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This paper is a continuation of the work presented in Chertock et al. (2019) [8]. We study 
uncertainty propagation in warm cloud dynamics of weakly compressible fluids. The math-
ematical model is governed by a multiscale system of PDEs in which the macroscopic 
fluid dynamics is described by a weakly compressible Navier-Stokes system and the mi-
croscopic cloud dynamics is modeled by a convection-diffusion-reaction system. In order 
to quantify uncertainties present in the system, we derive and implement a generalized 
polynomial chaos stochastic Galerkin method. Unlike the first part of this work, where we 
restricted our consideration to the partially stochastic case in which the uncertainties were 
only present in the cloud physics equations, we now study a fully random Navier-Stokes-
cloud model in which we include randomness in the macroscopic fluid dynamics as well. 
We conduct a series of numerical experiments illustrating the accuracy and efficiency of 
the developed approach.
© 2023 The Authors. Published by Elsevier Inc. This is an open access article under the CC 

BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

In this paper, we continue the study of generalized polynomial chaos (gPC) stochastic Galerkin methods for multiscale 
cloud dynamics with uncertainty. The gPC expansion based methods, such as stochastic Galerkin [8,10,24,26,27,31] and 
stochastic collocation [20,28,30], are well-known techniques for uncertainty quantification in physical and engineering ap-
plications. In the context of fluid flow problems, the uncertainty quantification methods based on the gPC expansion were 
studied in, e.g., [16,18,19]. In [11], the stochastic Galerkin and stochastic collocation methods were compared, and it was 
shown that for simple problems the stochastic Galerkin methods can lead to more accurate approximation when using the 
same number of degrees of freedom. Theoretical analysis of these methods has been conducted in particular for elliptic or 
parabolic problems; see, e.g., [29,30] and the references therein. For transport-dominanted or hyperbolic problems we refer 
to, e.g., [2,3,12,13,17,23] and the references therein.
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In gPC expansion based methods, the solution is approximated by a truncated generalized Fourier series in terms of 
orthogonal polynomials corresponding to the underlying probability density function. The stochastic collocation method 
belongs to the class of non-intrusive methods in which the original deterministic system is solved at certain collocation 
points in the stochastic space, and then the gPC coefficients are obtained by using a polynomial interpolation and a suitable 
numerical quadrature. The stochastic Galerkin method on the other hand is an intrusive method in which the Galerkin 
projection is employed after substituting the gPC expansions into the original system. This leads to a larger coupled system 
of deterministic PDEs for the gPC coefficients for which an accurate and efficient numerical method is to be developed.

The multiscale cloud model we study is governed by a coupled macro-microscopic Navier-Stokes-cloud system with 
random data and parameters. In the first part of this work [8], we restricted our consideration to the partially stochastic 
case in which the uncertainties were only present in the cloud physics equations keeping the fluid dynamics deterministic. 
For that model, we have developed an operator splitting approach in which the deterministic macroscopic Navier-Stokes 
equations were solved numerically by an implicit-explicit (IMEX) asymptotically preserving (AP) finite-volume method, while 
the stochastic microscopic cloud dynamics were solved by a gPC expansion. The latter was realized by the stochastic Galerkin 
method combined with an explicit finite-volume approximation for the system of gPC coefficients. The coupling of the 
deterministic Navier-Stokes equations with the stochastic cloud dynamics was realized by using expected values for the 
coupling source terms.

In the present work, we extend the gPC stochastic Galerkin (gPC-SG) method from [8] to a fully coupled random mul-
tiscale Navier-Stokes-cloud model where we include randomness in the macroscopic fluid dynamics as well. Consequently, 
the random coupling source terms will be considered. This will result in deterministic PDEs for the gPC coefficients repre-
senting both Navier-Stokes and cloud dynamics. The gPC coefficients for the fluid dynamics will be approximated by using 
an IMEX AP finite-volume method similar to the one used for the deterministic Navier-Stokes system. The gPC coefficients 
for the cloud dynamics will be computed by an adaptation of the explicit finite-volume developed in [8].

The present paper is organized as follows. For the consistency of presentation, we start in §2 with a short recap of the 
deterministic multiscale Navier-Stokes-cloud model and then introduce a fully random cloud model. The numerical method 
for the latter is presented in §3, which is followed by numerical experiments in §4. We demonstrate the experimental 
convergence of the developed method as well as its applicability for uncertainty quantification in atmospheric flows through 
well-known meteorological benchmark tests of a rising warm and moist bubble and Rayleigh-Bénard convection.

2. Mathematical model

We consider a mathematical model of cloud dynamics, which is based on the weakly compressible nonhydrostatic 
Navier-Stokes equations for moist atmosphere (that is, a mixture of ideal gases such as dry air and water vapor),

ρt + ∇ · (ρu) = 0,

(ρu)t + ∇ ·
(
ρu ⊗ u + p Id− μmρ

(
∇u + (∇u)�

))
= −ρged,

(ρθ)t + ∇ · (ρθu − μhρ∇θ) = Sθ ,

(2.1)

and evolution equations for cloud variables,

(ρqv)t + ∇ · (ρqvu − μqρ∇qv
)= ρ(−C + E),

(ρqc)t + ∇ · (ρqcu − μqρ∇qc
)= ρ(C − A1 − A2),

(ρqr)t + ∇ · (−vqρqred + ρqru − μqρ∇qr
)= ρ(A1 + A2 − E).

(2.2)

Here, t is the time variable, x = (x1, . . . , xd) ∈Rd is the space vector, ρ is the density, u = (u1, . . . , ud)
� is the velocity vector, 

θ is the moist potential temperature, p is the pressure, g is the acceleration due to gravity, μm is the dynamic viscosity, 
μh is the thermal conductivity, and μq is the cloud diffusivity. Furthermore, ed = e3 = (0, 0, 1)� and ed = e2 = (0, 1)�
in the three-dimensional (3-D) and two-dimensional (2-D) cases, respectively. The cloud variables representing the mass 
concentration of water vapor, cloud droplets and rain drops, qv , qc and qr , respectively, are given by

q� = mass of the respective phase

mass of dry air
for � ∈ {v, c, r}.

The terms C and E represent phase changes between vapor and cloud water (droplets), and A1 and A2 represent collision 
processes, which leads to the formation of large droplets and thus precipitation, and vq is the raindrop fall velocity.

Note that the systems (2.1) and (2.2) are coupled through the source term Sθ , which represents the impact of phase 
changes and is given by

Sθ = ρ
Lθ

cpT
(C − E).

For a detailed description of Sθ and the terms E , C , A1, A2 and vq see [8]. The temperature T can be obtained from the 
moist adiabatic ideal gas equation
2
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T = R

Rm
θ

(
p

p0

)Rm/cp

,

where p0 = 105 Pa is the reference pressure at the sea level. In addition to the usual definition of a potential temperature, 
we use Rm = (1 − qv − qc − qr)R + qv Rv with the ideal gas constant of dry air R = 287.05 J/(kg·K), the gas constant of water 
vapor Rv = 461.51 J/(kg·K) and the specific heat capacity of dry air for constant pressure cp = 1005 J/(kg·K). In order to close 
the system, we determine the pressure from the equation of state that includes moisture

p = p0

(
Rρθ

p0

)γm

with γm = cp
cp − Rm

. (2.3)

We note that in the dry case, that is when qv = qc = qr = 0, Rm reduces to R , Sθ = 0 and the moist ideal gas equation as 
well as the moist equation of state becomes their dry analog.

