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Abstract—In this paper, semantics and characterizations of
signal temporal logic formulas for hybrid dynamical systems
are presented. Hybrid dynamical systems are given in terms
of constrained differential and difference inclusions, which,
respectively, capture the continuous evolution and the instan-
taneous events exhibited by solutions. For such systems, the
always and eventually operator of signal temporal logic are
studied and characterizations in terms of dynamical properties
of hybrid systems are presented — in particular, using invariance
and finite-time attractivity properties. Sufficient conditions that
guarantee the satisfaction of a signal temporal logic formula for
a given system through the satisfaction of an untimed formula
for an appropriately defined new system are introduced. Specif-
ically, it is shown that satisfying an (untimed) temporal logic
formula involving until operators suffices to certify always and
eventually signal temporal logic formulas for hybrid systems.

I. INTRODUCTION

Complex specifications for dynamical and control systems
can be efficiently formulated using temporal logic [1], [2].
In fact, temporal logic permits specifying properties for
solutions (or traces) that relate to reaching or avoiding a
set, both over a finite and an infinite horizon. The variant of
temporal logic proposed in [3] permits to specify properties
of continuous-time signals that are defined over ordinary
time. Such a logic, known as signal temporal logic (STL), is
suitable for the validation of statements involving logic and
temporal operators over finite time horizons.

The original formulation of STL in [3] is inspired by the
work in [4], where metric interval temporal logic (MITL)
is introduced as a “temporal language that constrains the
time difference between events only with finite, yet arbitrary,
precision.” Though originally introduced for continuous-time
signals, the satisfaction and certification of STL specifi-
cations has been considered for discrete time and hybrid
signals. Among the contributions in the literature that are
most related to the work in this paper are the results for the
certification of STL for hybrid systems modeled as hybrid
automata using reachable sets in [5], where reachset temporal
logic (RTL) is introduced. More recently, and also for hybrid
automata, a tool for the quantification of robustness in the
satisfaction of STL formulas that builds from the results
in [6], [7] using falsification and SMT solvers is proposed
in [8], while a symbolic model checking algorithm that
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is “refutationally complete” for general STL properties of
bounded signals is proposed in [9].

In this paper, a temporal logic formulation for the certi-
fication of properties of hybrid signals is proposed. With a
semantics that builds from the early work in [3], we propose
to certify a particular fragment of STL — specifically, always
and eventually STL operators — by recasting the dependency
on (hybrid) time of STL as the problem of certifying an
untimed formula for a properly defined new hybrid system.
The hybrid signals considered in this paper are solutions to
hybrid dynamical systems given in a general framework that,
as a difference to the work in [5], [8], [9], allows for solutions
that may end prematurely (e.g, deadlock), are not bounded
(e.g., exhibit finite escape times), or are Zeno — or, more
extremely, only evolve discretely. More precisely, inspired
by the ideas in [10]-[12], we formulate in Section III the
semantics of STL for a broad class of hybrid dynamical
systems modeled by differential inclusions and difference
inclusions with state constraints, as in [13].

As a difference from the STL formulations in the litera-
ture, the temporal operators proposed in this paper involve
hybrid time domains, which is a time structure that captures
continuous evolution (or flow) over ordinary time and jumps
(when the state changes instantaneously) using a discrete
counter. After formulating the semantics of this (hybrid)
signal temporal logic, in Section IV we characterize STL
formulas involving the always and eventually operators in
terms of forward invariance and finite-time convergence
properties. Specifically, we introduce sufficient conditions
that guarantee the satisfaction of STL formulas through
the satisfaction of LTL formulas involving until operators
(LTL for the same class of hybrid dynamical systems was
formulated in [14]). An important difference between our
results and those in the literature is that, in particular, relative
to [5], our results do not require the computation of the
reachable set and, relative to [8], symbolic abstractions are
not involved. Conveniently, with the approach proposed in
this paper, the sufficient conditions recently proposed in [15]
to guarantee the satisfaction of LTL formulas involving until
operators can be employed to certify STL specifications,
for which the price to pay is finding Lyapunov or barrier
functions. An example illustrates the concepts and results.

