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a b s t r a c t 

We are interested in simulating gravitationally stratified atmospheric flows governed by 

the compressible Euler equations in irregular domains. In such simulations, one of the 

challenges arises when the computations are conducted on a Cartesian grid. The use of 

regular rectangular grids that intersect with the irregular boundaries leads to the gener- 

ation of arbitrarily small and highly distorted computational cells adjacent to the bound- 

aries of the domain. The appearance of such cells may affect both the stability and effi- 

ciency of the numerical method and therefore require special attention. 

In order to overcome this difficulty, we introduce a structured quadrilateral mesh, which is 

designed for the irregular domain at hand, and solve the studied atmospheric flow equa- 

tions using a second-order central-upwind scheme. In addition, the resulting numerical 

method is developed to provide a well-balanced discretization of the underlying system. 

The latter is achieved by rewriting the governing equations in terms of equilibrium vari- 

ables representing perturbations of the known background equilibrium state. The proposed 

method is tested in a number of numerical experiments, including the buoyant bubble ris- 

ing and interacting with an (zeppelin) obstacle and the Lee wave generation due to topog- 

raphy. The obtained numerical results demonstrate high resolution and robustness of the 

proposed computational approach. 

© 2022 Elsevier Inc. All rights reserved. 
1. Introduction 

Gravitationally stratified flows in a compressible medium are widely used in atmospheric models to predict weather and 

climate. These models are typically characterized as variants of the compressible Euler equations with gravity. Here, we 

focus on studying the following two-dimensional (2-D) system proposed in Klein et al. [18] : ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

ρt + (ρu ) x + (ρv ) y = 0 , 

(ρu ) t + (ρu 2 + p) x + (ρu v ) y = 0 , 

(ρv ) t + (ρv u ) x + (ρv 2 + p) y = −ρg, 

(ρθ ) t + (ρθu ) x + (ρθv ) y = 0 , 

(1.1) 
∗ Corresponding author. 

E-mail addresses: chertock@math.ncsu.edu (A. Chertock), alexander@sustech.edu.cn (A. Kurganov), Tong.wu@utsa.edu (T. Wu), jyan9@ncsu.edu (J. Yan) . 

https://doi.org/10.1016/j.amc.2022.127587 

0 096-30 03/© 2022 Elsevier Inc. All rights reserved. 

https://doi.org/10.1016/j.amc.2022.127587
http://www.ScienceDirect.com
http://www.elsevier.com/locate/amc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.amc.2022.127587&domain=pdf
mailto:chertock@math.ncsu.edu
mailto:alexander@sustech.edu.cn
mailto:Tong.wu@utsa.edu
mailto:jyan9@ncsu.edu
https://doi.org/10.1016/j.amc.2022.127587


A. Chertock, A. Kurganov, T. Wu et al. Applied Mathematics and Computation 439 (2023) 127587 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where x and y are spatial variables, t is the time, ρ(x, y, t) , u (x, y, t) , v (x, y, t) and θ (x, y, t) are the density, horizontal,

vertical velocities and potential temperature, respectively, and g is the acceleration due to gravity. The air flow is assumed 

to be an ideal gas satisfying the equation of state: 

p = (ρθ ) γ , (1.2) 

where p is the pressure and γ = 1 . 4 is the specific heat ratio. 

Time-independent (steady-state or equilibrium) solutions of the system (1.1) play an important role as many atmospheric 

phenomena are described by small perturbations of the steady states. In particular, one of the physically relevant equilibria 

is the hydrostatic one: 

u = v ≡ 0 , p x ≡ 0 , p y = −ρg. (1.3) 

Capturing small perturbations of (1.3) numerically is a challenging task since at a large scale or on a coarse grid the mag-

nitude of such perturbations may be smaller than the size of truncation errors. Obviously, the truncation errors may be 

reduced by refining the computational mesh, but this would make the numerical simulations very inefficient or even im- 

practical. Therefore, the goal is to develop well-balanced numerical methods, which are capable of preserving the underlying 

steady states exactly, that is, without any truncation errors. Several well-balanced numerical methods capable of exactly pre- 

serving hydrostatic steady-states solutions have been proposed; see, e.g., Botta et al. [3] , Chertock et al. [5] , Gaburro et al.