Solving the Navier-Stokes equations (2.1) in a weakly compressible regime is known to trigger numerical instabilities due 
to the multiscale effects. We follow the approach typically used in meteorological models, where the dynamics of interest 
is described by a perturbation of a background state, which is the hydrostatic equilibrium. The latter expresses a balance 
between the gravity and pressure forces. Denoting by p̄, ρ̄ , ū = 0, θ̄ and ρθ the respective background state, the hydrostatic 
equilibrium satisfies

∂ p̄

∂xd
= −ρ̄g, Sθ = 0,

where p̄ is obtained from the equation of state (2.3)

p̄ = p(ρθ) = p0

(
Rρθ

p0

)γm

. (2.4)

Let p′ , ρ ′ , u′ , θ ′ and (ρθ)′ stand for the corresponding perturbations of the equilibrium state, then

p = p̄ + p′, ρ = ρ̄ + ρ ′, θ = θ̄ + θ ′, u = u′, ρθ = ρ̄θ̄ + ρ̄θ ′ + ρ ′θ̄ + ρ ′θ ′ = ρθ + (ρθ)′.
The pressure perturbation p′ is derived from (2.3) and (2.4) using the following Taylor expansion

p(ρθ) ≈ p(ρθ) + ∂p

∂(ρθ)

(
ρθ − ρθ

)= p̄ + γmp0

(
Rρθ

p0

)γm
(ρθ)′

ρθ
,

which results in

p′ ≈ γmp0

ρθ

(
Rρθ

p0

)γm

(ρθ)′.

Thus, a numerically preferable perturbation formulation of the Navier-Stokes equations (2.1) reads

ρ ′
t + ∇ · (ρu) = 0,

(ρu)t + ∇ ·
(
ρu ⊗ u + p′ Id− μmρ

(
∇u + (∇u)�

))
= −ρ ′ged,

(ρθ)′t + ∇ · (ρθu − μhρ∇θ) = Sθ .

(2.5)

Meteorological applications typically inherit several sources of uncertainty, such as model parameters, initial and bound-
ary conditions. Consequently, stochastic models need to be designed to analyze the influence of uncertainties on the fluid 
and cloud dynamics. In general, there are different ways to represent and take into account model uncertainty. In this paper, 
we choose a widely used approach in which the uncertainty is described by random fields. To this end we define an abstract 
probability space (�, �, P ) and denote by ω an event ω ∈ �. We assume that the initial data depend on ω, that is,

ρ ′∣∣
t=0 = ρ ′(x,0,ω), (ρu)

∣∣
t=0 = (ρu)(x,0,ω) and (ρθ)′

∣∣
t=0 = (ρθ)′(x,0,ω)

for the fluid variables and

(ρq�)
∣∣
t=0 = (ρq�)(x,0,ω) with � ∈ {v, c, r}

for the cloud variables. Consequently, the solution at later time will also depend on ω, that is, we will have ρ ′(x, t, ω), 
(ρu)(x, t, ω), (ρθ)′(x, t, ω) and (ρq�)(x, t, ω) for � ∈ {v, c, r}, while the background states p̄, ρ̄ , ū = 0, θ̄ and ρθ are inde-
pendent of ω.

Remark 2.1. The system parameters and boundary conditions could also depend on the random variable. Some of that cases 
were considered in our previous work [8], but in this paper we restrict our attention to the situation in which randomness 
arises in the initial data only.
3
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3. Numerical scheme

In this section, we describe a gPC-SG method for the coupled system (2.5), (2.2). First, in §3.1 we derive a system for the 
gPC coefficients and then in §3.2 we describe a method used to numerically solve the resulting system.

3.1. System of gPC coefficients

In the gPC-SG setup, the solution is sought in the form of polynomial expansions

ρ ′(x, t,ω) =
M∑

k=0

(ρ̂ ′)k(x, t)
k(ω), ρu(x, t,ω) =
M∑

k=0

(ρ̂u)k(x, t)
k(ω),

(ρθ)′(x, t,ω) =
M∑

k=0

(̂(ρθ)′)k(x, t)
k(ω)

(3.1)

and

ρq�(x, t,ω) =
M∑

k=0

(ρ̂q�)k(x, t)
k(ω) with � ∈ {v, c, r}, (3.2)

where 
k(ω), k = 0, . . . , M , are polynomials of degree k that are orthogonal with respect to the probability density function 
μ(ω). Assuming that � is a compact metric event space, the corresponding Riemann integrals can be defined (see [25]), 
and then the orthogonality property implies

〈
k,
k′ 〉 :=
∫
�


k(ω)
k′(ω)μ(ω)dω = ckδkk′ for 0 ≤ k,k′ ≤ M, (3.3)

where δkk′ is the Kronecker symbol and ck are constants depending on the probability density function μ. In this work, we 
will focus on two distributions that are important for meteorological applications:

(1) A uniform distribution U(�) with � = [−1, 1], which corresponds to the Legendre polynomials


k(ω) =
� k
2 
∑

j=0

(−1) j
(2k − 2 j)!

(k − j)!(k − 2 j)! j!2k ωk−2 j,

⌊
k

2

⌋
=
{

k
2 , if k is even,
k−1
2 , if k is odd,

which are orthogonal with respect to the probability density function μ(ω) = 1/2 and the constants in (3.3) are ck =
1

2k+1 .

(2) A normal distribution N (μH , σ 2
H ) with � = (−∞, ∞) which corresponds to the Hermite polynomials


k(ω) = 2− k
2 Hk

(
ω − μH√

2σH

)
with Hk(ω) = (−1)keω2 dk

dωk

(
e−ω2)

,

where μH and σH are the mean value and the standard deviation, respectively. One can show that the Hermite poly-
nomials 
k are orthogonal with respect to μ(ω) = 1√

2πσ 2
H

exp
(− (ω−μH )2/(2σ 2

H )
)
and the constants in (3.3) are ck = k!.