II. OUTLINE OF THE PROPOSED APPROACH

In this paper, we present characterizations of STL formulas
using the always and eventually operators for hybrid signals
generated by hybrid dynamical systems. For easy of exposi-



tion, we outline our approach for continuous-time systems'

z € F(x) reCCR" (D

which we denote as #; = (C,F), and then present the
semantics and results for the more complex case of hybrid
systems. To reason about these formulas, we consider a
new system which implicitly encodes the timing conditions.
For (1), the state of this new system consists of a pair (z,7),
where z is the state of the original system and 7 is a new state
indicating the continuous-time evolution. Then, we define
new atomic propositions over the states of the new system
based on the interval Z C R>( := [0, 00) associated with
the specification. As we show in this paper, this approach
reduces the problem of verifying a timed STL property in
the original system to an untimed one for the new system.

Proceeding this way, we outline the proposed approach
to characterize specific STL operators. Formally defined in
Section III for the case of hybrid signals, given an atomic
proposition p and a connected interval Z C R>g, the always
operator over Z is denoted Ozp. The formula f = Ozp is
satisfied for a solution ¢ to (1) at t = 0 if p(¢(¢)) = 1 for
all t € ZNdom ¢. To certify this property, we define the set
of points that satisfy p as

P:={zeC:p(x)=1} (2)
and the set Z C R as
1:= [TminaTmaxL (3)

where Tini, > 0 and Tinax > Tmin. Then, a solution ¢ to (1)
satisfies f = Ozp att = 0 if ¢(¢) € P for all t € ZNdom ¢.

To characterize the behavior of solutions ¢ to (1) while
t € Z, the proposed approach introduces the new system
mentioned above, which is denoted Hy -, as follows. The

system H¢ . has state (x,7) € R" x R>¢ and dynamics

Hpr: t€F(x), T=1 (z,7) € CxRxq. (4)

The state component 7 acts as a timer. Note that for each
solution ¢ = (¢, 7) to H s, with 7(0) = 0, the component ¢
is a solution to (1). We notice that to satisfy Ozp for each
solution ¢ to (1) at t = 0, each solution v to Hy , starting
from> R™ x {0} must remain in P X [Tinin, Tiax] for all
t € [Tmin, Tmax)- In fact, due to 7 evolving as a timer, if
each solution to Hy , starting from R” x {0} stays in P x
[Tmins Tmax] for each t € Z, then each solution to (1) stays
in P for each t € Z. Hence, the satisfaction of Ozp for
each solution to (1) at ¢ = 0 is assured by guaranteeing the
following properties for each solution to ¢ , from R™x{0}:

« Each solution ¢ stays in R™ X [0, Tpin) until reaching
P X [Twin, Tmax] at some ¢t € domt) (we encode this
property in a proposition denoted p,) — by construction
of Hy¢, -, this property holds for free if Tii, € dom .

A solution ¢ : dom¢ — R™ to (1) is given by a locally absolutely
continuous function ¢ — ¢(t) satisfying (1) as indicated in the notion of
solution to H in Section III. Note that in this case, since (1) is a continuous-
time system, dom ¢ C R> and we only use ¢ as time parameter.

2LLater, we include a set of initial states.

« Once a solution 1 reaches P X [Tiin, Tmax), ¥ stays in
P X [Tinin, Tmax) (Which we capture by proposition pj)
until reaching R™ X (Tinax, 00) (which we capture by
proposition p.) — this property requires establishing that
the component ¢ of ¥ remains in P at least for T, —
Thin seconds after reaching it.
As shown in this paper, these properties can be guaranteed
by certifying an untimed formula for #H ..

Similar observations can be made for the STL eventually
operator, which is denoted ¢zp. The formula f = $zp s
satisfied for a solution ¢ to (1) at t = 0 if p(¢(¢)) = 1 for
some t € ZNdom ¢. The next example employs this operator
and further illustrates the proposed approach.

