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Abstract— This paper studies provable security guarantees
for cyber-physical systems (CPS) under actuator attacks.
Specifically, we consider safety for CPS and propose a new
attack-detection mechanism based on a zeroing control barrier
function (ZCBF) condition. To reduce the conservatism in its
implementation, we design an adaptive recovery mechanism
based on how close the state is to violating safety. We show that
the attack-detection mechanism is sound, i.e., there are no false
negatives for adversarial attacks. Finally, we use a Quadratic
Programming (QP) approach for online recovery (and nominal)
control synthesis. We demonstrate the effectiveness of the
proposed method in a case study involving a quadrotor with
an attack on its motors.

I. INTRODUCTION

Cyber-physical systems (CPS) such as autonomous and
semi-autonomous air, ground, and space vehicles must main-
tain their safe operation and achieve mission objectives
under various adversarial environments, including cyber-
attacks. Security measures can be classified into two types of
mechanisms [1]: i) proactive, which considers design choices
deployed in the CPS before attacks, and ii) reactive, which
takes effect after an attack is detected. A proactive method,
which considers design choices deployed in the CPS before
attacks, can result in a conservative design. On the other
hand, reactive methods, which take effect after an attack is
detected, heavily rely on fast and accurate attack-detection
mechanisms. An optimal approach to achieving resilience
against cyber attacks must utilize the benefits of the two
approaches while minimizing their limitations.

There is a plethora of work on attack detection for CPS,
see, e.g., [2]-[5]. However, as discussed in [6], a knowl-
edgeable attacker can design stealthy attacks that can disrupt
the nominal system behavior slowly in order to evade these
detection mechanisms. Such methods can lead to system
failure by pushing the system out of its safe operating limits.
Thus, a new attack-detection mechanism must be devised
based on the closeness of the system to violating safety.
Safety, i.e., the state of the system does not leave a safe zone,
is an essential requirement, violation of which can result
in significant (financial and performance) losses, particularly
when a system is under attack [7]. In most practical prob-
lems involving CPS, safety can be realized as guaranteeing
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forward invariance of a safe set. One of the most common
approaches to guaranteeing that system trajectories stay in a
safe set is based on employing a control barrier function
(CBF), as it allows a real-time implementable quadratic
programming (QP)-based control synthesis framework [8].

In our prior work [9], we use a proactive scheme consisting
of only designing a safe feedback law using a CBF. One
disadvantage of that approach is that the resulting controller
is conservative due to the system possibly being not under
attack and still assumed to be under attack. In contrast, this
paper proposes a reactive security mechanism that activates
a potentially conservative controller only after an attack is
detected. In particular, we consider actuator attacks, where
an attacker can assign arbitrary values to the input signals
for a subset of the actuators. Furthermore, we allow multiple
attacks on the system and provide conditions for guaranteed
safety under repeated attacks on system actuators.

In this paper, we consider the safety property with respect
to an unsafe set and propose an attack-detection mechanism
based on CBF conditions for safety. We use an adaptive
parameter based on how close the system is to violating
the safety requirement and use this adaptive parameter in
the attack detection to reduce conservatism. Using this de-
tection mechanism, we propose a switching-based strategy
for recovery from a nominal feedback law (to be used when
there is no attack) to a safe feedback law, when the system
is under an adversarial attack. While there is work on CBF-
based safety of CPS under faults and attacks [9]-[11], to the
best of the authors’ knowledge, this is the first work utilizing
CBF conditions for attack detection.

Notation: Throughout the paper, R denotes the set of real
numbers, and R>o denotes the set of non-negative real
numbers. We use |z| to denote the Euclidean norm of a vector
x € R™. We use 05 to denote the boundary of a closed set
S C R™ and int(S) to denote its interior. The Lie derivative
of a continuously differentiable function h : R™ — R along
a vector field f : R™ — R™ at a point € R" is denoted as

Lh(z) = %(x)f(x)
II. PROBLEM FORMULATION

Consider a nonlinear control system S given as

&= F(z,u)+ d(t,z),

1
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where FF : D x U — R™ is a known function that is
continuous on D x U, with D C R" and U C R™, d :
R>p x R®™ — R"™ is unknown and represents the unmodeled
dynamics, x € D is the system state, and v € U is the control



input.! Similar to [9], in this paper, we consider an attack
where a subset of the components of the control input is
compromised. Under such an attack, the system input takes
the form

u = (uvvus)a (2)

where u, € U, C R™ represents the vulnerable compo-
nents of the control input that might be compromised or
attacked, and ugs € Us C R™¢ the secure part that cannot be
attacked, with m,, +mgs; = m and U := U,, X U,. Under this
class of attack, we assume that we know which components
of the control input are vulnerable. Under this attack model,
the input to the system takes the form