[7] , Gatti-Bono and Colella [9] , Ghosh and Constantinescu [10] , Grosheintz-Laval and Käppeli [15] , Käppeli and Mishra [17] ,

Klein et al. [18] , Klingenberg et al. [19] , LeVeque [26] , Wu and Xing [32] , Xing and Shu [33] , Yelash et al. [34] and references

therein. 

Another challenge one faces while numerically solving the system (1.1) and (1.2) is to capture its solutions near irregular

boundaries. Several techniques were proposed to address this problem. In the older works, the terrain-following coordinate 

approach was widely used in atmospheric simulations; see, e.g., Gal-Chen and Somerville [8] , Phillips [28] , Simmons and

Burridge [30] . It normalizes the vertical coordinate by the fluid depth to incorporate the topography of domains into the

studied models. However, this approach typically leads to significant truncation errors near boundaries, especially when the 

flow contains steep gradients; see, e.g., Janji [16] , Sundqvist [31] . Alternatively, one may use Cartesian-grid based methods, 

which are relatively simple, but suffer from the appearance of arbitrarily small and highly distorted cells adjacent to the 

boundaries of the domain. Such cut cells may lead to stability and efficiency issues for numerical methods and therefore

require special techniques; see, e.g., Berger and Helzel [1] , Brady and Livescu [4] , Gatti-Bono and Colella [9] , Gokhale et al.

[12] , Klein et al. [18] , Mittal and Iaccarino [27] and references therein. Triangular, quadrilateral and cell-vertex polygonal

meshes can also be used to conduct simulations in domains with irregular boundaries. It should be observed that unstruc- 

tured meshes with different polygons can accurately represent irregular boundaries and thus provide with a flexible tool to 

handle regions with steep topographic gradients. 

In this paper, we develop a well-balanced method for the system (1.1) and (1.2) in two steps. We first follow

[2,11,21,34] and rewrite the studied system in terms of the perturbation variables and thus ensure that the resulting method 

is well-balanced in the sense that it is capable of exactly preserving a known background equilibrium state. We then in-

troduce a structured quadrilateral mesh, which is specifically designed for every considered irregular domain. Finally, the 

rewritten system is numerically integrated using the second-order semi-discrete central-upwind scheme, which was intro- 

duced in Kurganov and Lin [20] , Kurganov et al. [22] , Kurganov and Tadmor [25] as a robust and highly accurate “black-box

solver” for general multidimensional system of hyperbolic conservation and balance laws (including the compressible Euler 

equations with gravitation [5] ) on Cartesian grids, and then extended to structured and unstructured quadrilateral meshes 

in Kurganov et al. [23,24] , Shirkhani et al. [29] . 

The paper is organized as follows. In Section 2 , we introduce the perturbation variables and use them to rewrite the

system (1.1) and (1.2) in the form suitable for the development of well-balanced methods. We also briefly discuss the im-

plementation of the second-order semi-discrete central-upwind scheme on structured quadrilateral meshes for the rewritten 

system. In Section 3 , we show how to design appropriate quadrilateral meshes on three numerical examples and demon- 

strate high resolution and robustness of the proposed numerical method. 

2. Model description and numerical method 

In this section, we follow the idea from Bispen et al. [2] , Giraldo et al. [11] , Kurganov et al. [21] , Yelash et al. [34] and

achieve the well-balanced property of proposed numerical method by rewriting the system (1.1) and (1.2) in terms of the

perturbation variables. To this end, we first denote the known background equilibrium state satisfying (1.3) by ρs (y ) and

p s (y ) with the corresponding potential temperature θs (y ) = [ p s (y )] 
1 /γ /ρs (y ) , and introduce the perturbation variables ρ′ ,

u ′ , v ′ and θ ′ so that 

ρ = ρs + ρ ′ , u = u ′ , v = v ′ , θ = θs + θ ′ , p ′ = 

[
(ρs + ρ ′ )(θs + θ ′ ) 

]γ − p s . (2.1)
2
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where p ′ is obtained from the equation of state (1.2) . We then rewrite the system (1.1) in the following form: ⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

ρ ′ 
t + (ρu ′ ) x + (ρv ′ ) y = 0 , 

(ρu ′ ) t + [ ρ(u ′ ) 2 + p ′ ] x + (ρu ′ v ′ ) = 0 , 

(ρv ′ ) t + (ρv ′ u ′ ) x + [ ρ(v ′ ) 2 + p ′ ] y = −ρ ′ g, 
(ρθ ) t + (ρθu ′ ) x + (ρθv ′ ) y = 0 . 

