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In this paper, we consider a coupled chemotaxis-fluid system that models self-organized
collective behavior of oxytactic bacteria in a sessile drop. This model describes the
biological chemotaxis phenomenon in the fluid environment and couples a convective
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chemotaxis system for the oxygen-consuming and oxytactic bacteria with the incom-
pressible Navier—Stokes equations subject to a gravitational force, which is proportional
to the relative surplus of the cell density compared to the water density.

We develop a new positivity preserving and high-resolution method for the studied
chemotaxis-fluid system. Our method is based on the diffuse-domain approach, which
we use to derive a new chemotaxis-fluid diffuse-domain (cf-DD) model for simulating
bioconvection in complex geometries. The drop domain is imbedded into a larger rect-
angular domain, and the original boundary is replaced by a diffuse interface with finite
thickness. The original chemotaxis-fluid system is reformulated on the larger domain
with additional source terms that approximate the boundary conditions on the physical
interface. We show that the cf-DD model converges to the chemotaxis-fluid model asymp-
totically as the width of the diffuse interface shrinks to zero. We numerically solve the
resulting c¢f-DD system by a second-order hybrid finite-volume finite-difference method
and demonstrate the performance of the proposed approach on a number of numerical
experiments that showcase several interesting chemotactic phenomena in sessile drops
of different shapes, where the bacterial patterns depend on the droplet geometries.

Keywords: Chemotaxis; Navier—Stokes equations; bioconvection; diffuse-domain
approach; finite-volume method; finite-difference method.

AMS Subject Classification: 656M85, 65M06, 656M08, 92C17, 76Z99

1. Introduction

In this paper, we study the following coupled chemotaxis-fluid system in a sessile
drop*?:
ne+u-Vn+xV-[nr(c)Vel = DpAn, ¢ +u-Ve= D.Ac— nkr(c),

(1.1)
plus +u-Vu) + Vp=nAu —nV®o, V. -u=0,

where n and ¢ are the concentrations of bacteria and oxygen, respectively, k is
the oxygen consumption rate, and u = (u,v)" is the velocity field of a fluid flow
governed by the incompressible Navier—Stokes equations with the density p, pres-
sure p, and viscosity 7. In the fluid equation, V® := V,g(p, — p)z describes the
gravitational force exerted by a bacterium onto the fluid along the upwards unit
vector z proportional to the volume of the bacterium V},, the gravitation accelera-
tion g = 9.8m/s” 2, and the density of bacteria is p; (bacteria are about 10% denser
than water).

In Eq. (1.1), both the bacteria and oxygen are convected by the fluid and diffuse
with their respective diffusion coefficients D,, and D.. The bacteria are active as
long as a sufficient oxygen supply is available: this is measured by a dimensionless
cut-off function 7(c¢), which can be modeled, for instance, by
c>c,

)

r(c) = (1.2)

0, c<c*,

where ¢* is an inactivity threshold. The active bacteria both consume the oxygen
and, in a chemotactic response, are directed towards a higher oxygen concentration
with the rate proportional to the chemotactic sensitivity x.
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Fig. 1. A sketch of the sessile drop domain 2.

A typical shape of the sessile drop is depicted in Fig. 1. We stress that the
boundary conditions on n, ¢, and u are essential to ensure that the solutions of (1.1)
match well the experimental observations. We shall consider the following mixed
boundary conditions: the boundary conditions on the top interface I' describe the
fluid-air surface, which is stress-free, allows no cell flux, and has saturated air oxygen
concentration cujy:

v-u=0, v-Vu-7)=0,

(1.3)
(XTLVC — DnVn) V= 0, C = Caijr, V(I, y) € Fﬂ

where v and 7 are the unit outward normal and tangential vectors on I'. A no-slip
boundary condition is applied on the bottom surface (0€,01) and there is no flux
of cells or oxygen through 0Qt:

u=0, Vn-v=0, Vc-v=0, V(r,y)€ I ot- (1.4)

The chemotaxis-fluid system (1.1) belongs to a class of cross-diffusion models
in complex environment. A classical cross-diffusion model is the Patlak—Keller—
Segel (PKS) system,3% 33 3% which paved the foundation for the mathematical
modeling of chemotaxis. In the following decades, specializations and variations of
the PKS system have been developed (see the reviews papers® 24 and references
therein) together with the coupled chemotaxis-fluid models.!” 23 25, 36, 44, 46, 47
The aforementioned chemotaxis models were usually obtained by means of heuris-
tic interpretation of macroscopic chemotaxis phenomena. Recently, the framework
of micro-macro derivation has been applied to chemotaxis and chemotaxis-fluid
models.% 8 The micro-macro framework unified the derivation of chemotaxis mod-
els with other models describing collective dynamics of smaller-scale entities, for