Applying the Galerkin projection to (2.5) and (2.2) yields for k = 0, . . . , M〈
(ρ ′)t + ∇ · (ρu) ,
k

〉= 0,〈
(ρu)t + ∇ ·

(
ρu ⊗ u + p′Id− μmρ

(
∇u + (∇u)T

))
,
k

〉
= 〈−ρ ′ged,
k

〉
,〈

(ρθ)′t + ∇ · (ρθu − μhρ∇θ) ,
k
〉= 〈Sθ ,
k〉

(3.4)

and 〈
(ρqv)t + ∇ · (ρqvu − μqρ∇qv

)
,
k

〉= 〈ρ(−C + E),
k〉 ,〈
(ρqc)t + ∇ · (ρqcu − μqρ∇qc

)
,
k

〉= 〈ρ(C − A1 − A2),
k〉 ,〈
(ρq ) + ∇ · (ρq (−v e + u) − μ ρ∇q

)
,


〉= 〈ρ(A + A − E),
 〉 ,

(3.5)
r t r q d q r k 1 2 k

4
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respectively, where 〈·, ·〉 is the weighted scalar product defined in (3.3). Substituting (3.1) and (3.2) into (3.4) and (3.5) and 
using the orthogonality property (3.3), yield the following deterministic system consisting of (d + 2)(M + 1) equations for 
the gPC coefficients of the fluid variables

((ρ̂ ′)k)t + ∇ · (ρ̂u)k = 0,

((ρ̂u)k)t + ∇ · (N̂k + (p̂′)kId
)− μm(d̂1)k = −(ρ̂ ′)k ged,

((̂(ρθ)′)k)t + ∇ · (θ̄ (ρ̂u)k + η̂k

)− μh(d̂2)k = ( Ŝθ )k,

(3.6)

and 3(M + 1) equations for the gPC coefficients of the cloud variables

((ρ̂qv)k)t + ∇ · ((η̂q
1)k) − μq(d̂

q
1)k = (r̂1)k,

((ρ̂qc)k)t + ∇ · ((η̂q
2)k) − μq(d̂

q
2)k = (r̂2)k,

((ρ̂qr)k)t + ∇ · ((η̂q
3)k) − μq(d̂

q
3)k = (r̂3)k,

(3.7)

for k = 0, . . . , M . The gPC coefficients that appear in (3.6) and (3.7) are defined as follows:

ρu ⊗ u =
M∑

k=0

N̂k
k, p′ =
M∑

k=0

(p̂′)k
k, ∇ ·
(
ρ
(
∇u + (∇u)T

))
=

M∑
k=0

(d̂1)k
k,

θ ′ρu =
M∑

k=0

η̂k
k, ∇ · (ρ∇θ) =
M∑

k=0

(d̂2)k
k, Sθ =
M∑

k=0

( Ŝθ )k
k,

ρqvu =
M∑

k=0

(η̂q
1)k
k, ∇ · (ρ∇qv) =

M∑
k=0

(d̂q1)k
k, ρ (−C + E) =
M∑

k=0

(r̂1)k
k,

ρqcu =
M∑

k=0

(η̂q
2)k
k, ∇ · (ρ∇qc) =

M∑
k=0

(d̂q2)k
k, ρ (C − A1 − A2) =
M∑

k=0

(r̂2)k
k,

ρqru − ρqr vqed =
M∑

k=0

(η̂q
3)k
k, ∇ · (ρ∇qr) =

M∑
k=0

(d̂q3)k
k, ρ (A1 + A2 − E) =
M∑

k=0

(r̂3)k
k.

(3.8)

It should be observed that the gPC coefficients in (3.8) arise from the nonlinear terms in (3.4)–(3.5). There exist several 
approaches for computing these coefficients from the gPC coefficients of the conservative quantities given in (3.1) and (3.2). 
Due to the complexity of some of the nonlinear terms present in the studied model, we employ a straightforward approach 
and evaluate the coefficients (3.8) via discrete Legendre/Hermite transform (DT) and inverse discrete Legendre/Hermite 
transform (IDT). To cite an example, let us consider the ρqvu term, for which the gPC coefficients are obtained as follows:{

(η̂q
1)k

}M
k=0 = DT

[
IDT

[{(ρ̂qv)k}Mk=0

]
IDT

[{(ρ̂u)k}Mk=0

]
IDT

[{(ρ̂ ′)k}Mk=0

]+ ρ̄(x)

]
,

where the DT and IDT operators are defined in (3.11)–(3.13) below. The rest of the gPC coefficients in (3.8) are calculated in 
a similar way.

• Discrete transform (DT) The discrete transform starts with the expansion of a function f in the stochastic space

f (x, t,ω) =
M∑

k=0

f̂k(x, t)
k(ω) (3.9)

and by using the orthogonality property (3.3) ends up with the expansion coefficients

f̂k(x, t) = 1

ck

∫
�

f (x, t,ω)
k(ω)μ(ω)dω for 0 ≤ k ≤ M. (3.10)

We approximate the above integral using an appropriate Gaussian quadrature rule. We distinguish between the two 
cases considered in this paper—Legendre and Hermite polynomials.
(1) For Legendre polynomials ck = 1

2k+1 , � = [−1, 1], and the expansion coefficients in (3.10) are given by

f̂k(x, t) = 2k + 1

2

1∫
f (x, t,ω)
k(ω)dω for 0 ≤ k ≤ M.
−1

5
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Approximating the above integrals using the Gauss-Legendre quadrature leads to

DT
[
{ f (x, t,ωn)}Nn=0

]
= {

f̂k(x, t)
}M
k=0 =

{
2k + 1

2

N∑
n=0

βn f (x, t,ωn)
k(ωn)

}M

k=0
, (3.11)

where ωn and βn are the Gauss-Legendre nodes and weights, respectively.
(2) For Hermite polynomials ck = k!, � = (−∞, ∞), and the expansion coefficients in (3.10) are given by

f̂k(x, t) = 1

k!
√
2πσ 2

H

∞∫
−∞

f (x, t,ω)
k(ω)e
− (ω−μH )2

2σ2
H dω for 0 ≤ k ≤ M.

Approximating the above integral using the Gauss-Hermite quadrature leads to

DT
[
{ f (x, t,ωn)}Nn=0

]
= {

f̂k(x, t)
}M
k=0 =

{
1

k!
√
2πσ 2

H

N∑
n=0

βn f (x, t,ωn)
k(ωn)e
− (ωn−μH )2

2σ2
H

+ω2
n
}M

k=0
, (3.12)

where ωn and βn are the Gauss-Hermite nodes and weights, respectively.
• Inverse discrete transform (IDT)

The inverse discrete transform maps the expansion coefficients { f̂k(x, t)}Mk=0 to the point values f (x, t, ωn), 0 ≤ n ≤ N . 
To this end we simply compute the point values of f using the gPC expansion (3.9):

IDT
[{

f̂k(x, t)
}M
k=0

]
= {

f (x, t,ωn)
}N
n=0 =

{
M∑

k=0

f̂k(x, t)
k(ωn)

}N

n=0

. (3.13)

Remark 3.1. The number of quadrature points N can be chosen equal to the number of expansion coefficients M , or even 
higher for a more accurate approximation, but, in general, their choice is problem dependent. In the meteorological appli-
cations studied in this paper, the choice N = M seems to be rather optimal concerning accuracy vs. computational cost. 
Recently, adaptive approaches for choosing the number of expansion coefficients have been explored; see, e.g., [14]. Similar 
techniques can, in principle, be applied to adaptively choosing the number of quadrature points as well.

Remark 3.2. We stress that the quadrature weights βn and the values 
k(ωn), 0 ≤ k ≤ M , 0 ≤ n ≤ N , which are used in 
(3.11)–(3.13), can be pre-computed for the code efficiency.