(2.2) 

The main advantage of the system (2.2) over its original counterpart (1.1) is that when the solution is at the steady state,

the perturbation variables vanish and this makes it easy to design a well-balanced numerical method. In this paper, we use

the second-order semi-discrete central-upwind scheme as it is described in Kurganov et al. [24] with the only exception 

that the piecewise linear reconstruction is now performed not for the conservative variables U := (ρ′ , ρu ′ , ρv ′ , ρθ ) , but for

the perturbation variables U 
′ := (ρ′ , u ′ , v ′ , θ ′ ) , which remain constant (zero) at the steady state (1.3) . 

The central-upwind scheme can be briefly described as follows. Let us assume that the computational domain is cov- 

ered with a structured quadrilateral mesh consisting of cells C j,k with vertices (x 
j− 1 

2 
, k − 1 

2 
, y 

j− 1 
2 

, k − 1 
2 
) , (x 

j− 1 
2 

, k + 1 
2 
, y 

j− 1 
2 

, k + 1 
2 
) ,

(x 
j+ 1 

2 
, k − 1 

2 
, y 

j+ 1 
2 

, k − 1 
2 
) and (x 

j+ 1 
2 

, k + 1 
2 
, y 

j+ 1 
2 

, k + 1 
2 
) , the center of mass (x j,k , y j,k ) , and area | C j,k | . We also assume that the com-

puted cell averages, 

Ū j,k (t) ≈
1 

| C j,k | 
∫ ∫ 
C j,k 

U (x, y, t) d x d y. 

are available at a certain time level t and we use them to approximate the corresponding point values of U 
′ at the center

of mass of cell C j,k : 

ρ ′ 
j,k 

= ρ̄ ′ 
j,k 

, u ′ 
j,k 

= 

¯(ρu ′ ) j,k 
ρ j,k 

, v ′ 
j,k 

= 

¯(ρv ′ ) j,k 
ρ j,k 

, θ ′ 
j,k 

= 

¯(ρθ ′ ) j,k 
ρ j,k 

− θs (y j,k ) . 

Here, ρ j,k = ρ̄ ′ 
j,k 

+ ρs (y j,k ) and the dependence of the indexed quantities on t has been omitted for the sake of brevity. 

Equipped with the point values 
{
U 

′ 
j,k 

}
, we obtain the point values of U 

′ at the cell interfaces using the piecewise linear

reconstruction consisting of the pieces 

U 
′ 
j,k + ( U 

′ 
x ) j,k (x − x j,k ) + ( U 

′ 
y ) j,k (y − y j,k ) , (x, y ) ∈ C j,k . 

The slopes ( U 
′ 
x ) j,k and ( U 

′ 
y ) j,k here are computed using a nonlinear minmod-type limiter proposed in Kurganov et al. [24] ;

see Kurganov et al. [24 , §2.2] for details. We then use (2.1) to obtain all of the point values of U at the cell interfaces

required in the computation of the central-upwind numerical fluxes H 
j± 1 

2 
,k 

and H 
j,k ± 1 

2 
across the cell interfaces between 

 j,k and its four neighboring cells; the details on the computation of these fluxes can be found in Kurganov et al. [24 , §2.2].

The solution is then evolved in time by solving the following system of ODEs: 

d 

d t 
Ū j,k = − 1 

| C j,k | 
(
H j+ 1 2 ,k − H j− 1 

2 ,k 
+ H j, k + 1 2 − H j, k − 1 

2 

)
+ S̄ j,k , (2.3) 

where S̄ j,k = (0 , 0 , − ρ̄ ′ 
j,k 
g, 0) � is the approximation of the source cell average obtained using the midpoint rule. Finally, the

system (2.3) is integrated using the three-stage third-order strong stability-preserving Runge–Kutta (SSP-RK3) method; see, 

e.g., Gottlieb et al. [13,14] . 