7 9 etc.

example, crowd dynamics,

There is a large body of research works investigating the qualitative properties
(for example, the global existence, boundedness, stability properties of equilibrium
configurations, and blow-up solutions) of the PKS system and its variations; see,
e.g. Ref. 27 and references therein. Recently, stability analysis and dynamics of the
chemotaxis-fluid system (1.1) with a deformed free-surface in a shallow chamber
were studied in Ref. 14. In particular, a detailed linear stability analysis of a steady-
state cell and oxygen concentration distribution was performed there. A global weak
solution of (1.1) can be obtained as a limit of smooth solutions of a regularized
chemotaxis-fluid system under suitable boundary and initial conditions; see Ref. 31.
Moreover, it has been recently proven in Ref. 11 that in the one- or two-dimensional

virus pandemic,
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cases, the system (1.1) has a unique global classical solution provided r(c) is con-
stant and the following boundary conditions: no-slip for u, no-flux for n, and Robin
for ¢, are used in a smoothly bounded convex domain. In the three-dimensional
case, the existence of a global weak solution in a drop shaped domain has been
shown and a uniform in time energy bound has been established. The link between
the diffusion and the cross-diffusion terms in the chemotaxis equation would also
affect the analytical results for more general chemotaxis-fluid systems.?' For recent
analytical results related to (1.1)—(1.4) or general cross-diffusion models, we refer
the reader to Refs. 8 and 31 and references therein.

Qualitative properties of chemotaxis-fluid models were also investigated numer-
ically. In Ref. 15, the system (1.1) was studied in a simplified, rectangular shaped
domain subject to the same top and bottom boundary conditions as in (1.3) and
(1.4), respectively, and periodic boundary conditions in the horizontal direction.
Several phenomena of sinking, merging and stationary plumes were discovered in
Ref. 15 by numerically solving (1.1) using a high-resolution hybrid finite-volume
finite-difference method. In Ref. 16, an upwind finite-element method was developed
and used to investigate the pattern formation and the hydrodynamical stability
of the system (1.1) for the same simplified setup. In Ref. 28, a fully decoupled,
linear and positivity preserving finite-element method for solving the chemotaxis-
Stokes equations has been recently developed for a similar setup. In Ref. 18,
the chemotaxis-fluid model without the discontinuous oxygen cut-off function r(c)
has been considered, for which a finite-element method has been constructed,
optimal error estimates have been established, and convergence towards regular
solutions has been proved. In Refs. 29 and 30, a generalized chemotaxis—diffusion—
convection model, which includes the dynamic free surface and appropriate bound-
ary conditions, has been proposed together with a numerical method, which uses a
time-dependent grid and incorporates surface tension and a dynamic contact line.
However, extensive studies of bacterial swimming and oxygen transport dynamics
in more complex geometries are still in great demand, as they can shed light on
qualitative analysis.

The main goal of this paper is to develop a robust and accurate numerical
method for the chemotaxis-fluid system in the sessile drop domain. To this end,
we extend a diffuse-domain approach to the system (1.1) and construct a new
chemotaxis-fluid diffuse-domain (cf-DD) model, which we numerically solve using
a second-order hybrid finite-volume finite-difference method.

The diffuse-domain method was proposed in Ref. 35 following the idea of the
smoothed boundary method previously introduced in Refs. 12 and 13 as a power-
ful numerical tool for solving diffusion equations with no-flux boundary conditions
imposed at irregular boundaries within the computational domain. The diffuse-
domain method can be applied to a variety of PDEs in both stationary and moving
complex geometries with Dirichlet, Neumann, or Robin boundary conditions. The
key idea of the method is to place the complex geometry into a larger rectangu-
lar domain, introduce a smoothed characteristic function of the original domain,
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and reformulate the original PDE(s) on the extended domain with the help of
additional source terms, which reflect the contribution of the original boundary
conditions. It has been shown in Refs. 22, 34, 35, 42, 49 and 50 that the reformu-
lated diffuse-domain model asymptotically converges to the original PDE(s) as the
thickness of the diffuse-domain interface tends to zero. The main advantage of the
diffuse-domain method is that the reformulated model can be solved using standard
numerical methods even for very complex domains (with moving boundaries). For
example, the diffuse-domain method has been successfully applied to several quite
sophisticated two-phase flow models; see Refs. 2, 3, 43 and 48.

