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ematical model is governed by a multiscale system of PDEs in which the macroscopic
fluid dynamics is described by a weakly compressible Navier-Stokes system and the mi-
croscopic cloud dynamics is modeled by a convection-diffusion-reaction system. In order
to quantify uncertainties present in the system, we derive and implement a generalized

ﬁiyc‘;vstﬁity quantification polynomial chaos stochastic Galerkin method. Unlike the first part of this work, where we
Navier-Stokes equations restricted our consideration to the partially stochastic case in which the uncertainties were
Stochastic Galerkin method only present in the cloud physics equations, we now study a fully random Navier-Stokes-
Finite-volume schemes cloud model in which we include randomness in the macroscopic fluid dynamics as well.
IMEX time discretization We conduct a series of numerical experiments illustrating the accuracy and efficiency of

Cloud dynamics the developed approach.

© 2023 The Authors. Published by Elsevier Inc. This is an open access article under the CC
BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In this paper, we continue the study of generalized polynomial chaos (gPC) stochastic Galerkin methods for multiscale
cloud dynamics with uncertainty. The gPC expansion based methods, such as stochastic Galerkin [8,10,24,26,27,31] and
stochastic collocation [20,28,30], are well-known techniques for uncertainty quantification in physical and engineering ap-
plications. In the context of fluid flow problems, the uncertainty quantification methods based on the gPC expansion were
studied in, e.g.,, [16,18,19]. In [11], the stochastic Galerkin and stochastic collocation methods were compared, and it was
shown that for simple problems the stochastic Galerkin methods can lead to more accurate approximation when using the
same number of degrees of freedom. Theoretical analysis of these methods has been conducted in particular for elliptic or
parabolic problems; see, e.g., [29,30] and the references therein. For transport-dominanted or hyperbolic problems we refer
to, e.g., [2,3,12,13,17,23] and the references therein.
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In gPC expansion based methods, the solution is approximated by a truncated generalized Fourier series in terms of
orthogonal polynomials corresponding to the underlying probability density function. The stochastic collocation method
belongs to the class of non-intrusive methods in which the original deterministic system is solved at certain collocation
points in the stochastic space, and then the gPC coefficients are obtained by using a polynomial interpolation and a suitable
numerical quadrature. The stochastic Galerkin method on the other hand is an intrusive method in which the Galerkin
projection is employed after substituting the gPC expansions into the original system. This leads to a larger coupled system
of deterministic PDEs for the gPC coefficients for which an accurate and efficient numerical method is to be developed.

The multiscale cloud model we study is governed by a coupled macro-microscopic Navier-Stokes-cloud system with
random data and parameters. In the first part of this work [8], we restricted our consideration to the partially stochastic
case in which the uncertainties were only present in the cloud physics equations keeping the fluid dynamics deterministic.
For that model, we have developed an operator splitting approach in which the deterministic macroscopic Navier-Stokes
equations were solved numerically by an implicit-explicit (IMEX) asymptotically preserving (AP) finite-volume method, while
the stochastic microscopic cloud dynamics were solved by a gPC expansion. The latter was realized by the stochastic Galerkin
method combined with an explicit finite-volume approximation for the system of gPC coefficients. The coupling of the
deterministic Navier-Stokes equations with the stochastic cloud dynamics was realized by using expected values for the
coupling source terms.

In the present work, we extend the gPC stochastic Galerkin (gPC-SG) method from [8] to a fully coupled random mul-
tiscale Navier-Stokes-cloud model where we include randomness in the macroscopic fluid dynamics as well. Consequently,
the random coupling source terms will be considered. This will result in deterministic PDEs for the gPC coefficients repre-
senting both Navier-Stokes and cloud dynamics. The gPC coefficients for the fluid dynamics will be approximated by using
an IMEX AP finite-volume method similar to the one used for the deterministic Navier-Stokes system. The gPC coefficients
for the cloud dynamics will be computed by an adaptation of the explicit finite-volume developed in [8].

The present paper is organized as follows. For the consistency of presentation, we start in §2 with a short recap of the
deterministic multiscale Navier-Stokes-cloud model and then introduce a fully random cloud model. The numerical method
for the latter is presented in §3, which is followed by numerical experiments in §4. We demonstrate the experimental
convergence of the developed method as well as its applicability for uncertainty quantification in atmospheric flows through
well-known meteorological benchmark tests of a rising warm and moist bubble and Rayleigh-Bénard convection.

2. Mathematical model

We consider a mathematical model of cloud dynamics, which is based on the weakly compressible nonhydrostatic
Navier-Stokes equations for moist atmosphere (that is, a mixture of ideal gases such as dry air and water vapor),

pe+V-(pu)=0,
(pw) +V - (pu Qu+pld— ump (Vu + (Vu)T)) — _pgeq, 21)
(00 + V- (pfu — puppVo) = S,
and evolution equations for cloud variables,
(pav)e + V- (pavtt — 114V gy) = p(—C + E),
(Pgo)e + V- (pgett — gpVac) = p(C — A — Ay), (2.2)
(0ar)e + V- (=Vgpdrea + pdrtt — uqpVar) = p(A1 + Az — E).

Here, t is the time variable, x = (x1, ..., x4) € R? is the space vector, p is the density, u = (u1, ..., uq)" is the velocity vector,
6 is the moist potential temperature, p is the pressure, g is the acceleration due to gravity, [, is the dynamic viscosity,
Wy is the thermal conductivity, and g is the cloud diffusivity. Furthermore, eq = e3 = (0,0, 1T and eg =€y, = (0,1)T
in the three-dimensional (3-D) and two-dimensional (2-D) cases, respectively. The cloud variables representing the mass
concentration of water vapor, cloud droplets and rain drops, gy, qc and q, respectively, are given by

mass of the respective phase

qe = - for ¢e{v,c,r}.
mass of dry air

The terms C and E represent phase changes between vapor and cloud water (droplets), and A; and A, represent collision
processes, which leads to the formation of large droplets and thus precipitation, and vq is the raindrop fall velocity.