Remark 2.1. Notice that the gravitational source term on the right-hand side of (2.3) vanishes at the steady state (1.3) .

Therefore, approximating its cell averages using the midpoint rule leads to a well-balanced discretization. 

Remark 2.2. We emphasize that the method presented in this section can be applied not only to the studied system (1.1) ,

but to many different 2-D systems of balance laws for which the background state is known. This is due to the fact that

the central-upwind scheme can be applied as a “black-box” solver as long as the one-sided local speeds of propagation, 

which are based on the largest and smallest eigenvalues of the Jacobian of the flux in the direction perpendicular to the cell

interface, are available (this is the case for the system (2.2) studied in this paper). 

3. Numerical examples 

In this section, we demonstrate the performance of the proposed well-balanced central-upwind scheme on three numer- 

ical examples. In all of the experiments, we take the minmod-type reconstruction parameter ψ = 1 . 3 ; see Kurganov et al.

[24 , Equation (2.9)]. 

3.1. Example 1 (convergence test) 

In the first example, we experimentally check the accuracy of the proposed method. We take g = 1 . 
3 
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Fig. 3.1. Example 1: Computational domain (left) and structured quadrilateral mesh (right). 

Table 3.1 

Example 1: Experimental convergence rates in the L 1 -norm. 

N �ρN Rate �(ρu ) N Rate �(ρv ) N Rate �(ρθ ) N Rate 

100 0.9288E −4 – 0.9354E −5 – 0.1236E −4 – 0.5476E −4 –

200 0.2506E −4 1.89 0.3488E −5 1.42 0.0381E −4 1.70 0.1479E −4 1.89 

400 0.0639E −4 1.97 0.0875E −5 2.00 0.0092E −4 2.05 0.0354E −4 2.06 

800 0.0162E −4 1.98 0.0210E −5 2.06 0.0024E −4 1.96 0.0089E −4 1.99 

 

 

 

 

 

3.1.1. Problem settings 

We take a relatively simple computational domain 
{
(x, y ) : −1 ≤ x ≤ 1 , 0 . 1(x + 1) ≤ y ≤ 2 

}
; see Fig. 3.1 (left). 

The steady-state solution satisfying (1.3) and (1.2) is made of one layer atmosphere and given by 

θs (y ) = e y/ 4 , p s (y ) = 

(
1 + 

8 

7 

(
e −y/ 4 − 1 

))
7 / 2 , ρs (y ) = 

[ p s (y )] 5 / 7 

θs (y ) 
. 

We introduce a small perturbation in the potential temperature only, 

θ ′ (x, y, 0) = 0 . 01 e −100(x 2 +(y −0 . 5) 2 ) , 

while setting 

u ′ (x, y, 0) = v ′ (x, y, 0) ≡ 0 , ρ ′ (x, y, 0) ≡ 0 , p ′ (x, y, 0) ≡ 0 . 

In addition, solid wall boundary conditions are applied on all of the four sides of the computational domain. 

3.1.2. Mesh generation 

Structured quadrilateral mesh can be easily generated in this example by equally spacing left and right boundaries for 

the horizontal distance and top and bottom boundaries for vertical distances; see Fig. 3.1 (right). Then, the constructed cell

vertices are { 

x j+ 1 2 , k + 1 2 = −1 + 
2 j 
M 

, 

y j+ 1 2 , k + 1 2 = 

(
1 − k 

N 

)
0 . 1 

(
x j+ 1 2 , 1 2 + 1 

)
+ 

2 k 
N 

, 
j = 0 , . . . , M, k = 0 , . . . , N. 

3.1.3. Results 

We measure the experimental convergence rates using the numerical solutions computed with M = N for N = 50 , 100,

20 0, 40 0 and 80 0 at time t = 0 . 1 . The convergence rates are calculated using the numerical solutions on successively refined

grids. For example, let us denote by ρN the density computed using the N × N mesh. Then the estimated convergence rate 

for the density field is 

Rate ≈ log 2 

(‖ �ρN/ 2 ‖ 1 

‖ �ρN ‖ 1 

)
, �ρN := ‖ ρN − ρN/ 2 ‖ 1 . 