We first follow the diffuse-domain approach and derive a cf-DD model, for
which we perform an asymptotic analysis and show that it converges to the original
chemotaxis-fluid model as the thickness of the diffuse-domain interface shrinks to
zero. We then use the proposed cf-DD model to simulate bioconvection in com-
plex droplet geometries using a numerical method, which is derived as follows. The
modified cell density equation is numerically solved by a semi-discrete second-order
finite-volume upwind method (introduced in Ref. 15) combined with a second-
order strong stability-preserving multistep ODE solver, which can be found in, e.g.
Ref. 19. The resulting fully discrete scheme is shown to preserve the positivity of
cell density. The modified Navier—Stokes and oxygen concentration equations are
discretized using a second-order projection finite-difference method, combined with
the second-order BDF-like method for the time evolution. The proposed numeri-
cal method produces results which, in the middle part of the considered droplets,
qualitatively similar to those reported in Ref. 15. Using the new method, we were
able to capture complicated dynamics of the bacteria cells including emergence of
plumes and their evolution in complex droplet geometries.

The rest of the paper is organized as follows. In Sec. 2, we describe a non-
dimensional version of the coupled chemotaxis-fluid system (1.1) and introduce
typical values of the scaling parameters to be used in our numerical simulations.
In Sec. 3, we present the reformulated cf-DD model. In Sec. 4, we introduce the
numerical method for the c¢f-DD system and discuss its implementation. In Sec. 5, we
report several numerical experiments illustrating the performance of the proposed
diffuse-domain-based numerical method. Finally, in Sec. 6, we give few concluding
remarks and discuss perspectives of our future work.

2. Scaling and Setup

We denote by L a characteristic length (we may choose, for instance, L to be the
maximum height of the drop; see Fig. 1) and the characteristic cell density by n,..
Rescaling the variables as in Refs. 15 and 44

o =2 t'—&t =S
L T2 T Cair
(2.1)
i n / L2 u/ L u
n —= — = — —_ —
nra p nan7 Dn ;
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leads to the five dimensionless parameters «, 3, v, 4, and the Schmidt number Sc:

 XCair .= kn,L?
= Dn ’ o caian’
(2.2)
_Veneglpy—p)L* o De o M
' 1Dy, Dy " Dpp’

which characterize the system (1.1)—(1.4). Three of the parameters in (2.2), namely,
a, 0, and Sc, are determined by the properties of bacteria, fluid and air. Typical
values for Bacillus subtilis in water are a = 10, § = 5, and Sc = 500; see, e.g.
Ref. 44. The remaining two parameters 5 and v depend also on the chosen length
scale L and the reference cell density n,, and thus will be varied in the numerical
examples reported in Sec. 5.

Dropping the primes from the dimensionless quantities in (2.1) yields the fol-
lowing non-dimensional version of the governing chemotaxis-fluid system:

ny+ V- (un) +aV - [r(c)nVe] = An, (2.3)
¢t +u-Ve=90Ac— pr(cn, (2.4)
u; +u-Vu+ ScVp = ScAu — Scynz, (2.5)
V-u=0. (2.6)

This system is considered on a sessile drop domain 2 subject to the initial data
n(@,y,0) = no(z,y), c(x,9,0) = co(w,y), w(z,y,0) =uo(z,y)  (2.7)
and the following boundary conditions:
v-u=0, v-Vu-7)=0, (anVe—-Vn)-v=0, c=1, V(z,y) €T,
(2.8)
u=0, Vn-v=0, Vc-v=0, VY(,y) € 0ot. (2.9)

