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Abstract— We consider the problem of estimating a vector
of unknown constant parameters for a linear regression model
whose inputs and outputs are discretized hybrid signals —
that is, they are samples of hybrid signals that exhibit both
continuous (flow) and discrete (jump) evolution. Using a hybrid
systems framework, we propose a hybrid gradient descent
algorithm that operates during both flows and jumps. We show
that this algorithm guarantees exponential convergence of the
parameter estimate to the unknown parameter under a new
notion of discretized hybrid persistence of excitation that relaxes
the classical discrete-time persistence of excitation condition.
Simulation results validate the properties guaranteed by the
new algorithm.

I. INTRODUCTION

Hybrid systems are a class of dynamical systems with
state variables that can exhibit both continuous and discrete
evolution. Such systems provide new and promising mod-
eling frameworks for a wide range of applications, includ-
ing switching systems [1] and systems with event-triggered
control [2]. In such applications, it is often necessary to
estimate the unknown parameters of the system in order to
achieve the desired control objective [3]. However, the hybrid
nature of these systems stymies the applicability of classical
continuous-time or discrete-time parameter estimation algo-
rithms.

Several approaches exist in the literature for parameter
estimation for certain classes of hybrid dynamical systems
[4], [5], [6], such as by interpreting hybrid systems as
a part of the piecewise affine framework (PWA) [7], [8].
However, these works all assume that measurements are
available continuously during flows. This assumption is often
violated in practice since, due to the need for analog to
digital conversion, measurements are typically only available
at discrete time instants during flows. In addition, the PWA
description is broad, and a focused attempt at the identi-
fication of specifically hybrid systems may lead to more
optimized approaches that would not apply to the PWA class
as a whole.

Motivated by the need for an estimation algorithm that
is capable of operating with discretized hybrid signals, in
this paper, we propose a discretized hybrid gradient descent
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algorithm to estimate the unknown parameters of discretized
hybrid linear regression models. We begin with a literature
review of the continuous-time and discrete-time gradient
descent algorithms in Section II, followed by a motivational
example in Section III. In Section IV, we show that our
proposed algorithm ensures exponential convergence of the
parameter estimation error to zero under a new discretized
hybrid persistence of excitation condition. Examples are
given in Section V and concluding remarks are in Section
VI. Due to space constraints, some proofs are sketched or
omitted and will be published elsewhere.

II. PRELIMINARIES

A. Notation

We use the following notation and definitions. The sym-
bols N, R, and R>( denote the sets of all nonnegative
integers, real numbers, and nonnegative real numbers, re-
spectively. The Euclidean norm of vectors and the associated
induced matrix norm are denoted by |- |. Given nonempty
sets X C R" and Y C R", X\Y denotes set subtraction.
For a function ¢ : R™ — R™, dom ¢ denotes the domain of
¢. The symbol O denotes either the scalar zero or the zero
matrix of appropriate dimension.

B. Discretized Hybrid Systems

Consider a hybrid system defined as in [9]
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where = € R"” is the state, f : C' — R"™ is the flow map

which models continuous dynamics on the flow set C C R",

and g : D — R" is the jump set which models discrete

dynamics on the jump set D C R™. A discretization of the
hybrid system in (1) is denoted H and is defined by [10]

zt = fq()

xt = gs(x)

x e Cy
T € Dy

where s € (0, s*], for some s* > 0, is the step size of the
discretization of the continuous-time dynamics, f; : Cs —
R™ is the flow map modeling the discretized dynamics of
‘H on the discretized flow set Cs € R"”, and g; : Dy —
R™ is the jump map modeling the discretized dynamics on
the discretized jump set D, € R™. Inspired by the forward
Euler’s method [10], one way to discretize a hybrid system



is to define f, and g, as'

fs(x) = z+sf(s)
gs(x) = g(x)
Solutions to discretized hybrid systems are given on dis-
cretized hybrid time domains.
Definition 1: (Discretized hybrid time domain) A set
E, C N x N is a discretized hybrid time domain if for

each (K, J) € E,, there exists a unique finite nondecreasing
sequence {k;}/X ) such that ko = 0, k;41 € N\{0} for each

reCy,:=C
z €D, :=D. )

j€{0,1,...,J}, and
J kit
E.n({0,1,.... K} x{0,1,....71) =] |J (k.j).
§=0k=k,

The operations sup;, Es and sup; Es denote the supremum
in the k£ and j coordinates, respectively, in Ej.