Note that the systems (2.1) and (2.2) are coupled through the source term Sy, which represents the impact of phase
changes and is given by

So = Lo (C—E)
G_p%T '

For a detailed description of S¢ and the terms E, C, A1, A and vg4 see [8]. The temperature T can be obtained from the
moist adiabatic ideal gas equation
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R Rm/cp
()
Rm \po

where pg = 10° Pa is the reference pressure at the sea level. In addition to the usual definition of a potential temperature,
we use Ry = (1 —qy —qc — qr)R + gy R, with the ideal gas constant of dry air R = 287.05 J/(kgK), the gas constant of water
vapor Ry =461.51J/kgx) and the specific heat capacity of dry air for constant pressure ¢, = 1005 J/(kg-K). In order to close
the system, we determine the pressure from the equation of state that includes moisture

¥Ym

P =Po (ﬁ) with yp = Cip. (2.3)
Po Cp — Rm

We note that in the dry case, that is when q, = q. = qr =0, R;; reduces to R, Sy =0 and the moist ideal gas equation as

well as the moist equation of state becomes their dry analog.

Solving the Navier-Stokes equations (2.1) in a weakly compressible regime is known to trigger numerical instabilities due
to the multiscale effects. We follow the approach typically used in meteorological models, where the dynamics of interest
is described by a perturbation of a background state, which is the hydrostatic equilibrium. The latter expresses a balance
between the gravity and pressure forces. Denoting by p, 5, 1 =0, 8 and p6 the respective background state, the hydrostatic
equilibrium satisfies

ap _
—=—pg, Sp=0,
xg rg 0
where p is obtained from the equation of state (2.3)
—\ VYm
_ — Rp6
p=p(pd) =po (W) : (2.4)

Let p/, p/, u/, 8’ and (p0) stand for the corresponding perturbations of the equilibrium state, then
p=p+p., p=p+p, 0=0+0", u=u', po=7p0+p0 +p'6+p'0' =pd+ (p0)".
The pressure perturbation p’ is derived from (2.3) and (2.4) using the following Taylor expansion
—\ Ym
_ ap - Rp6 (p8)
p(p6) ~ p(pB) + ——— (00 — pB) =P + ymbo | —— | ==,
300 | J=ptympo (0TS

which results in
—\ Vm
Po [ Rpb
p'~ TmP0 (ZPT oy
oo Do
Thus, a numerically preferable perturbation formulation of the Navier-Stokes equations (2.1) reads
pi+ V- (pu) =0,

(pu) + V- (pu Qu+p'ld— ump (Vu + (Vu)7>) =—p'geq, (2.5)

(pO); + V- (pOu — uppVeo) = Sy.
Meteorological applications typically inherit several sources of uncertainty, such as model parameters, initial and bound-
ary conditions. Consequently, stochastic models need to be designed to analyze the influence of uncertainties on the fluid
and cloud dynamics. In general, there are different ways to represent and take into account model uncertainty. In this paper,

we choose a widely used approach in which the uncertainty is described by random fields. To this end we define an abstract
probability space (I', ¥, P) and denote by @ an event w € I'. We assume that the initial data depend on w, that is,

Pl =P ®0.0)., (pw|,_o=(pow*.0.w) and (p6)],_o=(06) (x.0,)

for the fluid variables and

(P90)|,_o = (Pqe)(%,0,®) with (e {v,c,r}

for the cloud variables. Consequently, the solution at later time will also depend on w, that is, we will have_p/(x,t,w),
(pu)(x,t, w), (p9) (x,t,w) and (pq¢)(x,t, w) for £ € {v,c,r}, while the background states p, p, # =0, & and p@ are inde-
pendent of w.

Remark 2.1. The system parameters and boundary conditions could also depend on the random variable. Some of that cases
were considered in our previous work [8], but in this paper we restrict our attention to the situation in which randomness
arises in the initial data only.
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3. Numerical scheme

In this section, we describe a gPC-SG method for the coupled system (2.5), (2.2). First, in §3.1 we derive a system for the
gPC coefficients and then in §3.2 we describe a method used to numerically solve the resulting system.

3.1. System of gPC coefficients

In the gPC-SG setup, the solution is sought in the form of polynomial expansions

M M
P'Xt )= (P OP(@), pUR.t,0) = (PWX, 1) Pi(w),
k=0 k=0

(3.1)
M —_—
(p0) (%, t, ) =Y _((p0) e (®, 1) Py ()
k=0
and
M
Par(x,t, @) =Y (DA (X, DPr(@) with €€ {v,c,r}, (32)
k=0
where &y (w), k=0, ..., M, are polynomials of degree k that are orthogonal with respect to the probability density function

(w). Assuming that I' is a compact metric event space, the corresponding Riemann integrals can be defined (see [25]),
and then the orthogonality property implies

(B, D) := / P ()P (W) (w) dw = by for 0 <k, k' <M, (3.3)
r
where 8y is the Kronecker symbol and cj are constants depending on the probability density function w. In this work, we
will focus on two distributions that are important for meteorological applications:

(1) A uniform distribution U (T") with I' =[—1, 1], which corresponds to the Legendre polynomials

LX)

D) = Y (~1)! k=21 o |k|_ |5 ifkiseven,
o (e pk=2pyR k1 ifkis odd,

which are orthogonal with respect to the probability density function @(w) = 1/2 and the constants in (3.3) are ¢, =
1

2k+1°
(2) A normal distribution N (14, 013) with I' = (—o0, o0) which corresponds to the Hermite polynomials

W — (LY
ZO’H

k 5 dk 2
d>k(a))=2_7Hk< > with Hg(w) = (—1)ke® (e™),
da)k

where puy and oy are the mean value and the standard deviation, respectively. One can show that the Hermite poly-
nomials & are orthogonal with respect to j(w) = ——— exp ( — @-u1n)?/20%)) and the constants in (3.3) are ¢; =k!.