3. Diffuse-Domain Reformulation
3.1. Chemotaxis-fluid diffuse-domain model

In order to numerically solve the coupled chemotaxis-fluid system (2.3)—(2.9) in
the drop domain, we propose a diffuse domain approximation of the chemotaxis-
fluid model in a larger rectangular domain € outlined in Fig. 2. The cf-DD model

reads as
dne + V- (dun) + aV - [r(c)onVe] = V - (¢Vn) + By, (3.1)
e+ du - Ve = 6V - (¢Ve) — Br(c)pn + Be, (3.2)
dus + du - Vu + Sc ¢Vp = Sc V - (¢Vu) — Scyénz + Buy, (3.3)
V- (¢u) =0, (3.4)
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with the boundary conditions

v-Vu=0, (anVe—Vn)-v=0, c=1, VY(r,y)eT, (3.5)
u=0, Vn-v=0, Ve-v=0, Y(z,y)€ . (3.6)

We set the diffuse-domain function ¢ to be the following approximation of the
characteristic function of the original domain 2:

() = % {1 - tanh(gdi_x))], (3.7)

where d(x) is the signed distance function to I' (d < 0 inside Q) and ¢ is the
thickness of the diffuse domain boundary as shown in Fig. 2. Note that the function
¢ is independent of time since the domain 2 is fixed. Finally, the terms

1-9¢

By=0, Be=——3

(c—1), By=0 (3.8)

are added to enforce the original boundary conditions (2.8) on I', and these terms
have been selected following the ideas introduced in Ref. 35. In Sec. 3.2, we will
show that the cf-DD system (3.1)—(3.8) asymptotically converges to the original
chemotaxis-fluid system (2.3)—(2.6) with the boundary conditions (2.8) and (2.9)
ase — 0.

Original domain 2

S

aQbm‘
Diffuse domain Sharp interface limit
refomulation ce—0
f Rectangular domain Q & .
0.5
0
OQpor

Interface thickness O(e)

Fig. 2. (Color online) Schematic representation of the diffuse-domain method. The original
domain €2 is embedded in a larger, rectangular domain S~2, where a diffuse-domain function ¢
approximates the characteristic function of Q2. The boundary conditions on 8§~2b0t are the same as
those prescribed for the original system on 0Q4,.¢, while the boundary conditions on T are chosen
to be consistent with those on I'.
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3.2. Asymptotic analysis

We now use the method of matched asymptotic expansions (see, e.g. Refs. 4, 10,
22, 26 and 39) to analyze the cf-DD system (3.1)—(3.8). In particular, we expand
n, ¢, u, v, and p with respect to the small parameter & (representing the interface
thickness according to (3.7)) in regions close to the interface (inner region) and
far from the interface (outer region), which are defined as follows: inner region
= {x : |d(x)| < &%}, outer region = {x : |d(x)| > 2}, where 0 < s; < s2. When
€ is small, the inner and outer regions overlap, and the two expansions are to be
matched in the overlapping region = {x : £%2 < |d(z)| < &' }.

For the purpose of asymptotic analysis, we consider a smoothed 7(c), while in
the numerical experiments reported in Sec. 5 the original formula (1.2) has been
utilized.

3.2.1. Outer expansions

We introduce the vector w := (n, ¢, u, v,p)—r and expand it in € in the outer region
on each side of the interface I'. We denote these formal outer expansions by w*(x)
for € Q at which ¢(x) ~ 1 (inside Q) and w—(z) for ¢ Q at which ¢(x) ~ 0
(outside Q):

w* :wa:—f—ewli—&-EQw;t—i—-“-

We first substitute w™ into (3.1)-(3.4). Taking into account that ¢ ~ 1 inside
), we combine the leading O(1) terms in the resulting expansions and obtain

(ng)e + V- (ugng) +aV - [r(c§)ng Veg] = Ang,
() +ud - Vel =5Act — Br(ch)ng,

(ud)e +ugd - Vud + Sc Vpd = Sc Aug — Scyng z,
V-ul =0,

so that ng, cf, ug, and p satisfy the chemotaxis-fluid system (2.3)—(2.6). More-
over, substituting w™ into the boundary condition (3.6), we can easily see that na' ,
car , and uar satisfy the boundary condition (2.9). We then perform similar analysis

for w™, which results in ¢, = 1 since ¢ ~ 0 outside (2.