The corresponding convergence rates for the other fields can be obtained similarly. 

The results of the mesh refinement study are reported in Table 1 . As one can see, the proposed method achieves the

expected second order of accuracy. 

3.2. Example 2 (zeppelin test) 

In this test, we consider an example from Durran [6] , Klein et al. [18] , in which the hot air is propagating upward and

flows around a stationary suspended zeppelin. We take g = 1 . 14 . 
4 
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Fig. 3.2. Example 2: Computational domain. 

 

 

 

 

 

 

 

 

3.2.1. Problem settings 

We solve the studied atmospheric flow equations in a vertically stratified atmosphere with a stationary elliptic obstacle 

suspended in the air. The computational domain is presented in Fig. 3.2 . The boundary of the obstacle is given by 

x 2 

� 2 
0 

+ 

(y − 0 . 5) 2 

h 2 
0 

= 

1 

4 
, 

where h 0 = 0 . 333 is the height and � 0 = 0 . 466 is the length of the zeppelin. 

In order to minimize gravity wave reflection from the top of the domain, we use the highlighted upper part of the

computational domain as a sponge layer; see Fig. 3.2 . To this end, we replace the computed solution at every stage of the

SSP-RK3 method with the following relaxed values: 

Ū 

relax 

j,k = Ū 

0 

j,k + 

1 

1 + 
�t 
10 

ˆ y 

(
Ū j,k − Ū 

0 

j,k 

)
, 

where Ū 

0 
j,k are the initial data and ˆ y := max 

(
y j,k − 1 , 0 

)
is the distance from the center of mass (x j,k , y j,k ) of cell C j,k to the

non-sponge part of the computational domain. 

In this example, the steady-state solution satisfying (1.3) and (1.2) is 

θs (y ) ≡ 1 , p s (y ) = 

(
1 − 2 

7 
gy 

)
7 / 2 , ρs (y ) = 

(
1 − 2 

7 
gy 

)
5 / 2 . 

We introduce the initial perturbations in the potential temperature and pressure so that 

θ ′ (x, y, 0) = θB cos 
2 
(
π r 

2 

)
, p ′ (x, y, 0) = p s (y ) 

([ 
1 + θB cos 

2 
(
π r 

2 

)] 
7 / 5 − 1 

)
, (3.1) 

while setting 

u ′ (x, y, 0) = v ′ (x, y, 0) ≡ 0 , ρ ′ (x, y, 0) ≡ 0 . 

In (3.1) , r = min 
{

1 
R B 

√ 

(x − x B ) 2 + (y − y B ) 2 , 1 
}
, with R B = 0 . 15 , (x B , y B ) = (−0 . 23 , 0 . 2) and θB = 0 . 0333 being the radius, cen-

ter and magnitude of the initial perturbation. 

In addition, solid wall conditions are applied on the boundary of the zeppelin and on the top and the bottom of the

computational domain, while periodic boundary conditions are implemented on the horizontal domain edges. 

3.2.2. Mesh generation 

The structured quadrilateral mesh we have used in this example is presented in Fig. 3.3 . 

This mesh is constructed as follows. We first consider the mesh in the non-sponge part of the computational domain in

[ −1 , 1] × [0 , 1] and introduce the cell vertices there: { (
x j+ 1 2 , k + 1 2 , y j+ 1 2 , k + 1 2 

)} 

, j = −M, . . . , M, k = −N, . . . , N. 

Our goal is to make the generated mesh structured and avoid flat angles in the mesh cells. The difficulty is related to

the presence of the elliptic obstacle inside the domain, which we split into several simpler parts using the following four

symmetric points on the boundary of the ellipse: (
x ±M 

′ + 1 , ±N ′ + 1 , y ±M 
′ + 1 , ±N ′ + 1 

)
= (±�, ±h + 0 . 5) , 
2 2 2 2 

5 
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Fig. 3.3. Example 2: Structured quadrilateral mesh. 