Example 2.1 (robotic manipulation). Consider an end ef-
fector interacting with a surface located at the origin for
position. Denoting its position by x1 and its velocity by xs,
a model capturing the evolution of x := (x1,x2) under the
effect of a proportional-derivative continuous-time controller
is given by

ig € Fy(x) ®)
where Fy : R2 = R? is a set-valued map capturing the

contact force and control action, given by [16, Section 3.2.1
and Prop. 7]

€r1 = T2,

—k’p.’L‘l — kqxo ifxl <0
FQ(.’L‘) = —& — kqxo, £ € (:Tn{O, bch} ifx1 =0
716;,1’1 —bexo — kgxo l.f$1 >0

where ky, and kq are tunable gains, k. > 0 and b. > 0
are, respectively, the elastic and damping coefficients of the
compliant contact model, and con denotes the closed convex
hull operation. It can be shown that, given k. and b., there
exist choices for k, and kq such that every maximal solution
to (5) converges to zero asymptotically; see [16, Proposition
7]. Consider the atomic proposition defined as

p(x) =1 ifxy1 <0,22 >0, p(x)=0 otherwise. (6)

This proposition captures the requirement of the end effector
making contact with the surface. The associated system H -
defined in (4) has F defined as F(x) = (x2, F3(x)) for
each = € R2. Given an interval T as in (3), the formula
f = Ozp specifies the property of the end effector making
contact with the surface in finite time. To certify it, every
solution ¢ = (¢, 7) to My, with 7(0) = 0 has to satisfy
(p(t),7(t)) € P x T for some t € domp NZL (£ 0). This
finite-time convergence property to a point in P X T can
be certified by analyzing Hy . This example is revisited in
Example 4.5, where the model in (5) is augmented by the
addition of jumps capturing collisions with the surface.

ITI. SIGNAL TEMPORAL LOGIC FOR
HYBRID DYNAMICAL SYSTEMS
In this section, inspired by the ideas in [10]-[12] for
continuous-time and discrete-time systems, we define the
semantics of STL for the broad class of hybrid systems
H=(C,F,D,G) on R"™ described as follows [13]:
& € F(x) zeC 7
zt e G(x) x €D



where © € R™ is the state variable, ' : R™ = R"™ denotes the
flow map capturing the continuous dynamics on the flow set
C, and G : R® = R™ defines the jump map capturing the
discrete dynamics on the jump set D.

A solution ¢ to H is parameterized by (¢, ) € R>o x N,
where ¢ is the ordinary time variable, j is the discrete
jump variable, R>g := [0,00), and N := {0,1,...}. The
domain of ¢, denoted dom ¢ C R>g x N, is a hybrid time
domain if for every (7,J) € dom¢, the set dom¢p N
([0,7] x {0,1,...,J}) can be written as the union of sets
Ui—o([tj: tj+1] x {j}), for a time sequence 0 = to < t; <
to <...<tj41. The t;’s with j >0 define the time instants
when the state of the hybrid system jumps and j counts
the number of jumps. A solution is given by a hybrid arc.
A function ¢ : dom¢ — R™ is a hybrid arc if dom ¢ is
a hybrid time domain and if for each 7 € N, the function
t — ¢(t,j) is locally absolutely continuous on the interval
I'={t: (t,j) € dom¢}. A hybrid arc ¢ is a solution to
H=(C,F,D,Q) if ¢(0,0) € CUD; for each j €N such that
I’ has nonempty interior (the interior of I J is denoted as int
I9), ¢(t,j) € C for each t€int I7 and ¢(t,j) € F(o(t, 7))
for almost all ¢ € I7; for each (t,5) € dom¢ such that
(t,j + 1) e domg, ¢(t,5) € D and @(t, j + 1) € G(@(t, j))-
A solution to H is called maximal if it cannot be further
extended. Finally, it is said to be complete if its domain
is unbounded. Given a set X, Sy (X) denotes the set of
maximal solutions to H starting from x € X. See [13] for
more details.

For a given hybrid system H as in (7), we define operators
and specify properties of H with STL formulas. First, we
introduce atomic propositions.

Definition 3.1 (Atomic Proposition). An atomic proposi-
tion p is a statement on the system state x. A proposition
p is treated as a single-valued function of x: given x, p(x)
is either True (I or T) or False (0 or L).