3.2.2. Inner expansions

We now consider the expansions of w in the inner region. To this end, we first use
the divergence-free condition (3.4) and rewrite the system (3.1)—(3.4), (3.8) in the
following equivalent form:

one + du - Vn+aV - [r(c)pnVe] = V - (Vn), (3.10)
éci + du - Ve =6V - (¢Ve) — Br(c)pn — (1 — ¢)e 3(c — 1), (3.11)
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duy + ¢pu - Vu + ScpVp = Sc V - (¢Vu) — Scyonz, (3.12)
V- (¢u) = 0. (3.13)

Next, we introduce a rescaled variable £ := d(x)/e and a local coordinate system
near the interface I': @ (s,&;¢) = X (s) + c€v(s), where X (s) is a parametrization
of I', and s is the arc length parameter. We use the notation w(zx) = &(s, §) for any
function w, and notice that the following identities hold:

Vw = (1 +&ék)"'Vrd + e v, (3.14)

Aw = (1+e&r) 'V (14 k) 'Vrd) + e k(1 + eér) ™ We + & *Dee,
(3.15)

where, the Vi and V- stand for the curve gradient and curve divergence operators,
respectively. In (3.15), we have used the facts that Vr - v = k, where & is the mean
curvature of the interface, and Vd = v.

We then substitute a formal expansion, which is valid in the inner region,

1/1\121/1\104-5’1/1\714-52’{1\724-"'. (316)

Into the system (3.10)—(3.13), use relations (3.14)—(3.15), and collect the like powers
of . At the leading order term, O(¢~3), we obtain

(I—¢)(co—1)=0. (3.17)

Next, equating the O(e72) terms in Egs. (3.10)—(3.12) results in

[¢ar(Co)nio(Co)e — ¢(Tio)ele = 0, (3.18)
d[e(co)ele — (1 —@)er =0, (3.19)
[¢(to)ee = 0. (3.20)

Finally, balancing the O(e71) terms in Egs. (3.10)-(3.13) leads, after some simpli-
fications, to

Pt - V(M) e + [par(Co){n0(C1)e + M1 (Co)e } + dar’ (o)eimio(Co)e — P(71)ele

+ kolar(co)no(Co)e — (Mo)e] =0, (3.21)
Puo - v(Co)e + 0[p(C1)ele + drp(co)e — (1 — ¢)ez = 0, (3.22)
$tio - v (o) + Sc{d(Po)ev — [6(thn)le — (dv - Vrtdo)e

~Vr - (¢v)(@o)e } =0, (3.23)

v - (pUg)e = 0. (3.24)
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3.2.3. Matching conditions in the overlapping region

In what follows, we derive the boundary conditions on I' by matching the outer
and inner expansions in the overlapping region. To this end, the following matching
conditions at & = X (s) € T need to be satisfied (see Refs. 1 and 22):

lim (s, &) = w(z+), (3.25)
£—Foo
gggloo (@1(s,6)), = v - Vwg (), (3.26)
where
wT(z+) = lim wi(x+hv).

First, we note that (3.17) implies ¢y(s, &) = 1, which together with the matching
condition (3.25) imply

cf(zt)=c=1 atzxzel. (3.27)

We then use (3.27) to rewrite (3.18) as [¢(Tig)¢]e = 0, which implies ¢(7p)e = C(s),
and since limg_,o, ¢ = 0, we conclude that C(s) = 0, and hence (7g)¢ = 0. This
together with (3.27) allows us to rewrite (3.21) as

[¢(amio(@1)e — (M1)e)]e = 0,

and therefore, ang(¢1)e — (7i1)e = 0, which, using the matching conditions (3.25)
and (3.26), reduces to the following condition on nd and c{:

(angVeg —Vng)-v =0. (3.28)
Similarly, we use (3.20) to obtain ()¢ = 0, which allows us to rewrite (3.23) as

d(po)ev — [p(u1)e]e = O.

After applying the orthogonal projection operator Pr .= —v Qv : Q- I', where
I is the identity matrix, the last equation further reduces to [¢p(u1 - T)¢]e = 0. We
then proceed with the arguments similar to those used to derive (3.28) and conclude
with

v-Viud 7)=0. (3.29)

v-ug =0. (3.30)

Finally, (3.27)-(3.30) together with (3.9) imply that the c¢f-DD system (3.1)—
(3.8) asymptotically converges to the chemotaxis-fluid system (2.3)—(2.6) with the
boundary conditions (2.8)—(2.9) as € — 0.
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4. Hybrid Finite-Volume Finite-Difference Method

Recall that the advantage of the cf-DD system (3.1)—(3.8) is that it is posed on a
simple, rectangular domain and thus it can be numerically solved in a much easier
way compared to the original chemotaxis-fluid system. In this section, we provide a
detailed description of the hybrid finite-volume finite-difference numerical method
used to solve the studied cf-DD system.