 

 

 

 

 

 

where � < � 0 / 2 and h = h 0 

√ 

1 
4 − � 2 

� 2 
0 

; see Fig. 3.3 . We then consider the cell vertices located below and above the zeppelin,

that is, those vertices whose indices satisfy | j| ≤ M 
′ and | k | ≥ N 

′ ; see Fig. 3.3 . These cell vertices are given by 

x j+ 1 2 , k + 1 2 = 
j� 
M 

′ , j = −M 
′ , . . . , M 

′ , 

y j+ 1 2 , k + 1 2 = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

N+ k 
N −N ′ 

( 

1 
2 

− h 0 

√ 

1 
4 

−
x 2 
j+ 1 

2 
, k + 1 

2 

� 2 
0 

) 

, k = −N, . . . , −N 
′ , 

1 − N−k 
N −N ′ 

( 

1 
2 

− h 0 

√ 

1 
4 

−
x 2 
j+ 1 

2 
, k + 1 

2 

� 2 
0 

) 

, k = N 
′ , . . . , N. 

Similarly, the cell vertices located to the left and to the right of the zeppelin, that is, those vertices whose indices satisfy

| j| ≥ M 
′ and | k | ≤ N 

′ , are given by 

y j+ 1 2 , k + 1 2 = 
kh 
N ′ , k = −N 

′ , . . . , N 
′ , 

x j+ 1 2 , k + 1 2 = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

j+ M 
′ 

M −M 
′ − M+ j 

M −M 
′ · � 0 

√ 

1 
4 

−
y 2 
j+ 1 

2 
, k + 1 

2 

h 2 
0 

, j = −M, . . . , −M 
′ , 

j−M 
′ 

M −M 
′ + 

M− j 
M −M 

′ · � 0 

√ 

1 
4 

−
y 2 
j+ 1 

2 
, k + 1 

2 

h 2 
0 

, j = M 
′ , . . . , M;

see Fig. 3.3 . Next, the cell vertices in the four corners of the non-sponge part of the computational domain, that is, those

whose indices satisfy | j| > M 
′ and | k | > N 

′ , are 

x j+ 1 2 , k + 1 2 = 

{ 

j+ M 
′ 

M −M 
′ − � 

M+ j 
M −M 

′ , j = −M, . . . , −M 
′ − 1 , 

j−M 
′ 

M −M 
′ + � 

M− j 
M −M 

′ , j = M 
′ + 1 , . . . , M, 

y j+ 1 2 , k + 1 2 = 

{ 

N+ k 
N −N ′ 

(
1 
2 

− h 
)
, k = −N, . . . , −N 

′ − 1 , 

1 − N−k 
N −N ′ 

(
1 
2 

− h 
)
, k = N 

′ + 1 , . . . , N, 

Finally, in the sponge layer [ −1 , 1] × [1 , 1 . 5] we use a uniform mesh with 

x j+ 1 2 , k + 1 2 = x j+ 1 2 ,N+ 1 2 , j = −M, . . . , M, 

y j+ 1 2 , k + 1 2 = 1 + 
k −N 
2 N s 

, k = N + 1 , . . . , N + N s . 

In the numerical simulations reported in Section 3.2.3 , we have used � = 0 . 2 . Notice that if � is chosen to be close to

either 0 or � 0 / 2 , flat angles will appear in some of the cells, and this may cause numerical oscillations. 

3.2.3. Results 

We first compute the solution using the constructed mesh with M = 400 , N = 200 , N s = 50 , M 
′ = 81 and N 

′ = 35 until

the final time t = 33 . 55 and plot the time snapshots of the obtained potential temperature θ in Fig. 3.4 . At t = 0 , the warm
6 
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Fig. 3.5. Same as Fig. 3.4 , but the results are computed using a finer mesh. 