In the following, the syntax of an STL formula f is defined
recursively as follows:

[u=pl=flfVglfUzg, (®)

where p is an atomic proposition, and f and g are STL
formulas. The operators —, \VV, U are the negation, disjunction,
until operator, respectively — note that we consider both
strong and weak versions of U{z, which are denoted U 7
and U,, 7, respectively. One can also define operators other
than the ones that are used for constructing the grammar.
Given the operators negation and disjunction, the opera-
tors conjunction (M), implication (=), equivalency (<) are
defined as fAg = =~(=fV g), f = g = ~fVy,
feg= (= g A(g= f), respectively. Furthermore,
the operators eventually (&) and always (O) are defined as
Ozf =TUszf and Oz f = —(Oz—f), respectively. The set
7 is a subset of R>¢ x N defining the hybrid time instances
for which the properties stated by the operators should hold,
as defined below.

An STL formula f being satisfied by a solution (¢,7) —

@(t,7) at some time (¢, 7) is denoted by
(¢, (7)) F f. 9

Since an STL formula is a sentence consisting of atomic
propositions and operators of STL, we can also consider
an atomic proposition instead of a formula. Let p and ¢ be
atomic propositions. Given a solution ¢ to H, (¢, ) € dom ¢,
and Z C R> x N, the semantics of STL are defined as®

(¢, (t,5)) F—p= (¢, (t,4)) Ep), (10a)
(0. (t.7) FpVae (o,(t5)FpV (e, (1)) F g (10b)
(0,(t.4) FpAge(o,(t7) FpA (e, (t4)) Fqg (10c)
(6. (£,9) F Ozp & 3(¢',3") €domé N ({(t,4)} +1)
(10d)
(o, (1, 5) Fp,
(¢, (t,9)) FOzp = (0, (', 5") Fp (10e)
V(t',5") edom ¢ N ({(t,4)}+1),
(¢, (t,5)) FpUszq = (10f)
3, 5" edome N ({(t,5)}+I): (4, (t',5") Fq
AV, j"yedom e N ([t, ] x{j,j+1,...,7})
(¢, (t",5")) F p,
(0. (t,5)) E pUwzqg < (0. (t',5)Fp (10g)

V(t',j') €dom¢ N ({(¢,5)}+1),
\% (¢a (ta.])) ﬁ pus,IQ~

The same semantics of STL are used for formulas. For
example, given an STL formula f, a solution ¢ satisfies
Oz f at (t,j) € dom ¢ if the formula f holds at some time
(t’,5") € dom ¢ such that (¢',5") € {(t,5)} +Z.

Note that the STL syntax reduces to that of LTL when it
is “untimed;” i.e., Z = R>¢ x N. We introduce the following
untimed strong until and weak until operators in LTL that
will be used to certify STL formulas [15].

Definition 3.2 (plUsq). Given atomic propositions p and q,
a solution ¢ to H satisfies the (untimed) formula pUsq at
(t,7) € dom ¢ if either (¢, (t,7)) E q; or
o there exists (t',j') € dom ¢ such that t' + j' > t+ j,
(¢, (t,5") F q and (¢,(t",5")) E p for all (t",j") €
dom ¢ N ([t, '] x{j,7 +1,...,5'})

Definition 3.3 (pU,,q). Given atomic propositions p and q,
a solution ¢ to H satisfies the (untimed) formula pU,,q at
(t,j) € dom ¢ if either
o (¢,(t,5")) F p for all (t',
i >t+4; or
o ¢ satisfies pUsq at (t, ).

j') € dom ¢ such that t' +

IV. CHARACTERIZATIONS OF STL FORMULAS
Ozp AND Ozp FOR HYBRID DYNAMICAL SYSTEMS

In this section, we present characterizations of STL for-
mulas Ozp and <zp for hybrid dynamical systems.

3Given sets S7 and Sa, S1 + So := {s1 +s2 : s1 € S1,52 € S2}.