The cell density equation (3.1) will be solved using a semi-discrete second-
order finite-volume upwind scheme combined with a second-order strong stability-
preserving multistep ODE solver for the temporal discretization. The oxygen
concentration equation (3.2) and the Navier-Stokes fluid equations will be dis-
cretized using a semi-discrete finite-difference central scheme combined with a
second-order BDF-like method for time integration and a second-order projection
method needed to enforce the divergence-free property of the fluid velocity.

4.1. Finite-volume upwind scheme for the cell density equation

We first define m := ¢n, substitute (3.8) into the cell density equation (3.1) and
rewrite it in an equivalent coordinate form:
me + [(u—l—ar(c)cx)m] + [(1} +ar(c)cy)m] = [d)(ﬂ) ] + [qﬁ(m) } )
I Y ¢/ala ¢/ yly
(4.1)

We then discretize equation (4.1) in space using the semi-discrete second-order
finite-volume upwind scheme from Ref. 15.
To this end, we divide the computational domain 2 into the Cartesian cells

Pih T B dted

Liw o= lz;_1,2; 1] X [yp_1, Yy 1], centered at (z;,yx) = ( 5 , 5
with j = 1,...,N and k = 1,..., M. In principle, this mesh can consist of the

rectangles of different size, but for simplicity of presentation, we use a uniform mesh

with ;.1 —z; 1+ = Az and y, 11—y, 1 = Ay, where Az and Ay are (small)

constants. We then denote the cell averages of m by

_ 1
al) ~ g [ mi@anndzay,

and integrate equation (4.1) over cell I} ; to obtain

d _ ot} vh
AxAy& mj,k(t) + / (u + OzT(C)Cz)m dy

Yy
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Applying the midpoint rule to the above integrals and dividing by AxAy results in

(u+ oz’r(c)cw)m‘(xﬂ— - (u+ O‘T(C)Cw)m|(xj

d_A o %77;1@) _%ﬂyk)
7 Tk = Ax
(v + ar(c)cy)m|(zj7yk+%) - (v + ar(0)0y>m|(z]‘7yk,%)
_ Ay
¢(%)w}($j+Lvyk) B ¢(%)I|($J*l’yk)
+ - 2

Az

¢(%)y|(1j’yk+%) B ¢(%)y|(wwyk,%)
Ay ’

We note that m;; as well as many other indexed quantities in (4.2) and below
depend on time ¢, but from now on we omit this dependence for the sake of brevity.

The construction of the scheme will be completed once the fluxes at the cell
interfaces in (4.2) are approximated numerically. The semi-discrete finite-volume
upwind scheme can then be written as the following system of ODEs:

+

(4.2)

y y
gm_ _ f+%,k _Fﬁ%,k B Fj7k+§ _me%
atF T Az Ay
Yy Y
n A Y n Gins ~Cia-g (4.3)
Ax Ay ’ '
where
~ Yy ~
Ffi%,k ~ (u+ ar(c)cz)m’(xji%,yk) and Fj)ki% ~ (v+ ar(c)cy)m](%yki%)
(4.4)
are numerical convection—chemotaxis fluxes, and
@ ~o(™ v (M
G].i%’kw(;su)m and GY,, Nqs(d))y (4.5)

(Iji%ayk) (Ijvyki%)

are centered numerical diffusion fluxes.

In order to ensure stability of the scheme (4.3)—(4.5), we use an upwind approx-
imation of the convection—chemotaxis fluxes, which can be written in the following
form:

E .
e G a0 20,
itk W .
g aMytan i aj1p <O,
(4.6)
N .
’ bjkrsmin by 20,
Fikey = S
et :
bjkt3Mikrr i bjery <0
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E,W,N,S . . L . __
Here, m ik are the point values of the piecewise linear reconstruction consisting

of the following linear pieces on every interval I; :
m(®,y) = Mk + (Ma) k(@ — x;) + (My)jk(y —ye),  (T,y) € Lk, (4.7)

at the points (xj+%,yk), (xjfé,yk), (xj,ykJr%), and (z;,y,_1), respectively.