 

 

 

 

 

 

 

 

 

 

 

 

air circular area is located below the left part of the zeppelin. As a result of buoyancy effects, warm air rises and by the

time t = 5 . 77 the warm air “bubble” touches the lower boundary of the zeppelin and then splits into two parts, which move

along the surface of the zeppelin in the opposite directions. Later on, the left part of the “bubble” takes off the surface of

the zeppelin, keeps rising and further splits into smaller pieces, while the right-going part of the “bubble” keeps sliding 

along the zeppelin. By the final time t = 33 . 55 , the left part of the warm air spins counter-clockwise, the middle part spins

clockwise and reaches the absorption layer, and the right part has detached from the zeppelin and started to rise and spin

clockwise. 

It should be observed that while the details of the warm air evolution are not the same as in the computations reported

in Klein et al. [18] , we find that the results are qualitatively similar. In order to further validate the proposed numerical

method, we refine the mesh and compute the solution at the same sequence of times, but using M = 800 , N = 400 , N s = 100 ,

M 
′ = 161 and N 

′ = 69 . The obtained results, plotted in Fig. 3.5 , clearly demonstrate that the structure of the fine mesh

solution is the same as the coarse mesh one, while, as expected, more small features are now resolved. 

3.3. Example 3 (Lee waves) 

In the final example taken from Durran [6] , Gatti-Bono and Colella [9] , Klein et al. [18] , we test the capability of the

proposed numerical method to accurately capture the Lee waves generated when gravitationally stratified flow passes a 

mountain. We take g = 1 . 14 . 

3.3.1. Problem settings 

The computational domain is 

{ (x, y ) : −7 . 2 ≤ x ≤ 10 . 8 , h (x ) ≤ y ≤ 1 . 28 } , h (x ) = 

h 0 a 
2 

x 2 + a 2 
, (3.2) 

where a = 1 and h 0 = 0 . 06 represent the characteristic width and the height of the mountain. We set the solid wall bound-

ary conditions on the top and the bottom of the computational domain, while the periodicity is imposed on the left and

the right boundaries. 
7 
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Fig. 3.4. Example 2: Potential temperature θ at different times. 

Fig. 3.6. Example 3: Computational domain. 

 

 

A sponge layer is implemented to avoid gravity wave reflection from top of the domain and transmission across the 

horizontal boundaries. As illustrated in Fig. 3.6 , the sponge width is 3 both on the left and on the right and its height is

0.63. In the sponge layer, we follow [18] and replace the computed solution at every stage of the SSP-RK3 method with the

following relaxed values: 

Ū 

relax 

j,k = Ū 

0 

j,k + 

1 

1 + �t max 
(
0 . 83 ̂  x , 0 . 17 ̂  y 

)( Ū j,k − Ū 

0 

j,k 

)
, 
8 
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Table 3.2 

Lee-wave parameters. 

Parameter Case (a) Case (b) Case (c) 

H d 0.1571 0.3142 0.3142 

N � 0.6816 0.6816 0.3408 

N u 0.3408 0.3408 0.6816 

Fig. 3.7. Example 3: Structured quadrilateral mesh. 

 

 

 

 

where Ū 

0 
j,k are the initial data and ˆ x and ˆ y are the horizontal and vertical relative distances from the center of mass 

(x j,k , y j,k ) of cell C j,k to the non-sponge part of the computational domain, namely, ˆ x := max 
(
x j,k − 7 . 8 , −4 . 2 − x j,k , 0 

)
and

ˆ y := max 
(
y j,k − 0 . 65 , 0 

)
. 

In this example, the steady-state solution satisfying (1.3) and (1.2) consists of two layers of atmosphere (with two dif-

ferent Brunt–Väisälä frequency constants N � and N u for the lower and upper layers, respectively) separated at height H d : 

θs (y ) = 

{ 

e N 
2 
� y/g , y < H d , 

e [(N 
2 
� −N 2 u ) H d + N 2 u y ] /g , y ≥ H d , 

p s (y ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

[ 
1 − 2 g 2 

7 N 2 � 

(
1 − e −N 2 � y/g 

)] 7 / 2 
, y < H d , [ 

p 2 / 7 
H d 

− 2 g 2 

7 N 2 u 
e −N 2 � H d /g 

(
1 − e −N 2 u (y −H d ) /g 

)] 7 / 2 
, y ≥ H d , 

ρs (y ) = 
[ p s (y )] 

5 / 7 

θs (y ) 
, 

where p H d = lim 

y → H −
d 

p s (y ) = 

[ 
1 − 2 g 2 

7 N 2 
� 

(
1 − e −N 2 

� 
H d /g 

)] 7 / 2 
. Similarly to Gatti-Bono and Colella [9] , Klein et al. [18] , we will con-

sider three different combinations of parameters H d , N � and N u , given in Table 2 . 