{M@%&@D
(ua(t), ks(2))

where u, : R>g — U, is the attack signal on the input
Uy, ks : R>g X R® — R™s is a safe feedback law for the
input us, to be designed and used when the system is under
attack, and the pair A\, : R" — U,, As : R™ — U, define
the nominal feedback law A = (\,, \;), to be designed and
used when there is no attack. The set 7, C Rxg is the set of
time intervals over which an attack is launched on the system
input. In particular, for each i > 1, let [t¢,t5) with t§ >t}
denote the interval of time when the attack is launched for

the i—th time where ¢} > 0, so that 7, == |J [t¢,t). Define
i>0

ift ¢ Tg;

ult, ) = ifte Ty’

3)

Ti=max{ty— 6}, Tooi=min{ti — 66"}, @

as the maximum length of the attack and the minimum
length of the interval without an attack on the system input,
respectively. In this work, we assume that the set 7, is
unknown, and only the maximum period of attack, T, and
minimum period without an attack, 7;,,, are known.

Now, we present the control design problem studied in the
paper. Consider a non-empty, compact set S C R", referred
to as the safe set, to be rendered forward invariant. We make
the following assumption on d in (1):

Assumption 1. There exists known 6 > 0 such that
|d(t,x)| <& for all t > 0 and all x € D.

Problem 1. Consider the system in (1) with unmodeled
dynamics d that satisfies Assumption 1, a set S and the attack
model in (2). Design an attack-detection mechanism and a
safe input assignment policy such that, for a set of initial
conditions Xog C S and attack signals u, : R>o — U, the
closed-loop trajectories x : R>o — R"™ of (1) resulting from
applying the designed input policy satisfy x(t) € S for all
t > 0 and for all x(0) € Xo.

Note that for the safety requirement as imposed in Problem
1, an attack is adversarial only if it can push the system
trajectories out of the set .S, as defined below.

11t is assumed that each solution x is an absolutely continuous function
in time.

Definition 1. An attack signal u, : R>o — U, is adversarial
if there exist (0) € S and a finite t > 0 such that for any
K1 R>o X R™ — U, each system trajectory x : R>g — R"
of (1) resulting from applying u = (u,, ) satisfies x(t) ¢ S.

Per the above definition, it is possible that there is an attack
on the system but the system does not violate the safety
requirement. We use this observation to focus our detection
mechanism only on the attacks that can potentially push the
system out of the safe set.

We first review the notion of forward invariance of the
set S and the corresponding barrier function conditions. In
the remainder of the paper, to keep the presentation simple,
we assume that the maximal solutions of (1) exists and are
unique.

Definition 2. A ser S C R"™ is termed as forward invariant
for system (1) if every solution x : R>o — R"™ of (1) satisfies
x(t) € S for all t > 0 and for all initial conditions z:(0) € S.

Next, we review a sufficient condition for guaranteeing
forward invariance of a set without an attack. Following the
notion of robust CBF in [12], we can state the following
result guaranteeing forward invariance of the set S for the
system (1).

Lemma 1 ((12]). Given a continuously differentiable func-
tion B : R" — R, the set S = {x | B(x) < 0} is forward
invariant for (1) under d satisfying Assumption 1 for some
0 > 0, if the following condition holds:

inlflLFB(x,u) < —lgd Vxeds, 5)
ue

where lp is the Lipschitz constant of the function B.

III. ATTACK DETECTION

In this section, we present a method for detecting whether
the system (1) is under attack using the barrier function
condition (5). In particular, we check whether inequality
(5) holds on the boundary of the safe set to raise a flag
for an attack. Instead of using the value of the barrier
function B, we use the value of its time derivative due to the
following reason. The time derivative of the function B on
the boundary of the safe set indicates whether the system will
violate the safety constraint. Moreover, the time derivative of
the function B includes the system dynamics. Hence, it is
a better indicator of whether the given system will violate
the given safety constraint than the function B itself, which
does not capture the system information.