Namely, we have

1
2

~ — X
My =Mk (s 1, yk) = Mk + —- (Ma) ks

2
~ _ Ax
N, = (1Y) = Mk — — (M),
Ay (4.8)
Mk = Myk(T5 Ypr y) = i+ = (my)j 5,
S _ ~ _ = Y
Mk = Mk (25 Yp—y) = Mgk — = (My)jik-

The second order of accuracy will be guaranteed provided the numerical deriva-
tives (mg);x and (my);r are to be (at least) first-order approximations of the
corresponding exact derivatives my(z;, yx,t) and my(z;,yx, t). In our numerical
experiments, we have used the central-difference approximations

M1, — Mj_1k M kt1 — M k—1
(mﬂc)Lk = : 2A.T . a‘nd (my)JJC = . QAZ/ : ’ (49)

throughout the computational domain except for the cells, where the linear
approach (4.9) leads to the appearance of negative reconstructed values of m in
(4.8). In the cells, where either mZ; or m}% is negative, we replace (4.9) with a
nonlinear minmod2 reconstruction (see, e.g. Refs. 37, 41 and 45):

. Mjk — M1k Myy1k — M1k o M1k — Mk
(Mmy)jk :mlnmod(Z ! ! ks J 9 It J ),

Az ’ 2Ax ’ Az
(4.10)
which guarantees that no negative values of m emerge in (4.8). We then recalculate
the reconstructed values mff . and myvk Similarly, if either m;\fk or mjs-’ « 1s negative,
we set
Mk — Myk=1 Myjkt1 — Myjik—1
Ay ’ 2Ay

, 2

) M k41 — Mk
7, 7,
(my);,kx = minmod (2 ),

Ay
(4.11)

and recalculate the reconstructed values mik and mi - The minmod function used
in (4.10) and (4.11) is defined as

min{z;} if z; >0V},
J
minmod(zy, 22, ...) := { max{z;} if z; <0Vj, (4.12)
J

0 otherwise.
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The description of the numerical convection—chemotaxis fluxes in (4.6) will be com-
pleted once the local speeds in the z- and y-directions, Qjyi and bj7k+%, are
specified. Since all of the solution components are expected to be smooth, the local
speeds can be approximated using the centered differences and averages as

ajptg = Uil +or(Cat)(ca)jpty and

bjkel = Vjntd +ar(c Cjk+3 )(Cy)j,k+%7

where
_ Gtk — Gk _ 1 W e | w
(Ca)jrgn = Ay 0 litsk T 5(%,1@ FUSR)y Gt = §(Cj,k + e,
_ Cik+1l —Cjk _loN s 1N s
(cy)jres = Ay » Vikyl = §(Uj,k + V5 kt1)s  Cirtd = §(Cj,k + €5 gt1)-
E,W,N E N . . .
Here, the point values ¢, kw S , U j”kw, and v; kS are obtained using the same piece-

wise linear reconstruction, Which was used to compute the corresponding values of
m in (4.8), but now applied to the point values ¢; = c(z;, Yk, t), wjr = w(z;, Y, t),
and vj , =~ v(z;, Yk, t), respectively.

Finally, the centered numerical diffusion fluxes in (4.5) are approximated by

o _ Pivdk (mj+17k _ Mk
3k Ar \ bk ik
B B (4.13)
o Pkt (mj,k+1 B mj,k)
ikts Ay \ e )

where (bj,k? = ¢($j7yk)7 ¢j+%,k = ¢(xj+%7yk)7 and ¢j,k+% = ¢(xj7yk+%)

Time discretization. The semi-discretization (4.3) results in the system of time-
dependent ODEs, which we integrate using the second-order strong stability-
preserving (SSP) three-step method Ref. 19. This results in

3 3 3
—0+1 __ —/ x,l x,l y, L Y,
mikt = e - B - (i - )

2

3 x Ll L y,l l—é 2
+§>\<Gj+%yk—Gj_ )+ M(GJ - Gjyk_l) +oman (419)

where At is the time step, A := At/Ax, p = At/Ay, t* .= (AL, m;jk =y (tY),

z,l _ # y,L Y 0 x,l _ # Y.L ._
F+27k : F]er k( ), Fj+%)k = Fj+%,k(t ), Gj,lc-s- : Gkar (t*), and Gj)k+% =
y
GANG)

The resulting fully discrete scheme (4.14) is positivity preserving in the sense
that m 1" > 0 for all j,k provided M, > 0 and m;,> > 0 for all j,k and
At is sufﬁmently small. In order to prove this, we first note that the convection—
chemotaxis numerical fluxes (4.6) can be rewritten as