3.2. Discretization of the gPC system

In this section we describe the numerical method used to solve the resulting gPC system (3.6)–(3.7), which we rewrite 
here in the vector form. To this end, we denote by

ŵ :=
(
ρ̂ ′, ρ̂u, ̂(ρθ)′

)�
, ŵq := (

ρ̂qv , ρ̂qc, ρ̂qr
)�

and Ŵ := (
ŵ, ŵq

)�
the solution vectors of (3.6) and (3.7), respectively. Here, the underline (·) denotes the vector of the respective coefficients. 
For instance, for the solution coefficients we have

ρ̂ ′ := (
(ρ̂ ′)0, . . . , (ρ̂ ′)M

)
, ρ̂u := (

(ρ̂u1)0, . . . , (ρ̂ud)0; . . . ; (ρ̂u1)M , . . . , (ρ̂ud)M
)
,

̂(ρθ)′ := (
(̂(ρθ)′)0, . . . , (̂(ρθ)′)M

)
, ρ̂q� = (

(ρ̂q�)0, . . . , (ρ̂q�)M
)
, � ∈ {v, c, r}.

Then, the coupled system can be written as

ŵt = −∇ · F (ŵ) +D(ŵ) +R(ŵ), (3.14)

(ŵq)t = −∇ · F q(ŵq) +Dq(ŵq) +Rq(ŵq), (3.15)

where F and F q are convective fluxes and D, R and Dq , Rq denote the diffusion and reaction operators of the respective 
systems. They are given by

F (ŵ) := (
ρ̂u, p̂′Id+ N̂, θ̄ ρ̂u + η̂

)�
, D(ŵ) := (

0,μmd̂1,μhd̂2
)�

, R(ŵ) := (
0,−ρ̂ ′ged, Ŝθ

)�
, (3.16)

F q(ŵq) := (
η̂q
1, η̂

q
2, η̂

q
3

)�
, Dq(ŵq) := μq

(
d̂q1, d̂

q
2, d̂

q
3

)�
, Rq(ŵq) := (

r̂1, r̂2, r̂3
)�

, (3.17)
6
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where the respective components of the above vectors were defined in (3.8). We emphasize that (3.14)–(3.17) is a deter-
ministic system for the gPC expansion coefficients. This system has the same structure as the deterministic system studied 
in [8]. Therefore, one can directly apply the finite-volume method from [8] for the spatial discretization of the system 
(3.14)–(3.17) with additional DT and IDT applied for each evaluation of the nonlinear terms on the RHS of (3.14) and (3.15). 
The expansions (3.8) induce that we first compute the coefficients N̂, η̂ and η̂q

1 , η̂
q
2 , η̂

q
3 through the transforms and then 

apply the appropriate approximation of the fluxes as in the deterministic case. For the diffusion terms, we apply the dis-
cretization for the respective evaluated functions obtained by IDT and then perform DT to get the diffusion coefficients d̂1 , 
d̂2 and d̂q

1 , d̂
q
2 , d̂

q
3 .

The coupling between the atmospheric flow, (3.14), (3.16), and the cloud, (3.15), (3.17), equations is numerically realized 
by the second-order Strang operator splitting. We evolve the solution from time level tν to the next time level tν+1 =
tν + �tν , where �tν is the size of the Strang operator splitting time step, in three stages:

Ŵ (tν+1) = SNS

(
�tν

2

)
Scloud

(
�tν

)
SNS

(
�tν

2

)
Ŵ (tν), (3.18)

where SNS and Scloud denote numerical solution operators for systems (3.14), (3.16) and (3.15), (3.17), respectively.
For the Navier-Stokes part, we recall that atmospheric flows are weakly compressible and therefore we follow [5,6] and 

develop an AP finite-volume method, which is capable of accurately and efficiently handling low Mach number regimes. In 
particular, our AP approach is based on a suitable linear-nonlinear splitting between the stiff and nonstiff parts of the flux:

F (ŵ) = F L(ŵ) + F N(ŵ) with F L(ŵ) := (
ρ̂u, p̂′Id, θ̄ (ρ̂u)

)�
and F N(ŵ) := (

0, N̂, η̂
)�

,

R(ŵ) = RL(ŵ) +RN(ŵ) with RL(ŵ) := (
0,−ρ̂ ′ged,0

)�
and RN(ŵ) := (

0,0, Ŝθ

)�
,

and the IMEX AP ARS(2,2,2) method from [4] for time discretization of SNS in (3.18). For the latter, we define the stiff linear 
operator L := −∇ · F L(ŵ) + RL(ŵ) and the nonstiff nonlinear operator N := −∇ · F N(ŵ) + D(ŵ) + RN (ŵ), which are 
treated implicitly and explicitly, respectively:

ŵ
(
t + �tν

4

)
= ŵ(t) + β�tν

2

[
N (ŵ(t)) +L

(
ŵ
(
t + �tν

4

))]
,

ŵ
(
t + �tν

2

)
= ŵ(t) + �tν

2

[(
1− 1

2β

)
N (ŵ(t)) + 1

2β
N
(
ŵ
(
t + �tν

4

))
+(1 − β)L

(
ŵ
(
t + �tν

4

))
+ βL

(
ŵ
(
t + �tν

2

))]
,

(3.19)

where β = 1 − 1/
√
2.

In (3.19), the nonlinear terms N are approximated using the Rusanov numerical fluxes, and the second order of accuracy 
in the nonlinear part is achieved with the help of a piecewise linear reconstruction with the minmod limiter. In the linear 
terms L, the diffusion operators are discretized using second-order central differences while the reaction operators are 
directly evaluated using cell averages. This spatial discretization results in a linear system of algebraic equations, which 
is solved by the restarted GMRES method with ILU preconditioning from the scientific toolkit PETSc (https://petsc .
org/).

The cloud equations (3.15), (3.17) are discretized in space by a finite-volume method and in time using an explicit 
third-order Runge-Kutta method with an enlarged stability region (DUMKA3 from [21,22]).

It should be observed that the microscopic cloud dynamics subsystem has a more severe stability time step restriction 
than the flow dynamics one and thus the splitting time step �tν in (3.18) is selected based on the following stability 
restriction for the macroscopic subsystem (3.14), (3.16):

max

(
max(μh,μm)

h2
, max
n=0,...,N

max
s=1,..,d

max
x∈X

(|us(x, t
ν,ωn)|) d

h

)
�tν < 0.5,

where, X is the set of the centers of the finite-volume cells, which for simplicity are assumed to be uniform of size hd . Then, 
several small microscopic cloud time evolution steps are to be made within one macroscopic splitting time step through the 
DUMKA3 method, which chooses microscopic time steps automatically based on the cloud system stiffness coming from the 
diffusion and reaction terms. The moderate stiffness of the reaction terms comes from power-law-type terms with fractional 
exponents between −1 and 1. These fractional exponents are present since activation and diffusion processes are modeled 
explicitly, instead of applying the saturation adjustment.

Remark 3.3. The DUMKA3 method is a third-order Runge-Kutta method, which belongs to the class of explicit Chebyshev-
Runge-Kutta methods. Since these methods are explicit, they are more efficient for moderately stiff problems than most of 
the implicit ODE solvers; see, e.g., [1,15,22]. Additionally, the DUMKA3 method features a low memory demand, adaptive 
7
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error control, and an enlarged stability domain along the negative real axis which is still a finite real interval for absolute 
stability.