Jorc
Applying the Galerkin projection to (2.5) and (2.2) yields for k=0, ..., M
() + V- (pw), D) =0,
<(pu)t +V. (,ou Qu+p'ld— ump (Vu + (Vu)T)) , <I>k> =(—p'geq, ). (3.4)
((00); + V - (pOU — 11, pVO) , D) = (S, D)

and
((pqv)e + V- (pqvt — 1gpVay) . Di) = (p(—C + E), @),
((Pgo)e + V- (pgcu — pgpVac) . D) = (p(C — Ay — Az), D1, (3.5)
((pqr)e + V- (0qr(—vqeq +u) — 1gpVay) . Oi) = (p(A1 + Az — E), ®y)

4
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respectively, where (-, -) is the weighted scalar product defined in (3.3). Substituting (3.1) and (3.2) into (3.4) and (3.5) and
using the orthogonality property (3.3), yield the following deterministic system consisting of (d + 2)(M + 1) equations for
the gPC coefficients of the fluid variables

(O))e + V - (Bi)y =0,
(P + V- (T + (Pld) — (@i = — (0 gea. (36)
(PO + V - (AW + ) — n (@2 = So)re
and 3(M + 1) equations for the gPC coefficients of the cloud variables
(BT + Y - (@) — @ = F
(BT + V- (D) — 1@ = B (3.7)

(B + V- (k) — q(@i = )k,
for k=0,..., M. The gPC coefficients that appear in (3.6) and (3.7) are defined as follows:

M M M
pu@u=y Mdr, p'=Y b V- (p(Va+Ew’)) =3 @dnd
k=0 k=0 k=0

M M M
0'pu=> "k, V-(pVh = @Dk So= (SohkPs,

k=0 k=0 k=0
M M M
payu= Pk V- (pVay) =) @@k, p(~C+E)=) (edr. (3.8)
k=0 k=0 k=0
M M M
pgcu ="y MP®r, V- (oVge) =Y @@k, p(C—A1—A) =) ()P
k=0 k=0 k=0
M M M
P4t — pgrveea =Y MPePk, V- (pVar) = dDiPr, p(A1+ Ay —E) =D (HBi®Pr.
k=0 k=0 k=0

It should be observed that the gPC coefficients in (3.8) arise from the nonlinear terms in (3.4)—(3.5). There exist several
approaches for computing these coefficients from the gPC coefficients of the conservative quantities given in (3.1) and (3.2).
Due to the complexity of some of the nonlinear terms present in the studied model, we employ a straightforward approach
and evaluate the coefficients (3.8) via discrete Legendre/Hermite transform (DT) and inverse discrete Legendre/Hermite
transform (IDT). To cite an example, let us consider the pq,u term, for which the gPC coefficients are obtained as follows:

~ IDT [{(5G0 )ic}io] IDT [{ (AL ]
@i} =DT A=0 —
(k)i [ IDT[{(0)chlo] + A )

where the DT and IDT operators are defined in (3.11)-(3.13) below. The rest of the gPC coefficients in (3.8) are calculated in
a similar way.

e Discrete transform (DT) The discrete transform starts with the expansion of a function f in the stochastic space

M
fE o)=Y fi® D) (3.9)

k=0
and by using the orthogonality property (3.3) ends up with the expansion coefficients

~ 1
fk(x,t)zC—k/f(x,t,w)CI)k(w)pL(w)dw for 0<k<M. (3.10)
r

We approximate the above integral using an appropriate Gaussian quadrature rule. We distinguish between the two
cases considered in this paper—Legendre and Hermite polynomials.
(1) For Legendre polynomials ¢, = ﬁ I' =[—1,1], and the expansion coefficients in (3.10) are given by

1
- 2%k +1
fk(x,t)=%/f(x,t,w)CDk(a))da) for 0<k<M.
-1

5
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Approximating the above integrals using the Gauss-Legendre quadrature leads to

~ Mo (21 M
DT I:{f(x’ t7 a)n)},{:]:()] = {fk(x’ t)}k=0 = {T ng(:)ﬁnf(x! ta a)ﬂ)qjk(wn)}kzoa (3'11)

where w, and B, are the Gauss-Legendre nodes and weights, respectively.
(2) For Hermite polynomials ¢, =k!, I' = (—o0, 00), and the expansion coefficients in (3.10) are given by

(w—MmZ
fk(x,t)_—/f(xtw)dJk(w)e 2% dw for 0<k<M.
k! ZnaH

Approximating the above integral using the Gauss-Hermite quadrature leads to

(wnqu)szwrz] M
} . (312)

Y Buf @t ) D(wn)e T
k“/ZyroH ,12(:)

where w;, and B, are the Gauss-Hermite nodes and weights, respectively.
e Inverse discrete transform (IDT)
The inverse discrete transform maps the expansion coefficients {Tk(x, t)},’:”: o to the point values f(x,t, @), 0 <n<N.
To this end we simply compute the point values of f using the gPC expansion (3.9):

DT[(f @ £, oo | = {Tex 0} = {

k=0

N
1T [ {Fex. O} ] = { £t o)}y { > T, t)cbk(wn)] : (313)
n=0

k=0

Remark 3.1. The number of quadrature points N can be chosen equal to the number of expansion coefficients M, or even
higher for a more accurate approximation, but, in general, their choice is problem dependent. In the meteorological appli-
cations studied in this paper, the choice N = M seems to be rather optimal concerning accuracy vs. computational cost.
Recently, adaptive approaches for choosing the number of expansion coefficients have been explored; see, e.g., [14]. Similar
techniques can, in principle, be applied to adaptively choosing the number of quadrature points as well.

Remark 3.2. We stress that the quadrature weights S, and the values ®y(w,), 0 <k <M, 0 <n < N, which are used in
(3.11)-(3.13), can be pre-computed for the code efficiency.

3.2. Discretization of the gPC system

In this section we describe the numerical method used to solve the resulting gPC system (3.6)-(3.7), which we rewrite
here in the vector form. To this end, we denote by

~ . T o e —_ o~ o~
W= (0. o (0)) . Wyi= (0. 0. p%) | and W= (W, Ww,)"

the solution vectors of (3.6) and (3.7), respectively. Here, the underline (-) denotes the vector of the respective coefficients.
For instance, for the solution coefficients we have

= (0. (M), plt:= ((BUDo, ... (BT - (PUDM, - - -+ (PUDM)
(08) = (((08))0. - (Pm),  Pdi = ((BGDos -- -, (PADM), L € {v,c,T).