A. The STL always operator

For a hybrid system H = (C, F, D,G) as in (7), instead
of using H¢, ., we define a new hybrid system denoted H, =
(C-,F;,D,,G;), with state ( = (z,7,k) € R” x R>g x N
and hybrid dynamics

E F(x)

7| € Fr(z,1,k):=| 1 (el :=CxRsoxN
i 0

E G(z)

| € Gz, k):=| T CED; :== DxRsoxN.
I k1

(an
Note that for each solution* ¢ = (¢, 7,k) to H, with
7(0,0) = 0 and k(0,0) = 0, the solution component ¢ is
a solution to H. To characterize STL formulas for H, we
introduce the set Z C R>o x N defined as’

T:= [Tmina Ellax] X {Jmina Jmin + 17 ) Jmax}’ (12)

where TminaJmin Z 07 Tmax 2 Tmin’ and Jmax 2 Jmin-

Next, we establish conditions for the certification of Ozp
and $zp for H. To this end, we extend P in (2) to

P={zeX:p(x)=1}, X:=CUDUG(D) (13)

where X collects the range of possible values of solutions.
The satisfaction of Ozp for each solution to H at (¢,5) =
(0,0) is assured by guaranteeing the following properties for
the solutions ¢ = (o, 7, k) to H, starting from X, x {0} x
{0}, where X, C R™ denotes the set of initial conditions:
« Each solution 1 to A, stays in X x {(7,k) € R>oxN:
T+ k < Tmin + Jmin} until reaching P x Z; and
o Once a solution v reaches P x Z, 1 stays in P x Z until
reaching X x{(7,k) € R>oxN: 74+k > Tnax+Jmax }-
The property in the first item holds for free by construction
of H.,, as long as there exists (¢, ) € dom ¢ such that t+j >
Tinax + Jmax- On the other hand, the property in the second
item requires showing that the component ¢ of @ remains
in P over the hybrid time window defined by Z.
Now, we define atomic propositions p,, py, and p. as
follows:

(ry = { L AT F < T o i
PalT: ) ==19 ¢ otherwise,
po(, 7, k) = { 0 otherwise, 4
()= d L T > T+ o
De\T, k) = 0 otherwise.

Next, we present a result establishing the satisfaction of
STL always from properties of solutions to H.,.

Theorem 4.1 (STL always operator). Given H =
(C,F,D,G) as in (7) and an atomic proposition p, let P
be given as in (13). Given I as in (12), let H, be as in (11)

4As solutions to H in (7) are denoted by ¢, we denote by 1) the solutions
to H- in (11).

SFor compatibility with the STL literature, we define it as a compact set,
but the unbounded set case can be treated similarly.

and atomic propositions p,, py, and p. be as in (14). Given
a set X, C R™, if the (untimed) formula f = paUs(pp Uspe)
is satisfied for each solution to H, from X, x {0} x {0}
at (t,j) = (0,0), then the formula f = Ozp is satisfied for
each solution to H from X, at (t,7) = (0,0).

Proof. Suppose that f = p, U (pp Usp.) is satisfied for each
solution to H, from X, x {0} x {0} at (¢,5) = (0,0). We
show that each solution ¢ to H from X, stays in P for
all (t,7) € ZNdome. Let p = (¢, 7,k) be a solution to
H, from ¢(0,0) € X,, 7(0,0) = 0, and k(0,0) = 0. The
solution component ¢ is a solution (denoted ¢) to H since
the systems H and H, implement the same dynamics for
the state x. Furthermore, note that the components 7 and &
of ¢ satisfy 7(¢,7) = t and k(¢,5) = j for all (¢,5) €
dom ¢. Moreover, since, by assumption, f = p, Us (po Uspe)
is satisfied for each solution to H, from X, x {0} x {0} at
(t,5) = (0,0), by definition of the U, operator, the following
hold:

o At times (t,j) at which (p,7,k) does not satisfy
pyUspe, (o, T, k) satisfies p,, which from (14) implies
that 7(¢,7) + k(t, 7) < Timin + Jmin;

o At times (t,j) at which (¢, 7,k) satisfies ppUspe,
(¢, 7, k) satisfies p, until satisfying p.; namely,
((t,7),7(t,7),k(t,5)) € P xT at least until 7(¢, j) +
k(tvj) > Tmax + Jmax~