Definition 2: (Global pre-exponential stability) Let A C
R™ be closed. The set A is globally pre-exponentially stable®
for the hybrid system H, if there exist strictly positive real
numbers x and A such that each solution ¢4 to H, satisfies

|65(k, )|a < ke FH)[65(0,0)a V(k, ) € dom ¢s.
C. Linear Regression

In preparation for our proposed discreitzed hybrid gradient
descent (GD) algorithm, we review GD algorithms in contin-
uous time and in discrete time [3]. Consider the continuous
time linear regression problem

Ye (t) = eTwc (t)

where ¢ — y.(t) € R is a measured output, § € R” is a
vector of constant unknown parameters, and ¢ — 1.(t) € R”
is a measured input. To estimate @, an estimator of the output
can be constructed as follows:

go(ﬁ) = éc(t)T¢c(t)

where t — §j.(t) € R is the estimated output and  — 6,(t) €
R™ is an estimate of 8. The error between the estimated and
true outputs is then

ec(t) = Je(t) — ye(t) = Oc(t) Tt

where éc = éc — 6 is the parameter estimation error.

vt >0 3)

In order to minimize the cost function J.(e.) := % the
GD algorithm estimates 6. using the following update law:
éc(t) = _’ch}c(t)ec(t) “4)

where 7. > 0 is a design parameter.

Ut is possible that the state x of a system s reaches a point outside of
a set C'U D, where it would normally remain in if not due to discretization.
In [10], the jump map and jump set are modified to “catch” these points
and ensure that solutions of hybrid systems are better approximated by
their discretizations. In this paper, discretized measurement data is assumed
to account for these modifications, although they are not presented or
elaborated on.

2The term “pre-exponential,” differentiates itself from the term “exponen-
tial,” in the case where a solution exists that is maximal but not complete.
In this way, the conditions for completeness can be separated from those
for stability and attractivity — see [9] for details.

In a discrete-time setting, consider the linear regression
problem

va(j) = 0"va(j) VjeN. &)
To estimate 6, an estimator of the output can be constructed
as follows: R
9a(5) = 0a(5) "al(s)
The error between the estimated and true outputs is then
ea(s) = 9a(i) — ya(j) = 04 V()

2
In order to minimize the cost function Jy(eq) := %, a
discrete-time GD algorithm is suggested such that 6,4 evolves
according to the following update law:

Yyaba(j)ea(s)
1+ yqvg (5)va(d)

The following persistence of excitation conditions are
sufficient and necessary for the convergence of 6. and 64 to
6 for the continuous-time and discrete-time GD algorithms,
respectively; see, e.g., [3].

Definition 3: (Persistence of excitation)

(CO) A ssignal R>¢ 3¢ — 9(t) € R™ is persistently exciting
(PE) if there exist T', ;x > 0 such that, for each ¢, > 0,

0a(j +1) = 0a(j) — 6)

totT

[ vwuo =

to

(Cl) A signal N 3 j — 9(j) € R™ is PE if there exist
J € N\ {0} and p > 0O such that, for each j, € N,

JotJ

> eGeG) " = pl.

J=Jo

III. MOTIVATION

Consider the linear regression models in (3) and (5),
but now with a hybrid signal ¢ as a regressor, defined
on a hybrid time domain E. A hybrid gradient algorithm
was introduced in [4] to solve this hybrid linear regression
problem, such that the estimate 6 converges to 6. The
parameter estimate 6 behaves according to the update law in
(4) during periods of flow, and according to the update law
in (6) at jumps. However, in practice, the hybrid signal (¢, j)
— 1(t,7) is only available at discrete-time instants during
flows, as measurements cannot truly be taken continuously.
Given discretized hybrid signals (k, j) — ys(k,j) and (k, j)
+ 1s(k,j) defined on a discretized hybrid time domain
E, € N x N, we instead seek to solve a discretized hybrid
linear regression model of the form

ys(k,j) =0T 0s(k,j) V(k,j) € Es @)
where

ws(ka ]) = h(kv w(t’ ]))

for some h : N x rge ¢ — E, where rge v is the range of

1, that samples ¢ at time instances (ks, j) € dom [10].
For systems of this type, we cannot directly apply the

hybrid gradient algorithm in [4] to estimate the unknown

VY(k,t,j) € N x dom1



parameter 6, as it requires continuous measurements during
flows, which are often not feasible in practice. Thus, in this
paper, we propose a hybrid algorithm for estimating unknown
parameters in discretized hybrid linear regression models.