Given B and F', define

H(z,u) = LrpB(z,u) + 59, (6)

where ¢ is the bound on the disturbance d per Assumption 1
and [ is the Lipschitz constant of the function B. Note that
condition (5) can be written as inf, ¢,y H(z,u) < 0 for all
x € 0S. If an attack signal u, is adversarial, then it holds
that there exists a finite time ¢ > 0 such that z(¢) € S and
H(xz(t), (uq(t),vs)) > 0 for any v, € U where x : R>g —
R™ is the solution of (1) resulting from the input (3). Using



this property, a detection mechanism can be devised to flag
that the system input is under attack. In particular, if the
input u to the system is known at time ¢ when z(¢) € 95,
an attack detection mechanism can be designed by checking
the value of H (x(t),u(t, z(t))). However, in the presence of
an attack with a delay ¢4 in detection, it is not possible to
know the actual input u to the system. Thus, it is not possible
to use the evaluation of H to flag an attack.

To resolve this issue, we note that the function B only
depends on the state z. Thus, we use an approximation
method to estimate the value of H at any given time ¢
using the consecutive measurements of the function B at
time (¢ — 7) and ¢, for some 7 > 0. For each ¢ > 0, define

B: Rzo — R

T

as the error between the actual time derivative of the function
B and its first-order approximation where x : R>g — R™ is
the solution of (1). Assume that the function B is twice
continuously differentiable, and the function F' in (1) is
continuously differentiable. Under these conditions, using
Taylor’s theorem for the first-order approximation of the
function B with a second-order error term, there exists
0 <t < 7 such that
Bla(t = 7)) = Bla(t) - B(®)r + Ba@)

where B is the second time derivative of the function B.
Assume that [B(x)| < 7 for some 7 > 0 for all x € S.. For
the sake of brevity, denote B(a(t),7) = Z2&t)-B=)
so that we have

en(t) = |B(a(t) - Ble(t), )| = 2B(@) < L

Using the bound on ep, we obtain that for each ¢ > 0 and
7 > 0, the following holds:

2 T 2 T

Bla(t),7) - < H(a(t).u(t) < Bla(t).7) + . (1)
where z : R>9 — R" is the solution of (1) resulting from
applying the input u : R>g — U. Using (7), it holds that for
eacht>0and 7 > 0,

Bla(t), 1) + ”2—7 <0 = H(z(t),u(t)) <0.

With the above construction, we define the time when a flag
for an attack is raised as

fy= inf{t Blz(t),r) > -~

() € 85}7 )

where 7 is the bound on the second time-derivative B and
7 > 0. We have the following result stating that the attack
detection mechanism in (8) detects the attack before the
system trajectories leave the safe set.

Lemma 2. Given a twice continuously differentiable function
B, system (1) with d satisfying Assumption 1, a continuously

differentiable function F, and an adversarial attack starting
att =13, let T > t] be defined as

T =inf{t > ' | H(x(t),u(t,z(t))) > 0,z(t) € dS}, (9)

where z : R>g — R" is the solution of (1) resulting from
applying the input u : R>o — U and 7 is the bound on the
second time-derivative B. Then, for each T > 0, it holds that
tqg < T, where t4 is given in (8).

Lemma 2 implies that the attack-detection mechanism in
(8) raises an alert on or before the system trajectories reach
the boundary of the set 95 under an attack. In other words,
while the detection mechanism (8) can have false positives
(i.e., raise an alert when there is no attack), it will never have
a false negative (i.e., it will not miss any attack).

For a given ¢, define

Se = {z| B(z) < —c}.

One way to make the detection method robust is to check
the inequality at the boundary of the set S.. Define c¢j; € R
as

(10)

‘= —min B
CM glelg (z),

(1D
so that the set S, is nonempty for all ¢ € [0,cpr). Now,
since it is possible to allow the function H to take positive
values in the interior of the safe set .S, we use the inequality
H(z,u) < v for some v > 0 instead of H(z,u) < 0, to
detect attacks. Note that a constant v > 0 might lead to
false positives if v is too small, or false negatives if v is too
large. To this end, we make the following assumption when
the system is not under attack.

Assumption 2. There exist ¢ € (0,cpr), 0 € R and a con-
tinuous input u : R™ — U such that the following inequality
holds: H(z,u(x)) < —dB(z), for all x € S\ int(Sz).