4. Numerical experiments

In this section, we present experimental results for the fully random Navier-Stokes-cloud model (2.5), (2.2). In Exam-
ples 4.1 and 4.2, we investigate the experimental convergence of our numerical scheme using the well-known meteorological 
benchmark describing the free convection of a smooth warm and moist air bubble; see, e.g., [7,9]. In Example 4.1, we 
demonstrate the spatio-temporal convergence as well as the convergence in the stochastic space for the case in which the 
initial vapor concentration qv is perturbed by 10% which is realized with a uniform distribution of the randomness. In 
Example 4.2, we investigate the convergence for the same setup as in Example 4.1 but with normally distributed random-
ness. Since we use the same numerical method for the space and time discretization as in Example 4.1, in Example 4.2 we 
just investigate the convergence in the stochastic space. In Examples 4.3 and 4.4, we present the results of the uncertainty 
study for the Rayleigh-Bénard convection in both 2-D and 3-D. We also compare the results obtained in this work for the 
fully random model with the deterministic one, in which both the Navier-Stokes equations (2.5) and the cloud equations 
(2.2) are deterministic, and with the semi-random one, in which the deterministic Navier-Stokes equations are coupled with 
the random cloud dynamics (this semi-random model was studied in the first part of this work in [8]). We note that the 
parameters used in the numerical experiments presented below are slightly different from the one used in [8]; however, 
the main qualitative features remain the same. In both Rayleigh-Bénard experiments (Examples 4.3 and 4.4), we investigate 
uncertainty propagation, which is triggered by the initial data of the water vapor concentration qv which we perturbed uni-
formly. A comparison with a normally distributed initial perturbation or even perturbations of certain parameters is beyond 
the scope of this work and is left for future study.

In all of the following examples we set μm = 10−3 and μh = μq = 10−2 in (2.5) and (2.2).

Example 4.1 (Stochastic initial data with uniformly distributed perturbation). In this experiment, we simulate free convection of a 
smooth warm and moist air bubble in 2-D. Due to the shear friction with the surrounding air at the warm/cold air interface, 
the warm air bubble rises and deforms axisymmetrically and gradually forms a mushroom-like shape. The bubble is placed 
at (2500 m, 2000 m) in a domain � = [0, 5000] × [0, 5000] m2. We consider a 10% perturbation of the initial water vapor 
concentration. This is realized through the following initial conditions in the case of a uniformly distributed randomness for 
the cloud variables:

(q̂v)0(x,0) = 0.005 θ ′(x,0), (q̂v)1(x,0) = 0.1, (q̂v)0(x,0), (q̂v)k(x,0) = 0 for 2 ≤ k ≤ M,

(q̂c)0(x,0) = 10−4 θ ′(x,0), (q̂c)k(x,0) = 0 for 1 ≤ k ≤ M,

(q̂r)0(x,0) = 10−6 θ ′(x,0), (q̂r)k(x,0) = 0 for 1 ≤ k ≤ M,

and for the Navier-Stokes variables:

(ρ̂ ′)0(x,0) = −ρ̄(x)
(θ̂ ′)0(x,0)

θ̄(x) + (θ̂ ′)0(x,0)
, (ρ̂ ′)k(x,0) = 0 for 1 ≤ k ≤ M,

(ρ̂u)k(x,0) = 0 for 0 ≤ k ≤ M,

(̂(ρθ)′)0(x,0) = ρ̄(x)(θ̂ ′)0(x,0) + θ̄ (ρ̂ ′)0(x,0) + (θ̂ ′)0(x,0)(ρ̂ ′)0(x,0), (̂(ρθ)′)k(x,0) = 0 for 1 ≤ k ≤ M,

where

(θ̂ ′)0(x,0) =
⎧⎨⎩2cos2

(πr

2

)
, r :=√

(x1 − 2500)2 + (x2 − 2000)2 ≤ 2000,

0, otherwise,
(θ̂ ′)k(x,0) = 0 for 1 ≤ k ≤ M.

Additionally, we set θ̄ = 285 K, p0 = p̄ = 105 Pa and

ρ̄(x) = p0

R θ̄ (x)

(
1− gx2

cp θ̄

) 1
γ −1

with cp = 1005 J/(kg·K), cv = 718 J/(kg·K) and γ = cp/cv . We start here with nonzero values for the cloud drops concentration 
qc and the rain concentration qr to avoid values close to the machine precision since the main purpose of the test is the 
convergence study. Furthermore, we apply the no-slip boundary conditions for the velocities and homogeneous Neumann 
boundary conditions for the remaining variables, that is, ∇ρ ′ · n = 0, ∇(ρθ)′ · n = 0 and ∇(ρq�) · n = 0, � ∈ {v, c, r}.

In Fig. 1, we depict the expected values of the potential temperature θ and the cloud variables qv , qc and qr , computed 
using a 160 × 160 uniform mesh at time 200s with M = L = 3. For comparison purposes, in Fig. 2 we show the potential 
temperature θ and the water vapor concentration qv computed using the deterministic Navier-Stokes-cloud model and the 
8
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Fig. 1. Example 4.1: The expected values of the potential temperature θ , the water vapor concentration qv , cloud drops concentration qc and rain concen-
tration qr computed using the fully random model.

Fig. 2. Example 4.1: The potential temperature θ and the water vapor concentration qv computed using the deterministic model (first row) and the potential 
temperature θ and the expected values of the water vapor concentration qv computed using the semi-random model (second row).

potential temperature θ and the expected values of the water vapor concentration qv computed using the semi-random 
Navier-Stokes-cloud model. Note that for a better comparison, we have used the same vertical scales for presenting the 
results in Figs. 1 and 2. It can be observed that the fully random results are more smeared compared to the deterministic 
ones and that in the fully random experiment no additional vortices beneath the bubble have been developed and the 
results are slight variations of the deterministic ones, which is to be expected. In order to investigate the appearance of the 
vortices in the semi-random case (see the second row Fig. 2), we depict in Fig. 3 the semi-random results obtained for the 
smaller initial water vapor perturbation taken as 1%, 5% and 7%. One can clearly see, the vortices develop gradually with 
higher perturbation and that the 1% perturbation results are very close to the deterministic ones. Thus, the vortex features 
of the solutions obtained with the semi-random model seem to result from the missing feedback to the dynamics of the 
fluid and are not a defect of the numerical method. We also note that in the semi-random model, the energy conservation is 
(slightly) violated. This might lead to the differences in the simulations, since the dynamics is then driven by the averaged 
latent heat release and not by the one in the realization.
9
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Fig. 3. Example 4.1: The potential temperature θ (left column) and the expected value of the water vapor concentration qv (right column) computed using 
the semi-random model for 1% (first row), 5% (second row) and 7% (third row) of initial water vapor perturbations.

Fig. 4. Example 4.1: Spatio-temporal L1 convergence study for the expected values of the cloud variables qv qc and qr (left) and the flow variables ρ ′ , ρu1, 
ρu2 and (ρθ)′ (right) computed at time t = 10s using the fully random model with the constant time step �t = 256/100N .

In Fig. 4, we present the spatio-temporal convergence study for the expected values of the cloud and flow variables at 
the time t = 10s. We compute the solutions on different N × N uniform meshes with M = L = 3. As in the deterministic 
case presented in [8], one can clearly see a second-order convergence for the studied fully random model.