As further motivation for the proposed algorithm, consider
a model as in (7), with discretized hybrid time domain

E,=JI({(a+Di, (a+Di+1,..., (a+1)(i+ 1)}
=0
x {2 U ({(a+ 1)+ 1)} x {20 +1})],

step size s = 27 for some a € N\ {0}, known output signal
(k,j) — ys(k,j) € R, unknown parameter 6 = [1 1]T,
and known regressor signal (k,j) — ts(k, j) € R?. During

flows, the value of v, is

bs(k,§) = [sin(sk) 0]

and, each time v jumps, the value of 1, after the jump is

0.5
o9
Suppose our goal is to estimate 6. We first employ the
discretized continuous-time GD algorithm in (4) and the
discrete-time GD algorithm in (6). The discretized continu-
ous GD algorithm utilizes measurements only during flows,
and the discrete-time GD algorithm utilizes measurements
immediately after each jump. Both algorithms fail to estimate
the unknown parameter 6, as shown in Figure 1. To see why
they fail, note that the discrete-time signal that is obtained by
neglecting the evolution of v, at jumps does not satisfy the
discrete-time PE condition in (C1). Similarly, the discrete-
time signal that is obtained by neglecting the evolution of 14
during flows also does not satisfy (C1). On the other hand,
the discretized hybrid GD algorithm proposed in this paper

successfully estimates 6 by leveraging information during
both flows and jumps, as shown in Figure 1.3

.
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Fig. 1: The projection onto ¢ of the norm of the estimation
error 05 given sampled data, simulated using the HyEQ
Toolbox [11].

3The simulation files for this example can be found here:
https://github.com/HybridSystemsLab/HybridGradientDiscrete-Motivation

IV. DISCRETE HYBRID GD ALGORITHM

A. Linear Regression for Discretized Hybrid Systems

Inspired by [4], we propose a discretized hybrid GD
algorithm to update the estimate 6, according to the update
law in (4), discretized based on (2) such that
Os(k+1,5) = 0y(k,j) — s7ets(k, 5)

during intervals of flow, where s > 0 is the step size due to
discretization and v, > 0 is a design parameter. In addition,
based on the update law in (6), the value of és after each
time 15 jumps is given by

Os(k,j+1) = Yats (k,j+1)

es(k':j) - T+~vas(k,j+1) T Ps(k,j+1)
< (0 (k,5)ts (kg +1) —ys(k,j+1)).

where 4 > 0 is a design parameter. Then, the dynamics of
the estimation error 04:=60, — 0 are

Ouk+1.5) = Buk,) = s7c0u(k,)ou(h.i) Bk, )
0. (k.7 — O.(k i ok gt Dkt )T 5 1 s
03(k7]+1) — 95(/{7,3) - 112dw5(1‘<¢7’j+1)-rw5](k}j+1)95(k7‘7)

during flows and at jumps, respectively.

Given a regressor ©s : E; — R™ and an output ¢ :
y — R satisfying (7), where E; is a discretized hybrid time
domain, the dynamics of 0, are captured by the system HY,
with state @ := (6, k,j) € X := R™ x E, and data

e &= FI(x) x e Y
et =GYx) xeD?
where
[0, = 575 (ko) (02 s (k) —ys(k.5)
FI(x):= k+1
L J
o desw,ﬂl)(ég ws(kgﬂ);ys(hm))
s 1 (ki 1) s (kyj+1
Gg(w):: +vas( ]J;r ) Ts(k,j+1)
j+1

Cl:={zeX:(k+1,j)€E;}
DY ={zeX:(k,j+1)€E,}

Note that this construction is such that our proposed
algorithm flows and jumps in tandem with ).

Remark 1: After each jump, the output y, satisfies
ys(k,j + 1) = 0] s(k,j + 1) for each (k,j) € domu),
such that (k,j + 1) € dom,. This system is not causal,
and in practice, since post-jump measurements of 1 and
ys are not available until after they jump, each jump in the
estimator state will occur at the discrete time instant right
after the corresponding jump in s occurs.