Similar assumptions have been made in the literature on
safety using ZCBFs (see e.g. [8]). Note that under Assump-
tion 2, using the comparison lemma, it can be shown that
H(x(t),a(z(t)) == B(z(t)) < —6B(z(t)) which implies
that B(z(t)) < B(z(t))e =5(=D for all ¢ > f, where
t = inf{t | z(t) € 05;} and = : R>g — R" is the
solution of (1) resulting from applying the continuous input
u. Using Assumption 2, we design an adaptive scheme for
the parameter .

Let v : R>g — R>o be an adaptive parameter whose
adaptation law is given as ~(t) = dce 0(¢=1 for ¢ > ¢,
where 6, ¢ are as defined in Assumption 2. Note that under
Assumption 2, there exists a feedback law u : R" — U
such that H(z(t), u(x(t))) < «(t) for all ¢ > . Using this
observation, we propose a new attack-detection mechanism
that raises a flag for the i—th time at ¢ = ¢/, where

fi, = inf {t > max {z, ff;‘”} ‘ B(z(t),7) > 7(t) — %

(t) € S\int(SE)}, (12)

where 7 is the bound on the second time-derivative B, 9=
—T and 7 > 0.



Remark 1. Compared to (8), the detection mechanism in
(12) raises a flag when B(xz(t),7) > ~(t) — AT anywhere
in the set S\ int(Sz), which is a strip of non-zero measure
between the boundaries 0Sz and 0S. This, along with the
adaptive parameter -y, provides inherent robustness against
small perturbations and measurement uncertainties. As a
result, under an attack, the proposed detection mechanism
allows the system to get close to the boundary of the safe
set as long as the rate at which the system approaches
the boundary (dictated by B) is bounded according to

Assumption 2.

Remark 2. It is worth noting that the proposed detected
mechanism focuses on detecting only adversarial attacks,
and not every attack. That is, if there is an attack signal u,
such that inf, ey, H(z, (ug,us)) < 0 for x € S, ie., the
system is still safe under the attack, the proposed detection
mechanism will not detect it.

IV. RECOVERY CONTROLLER DESIGN

In this section, we present a switching-based control
assignment to recover from an adversarial attack based on
the detection mechanism from the previous section. To this
end, we make the following assumption.

Assumption 3. There exists ¢ € (0,cpr) such that the
following hold:

inf sup H(z, (uq,us)) <0 VzeS\int(Ss).

13
us €U Uq EU, ( )

The above assumption implies that the set S. can be
rendered forward invariant under any attack u, € U,. Now,
consider a time-interval [t #1) over which the system
input is not under an attack and the interval ¢ € [t},¢5) over
which it is under an attack. Define 75 :== J[t/, ), + T) as
the set of time intervals when an attack is flagged, where
t), is the time when the attack is detected for the j—th time
according to (12), j > 0 with {4 = —T. Due to 7, being
unknown, the system input is defined as

u(t, ) = (uy(t, ), us(t, v)), (14a)
B Ap(z) if t ¢ Ty,

Uy (t,z) = {ua(t) it teT. (14b)
) i T

us(t,z) = {ks(:r) it oteT (14¢)

where (A, As) constitute the nominal input when there is
no attack detected, u, is the attack signal and u is the safe
input under attack (see (3)).

We have the following result showing the existence of
nominal and safe feedback laws for (14) that can recover the
system from an attack.

Theorem 1. Given system (1) with F € C', B € C?, and the
attack model (2), suppose that Assumption 1 holds, and that
Assumptions 2-3 hold for some ¢ € (0, cpr). Then, there exist
feedback laws X\ = (A, \s) : R" — U and ks : R" — U,
such that under the effect of the input u in (14) with 7% is

defined in (12), the system trajectories of (1) satisfy x(t) € S
for all t > 0 and for all £(0) € Xy = int(S).

In essence, Theorem 1 provides sufficient conditions for
the existence of a control algorithm such that Problem 1
can be solved. While Assumptions 2 and 3 serve different
purposes, it is easy to see that the satisfaction of Assumption
3 for some ¢ € (0, cpr) implies that Assumption 2 holds for
the same ¢. Thus, it is sufficient to verify that Assumption 3
holds. One practical method of finding a subset of the safe
set S, where Assumption 3 holds, is the computationally
efficient sampling-based method proposed in [9].