Hence, we conclude that each solution ¢ to H with ¢(0,0) =
»(0,0) € X, is such that ¢(¢,7) = (t,7) satisfies p for all
(t,7) € Z N dom ¢, which implies that f = Ozp is satisfied
for every solution ¢ to H at (t,5) = (0,0). O

B. The STL eventually operator

To certify f = <zp, as indicated above, we redefine
atomic proposition p, and p. as follows:

- 1 if (1,k)eT
po(T, k) == { 0 otherwise,
(15)
R if € P (r,k)el
pe(x, 7, k) = { 0 otherwise.

Theorem 4.2 (STL eventually operator). Given H =
(C,F,D,QG) as in (7) and an atomic proposition p, let P
be given as in (13). Given T as in (12), let H., be as in (11),
and let the atomic proposition p, be as in (14) and the atomic
propositions py and p. be as in (15). Given a set X, C R",
if the (untimed) formula f = p, Us(py Usp.) is satisfied for
each solution to H, from X, x {0} x {0} at (¢,7) = (0,0)
then the formula f = <zp is satisfied for each solution to
H from X, at (t,j) = (0,0).

Proof. Suppose that f = p, Us(pyUsp,) is satisfied for a
solution (¢, 7, k) to H, at (¢,7) = (0,0) with ¢(0,0) € X,,
7(0,0) = 0, and k(0,0) = 0. We show that, for each solution
¢ to H, there exists (¢, j) € ZNdom ¢ such that ¢(¢, j) € P.
Let (¢,7,k) be a solution to #, such that 7(0,0) = 0,
k(0,0) = 0, and @(t,j) = &(t,j) for all (¢,5) € dom ¢.
The solution component ¢ is a solution ¢ to H since the
systems ‘H and H, implement the same dynamics for the



state x; and we note that 7(¢,j) = ¢t and k(t,j) = j for
all (t,7) € dom ¢. Since f = po Us(py Usp,) is satisfied for
each solution (¢, 7, k) to H, at (¢,7) = (0,0) with ¢(0,0) €
X, 7(0,0) = 0, and k(0,0) = 0, by definition of s,

o At times (t,j) at which (¢, 7,k) does not satisfy
pyUspe, (o, 7, k) satisfies p,, which implies that
T(taj) + k(ta]) < Tmin + Jmin;

o At times (¢,j) at which (¢, 7,k) satisfies ppUspe,
(¢, 7,k) satisfies p, until satisfying p.; namely,
(p(t,5),7(t,7),k(t,7)) € R™ x I until, for some
(t,7) € dom(p, 7. k), (o(t' ), 7(t', 1), K(E',5")) €
P x1T.

Hence, we conclude that each solution ¢ to H such that
o(t,7) = o(t,7) satisfies p for all (¢,5) € Z, which implies
that f = Ozp is satisfied at (¢, j) = (0, 0) for every solution
¢ to H with ¢(0,0) € X,. O

C. Satisfaction of the (untimed) formula f = paUs(pp Uspe)

With the sufficient conditions established in Theorem 4.1
and Theorem 4.2, we formulate syfﬁcient conditions guar-
anteeing the (untimed) formula f = p, Us(py Usp.). For
simplicity, we consider the case when X, = X. To this end,
consider the hybrid system H, as in (11) and let a closed
set () be given. Following [15], we build the auxiliary system
Hy = (Cw, Fuy Dy, Goy) with state ¢ = (z, 7, k) and data
given by

Fy(¢):=F:(C) 0
o ¢ if ( €
Gw(Q"{GT@) if (€ D\Q

V(e Cy:=C\Q
V(eD,:=D,UQ.

(16)
The intuition behind the construction of system 7, is to
characterize the behavior of the system 7. outside the set ).
Indeed, the solutions to 7. are the solutions to H,, (and vice
versa) up to when they reach (if they do) the set (). Moreover,
with a closed set P C C; U D, we build another auxiliary
system

Hs = (OSanaDS7Gs)7 (17)

where F := F, with Cy; C dom Fy, Cs := C, N(PUQ)(=
CyNP), Gs:=G, with Dy C dom Gy, and Dg := D,, N
(P UQ). Note that H, can be interpreted as the restriction
of H,, in (16) to P U Q.