B. Stability Analysis

Convergence of 0, to zero implies that 0, converges to 6.
We define a hybrid system H9 with state & = (05, k,j) € X



that captures the dynamics of the error 0,, as follows:

(92__ _és - S’Yclﬁs(kd)iﬁs(k,jfés
k| = k+1 T ey
L J
a 0. — 1wdw;(1c(g+1>fzﬁ<§%1ﬁl)g

s s + s(k,g+ s(k,j+ s
r| = Ty ’ € DY.
AN ] j+1

(8)

Inspired by [4], we propose the following notion of
persistence of excitation to enable us to guarantee global
pre-exponential stability of the set

A={iecXx:0=0} )

for the discretized hybrid system 7—2;’. Global pre-exponential
stability of A implies that, for each solution Z to 7-{,§ , the
distance from 7 to the set A — or, equivalently, the distance
from 6, to the origin — is bounded above by an exponentially
decreasing function of the initial condition (see Definition 2).
As a consequence, for each complete solution Z to 7:[-2 , the
parameter estimation error converges exponentially to zero.

Assumption 1: (Discretized hybrid persistence of excita-
tion) Given a discretized hybrid signal s : Es — R", as
well as parameters 7., vq,s > 0, there exist I', 4 > 0 such
that for each (k',7'), (k*,5*) € E, satisfying I' + 1 >
k* — k' + j* — j/ > T, the following holds:

3% min{k*,k;j;1}

ZZ

j=j" k= max{k’k}

svets (b, ) 0s(k, 5)

s(kj1,d + Dok, +1)7
+Z Yabs(kj+1, ] WJT( i+, +1) >l
1+’Yd¢5 _]+17.]+1) wb( J+17.7+1)
(10
where {k: }7_ is the sequence defining E as in Definition 1,
kjy1 = J =sup, Es, and K := sup, E.

Remark 2: The hybrid PE condition in Assumption 1
relaxes the discrete-time PE condition (C1). Indeed, it is
possible that 1, satisfies Assumption 1 when (C1) is not
satisfied by the discrete-time signal that is obtained by
neglecting the evolution of s during flows.

We now establish our main result stating conditions to
ensure the set A in (9) is globally pre-exponentially stable
for 7-22 .

Theorem 1: Given a hybrid system 7:[§, a discretized
hybrid signal v, (k,j) : Es — R™, and design parameters
Yey Yds S > 0, suppose Assumption 1 holds and there exists
¥ar such that [s(k,j)| < p for all (k,j) € Es and
v € (0, wg ]. Then, the 0, component of each solution

Z to HY satisfies
10(k, )| < e F4210,(0,0)]
for all (k,j) € F, with x and \ given by
K= . = L In ( 1 )
’ 2('+1) -0

1—0
with T, p from Assumption 1.

Y
(1+y/2(T+2)7)2

where o :=

Proof: This proof is in Appendix A. [ ]

V. EXAMPLES
A. Clock Skew Estimation

Consider a clock used to time periodic events, which
evolves according to the differential equation 7 = 1 + ¢,
where 7 € Ry( is a timer variable, and ¢ € R is an
unknown parameter representing the skew between it and a
reference clock. The dynamics of the clock can be written as
a hybrid system (1) with an added piecewise constant input
u € {0, 1}, where u = 1 during events to be timed, and v =
0 otherwise.* The clock has state z := (7,q) € R>0x{0,1},
where ¢ is a logic variable, and dynamics

=[] cavee

0
q+:| - |:1 _ q:| (T7 q, u) € Dc
where

Co:={(1,q,u) €ER>0x{0,1} x{0,1} : g =w}

D.:={(r,q,u) ER>0x{0,1} x {0,1}: g€ {0,1}\{u}}.

Given 7 : E — R>¢ and ¢ : E — {0, 1} satisfying (11),
where £ = dom7T = domg is a hybrid time domain, we
define

(1)

0 7(t,7) =0
t—t; 7(tj)>0

y(t’]) = T(t’j)’ w(t7]) = {

for all (¢,j) € dom E. The signals y and ¢ satisfy y(t, j) =
0T 4(t,7) forall (t,5) € E, with § = 1+¢. We sample y and
1 during flows and jumps, with a sample period of s > 0
during flows, and at jumps, at the times when y and v jump.
The resulting signals, denoted as ys and v, respectively, are
defined on a discretized hybrid time domain £y C NxN as in
Definition 1. Then, y, and v, satisfy (7) for all (k, j) € Ek.
First, let events to be timed occur every 1 second and have
a duration of 0.5 seconds. Given measurement data s with
€ = 0.1 and a step size of s = 0.05, such that and ¢/,; = 0.5,
we can set 7. = 20 and 4 = 2, and it can be shown that
1, satisfies Assumption 1 with with I' = 22 and ¢ = 20.59.
Then, the conditions of Theorem 1 hold, and we can apply
‘HY to estimate 6. The results of simulating this system with
initial conditions z.(0,0) = (0,1), §, = 0 are shown in
Figure 2° and Figure 3, showing that 0, converges to 0 in
accordance with Theorem 1.