We introduce the constant initial perturbation u ′ (x, y, 0) = 0 . 06816 in the horizontal velocity, while setting v ′ (x, y, 0) ,

ρ′ (x, y, 0) and θ ′ (x, y, 0) to be zero. 

3.3.2. Mesh generation 

The structured quadrilateral mesh we have used in this example is presented in Fig. 3.7 . 

This mesh is constructed as follows. We begin with the non-sponge part of the computational domain, which is 

[ x min , x max ] × [ h (x ) , y max ] , x min := −4 . 2 , x max := 7 . 8 , y max := 0 . 65 , 

where h (x ) is defined in (3.2) . The cell vertices in this part of the domain are given by 

x j+ 1 2 , k + 1 2 = 

(
1 − j 

M 

)
x min + 

j 
M 
x max , j = 0 , . . . , M, 

y j+ 1 2 , k + 1 2 = 

(
1 − k 

N 

)
h 
(
x j+ 1 2 , k + 1 2 

)
+ 

k 
N 
y max , k = 0 , . . . , N. 
9 
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Fig. 3.8. Example 3: Potential temperature θ at t = 293 . 4 for Cases (a)–(c). Contours are plotted at intervals of �θ = 0 . 01 . 
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Fig. 3.9. Same as Fig. 3.8 , but the results are computed using a finer mesh. 
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Within the sponge layer, we have 

x j+ 1 2 , k + 1 2 = 

{ 

x min + 
j 

M s 
L s , j = −M s , . . . , −1 , 

x max + 
j−M 

M s 
L s , j = M + 1 , . . . , M + M s , 

y j+ 1 2 , k + 1 2 = 

⎧ ⎨ 

⎩ 

y j+ 1 2 , k + 1 2 = 

(
1 − k 

N 

)
h 
(
x j+ 1 2 , k + 1 2 

)
+ 

k 
N 
y max , k = 0 , . . . , N, 

y max + 
k −N 
N s 

H s , k = N + 1 , . . . , N + N s , 

where L s = 3 and H s = 0 . 63 . 

3.3.3. Results 

We first compute the solution using the constructed mesh with M = 432 , N = 132 , M s = 9 and N s = 18 until the final time

t = 293 . 4 and plot the obtained potential temperature θ in Fig. 3.8 . In all three Cases (a), (b) and (c), the results qualitatively

match those reported in Durran [6] , Gatti-Bono and Colella [9] , Klein et al. [18] . We have also added the contour lines

corresponding to different values of θ with the difference between adjacent contours being 0.01. As one can observe, in all 

of the three cases the “density” of contours changes at about y = H d . One can also see more contours in the lower layer

of atmosphere in Cases (a) and (b), while in Case (c) the situation is opposite: there are less contours in the lower layer.

The location where the rate of potential temperature increase changes corresponds to the height of the interface between 

the two layers. It also indicates the place where turbulence occurs, which provides a useful information for practitioners 

studying the atmospheric dynamics. In addition, in Cases (a) and (b), one can observe a sharp drop of potential temperature

above the downhill part ( 0 ≤ x ≤ 2 ). In Case (b), the occurrence of vertical oscillation of the perturbed air, which can be

observed at about x ∈ [1 , 4] , indicates the phenomenon of Lee waves. At the same time, in Cases (a) and (c), no significant

change in gravity waves on the right of the mountain has been observed. 

In order to further validate the proposed numerical method, we refine the mesh and compute the solution at the same

final time, but using M = 864 , N = 264 , M s = 18 and N s = 36 . The obtained results, plotted in Fig. 3.9 , clearly demonstrate

that the structure of the fine mesh solution is the same as the coarse mesh one, which experimentally indicates the con-

vergence of the method. 
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