,,q and
pU,q formulas are deduced. Future research direction includes
analyzing more complex specifications, where the until opera-
tor is involved in addition to other operators. In particular, with
the proposed tools, more complex formulae can be certified
through decomposition by building a finite state automaton;
see [12, Section 6.5] and the references therein.
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