Fig. 2: Projection onto ¢ of 7 for the clock model.

4See [9] for details on hybrid systems with inputs.
SThe simulation files for this example can be found here:
https://github.com/HybridSystemsLab/HybridGradientDiscrete-Clock Skew
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Fig. 3: The projection onto t of the norm of 6, given
measurement data of the clock model using HY.

B. Controller Gain Matrix Estimation

Consider a model of a pressure mounter machine that
captures the dynamics of its main shaft. Its dynamics re-
semble those of an closed-loop mass-spring-damper system
with an appropriate controller. Note that a similar problem
was studied in [5]. Let z; € R denote the vertical position
of the shaft (z; = 0 at rest, 21 = zZmax > 0 while in contact
with the workbench), and z» € R denote the vertical velocity
of the machine. During flows, the dynamics are

k c 1

,2.?1:2:27 22:7E217E22+EU

where m > 0 is the mass of the machine, & > 0 is the
spring constant, and ¢ > 0 is the friction coefficient. The
input 4 € R is provided by a full-state feedback controller
of the form

u=—Kpz+v (12)

where Kp € R? is the unknown controller gain matrix and
v € R is a reference command. During jumps, the machine
will impact a plate at position z;,,x, and then rebound from
the plate at a velocity scaling with the restitution coefficient,
A€ (0,1), as

zf‘ = 21, z; = —M\zo.

Combining the expressions above, we write the closed-loop
dynamics of the pressure mounter machine as a hybrid
system as in (1) with an added input (¢,5) — v(t,j) as

(1% [0 g e

7 1 z1

2|10 =X |22 Z€Dp
where Cp := {2 € R? : 21 < zyax} and Dp := {z € R? :
21 = Zmax, 22 > 0}, with 2y > 0.

Given z: E - R?, v: E — R, and u : E — R satisfying
(12), where E := dom z = dom v = domw is a hybrid time
domain, we sample these signals during flows and jumps,
with a sample period of s > 0 during flows. The resulting
signals, denoted as z,, v,, and us, respectively, are defined on
a discretized hybrid time domain, denoted by £y C N x N
as in Definition 1. Then, it follows from (12) that, for all
(k,j) € Es,

us(k7]) = _KPZs(ka.j) + Us(kaj)' (13)

By defining ys(k, j) := us(k,j) — vs(k,7) and ¢s(k, j) :=
—zs(k, j) for all (k,j) € E, we rewrite (13) into the form
of the discretized hybrid linear regression model in (7) as
ys(k,j) = 0T 1b(k, 7) for all (k,j) € Es, where 0 := K.

We sample y and ¥ during flows and jumps, with a sample
period of s > 0 during flows, and at jumps, at the times when
y and ¥ jump. Then, we employ our proposed estimation
algorithm #} to estimate the unknown controller gain matrix
K p. The pressure mounter machine has parameters m = 0.5,
k =25, ¢ = 15, A = 095, zmax = 3, and Kp =
[0.495,0.678] T. Our proposed estimator has parameters -y, =
0.138 and 4 = 1, with a sample period of s = 0.02 seconds.
So that Theorem 1 holds numerically, we choose v such that
the machine’s trajectories achieve a limit cycle in steady-
state. The simulation has initial conditions z(0,0) = (0,0)
and 0(0,0) = (0,0). The trajectory of the pressure mounter
state is shown in the plots® of Figure 4. The parameter
estimation error for our proposed algorithm is shown in
Figure 5. The estimation error converges exponentially to
zero in accordance with Theorem 1.

3
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Fig. 4: The projection onto ¢ of z; and zo.
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Fig. 5: The projection onto ¢ of the parameter estimation
error for HJY.
VI. CONCLUSION

In this paper, we proposed an algorithm for estimating
unknown parameters in hybrid linear regression models,
given samples of the hybrid signals. The algorithm applies
a discretized version of continuous GD during flows, and
discrete GD at jumps. It was shown that a discretized hybrid
persistence of excitation condition is sufficient to guarantee
convergence of the estimation error to zero. In future work,
we will consider identification of flow and jump maps and
sets for a similar class of discretized hybrid systems, as well
as identification of flow and jump maps for hybrid systems
with nonlinear dynamics.