The stochastic convergence studies are presented in Figs. 5 and 6 for the cloud and Navier-Stokes variables, respectively, 
at time t = 10s using a 160 × 160 uniform mesh. We compute the difference between the approximate solutions with 
different numbers of modes M and L = M and the reference solution obtained with 20 stochastic modes and L = 19. One 
can observe a spectral convergence with an approximate rate of e−0.3M . One can also see that the error of the rain drops in 
Fig. 6 (right) basically stays constant at some point because in this case it approaches the machine precision.
10



Fig. 5. Example 4.1: L1 convergence study for the Navier-Stokes variables ρ ′ (left) and ρu1, ρu2 and (ρθ)′ (right) in the stochastic space computed at time 
t = 10s using the fully random model with the constant time step �t = 0.01.

Fig. 6. Example 4.1: L1 convergence study for the cloud variables ρqv and qc (left) and qr (right) in the stochastic space computed at time t = 10s using 
the fully random model with the constant time step �t = 0.01.

Example 4.2 (Stochastic initial data with normally distributed perturbation). In this experiment, we demonstrate that the con-
vergence of the stochastic Galerkin method for the fully stochastic model does not depend on the choice of the distribution 
of the randomness. For this purpose, we choose the same initial conditions as in Example 4.1, but this time with a normally 
N (0, 1) distributed perturbation.

In Fig. 7, we compare the solutions (the potential temperature θ and the water vapor concentration qv ) computed 
using the deterministic, semi-random and fully random Navier-Stokes-cloud models. For a better comparison, we have used 
the same vertical scales for presenting the results. As in the previous example, one can observe that in the fully random 
experiment no additional vortices beneath the bubble have been developed and the results are slight variations of the 
deterministic ones. Thus, the vortex features of the semi-random results are independent of the distributions of the initial 
perturbation and caused by the missing feedback to the dynamics of the fluid.

Next, we investigate the influence of the choice of distribution for the initial perturbation. In Fig. 8, we depict the 
cloud drops concentration qc computed using the fully random model with the initial normally and uniformly distributed 
perturbations; the latter one was computed in Example 4.1. For a better comparison, we have used the same vertical 
scales for presenting the results. Since the initial perturbation is rather small, the results look very alike. In general, both 
simulations smear the boundaries of the bubble. However, the smearing with the normal distribution is not as strong 
as with the uniform distribution. This effect is due to the concentrated shape of the normal distribution around the ex-
pected value; thus, the different realizations are closer to the averaged potential temperature as a feedback to the energy 
equation.

The convergence studies in the stochastic space are presented in Figs. 9 and 10 for the cloud and Navier-Stokes vari-
ables, respectively, at time t = 10s using a 160 × 160 uniform mesh. We computed the difference between the approximate 
solutions with different numbers of modes M and L = M and the reference solution obtained with 12 stochastic modes 
and L = 11. As in the case with a uniform distribution studied in Example 4.1, one can observe a spectral convergence with 
an approximate rate of e−0.3M . This demonstrates that the experimental convergence rate is independent of the chosen 
distribution.
A. Chertock, A. Kurganov, M. Lukáčová-Medvid’ová et al. Journal of Computational Physics 479 (2023) 111987
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Fig. 7. Example 4.2: The potential temperature θ and the water vapor concentration qv computed using the deterministic model (first row); the potential 
temperature θ and the expected values of the water vapor concentration qv computed using the semi-random model (second row); the expected values of 
the potential temperature θ and the water vapor concentration qv computed using the fully random model (third row).

Fig. 8. Examples 4.1 and 4.2: The expected values of the cloud drops concentration qc computed using the fully random model with the initial normally 
(left) and uniformly (right) distributed perturbations.

Fig. 9. Example 4.2: L1 convergence study for the Navier-Stokes variables ρ ′ (left) and ρu1, ρu2 and (ρθ)′ (right) in the stochastic space computed at time 
t = 10s using the fully random model with the constant time step �t = 0.01.
12
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Fig. 10. Example 4.2: L1 convergence study for the cloud variables ρqv and qc (left) and qr (right) in the stochastic space computed at time t = 10s using 
the fully random model with the constant time step �t = 0.01.

Example 4.3 (Rayleigh-Bénard convection in 2-D). We consider a 2-D stochastic Rayleigh-Bénard convection simulated on a 
domain � = [0, 5000] × [0, 1000] m2 that has been discretized using a uniform 160 × 160 mesh. The initial data for the 
cloud variables are

(q̂v)0(x,0) = 0.025(θ ′(x,0))+, (q̂v)1(x,0) = 0.1(q̂v)0(x,0), (q̂v)k(x,0) = 0 for 2 ≤ k ≤ M,

(q̂c)0(x,0) = 10−4(θ ′(x,0))+, (q̂c)k(x,0) = 0 for 1 ≤ k ≤ M,

(q̂r)0(x,0) = 10−6(θ ′(x,0))+, (q̂r)k(x,0) = 0 for 1 ≤ k ≤ M,

and for the Navier-Stokes variables are

(ρ̂ ′)0(x,0) = −ρ̄(x)
(θ̂ ′)0(x,0)

θ̄(x) + (θ̂ ′)0(x,0)
, (ρ̂ ′)k(x,0) = 0 for 1 ≤ k ≤ M,

(ρ̂u1)0(x,0) = 0.001
[
(ρ̂ ′)0(x,0) + ρ̄(x)

]
, (ρ̂u1)k(x,0) = 0 for 1 ≤ k ≤ M,

(ρ̂u2)0(x,0) = sin
(πx2
500

)[
(ρ̂ ′)0(x,0) + ρ̄(x)

]
, (ρ̂u2)k(x,0) = 0 for 1 ≤ k ≤ M,

(̂(ρθ)′)0(x,0) = ρ̄(x)(θ̂ ′)0(x,0) + θ̄ (ρ̂ ′)0(x,0) + (θ̂ ′)0(x,0)(ρ̂ ′)0(x,0), (̂(ρθ)′)k(x,0) = 0 for 1 ≤ k ≤ M,

where

(θ̂ ′)0(x,0) = 0.6 sin
(πx2
500

)
, (θ̂ ′)k(x,0) = 0 for 1 ≤ k ≤ M,

θ̄ (x) = 284− x2
1000

, ρ̄(x) = p0

R θ̄ (x)
πe(x)

1
γ −1 , πe(x) = 1− gx2

cp θ̄ (x)
.

(4.1)

We implement the following Dirichlet boundary conditions for the potential temperature:

θ(x2 = 0) = 284K and θ(x2 = 1000) = 283K,

as well as the periodic boundary conditions for all of the variables in the horizontal direction, no-slip boundary conditions 
for the velocities at the vertical boundaries, and zero Neumann conditions for the remaining variables in the vertical direc-
tion, that is, ∇ρ ′ · n = 0. Also, these boundary conditions have to be projected onto the stochastic space. The projections 
of the periodic, no-slip and Neumann boundary conditions are straightforward and lead to the same conditions as in the 
deterministic case for all of the expansion coefficients of the respective variable. Here, we briefly explain how the projection 
of the Dirichlet boundary conditions works. We implement the Dirichlet boundary conditions for the potential temperature 
using ρθ(x, t, ω) = (ρθ)′(x, t, ω) + ρθ(x). Rearranging and inserting the expansion for ρ ′(x, t, ω) and (ρθ)′(x, t, ω) gives

(ρθ)′(x, t,ω) − ρ ′(x, t,ω)θ(x, t,ω) = ρ̄(x)θ(x, t,ω) − ρθ(x)

⇐⇒
M∑

k=0

(̂(ρθ)′)k(x, t)
k(ω) −
( M∑

k=0

(ρ̂ ′)k(x, t)
k(ω)

)
θ(x, t,ω) = ρ̄(x)θ(x, t,ω) − ρθ(x).