Then, the coupled system can be written as

=—V.F(W)+D(W)+RW), (3.14)
(W) = =V - Fg(Wg) +Dq(Wq) + Re(Wy), (3.15)

where F and Fq are convective fluxes and ©, R and Dg4, Ry denote the diffusion and reaction operators of the respective
systems. They are given by

F(W) := (pu, pld+ R,6pu+7), DW):= (0, umdy, und2) ', RW):= (0, —p'gea, o), (3.16)
Fq(@):=(n1,n2,n3)T, Qq(wq)¢=/‘q(ﬂa£vg)T’ ‘J{q(v’ﬂ,)::(ﬁ,ﬁ,ﬁ)T, (3.17)
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where the respective components of the above vectors were defined in (3.8). We emphasize that (3.14)—(3.17) is a deter-
ministic system for the gPC expansion coefficients. This system has the same structure as the deterministic system studied
in [8]. Therefore, one can directly apply the finite-volume method from [8] for the spatial discretization of the system
(3.14)~(3.17) with additional DT and IDT applied for each evaluation of the nonlinear terms on the RHS of (3.14) and (3.15).
The expansions (3.8) induce that we first compute the coefficients ‘J”t 11 and 171, 172, 113 through the transforms and then
apply the appropriate approximation of the fluxes as in the deterministic case. For the diffusion terms, we apply the dis-
cretization for the respective evaluated functions obtained by IDT and then perform DT to get the diffusion coefficients d_1 ,
dz and d?, di, di.

The aup_lmg between the atmospheric flow, (3.14), (3.16), and the cloud, (3.15), (3.17), equations is numerically realized
by the second-order Strang operator splitting. We evolve the solution from time level tV to the next time level tV*1 =
tV + AtY, where AtY is the size of the Strang operator splitting time step, in three stages:

W (") = Sis <A7t"> Setoud (At") Ss (Azt ) w”), (318)

where Sys and S¢joyg denote numerical solution operators for systems (3.14), (3.16) and (3.15), (3.17), respectively.

For the Navier-Stokes part, we recall that atmospheric flows are weakly compressible and therefore we follow [5,6] and
develop an AP finite-volume method, which is capable of accurately and efficiently handling low Mach number regimes. In
particular, our AP approach is based on a suitable linear-nonlinear splitting between the stiff and nonstiff parts of the flux:

F(W)=F (W) + Fy(W) with Fp(w):= (@,@,é(ﬁu)f and Fy(w):=(0 @@
R(W) = RL(W) + Ry (W) Mmfmﬁﬁzﬁ—ﬁﬂm)aM9mm) (0,0,5)",

and the IMEX AP ARS(2,2,2) method from [4] for time discretization of Sys in (3.18). For the latter, we define the stiff linear
operator £ :=—V - F (W) 4+ %R, (W) and the nonstiff nonlinear operator N := —V - Fy(W) + D (W) + %Ry (W), which are
treated implicitly and explicitly, respectively:

(e A‘:v) _ a0+ &f” [N(W(t))+c(w(t+ Aiv))],
W(H— ar :

)= (t)+—[(1——ﬁ)/v<w<t))+ ﬂN( (c+ %) (3:19)

Vv v

T 5)]
where g =1-1/42.

In (3.19), the nonlinear terms A/ are approximated using the Rusanov numerical fluxes, and the second order of accuracy
in the nonlinear part is achieved with the help of a piecewise linear reconstruction with the minmod limiter. In the linear
terms L, the diffusion operators are discretized using second-order central differences while the reaction operators are
directly evaluated using cell averages. This spatial discretization results in a linear system of algebraic equations, which
is solved by the restarted GMRES method with ILU preconditioning from the scientific toolkit PETSc (https://petsc.
org/).

The cloud equations (3.15), (3.17) are discretized in space by a finite-volume method and in time using an explicit
third-order Runge-Kutta method with an enlarged stability region (DUMKA3 from [21,22]).

It should be observed that the microscopic cloud dynamics subsystem has a more severe stability time step restriction
than the flow dynamics one and thus the splitting time step AtY in (3.18) is selected based on the following stability
restriction for the macroscopic subsystem (3.14), (3.16):

+(1— ﬂ)ﬁ(W(t +

max(/p, d
max M, max max max(|u5(x t¥ a)n)l) AtY < 0.5,
h? n=0,...N s=1,...d xe

where, X is the set of the centers of the finite-volume cells, which for simplicity are assumed to be uniform of size h?. Then,
several small microscopic cloud time evolution steps are to be made within one macroscopic splitting time step through the
DUMKA3 method, which chooses microscopic time steps automatically based on the cloud system stiffness coming from the
diffusion and reaction terms. The moderate stiffness of the reaction terms comes from power-law-type terms with fractional
exponents between —1 and 1. These fractional exponents are present since activation and diffusion processes are modeled
explicitly, instead of applying the saturation adjustment.

Remark 3.3. The DUMKA3 method is a third-order Runge-Kutta method, which belongs to the class of explicit Chebyshev-
Runge-Kutta methods. Since these methods are explicit, they are more efficient for moderately stiff problems than most of
the implicit ODE solvers; see, e.g., [1,15,22]. Additionally, the DUMKA3 method features a low memory demand, adaptive

7
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error control, and an enlarged stability domain along the negative real axis which is still a finite real interval for absolute
stability.

4. Numerical experiments

In this section, we present experimental results for the fully random Navier-Stokes-cloud model (2.5), (2.2). In Exam-
ples 4.1 and 4.2, we investigate the experimental convergence of our numerical scheme using the well-known meteorological
benchmark describing the free convection of a smooth warm and moist air bubble; see, e.g., [7,9]. In Example 4.1, we
demonstrate the spatio-temporal convergence as well as the convergence in the stochastic space for the case in which the
initial vapor concentration g, is perturbed by 10% which is realized with a uniform distribution of the randomness. In
Example 4.2, we investigate the convergence for the same setup as in Example 4.1 but with normally distributed random-
ness. Since we use the same numerical method for the space and time discretization as in Example 4.1, in Example 4.2 we
just investigate the convergence in the stochastic space. In Examples 4.3 and 4.4, we present the results of the uncertainty
study for the Rayleigh-Bénard convection in both 2-D and 3-D. We also compare the results obtained in this work for the
fully random model with the deterministic one, in which both the Navier-Stokes equations (2.5) and the cloud equations
(2.2) are deterministic, and with the semi-random one, in which the deterministic Navier-Stokes equations are coupled with
the random cloud dynamics (this semi-random model was studied in the first part of this work in [8]). We note that the
parameters used in the numerical experiments presented below are slightly different from the one used in [8]; however,
the main qualitative features remain the same. In both Rayleigh-Bénard experiments (Examples 4.3 and 4.4), we investigate
uncertainty propagation, which is triggered by the initial data of the water vapor concentration g, which we perturbed uni-
formly. A comparison with a normally distributed initial perturbation or even perturbations of certain parameters is beyond
the scope of this work and is left for future study.