Next, we present a control syntheses method to design
both the nominal feedback A and the safe recovery feedback-
law ks in (14). To formulate a tractable optimization problem
for control synthesis, we assume that the system (1) is
control-affine and is of the form

&= f(z)+ g(x)u+ d(t,z), (15)

where f : R” — R" and g : R™ — R"*"™ are continuous
functions. Assume that the input constraint set U/ is given
as U = {u | Au < b}, for some A : RP*™ and b € RP.
To synthesize the nominal feedback law A, we formulate the
following QP for each = € S,

1, 1,

min —=|v|*+= 16a

min 51017457 (16a)

st Av<b, (16b)

LyB(z) + LyB(x)v < —nB(z) — g0, (16¢)

where ¢ > 0 is a constant and [ is the Lipschitz constants
of the function B. To compute the safe feedback-law kg, let
g = lgs go] with gs : R® — R"*™s g, : R?" — R**™Mv,
and assume that the input constraint set for u, is given as
Us = {us | Asus < bs} for some A and bs. The QP for the
synthesis of kg is as follows for each = € S'\ int(Sz),

min %\vﬁ%@ (17a)

st A, < b, (17b)
LyB(z) + Ly, B(x)vs < —(B(z) —lgd

— sup Lg B(z)u,, (17¢)

Uy EUy

Let the solution of the QP (16) be denoted as (v*,n*)
and that of (17) as (v¥,(*). We are now ready to state the

following result, based on results in [13].

Theorem 2. Given the functions F,d, B and the attack
model (2), suppose Assumptions 1-3 hold with 6 > 0 and
¢ € (0,cpr). Assume that the strict complementary slackness*
holds for the QPs (16) and (17) for all x € S and © €
S\ int(S.), respectively. Then, the QPs (16) and (17) are
feasible for all x € S and all x € S\ int(S,.), respectively;

2In brief, if the i—the constraint of (16), with i € {1, 2}, is written as
Gi(z,z) < 0with z = (v,7n), and the corresponding Lagrange multiplier is
i € Ry, then strict complementary slackness requires that A*G/(z, 2*) <
0, where 2*, A} denote the optimal solution and the corresponding optimal
Lagrange multiplier, respectively.
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Fig. 1. The closed-loop path traced by the quadrotor with the proposed
detection mechanism (in blue) and without the detection mechanism (in
red). The vulnerable motor is shown in red.

v* and v are continuous on int(S) and x € int(S\ int(S.));
and the control input defined in (14) with A\(z) = v*(z),
ko(x) = vi(x), and tq = tq, where t4 is defined in (12),

solves Problem 1 for all x(0) € int(S).

Thus, the QPs (16) and (17) can be used to synthesize a
safe input for a system under attack.

V. QUADROTOR CASE STUDY

We consider a simulation case study involving a quadrotor
with an attack on one of its motors.? The quadrotor dynamics
is given as (see [14]):

o = - ((lD)e()s(0) + s()5(0)us kb)) (150)
b= - ((0)s(0)s(0) — s(o)e(w))us — k) (18
e = (cO)e(6)us — mg — ki ) (180)
6 =p+as(d)H(0) + re(@)t(0) (18d)
6 = ge(o) —rs(9) (18e)
V= %(qs(@ +7e(9)) (18f)
b=~ ke —ar(Lee — L) + 1) (189
q= %(_qu_pr(]’mx _Izz)+Tq) (18h)
f:i{—mm—maw—gg+ny (18i)

&
183

where m, Iy, Iy, I.., k-, ke > 0 are system parameters,
g = 9.8 is the gravitational acceleration, c(-),s(-),t(-)
denote cos(-), sin(-), tan(-), respectively, (py,py,p-) denote
the position of the quadrotor, (¢, 0,) its Euler angles and
u = (uys, Ty, Ty, 7r) the input vector consisting of thrust uy
and moments 7,, 74, 7. The relation between the vector u

3The Matlab code is available at: https://github.com/
HybridSystemsLab/QuadrotorCBFAttackRecovery.git
A video of the simulation is available at https://tinyurl.com/
ye28ksx3. The authors would like to thank Dr. Adeel Akhtar for providing
the MATLAB files for the 3D visualization of the quadrotor in the video.
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Fig. 2. In the absence of the detection mechanism, the quadrotor crashes

(i.e., z = 0 m). In the presence of the detection mechanism, the altitude
remains close to the desired altitude z = 5m (shown by a black line). The
conservative approach in [9], resulting in a crash even without an attack, is
shown in green (see the inset plot).