At θ is constant at the boundary, applying the projection leads to

(̂(ρθ)′)0(x2 = 0, t) − (ρ̂ ′)0(x2 = 0, t)θ(x2 = 0) = ρ̄(x2 = 0)θ(x2 = 0) − ρθ(x2 = 0),

(̂(ρθ)′)k(x2 = 0, t) − (ρ̂ ′)k(x2 = 0, t)θ(x2 = 0) = 0 for 1 ≤ k ≤ M,

and analogously for x2 = 1000.
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Fig. 11. Example 4.3: Expected value and standard deviation of the potential temperature θ at t = 1000s and 6000s.

In Figs. 11 and 12, we present snapshots of the expected values and standard deviations of the potential temperature 
and the cloud variables at times t = 1000 and 6000s, respectively. Additionally, in Fig. 13, we plot the differences between 
the expected value of the water vapor concentration and the saturation mixing ratio E[qv ] − q∗ at the same times. As one 
can observe, the potential temperature exhibits a strong vertical gradient at time t = 1000s. Similarly to the deterministic 
and semi-random cases, at a later time t = 6000s, supersaturated regions are formed in the rolls where the convection takes 
place leading to the overall roll-like cloud flow structure.

In Figs. 14 and 15, we present the time evolution of the mean expected value per m2 as well as the mean standard 
deviation per m2 for the potential temperature and the cloud variables. In d space dimensions these quantities can be 
computed for uniformly distributed perturbations in the following way:

E

[
hd

|�|
Nd∑
i=1

(q�)i

]
= hd

|�|
Nd∑
i=1

E [(q�)i] = hd

|�|
Nd∑
i=1

((̂q�)0)i, σ

(
hd

|�|
Nd∑
i=1

(q�)i

)
= hd

|�|

√√√√√ M∑
k=1

1

2k + 1

⎛⎝ Nd∑
i=1

((̂q�)k)i

⎞⎠2

,

where Nd is the number of mesh cells and � ∈ {v, c, r}. We compare the solutions using 0% (purely deterministic model) and 
10% of perturbation of the initial data in qv , where for 10% of perturbation the solutions are added in both fully- and semi-
random Navier-Stokes-cloud models. The time evolution of the averaged quantities clearly shows the differences between 
the semi-random and fully random models. In all shown cases (including the purely deterministic one), the time evolution 
starts with cloud formation and thus increase of cloud water on the expense of water vapor and also latent heat release 
(increase of θ ). However, for the semi-random model the rain formation starts earlier than in the deterministic and fully 
random simulations. Since rain is falling into subsaturated regions which induces evaporation, this leads to a different time 
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Fig. 12. Example 4.3: Expected value and standard deviation of the cloud drops concentration qc at t = 1000s and 6000s.

Fig. 13. Example 4.3: Difference between the expected value of the water vapor concentration and the saturation mixing ratio (E[qv ] − q∗) at t = 1000s
and 6000s.
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Fig. 14. Example 4.3: Time evolution of the expected values with their standard deviations (shaded region) for the potential temperature θ per m2 using 
0% (purely deterministic case) and 10% perturbation of the initial data in qv , where the latter was simulated using both fully- and semi-random models.

Fig. 15. Example 4.3: Time evolution of the expected values with their standard deviations for the cloud variables per m2 (shaded region, left column) and 
standard deviation (right column) using 0% (purely deterministic case) and 10% perturbation of the initial data in qv , where the latter was simulated using 
both fully- and semi-random models.
16



evolution in all variables. Generally, we observe a much stronger cooling effect of the system due to evaporation of rain in 
the semi-random model than in the other simulations. This is probably due to the use of the expected values of the terms 
for phase changes in the energy equation. Although the general qualitative behavior in the time evolution of the expected 
values is quite similar, the absolute values differ quite substantially. The same is true for the standard deviations of the 
cloud variables qv qc and qr as shown in the right column of Fig. 15; the variation in the water variables (and also in θ ) is 
much larger for the fully random model than for the semi-random one. This is also reasonable, since the fully random model 
can capture the correct feedback of the latent heat release in the phase changes for the “different realizations”, whereas the 
semi-random model only feeds back the averaged potential temperature, leading to a smaller variability. Some examples of 
the expected values and the related standard deviations for θ , qc and the super/subsaturation (in terms of E[qv ] − q∗) are 
shown in Figs. 11–13.

Example 4.4 (Rayleigh-Bénard convection in 3-D). In the final example, we consider a 3-D stochastic Rayleigh-Bénard convec-
tion. The initial data for the cloud variables are

(q̂v)0(x,0) = 0.025(θ ′(x,0))+, (q̂v)1(x,0) = ν(q̂v)0(x,0), (q̂v)k(x,0) = 0 for 2 ≤ k ≤ M,

(q̂c)0(x,0) = 10−4(θ ′(x,0))+, (q̂c)k(x,0) = 0 for 1 ≤ k ≤ M,

(q̂r)0(x,0) = 10−6(θ ′(x,0))+, (q̂r)k(x,0) = 0 for 1 ≤ k ≤ M,

with ν = 0, 0.1, 0.2 or 0.5, which correspond to 0% (pure deterministic case), 10%, 20% or 50% perturbation of the initial 
water vapor concentration. For the Navier-Stokes variables we take purely deterministic initial data, which in terms of their 
expansion coefficients read as

(ρ̂ ′)0(x,0) = −ρ̄(x)
(θ̂ ′)0(x,0)

θ̄(x) + (θ̂ ′)0(x,0)
, (ρ̂u1)0(x,0) = 0.001

[
(ρ̂ ′)0(x,0) + ρ̄(x)

]
,

(ρ̂u2)0(x,0) = 0.001
[
(ρ̂ ′)0(x,0) + ρ̄(x)

]
, (ρ̂u3)0(x,0) = sin

(πx3
500

)[
(ρ̂ ′)0(x,0) + ρ̄(x)