In all of the following examples we set t,; =102 and pu, = Mg = 102 in (2.5) and (2.2).

Example 4.1 (Stochastic initial data with uniformly distributed perturbation). In this experiment, we simulate free convection of a
smooth warm and moist air bubble in 2-D. Due to the shear friction with the surrounding air at the warm/cold air interface,
the warm air bubble rises and deforms axisymmetrically and gradually forms a mushroom-like shape. The bubble is placed
at (2500m, 2000 m) in a domain §2 = [0, 5000] x [0, 5000]m2. We consider a 10% perturbation of the initial water vapor
concentration. This is realized through the following initial conditions in the case of a uniformly distributed randomness for
the cloud variables:

(@v)o(x,0) =0.0056'(x,0), (4v)1(x,0)=0.1, (Gv)o(*,0), (qv)k(x,0)=0for2 <k <M,
(@)o®,0)=10"%6'(x,0), (Go)x(®*,0)=0for1<k<M,
@)o(*,0)=10"°6"(x,0), @)k(x,0)=0for1<k<M,

and for the Navier-Stokes variables:

_ ~ (5’)0(& 0)
7 ,0)=— iy L (BN tv M
0. 0) = =P S @ o, 0)

(ﬁl)k(x, 0)=0for0<k<M,
(06))0(x,0) = 5(X)(E)o(%. 0) + B(p)o(%, 0) + (@)o(x. 0)(P")o(X. 0), ((p))(%.0)=0 for1 <k <M,

(P)(x.0)=0 for1 <k <M,

where

Tr
2 cos? (7) . r:=1/(x1 — 2500)2 + (x — 2000)2 < 2000,

0, otherwise,

(@)o(x,0) = @) (x,0) =0 for 1 <k < M.

Additionally, we set § = 285K, pg = p = 10° Pa and

~ . n_ _Po & 7o
p(x)_Ré(x) (1 cpé>

with ¢y = 1005 J/kg-K), ¢y =718 J/(kg:K) and y = cp/cy. We start here with nonzero values for the cloud drops concentration
gc and the rain concentration g, to avoid values close to the machine precision since the main purpose of the test is the
convergence study. Furthermore, we apply the no-slip boundary conditions for the velocities and homogeneous Neumann
boundary conditions for the remaining variables, that is, Vo' -n=0, V(p8) -n=0 and V(pqy) -n=0, £ € {v,c,r}.

In Fig. 1, we depict the expected values of the potential temperature 6 and the cloud variables qy, qc and q,, computed
using a 160 x 160 uniform mesh at time 200s with M = L = 3. For comparison purposes, in Fig. 2 we show the potential
temperature 6 and the water vapor concentration q, computed using the deterministic Navier-Stokes-cloud model and the
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Fig. 1. Example 4.1: The expected values of the potential temperature 6, the water vapor concentration ¢y, cloud drops concentration g, and rain concen-
tration ¢, computed using the fully random model.
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Fig. 2. Example 4.1: The potential temperature 6 and the water vapor concentration q, computed using the deterministic model (first row) and the potential
temperature 6 and the expected values of the water vapor concentration q, computed using the semi-random model (second row).

potential temperature 6 and the expected values of the water vapor concentration g, computed using the semi-random
Navier-Stokes-cloud model. Note that for a better comparison, we have used the same vertical scales for presenting the
results in Figs. 1 and 2. It can be observed that the fully random results are more smeared compared to the deterministic
ones and that in the fully random experiment no additional vortices beneath the bubble have been developed and the
results are slight variations of the deterministic ones, which is to be expected. In order to investigate the appearance of the
vortices in the semi-random case (see the second row Fig. 2), we depict in Fig. 3 the semi-random results obtained for the
smaller initial water vapor perturbation taken as 1%, 5% and 7%. One can clearly see, the vortices develop gradually with
higher perturbation and that the 1% perturbation results are very close to the deterministic ones. Thus, the vortex features
of the solutions obtained with the semi-random model seem to result from the missing feedback to the dynamics of the
fluid and are not a defect of the numerical method. We also note that in the semi-random model, the energy conservation is
(slightly) violated. This might lead to the differences in the simulations, since the dynamics is then driven by the averaged
latent heat release and not by the one in the realization.
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Fig. 3. Example 4.1: The potential temperature 6 (left column) and the expected value of the water vapor concentration q, (right column) computed using
the semi-random model for 1% (first row), 5% (second row) and 7% (third row) of initial water vapor perturbations.

e SlOpE —2 s SlOpE —2
1051 1£[(pq.)"] *E[(pqv)“f]\lum) ] 1015 ¢ [E[(2)™] = El(0)¥]121(0)
[El(pg:)"] — E [(P‘Ir)mv]HL‘(m I E[(pur)™] = El(pua)*" |10
1 E[(pa-)"] = El(pg-)** ]Il (0 HEFPW) ] = El(pua)*™] 1209

I21((p0))™] — E[((00) ) Nl )

10" 102 10" 102
N N

Fig. 4. Example 4.1: Spatio-temporal L' convergence study for the expected values of the cloud variables q, qc and g, (left) and the flow variables p’, puj,
puz and (p@) (right) computed at time ¢ = 10s using the fully random model with the constant time step At = 256/100N.

In Fig. 4, we present the spatio-temporal convergence study for the expected values of the cloud and flow variables at
the time t = 10s. We compute the solutions on different N x N uniform meshes with M = L = 3. As in the deterministic
case presented in [8], one can clearly see a second-order convergence for the studied fully random model.

The stochastic convergence studies are presented in Figs. 5 and 6 for the cloud and Navier-Stokes variables, respectively,
at time t = 10s using a 160 x 160 uniform mesh. We compute the difference between the approximate solutions with
different numbers of modes M and L = M and the reference solution obtained with 20 stochastic modes and L = 19. One
can observe a spectral convergence with an approximate rate of e=%3M, One can also see that the error of the rain drops in
Fig. 6 (right) basically stays constant at some point because in this case it approaches the machine precision.