and the individual motor thrusts is given as

us 1 1 1 1 fl
e R A R
Wl ==t 0 1 ol |l 19
T d —d d —-d] |fs

where f; is the thrust generated by the i—th motor for
i €{1,2,3,4}, d,l > 0 are system parameters. We choose
the system parameters for simulations as: I, = I, = 0.177
kg-mz, I,, = 0.344 kg-mQ, m = 4.493 kg, I = 0.1
m, d = 0.0024 m, k&, = 1 and k., = 1.5 (see [15]).
Furthermore, we consider the bound on each motor given
as |f;| < 27.7 N for i € {1,2,3,4}. We use 7 = 1073,
Without loss of generality, we assume that motor #4 is
vulnerable. Under an attack on motor #4, it is not possible to
keep all the inputs (uy, 7, 74, 7r) close to its desired value
simultaneously under an attack on motor #4. Thus, we focus
on designing a control law to maintain the desired altitude
of the quadrotor (through uy) and minimize its oscillations
(through (7, 74)). It implies that 7,- will not be matched with
its desired value to control the yaw angle ¢, resulting in an
uncontrolled yaw angle increase.

We choose the control objective to make the quadrotor
hover at location (0,0,5), starting from (0,0,0.2). Based
on the above observation and the fact that i) does not
contribute to changing the altitude of the quadrotor, the safety
constraints are to keep the angles (¢, 6) in a given bounded

‘—Attack activity —Detection activity‘
1 L 4
0
0 10 20 [sec] 30 40
Fig. 3. The attack (respectively, the detection) activity where 1 denotes

that the attack is active (respectively, flagged) and O, that the attack is non-
active (respectively, not flagged).
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Fig. 4. Thrust f; of each motor. The thrust of motor 4 under attack is
shown in red. The switch in the rest of the motors is seen when an attack
is flagged.

range, i.e., || < ¢, |0] < Oy, for some @as, 0y > 0, and
to keep the quadrotor above the ground, i.e., z > 0. Thus,

{(0.6.2)] 16l < éur. 18] <

Orr,z < —ep. We choose ¢y = 0y = 0.3 and € = 0.02.
The maximum length of the attack is randomly chosen as
T = 0.934 seconds and the period of no attack is chosen as
Tha = 2.238 seconds.

The barrier functions used for enforcing safety are
Bi(z) = —z+0.02, By(¢) = |¢]* — ¢3; and Bs() =
|6|> — 02 ,. The parameters J, ¢ for detection are § = 0.1,¢ =
1(0.3)2. Figure 1 shows the closed-loop path traced by the
quadrotor. Figure 2 plots the position coordinates (z,y, z).
The safety constraint z < 0 is satisfied at all times, and
the quadrotor can hover at an altitude z = 5 m. Figure 3
shows the attack and the detection signal. It can be seen
that detection has a non-zero delay during some attacks, and
zero delay during some attacks. It can also be seen that
some of the attacks are not detected, as they do not fall
into the category of adversarial attack per Definition 1. The
attack is flagged according to (12) and remains flagged for
the duration 7. The bound |f;| < 27.7 N is satisfied for
each motor at all times. The vulnerable motor is highlighted
in green. Finally, Figure 4 plots the thrust for each motor
under nominal conditions as well as under attack.

Thus, the proposed scheme can successfully detect an
attack on a quadrotor motor before the quadrotor crashes.
Furthermore, the designed safe input can keep the quadrotor
in the safe zone even under attack, thus demonstrating a suc-
cessful recovery after detection. The conservative approach
in [9], which assumes that the rotor #4 is constantly under
attack, fails to keep the quadrotor from crashing even when
there is no attack (see Figure 2). In contrast, the proposed
approach is non-conservative and reacts to an adversarial
attack, thereby not interfering with the system’s nominal
functionality.

the safe set is defined as S =

VI. CONCLUSIONS

We presented a novel attack-detection scheme based on
the control Barrier function. Our formulation is adaptive, in

the sense that the further away the system is from violating
safety our recovery controller focuses on performance rather
than safety; however, if the system keeps approaching the
safety limit, our adaptive mechanism switches to a recovery
controller to counteract the potential attack. We demonstrated
the efficacy of the proposed method on a simulation example
involving an attack on a quadrotor motor.

Future work involves studying more general attacks on
CPS, such as attacks on system sensors and simultaneous
attacks on system sensors and actuators. As noted in Remark
1, our future investigation also includes studying methods of
estimating the time when the attack has stopped.
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