Theorem 4.3. Consider H, as in (11) with F' outer semi-
continuous and locally bounded with nonempty and convex
values on C, and G having nonempty images on D. Given
atomic propositions pg, pp, and p., let the sets P,, P,
and P. be as in (13) while replacing p by pa, pp, and pe,
respectively, with x therein replaced by (x, 7, k), be such that
P, and PyUP, are disjoint. The formula f = p, Us(ps Usp.)
is satisfied for each solution to H. starting from X, :=
X % {0} x {0} at (t,3) = (0,0) if
la) P, U P,U P, is conditionally invariant® with respect to
P, for H,, with Q = P, U P,;

6Given sets K C R™ and X, C K, the set K is said to be conditionally
invariant with respect to the set X, for H if for each solution ¢ € Sz (Xo),
¢(t,j) € K for all (t,5) € dom ¢.

1b) P, U P, is eventually conditionally invariant’ with
respect to P, U P, U P, for Hs, or P, U P, is finite
time attractive® with respect to P, for H,, both with
P=P,and Q = P,UP.,.

and

2a) Py, U P. is conditionally invariant with respect to P,
for H,, with Q = P,;

2b) P, is eventually conditionally invariant with respect to
PyUP. for H, or P, is finite time attractive with respect
to P, for Hs with P = P, and Q = P..

Proof. We employ H,, and H, defined in (16) and (17),
respectively, and results in [15] to establish the claim. Note
that item la) and item 1b) imply that p,Us(py V pc) is
satisfied for each solution to H, starting from R™ x {0} x {0}
at (t,j) = (0,0). First, we apply results in [15] with P and Q
therein given by P = P, and Q = P, U P..

i) [15, Theorem 3.3] implies that p, Uy, (py V pe) is satis-
fied for each solution to H, starting from X x {0} x {0}
at (¢,7) = (0,0) if PUQ is conditionally invariant with
respect to P\Q for H,, in (16). The latter property holds
by item la) since PUQ = P,UP,UP. and P\Q = P,
by construction of P and () plus P, and P, U P, being
disjoint.

ii) Next, we apply [15, Theorem 3.6] to show the follow-
ing: (*) poUs(py V pe) is satisfied for each solution to
H, starting from X x {0} x {0} at (¢,57) = (0,0).
From item i) above, item 1) in [15, Theorem 3.6] holds.
Item 2) requires the set () to be eventually conditionally
invariant with respect to P U @ for H,. Since Q =
P,UP.and PUQ = P, U P, U P,, item 2) in [15,
Theorem 3.6] holds by virtue of the first part of item
1b). Instead, if the second part of item 1b) holds, (*)
holds by an application of [15, Theorem 3.10].

Therefore, p, Us(py V p.) is satisfied for each solution to H..
starting from X x {0} x {0} at (¢,;) = (0,0).

To conclude the proof, we show that p, Usp, is satisfied
when items 2a) and 2b) hold using [15, Theorem 3.6].
Following the steps in items i) and ii) above, but with
P =P, and Q = P, in [15, Theorem 3.6], item 2a) implies
that item 1) in [15, Theorem 3.3] holds and, in turn, when
item 2b) holds, [15, Theorem 3.6] implies that p, Usp. is
satisfied for each solution to H, starting from P, U P, at
(t,7) = (0,0). Hence, f is satisfied since solutions from X,
result in p, Us(py V pe) being true at a point in P, U P.. [

Remark 4.4. Due to the characterization we provide, any
sufficient condition that guarantees the satisfaction of the
Sformula f = paUs(pyUsp:) with the appropriate atomic
Propositions pa, Py, and p. guarantees the satisfaction of the

TGiven sets © C CUD and A C R, the set A is said to be eventually
conditionally invariant with respect to O for H if for each maximal solution
¢ € S (0), there exists (¢,j) € dom ¢ such that ¢(t’, ') € A for all
t+5 >t+3.