10
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Fig. 5. Example 4.1: L! convergence study for the Navier-Stokes variables p’ (left) and puq, puy and (p6)’ (right) in the stochastic space computed at time
t =10s using the fully random model with the constant time step At =0.01.
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Fig. 6. Example 4.1: L' convergence study for the cloud variables pq, and q. (left) and g, (right) in the stochastic space computed at time t = 10s using
the fully random model with the constant time step At =0.01.

Example 4.2 (Stochastic initial data with normally distributed perturbation). In this experiment, we demonstrate that the con-
vergence of the stochastic Galerkin method for the fully stochastic model does not depend on the choice of the distribution
of the randomness. For this purpose, we choose the same initial conditions as in Example 4.1, but this time with a normally
N(0,1) distributed perturbation.

In Fig. 7, we compare the solutions (the potential temperature 6 and the water vapor concentration q,) computed
using the deterministic, semi-random and fully random Navier-Stokes-cloud models. For a better comparison, we have used
the same vertical scales for presenting the results. As in the previous example, one can observe that in the fully random
experiment no additional vortices beneath the bubble have been developed and the results are slight variations of the
deterministic ones. Thus, the vortex features of the semi-random results are independent of the distributions of the initial
perturbation and caused by the missing feedback to the dynamics of the fluid.

Next, we investigate the influence of the choice of distribution for the initial perturbation. In Fig. 8, we depict the
cloud drops concentration q. computed using the fully random model with the initial normally and uniformly distributed
perturbations; the latter one was computed in Example 4.1. For a better comparison, we have used the same vertical
scales for presenting the results. Since the initial perturbation is rather small, the results look very alike. In general, both
simulations smear the boundaries of the bubble. However, the smearing with the normal distribution is not as strong
as with the uniform distribution. This effect is due to the concentrated shape of the normal distribution around the ex-
pected value; thus, the different realizations are closer to the averaged potential temperature as a feedback to the energy
equation.

The convergence studies in the stochastic space are presented in Figs. 9 and 10 for the cloud and Navier-Stokes vari-
ables, respectively, at time t = 10s using a 160 x 160 uniform mesh. We computed the difference between the approximate
solutions with different numbers of modes M and L = M and the reference solution obtained with 12 stochastic modes
and L =11. As in the case with a uniform distribution studied in Example 4.1, one can observe a spectral convergence with
an approximate rate of e~%3M_ This demonstrates that the experimental convergence rate is independent of the chosen
distribution.

11
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Fig. 7. Example 4.2: The potential temperature 6 and the water vapor concentration q, computed using the deterministic model (first row); the potential
temperature 6 and the expected values of the water vapor concentration q, computed using the semi-random model (second row); the expected values of
the potential temperature 6 and the water vapor concentration q, computed using the fully random model (third row).
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Fig. 8. Examples 4.1 and 4.2: The expected values of the cloud drops concentration q. computed using the fully random model with the initial normally
(left) and uniformly (right) distributed perturbations.
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Fig. 9. Example 4.2: L' convergence study for the Navier-Stokes variables p’ (left) and pu1, puy and (p@) (right) in the stochastic space computed at time
t = 10s using the fully random model with the constant time step At =0.01.
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Fig. 10. Example 4.2: L! convergence study for the cloud variables pq, and q. (left) and g, (right) in the stochastic space computed at time t = 10s using

the fully random model with the constant time step At =0.01.

Example 4.3 (Rayleigh-Bénard convection in 2-D). We consider a 2-D stochastic Rayleigh-Bénard convection simulated on a
domain € = [0, 5000] x [0,1000]m? that has been discretized using a uniform 160 x 160 mesh. The initial data for the

cloud variables are

(@v)o(x,0) =0.025(¢"(*,0)+, (Gv)1(*,0)=0.1(Gv)o(*,0), (qv)k(*,0)=0 for2 <k <M,
(@)o(*,0) =10"*(6"(,0))4, (@)(x,0)=0for1<k<M,
@)o(x,0)=10"°(0"(x,0)1, @)(*,00=0for1<k<M,

and for the Navier-Stokes variables are

~ 0)o(x,0
(Do, 0) = — () — 0% 0)

T X2

6x) + (0)o(x,0)’
(Pt )o(x,0) = 0.001[(0)o(*,0) + p(x)], (PUIk(*,0)=0 for1 <k <M,

(P (x,0)=0 for1 <k <M,

(PT2)o(. 0) =sin (2 ) [(0)0(x. 0) + p@)], (FU(x.0)=0 for1 <k <M,

500

((00))o(x,0) = p(X)(@)o(x, 0) + B(p)o (X, 0) + (80X, 0)(0)o(X, 0), ((pB))(x,0)=0 for1 <k <M,

where

(@)o(x,0) = 0.6sin (%) (@) 0)=0 for1 <k <M,

X2

O(x) =284 — ——,
1000

_._ Dbo - —1_
p(x)——Ré(x)ne(X)ﬂ, Te(X) =1

(4.1)

We implement the following Dirichlet boundary conditions for the potential temperature:

0(x, =0)=284K and 6(x; =1000) =283K,

as well as the periodic boundary conditions for all of the variables in the horizontal direction, no-slip boundary conditions
for the velocities at the vertical boundaries, and zero Neumann conditions for the remaining variables in the vertical direc-
tion, that is, Vo’ - n = 0. Also, these boundary conditions have to be projected onto the stochastic space. The projections
of the periodic, no-slip and Neumann boundary conditions are straightforward and lead to the same conditions as in the
deterministic case for all of the expansion coefficients of the respective variable. Here, we briefly explain how the projection
of the Dirichlet boundary conditions works. We implement the Dirichlet boundary conditions for the potential temperature
using pf(x,t, ) = (p8) (%, t, w) + pf(x). Rearranging and inserting the expansion for p’(x,t, ) and (p8)' (x,t, w) gives

() (%, t, ) — p'(x,t, W)O(X, t, ) = HR)OKX, [, ) — PO (X)

M M
= > (P0) (. 1) Py (@) — <Z(E’>k<x, t)cbk(w))e(x, f.w) = HEO@. L, ) — pO(X).

k=0 k=0
At 0 is constant at the boundary, applying the projection leads to

(@)o(xz =0,8) — (0)o(x2 =0,0)0(x2 = 0) = H(x2 = 0)0 (x2 = 0) — pB(x2 = 0),

((06) (X2 = 0,) — (D )e(x2 = 0,000(x =0) =0 for 1 <k < M,

and analogously for x, = 1000.
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Fig. 11. Example 4.3: Expected value and standard deviation of the potential temperature 6 at t = 1000s and 6000s.