6The simulation files for this example can be found here:
https://github.com/HybridSystemsLab/HybridGradientDiscrete-GainID



APPENDIX

A stability analysis of the set A for 7:12 is presented. Given
A, Ag : Ey — R™ ™, where F, := dom A. = dom Ay is
a discretized hybrid time domain, note that ’Ft-g belongs to
a class of discretized hybrid systems H, with state © =
(0s,k,j) € X =R™ x E, and dynamics

_é;'_ _és - Ac(kaj)és-

kT = kE+1 =: Fy(z) xze€Cs

Ul L J _ (14)
9;_ Hs - Ad(kvj)es

kT = k =:G4(x) w€ Dy

FAN N |

where C; := C¢ and Dy := D7. }
Remark 3: System H in (8) reduces to H, in (14) when

Aok, §) = syets(k, 5)0s(k, )" (15)
for all (k,j) € Es and
ok, 7+ Dvs(k, 5+ 1)T
Ayl f) = Yas(k, j + 1)ps(k, j+1) (16)

1+ yats(k, i+ 1) s (kG + 1)

for all (k,j) € E; such that (k,j+ 1) € E;.

To establish pre-exponential stability of A for ?%g, we for-
mulate results for 7-25. To this end, we assume the following
regarding A, and A, in Hs.

Assumption 2: Given A., Ay : Es — R™*"™ where F, :=
dom A, = dom Ay is a discretized hybrid time domain, the
following conditions hold:

(BO) Ac(kaj): Ac(kv.j)—r >0
Ad(kvj) = Ad(kvj)T >0
that (k,j + 1) € E;,

(Bl) |A.(k,j)| <1 for all (k,j) € Es and |Aq(k,j)| <1
for all (k,j) € E; such that (k,j+ 1) € E;.

Assumption 3: Given A., Aq E, — R ™ where
E; == domA. = dom Ay, there exist I',;u > 0 such
that for each (k',j'), (k*,5*) € E, satisfying I' + 1 >
k* — k' + j* — j/ > T, the following holds:

for all (k,j) € E; and
for all (k,j) € Es such

j* min{k",k; i1}

j=3" k=max{k’,k;}

i=1

Aclk, )+ Y Aalkji, ) > pl - (17)
=3’

where {k;}7_, is the sequence defining E as in Definition
Lk =K,J:= sup, E;, and K :=sup,, E;.

To prove Theorem 1, we establish the following auxiliary
result:

Theorem 2: Given A., Ay : Es — R™ "™, where E; :=
dom A, = dom Ay, suppose Assumption 2 and Assumption
3 hold. Then, the és component of each solution x to 7:[5 in
(14) satisfies

105k, )| < ke E10,(0,0) (18)
for all (k,j) € E,, with x and A given by
1 1 1
= A= 1 19
SR Vi g 2(F+1)n<1—0) =

where o := with I', p from Assumption 3.

S TS
(1++4/2(T+2)%)?
Sketch of Proof: Consider the Lyapunov function

V(z):= |z} =00, VYxeCO,uD,UG(Dy).
Since (k, j) — 9s(k,j) € R™ satisfies the hybrid persistency
of excitation condition in Assumption 2, it can be shown that

V(a(k,j)) < (1 —0) TV (2(0,0))

1—0
for all (k,j) € Es, with k and X given in (19). Hence, (18)
follows from the definition of V.

A. Proof of Theorem 1

Given the construction of A, and A, in (15) and (16),
item (BO) of Assumption 2 holds. In addition, by substituting
A, and Ay in (15) and (16) into (10), we obtain (17), and
thus Assumption 3 follows from Assumption 1. Given that
¥e € (0 %M] and v4 > 0, we have from (15) and (16) that

’s

2
|Ac(ka.])‘ S ‘%Swg(kvj)d}?(k?j)—q S 1 fOI' all (kvj) €

N ek 1)s (kug+1)
E; and |Aq(k,j)| = ‘%+ws(k,j+1)Tws(k,j+1)| < 1 for all

(k,j) € Es such that (k,j + 1) € E,. Thus, item (B1) of
Assumption 2 holds.

Since Assumption 2 and Assumption 3 hold, from the
equivalence between the data of 7:[§ in (8) and H, in (14),
with A, and A4 as in (15) and (16), Theorem 1 holds.
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