8Given sets © € C U D and A C R™ such that A is closed, the set
A is said to be finite-time attractive with respect to O for H if for each
solution ¢ € Sy (0), Ta(p) < oo, where T4 : Sy (O) — R>q is the
settling-time function providing (when finite) the first hybrid time at which
the solution ¢ reaches the set .A.



Sformulas Ozp and O1p. For example, the results in terms
of barrier functions or Lyapunov-like functions conditions in
[15, Section 6] can be applied to formulate sufficient condi-
tions for the satisfaction of the formula f = p, Us(py Uspe).

Example 4.5 (Robotic Manipulation (revisited)). Consider
the robotic manipulation problem in Example 2.1 where the
continuous dynamics of a controlled end effector are given
by (5). When the velocity of the end effector is large, contacts
result in impacts between the end effector and the surface.
Modeling the impacts using the jump map G and the jump
set D in (7), a controlled end effector is given by the hybrid
system with state v = (x1,x2) € R? and dynamics

. Zo :| .
T e =Fz) =zeC
H F2§f) (18)
xt = ! =:G(z) z€D

—ERIT2

where C := {z € Ly(c) : 21 <0}U{z € R? : 2y >
0,29 < .’i‘g}, D = {x € Lv(c) cxrp > 0,20 > jg},
er € [0, 1] is the restitution coefficient, To denotes the lower
velocity threshold at which contacts are treated as impacts,
and Ly (c) := {z € R? : V(z) < ¢} with x — V(x) =
%”x? + %x% and ¢ > 0. It follows from [16, Proposition 1]
that X = C U D U G(D), which is compact, is such that
every solution to (18) from X stays in X; i.e., X is forward
invariant for (18). Note that maximal solutions to this system
exhibit jumps when Zo is small enough, namely, when D is
nonempty; see the numerical results in [16, Section 5.1].
Next, consider f = Ozp with p as in (6) with T in (12)
with 0 = Thin < Tmax and Jmin = Jmax = 0, enforcing
that p should hold over the first interval of flow within the
ordinary time window [0, Tynax|, With Tiax to be defined. To
certify this formula, we apply Theorem 4.2 and Theorem 4.3,
for which we consider H. in (11). Note that P in (13) is
given by {x € X : 21 < 0,29 > 0}. Using p, in (14),
and py and p. in (15), the sets P,, Py, and P, are given by
P, = X x [0, Tmin) X {0}, Py = X X [Tmin, Tmax] x {0},
and P, = P X [Tinin, Tmax] X {0}, respectively. Item la) in
Theorem 4.3 holds since the associated system H.,, in (16)
is such that all of its maximal solutions end in Q) in finite
time; hence, P, U P, U P, is conditionally invariant with
respect to P, for M., Similarly, item 1b) holds since the
maximal solutions to Hg also terminate in Q, leading finite
time attractivity of P, U P, with respect to P,. To satisfy
items 2a) and 2b), given ¢ > 0 and defining the compact
set X as above, Ty,.x is chosen to be larger than the time
required for the position component of any solution to (6)
to reach zero with nonnegative velocity. With this choice,
and since the compact set X is forward invariant, maximal
solutions to H,, from Py, reach P,; hence, item 2a) holds.
Showing that item 2b) holds follows similarly. Hence, since
(C, F, D, Q) satisfy the assumptions in Theorem 4.3, through
an application of Theorem 4.2, the formula f = <zp is
satisfied for each solution to ‘H in (18) from X, = X at

(t7 .]) = (07 O)

V. CONCLUSION

Semantics and characterization for the certification of Ozp
and O1p are presented by exploiting invariance properties
for dynamical systems. Equivalence relationships are es-
tablished between the satisfaction of LTL formulas having
until operators and the satisfaction of STL formulas with
always and until operators. As a result, sufficient conditions
guaranteeing the satisfaction of STL formulas are proposed
by guaranteeing the satisfaction of LTL formulas involving
until operators. Future research pertains to guaranteeing
other STL operators and associated sufficient conditions, by
exploiting the ideas in Remark 4.4 and in [14, Section 6],
and to assuring robustness of STL specifications.
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