In Figs. 11 and 12, we present snapshots of the expected values and standard deviations of the potential temperature
and the cloud variables at times t = 1000 and 6000s, respectively. Additionally, in Fig. 13, we plot the differences between
the expected value of the water vapor concentration and the saturation mixing ratio E[q,] — g« at the same times. As one
can observe, the potential temperature exhibits a strong vertical gradient at time t = 1000s. Similarly to the deterministic
and semi-random cases, at a later time t = 6000s, supersaturated regions are formed in the rolls where the convection takes
place leading to the overall roll-like cloud flow structure.

In Figs. 14 and 15, we present the time evolution of the mean expected value per m? as well as the mean standard
deviation per m? for the potential temperature and the cloud variables. In d space dimensions these quantities can be
computed for uniformly distributed perturbations in the following way:

hd Nd pd N hd N4 Moy N
[le(qe»] |Q|ZE[(¢]£): lmZ((%)o)u (|Q|Z(QZ)1> ol ;m l;((qe)k)i :

where N? is the number of mesh cells and ¢ € {v, ¢, r}. We compare the solutions using 0% (purely deterministic model) and
10% of perturbation of the initial data in q,, where for 10% of perturbation the solutions are added in both fully- and semi-
random Navier-Stokes-cloud models. The time evolution of the averaged quantities clearly shows the differences between
the semi-random and fully random models. In all shown cases (including the purely deterministic one), the time evolution
starts with cloud formation and thus increase of cloud water on the expense of water vapor and also latent heat release
(increase of @). However, for the semi-random model the rain formation starts earlier than in the deterministic and fully
random simulations. Since rain is falling into subsaturated regions which induces evaporation, this leads to a different time
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Fig. 12. Example 4.3: Expected value and standard deviation of the cloud drops concentration q.
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Fig. 13. Example 4.3: Difference between the expected value of the water vapor concentration and the saturation mixing ratio (E[qy] —

and 6000s.
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Fig. 14. Example 4.3: Time evolution of the expected values with their standard deviations (shaded region) for the potential temperature 6 per m? using
0% (purely deterministic case) and 10% perturbation of the initial data in q,, where the latter was simulated using both fully- and semi-random models.
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Fig. 15. Example 4.3: Time evolution of the expected values with their standard deviations for the cloud variables per m? (shaded region, left column) and
standard deviation (right column) using 0% (purely deterministic case) and 10% perturbation of the initial data in q,, where the latter was simulated using

both fully- and semi-random models.
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evolution in all variables. Generally, we observe a much stronger cooling effect of the system due to evaporation of rain in
the semi-random model than in the other simulations. This is probably due to the use of the expected values of the terms
for phase changes in the energy equation. Although the general qualitative behavior in the time evolution of the expected
values is quite similar, the absolute values differ quite substantially. The same is true for the standard deviations of the
cloud variables q, qc and g, as shown in the right column of Fig. 15; the variation in the water variables (and also in 9) is
much larger for the fully random model than for the semi-random one. This is also reasonable, since the fully random model
can capture the correct feedback of the latent heat release in the phase changes for the “different realizations”, whereas the
semi-random model only feeds back the averaged potential temperature, leading to a smaller variability. Some examples of
the expected values and the related standard deviations for 0, q. and the super/subsaturation (in terms of E[q,] — q.) are
shown in Figs. 11-13.

Example 4.4 (Rayleigh-Bénard convection in 3-D). In the final example, we consider a 3-D stochastic Rayleigh-Bénard convec-
tion. The initial data for the cloud variables are

(@v)o(x,0) =0.025(0"(%,0))+, (@v)1(*,0) =v(G@v)o(*,0), (@u)k(*,0)=0for2=<k=<M,
(@)o(*,0) =107*(6'(x,0))4, (@) (x,0)=0 for1 <k <M,
@)o(*,00=10"°(6"(x,0))+, (G)k(*,0)=0for1<k<M,

with v =0, 0.1, 0.2 or 0.5, which correspond to 0% (pure deterministic case), 10%, 20% or 50% perturbation of the initial
water vapor concentration. For the Navier-Stokes variables we take purely deterministic initial data, which in terms of their
expansion coefficients read as

__@nw0 (PT1)o(%, 0) = 0.001[(0)o (%, 0) + S(X)],
6(x) + (0")0(x,0)
TTX3

(PU2)o(x. 0) = 0.001[(2)o(x. 0) + A(®)].  (FUo(x.0) =sin (555 ) [(Pox. 0) +A()].

((06))0(x, 0) = 5(X)(@)o(%,0) + G(p)o(%, 0) + (6))o(X, 0)(P")o(x, 0),
(D), 0) = (BT (X, 0) = (P2 (X, 0) = (5U3) (X, 0) = ((pB) ) (%, 0) =0 for 1 <k < M,

where

(P)o(x,0) = —p(x)

& — 0.6si %)

@)o(x,0) = 0.6sin ( w50 )
and 4(x) and p(x) are chosen as in (4.1). The solution is computed in the domain € = [0, 5000] x [0, 5000] x [0, 1000] m3
which is discretized using a uniform 50 x 50 x 50 mesh.