]
,

(̂(ρθ)′)0(x,0) = ρ̄(x)(θ̂ ′)0(x,0) + θ̄ (ρ̂ ′)0(x,0) + (θ̂ ′)0(x,0)(ρ̂ ′)0(x,0),
(ρ̂ ′)k(x,0) = (ρ̂u1)k(x,0) = (ρ̂u2)k(x,0) = (ρ̂u3)k(x,0) = (̂(ρθ)′)k(x,0) = 0 for 1 ≤ k ≤ M,

where

(θ̂ ′)0(x,0) = 0.6 sin
(πx3
500

)
,

and θ̄ (x) and ρ̄(x) are chosen as in (4.1). The solution is computed in the domain � = [0, 5000] × [0, 5000] × [0, 1000] m3

which is discretized using a uniform 50 × 50 × 50 mesh.
In Figs. 16–18, we present the influence of the 10%, 20% and 50% initial water vapor perturbation on the expected values 

of the potential temperature, cloud droplets and rain drops concentration at times t = 1000s and 6000s. The influence on 
the supersaturated and subsaturated regions is highlighted as a 2-D slice along x1 = 3000 in Fig. 19, where we depict the 
difference between the expected water vapor concentration and the saturation mixing ratio. For a better comparison, we 
have used the same vertical scales in all of the plots. Here, one can clearly observe a different behavior compared with 
the semi-random case. The vertical gradient of the potential temperature increases as the size of the initial perturbations 
increases (see Fig. 16), while the pattern of the developed convection cells is similar for different perturbations. The latent 
heat release increases the vertical motions in the convective cells, which leads to additional feedback, such as stronger and 
more cloud formation (see Fig. 17), which in turn leads to the formation of a much larger amount of rain water, especially 
at a later time t = 6000s (see Fig. 18). At the time t = 1000s one can see that the roll-like structure of the clouds in the 
deterministic case (that is, with 0% perturbation) again end up in a more cell-like structure in the initially perturbed cases.

In Figs. 20 and 21, we show the time evolution of the mean expected value per m3 as well as the mean standard 
deviation per m3 for the potential temperature and cloud variables in the cases with 0% (purely deterministic), 10%, 20% 
and 50% perturbation of the initial water vapor concentration. For increasing perturbations, the spread is increased, mostly 
for the water vapor concentration qv and the rain concentration qr . The averaged quantities are dominated by the positive 
perturbations, leading to (i) earlier cloud formation, (ii) thicker clouds due to more available water vapor, and (iii) enhanced 
rain formation. These three features can be clearly seen in the case of the largest initial perturbation (50%), where a large 
spread in water vapor concentration is accompanied by a strong increase in cloud water and an earlier onset of strong 
precipitation. Due to the strong rain formation the cloud concentration decreases when the perturbation size increases and 
also the amount of supersaturated regions is much smaller as can be observed in Fig. 19 which leads to less new formation 
of clouds. We would also like to note that the spread is only given by the standard deviation, whereas the actual minima 
(for instance, almost no cloud formation) cannot be seen directly, although these scenarios are possible. Overall, one can see 
that the time evolution for the deterministic simulation as well as for perturbations with 10% and 20% behave quite similarly 
and the averaged quantities follow closely the same evolution, although the standard deviations increase quite substantially. 
However, for larger perturbations (50%), the time evolution of the expected values of qc and qr is strongly disturbed and 
shows large deviations from the other simulations. This can also be seen in the 3-D panels at the later time t = 6000s.
A. Chertock, A. Kurganov, M. Lukáčová-Medvid’ová et al. Journal of Computational Physics 479 (2023) 111987
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Fig. 16. Example 4.4: Expected value of the potential temperature θ at times t = 1000s and 6000s with 0%, 10%, 20% and 50% perturbations of the initial 
water vapor concentration.
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Fig. 17. Example 4.4: Expected value of the cloud drops concentration qc at times t = 1000s and 6000s with 0%, 10%, 20% and 50% perturbations of the 
initial water vapor concentration.
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Fig. 18. Example 4.4: Expected value of the rain concentration qr at times t = 1000s and 6000s with 0%, 10%, 20% and 50% perturbations of the initial water 
vapor concentration.
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Fig. 19. Example 4.4: Slices of the difference between the water vapor and the saturation mixing ratio (E[qv ] −q∗) along x1 = 3000 at time t = 6000s with 
0%, 10%, 20% and 50% perturbations of the initial water vapor concentration.

Fig. 20. Example 4.4: Time evolution of the expected values with their standard deviations for the potential temperature θ per m3 (shaded region, left 
column) and standard deviations (right column) obtained using 0%, 10%, 20% and 50% perturbations of the initial data in qv .
21
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Fig. 21. Example 4.4: Time evolution of the expected values with their standard deviations for the cloud variables per m3 (shaded region, left column) and 
standard deviations (right column) obtained using 0%, 10%, 20% and 50% perturbations of the initial data in qv .
5. Conclusion

This paper is a continuation of our previous study on uncertainty propagation in atmospheric flows containing phase 
changes. In particular, we consider warm cloud dynamics of weakly compressible fluids. This model consists of a multiscale 
system of PDEs in which the macroscopic dynamics of the fluid is described by a weakly compressible Navier-Stokes system 
and the microscopic cloud dynamics is described by a system of convection-diffusion-reaction equations. We have extended 
the gPC-SG method from [8], where we considered a semi-random model with the deterministic macroscopic dynamics of 
the fluid coupled with the random microscopic cloud dynamics, to the case of a fully random multiscale system. To this end, 
we have first derived a system for the gPC coefficients and then presented a method we have used to numerically solve the 
resulting system. The latter is an extension of the numerical method developed in [8] and approximates the gPC coefficients 
for the dynamics of the fluid by an IMEX AP finite-volume method and the gPC coefficients for the cloud dynamics by an 
explicit finite-volume method with an enlarged stability region.

The aim of this work is to demonstrate the applicability, accuracy and efficiency of the gPC-SG method for atmospheric 
flows. Comprehensive studies of uncertainty propagation in these models considering different perturbation scenarios are 
left for a future work. Additionally, we will investigate the accuracy and performance of different uncertainty quantifica-
tion methods, for instance, stochastic Galerkin, stochastic collocation and Monte Carlo method, in a review paper. Here, we 
have focused on numerical convergence and benchmark experiments as well as comparison with the results of the pre-
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vious semi-random model presented in [8]. We have demonstrated that the gPC-SG method for the fully random model 
preserves the second-order spatial experimental convergence rate when the time increments are chosen according to the 
time step restriction and additionally exhibited an experimental exponential convergence rate in the stochastic space. This 
experimental convergence rate has been observed for both perturbation scenarios: uniform and normal distribution of the 
initial data perturbation. Additionally, we have studied the numerical solutions of the fully random cloud model for both the 
2-D and 3-D Rayleigh-Bénard convection. By illustrating the behavior of clouds in different perturbed scenarios, we have 
demonstrated that perturbations of the initial conditions of cloud variables can crucially change the time evolution. The 
results have also exhibited a clear difference of the solutions of the semi- and fully random models in both the 2-D and 
3-D Rayleigh-Bénard convection, which indicates that initial perturbations of cloud variables propagate to the Navier-Stokes 
equations and have a significant effect on the fluid variables. Our numerical study clearly demonstrates the applicability of 
the stochastic Galerkin method for the uncertainty quantification in complex atmospheric models and paves the path for 
more extensive practically relevant numerical studies.

We note that the presented method is not in general positivity preserving. As in many other numerical atmospheric 
and weather prediction models, the positivity of relevant quantities in our method is achieved by truncation at zero. It 
is, however, desirable to develop a provably positivity preserving extension of the proposed numerical method, which is 
essential not only for avoiding nonphysical values of the computed solution but also for ensuring the stability of the entire 
method. We leave this study for future work.
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