In Figs. 16-18, we present the influence of the 10%, 20% and 50% initial water vapor perturbation on the expected values
of the potential temperature, cloud droplets and rain drops concentration at times t = 1000s and 6000s. The influence on
the supersaturated and subsaturated regions is highlighted as a 2-D slice along x; = 3000 in Fig. 19, where we depict the
difference between the expected water vapor concentration and the saturation mixing ratio. For a better comparison, we
have used the same vertical scales in all of the plots. Here, one can clearly observe a different behavior compared with
the semi-random case. The vertical gradient of the potential temperature increases as the size of the initial perturbations
increases (see Fig. 16), while the pattern of the developed convection cells is similar for different perturbations. The latent
heat release increases the vertical motions in the convective cells, which leads to additional feedback, such as stronger and
more cloud formation (see Fig. 17), which in turn leads to the formation of a much larger amount of rain water, especially
at a later time t = 6000s (see Fig. 18). At the time t = 1000s one can see that the roll-like structure of the clouds in the
deterministic case (that is, with 0% perturbation) again end up in a more cell-like structure in the initially perturbed cases.

In Figs. 20 and 21, we show the time evolution of the mean expected value per m3 as well as the mean standard
deviation per m? for the potential temperature and cloud variables in the cases with 0% (purely deterministic), 10%, 20%
and 50% perturbation of the initial water vapor concentration. For increasing perturbations, the spread is increased, mostly
for the water vapor concentration q, and the rain concentration q,. The averaged quantities are dominated by the positive
perturbations, leading to (i) earlier cloud formation, (ii) thicker clouds due to more available water vapor, and (iii) enhanced
rain formation. These three features can be clearly seen in the case of the largest initial perturbation (50%), where a large
spread in water vapor concentration is accompanied by a strong increase in cloud water and an earlier onset of strong
precipitation. Due to the strong rain formation the cloud concentration decreases when the perturbation size increases and
also the amount of supersaturated regions is much smaller as can be observed in Fig. 19 which leads to less new formation
of clouds. We would also like to note that the spread is only given by the standard deviation, whereas the actual minima
(for instance, almost no cloud formation) cannot be seen directly, although these scenarios are possible. Overall, one can see
that the time evolution for the deterministic simulation as well as for perturbations with 10% and 20% behave quite similarly
and the averaged quantities follow closely the same evolution, although the standard deviations increase quite substantially.
However, for larger perturbations (50%), the time evolution of the expected values of q. and g, is strongly disturbed and
shows large deviations from the other simulations. This can also be seen in the 3-D panels at the later time t = 6000s.
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Fig. 16. Example 4.4: Expected value of the potential temperature 6 at times t = 1000s and 6000s with 0%, 10%, 20% and 50% perturbations of the initial

water vapor concentration.
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Fig. 17. Example 4.4: Expected value of the cloud drops concentration q. at times ¢t = 1000s and 6000s with 0%, 10%, 20% and 50% perturbations of the
initial water vapor concentration.
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Fig. 18. Example 4.4: Expected value of the rain concentration g, at times t = 1000s and 6000s with 0%, 10%, 20% and 50% perturbations of the initial water

-' 0.0
vapor concentration.
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Fig. 19. Example 4.4: Slices of the difference between the water vapor and the saturation mixing ratio (E[qy] — g.) along x; = 3000 at time t = 6000s with
0%, 10%, 20% and 50% perturbations of the initial water vapor concentration.
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Fig. 20. Example 4.4: Time evolution of the expected values with their standard deviations for the potential temperature 6 per m> (shaded region, left
column) and standard deviations (right column) obtained using 0%, 10%, 20% and 50% perturbations of the initial data in gqy.
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Fig. 21. Example 4.4: Time evolution of the expected values with their standard deviations for the cloud variables per m? (shaded region, left column) and
standard deviations (right column) obtained using 0%, 10%, 20% and 50% perturbations of the initial data in qy.

5. Conclusion

This paper is a continuation of our previous study on uncertainty propagation in atmospheric flows containing phase
changes. In particular, we consider warm cloud dynamics of weakly compressible fluids. This model consists of a multiscale
system of PDEs in which the macroscopic dynamics of the fluid is described by a weakly compressible Navier-Stokes system
and the microscopic cloud dynamics is described by a system of convection-diffusion-reaction equations. We have extended
the gPC-SG method from [8], where we considered a semi-random model with the deterministic macroscopic dynamics of
the fluid coupled with the random microscopic cloud dynamics, to the case of a fully random multiscale system. To this end,
we have first derived a system for the gPC coefficients and then presented a method we have used to numerically solve the
resulting system. The latter is an extension of the numerical method developed in [8] and approximates the gPC coefficients
for the dynamics of the fluid by an IMEX AP finite-volume method and the gPC coefficients for the cloud dynamics by an
explicit finite-volume method with an enlarged stability region.

The aim of this work is to demonstrate the applicability, accuracy and efficiency of the gPC-SG method for atmospheric
flows. Comprehensive studies of uncertainty propagation in these models considering different perturbation scenarios are
left for a future work. Additionally, we will investigate the accuracy and performance of different uncertainty quantifica-
tion methods, for instance, stochastic Galerkin, stochastic collocation and Monte Carlo method, in a review paper. Here, we
have focused on numerical convergence and benchmark experiments as well as comparison with the results of the pre-
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vious semi-random model presented in [8]. We have demonstrated that the gPC-SG method for the fully random model
preserves the second-order spatial experimental convergence rate when the time increments are chosen according to the
time step restriction and additionally exhibited an experimental exponential convergence rate in the stochastic space. This
experimental convergence rate has been observed for both perturbation scenarios: uniform and normal distribution of the
initial data perturbation. Additionally, we have studied the numerical solutions of the fully random cloud model for both the
2-D and 3-D Rayleigh-Bénard convection. By illustrating the behavior of clouds in different perturbed scenarios, we have
demonstrated that perturbations of the initial conditions of cloud variables can crucially change the time evolution. The
results have also exhibited a clear difference of the solutions of the semi- and fully random models in both the 2-D and
3-D Rayleigh-Bénard convection, which indicates that initial perturbations of cloud variables propagate to the Navier-Stokes
equations and have a significant effect on the fluid variables. Our numerical study clearly demonstrates the applicability of
the stochastic Galerkin method for the uncertainty quantification in complex atmospheric models and paves the path for
more extensive practically relevant numerical studies.

We note that the presented method is not in general positivity preserving. As in many other numerical atmospheric
and weather prediction models, the positivity of relevant quantities in our method is achieved by truncation at zero. It
is, however, desirable to develop a provably positivity preserving extension of the proposed numerical method, which is
essential not only for avoiding nonphysical values of the computed solution but also for ensuring the stability of the entire
method. We leave this study for future work.
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