1+sign(a, 1) 1 —sign(a; 1)
N Jta.k Jta.k
ij+2,k [Ty <22 mEkJr %mﬂ_l)k (4.15)
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and

1+sign(b, i 1) 1 —sign(b; 1)
N J,k+ 3,k+
F;{Hé - J‘,k+5< 2 ; m?fk 2 - mikﬂ , (4.16)

and by the conservation property of the piecewise-linear reconstruction (4.7) the
identity

_ 1_
My = g (mie +ml +miy +mSy) + S, (4.17)

| =

holds. Note that the quantities a; 1 4, b; 41, and m?’kw’N’S in (4.15)—(4.17) are
evaluated at time level t = t*. We then substitute (4.13) and (4.15)—(4.17) into
(4.14) to obtain

—_— 3 1 i
it = 3 [ ol st )

+)\|aj+%7k|(1 - Sign(aj+%’k))mﬂ1’k

1 .
+ [8 = Aoz k(1= Slgn(%—;,k))]mm

+)\|aj7%’k’(1 + sign(aj,%’k))m?q,k
_1 . T
+,u|bj,k+% | (1- sign(bj7k+%))mgs‘,k+1

o _
|5 by | (1 signlbyy)) i

+ by [ (14 Sign(bj,k—ﬁ)m?k—l}

+3{<1 _ At[%*i"’“ +¢j—%,k n ¢j,k+% + ¢j,k—§]> mfk

2|\4 ¢j.k(Ax)? ?j.1(Ay)?

At <¢j+;,k —y Dj—1k _, >

+ (Az)2\ bj1n Mjt1,k b1k Mi—1,k
At Gjprt Gjp—1 _ 1_,_
+ (Ay)2 <¢‘k+j mﬁk_,_l + ¢ kij mfyk_l + imj’k2' (418)
Js JR—

As one can see from (4.18), the new values {T_nﬁgl} are linear combinations of

the non-negative cell averages {mﬁ «} and {mfj}, and the reconstructed point

value {m?’kW’N’S}, which are also non-negative since they are computed using the
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positivity preserving piecewise linear reconstruction (4.8)—(4.12). Thus, as long as
the following CFL condition is satisfied:

_ 2 2
At < lmin{ Ax ’ Ay 7 4¢;(Ax)*(Ay) },
16 Umax  bmax (¢j,k+% + ‘lsj,kf%)(Ax)z + (¢j+%,k + (bjf%,k)(Ay)Q
(4.19)
where
Umax '= H}f}}““ﬁ%,kuv bmax = H}f;‘cx{}bj,mé I} (4.20)

the linear combination in (4.18) is a convex combination, which implies the non-
negativity of mfjgl for all 7, k.
Finally, since m = ¢n and ¢(x) > 0 for all &, we conclude that ﬁﬁgl > 0 for all

g, k.

Remark 4.1. Note that the inequality (4.19) should be satisfied at every time
level ¢ = t¢, but since we use the three-step time discretization method, we have
to choose a fixed At at time ¢ = 0, when the data require to be used to evaluate
the maxima in (4.20) are not available yet. We therefore replace amax and bpyax in
(4.19) with their a priori upper bounds, which should be valid for all ¢ and can be
obtained for any problem at hand.

Remark 4.2. We note that we obtain ﬁjl)k and Tzﬁk at the first two time steps
using the first-order forward Euler time discretization.

4.2. Second-order projection finite-difference method
for the Navier—Stokes and oxygen equations

Equipped with the obtained values ﬁﬁgl, we now construct a second-order pro-

jection finite-difference method for Ec,ls. (3.2)—(3.4) by following the approach
from Refs. 21 and 40 proposed in the context of the Cahn—Hilliard—Navier—Stokes
system.

We begin with the second-order time discretization of (3.2)—(3.4), which is based
on the projection method and the BDF method with Adams—Bashforth extrapo-
t x c(z,y,th), u ~ u(z,y,t"), and
, w1 and p?*! by solving the following

lation. Assuming that nftl ~ n(x7y7té+1)7 c
pe ~ p(z,vy, tl) are available, we obtain it
equations:

3t — gl 4 ull
2At

® + du* - Vu* + Sc oV’

=ScV - (¢Va™) + Scygnttlz, (4.21)

3(u£+1 _ ,ﬂlJrl)

A7 +Sc Vit =0, (4.22)
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V- (putth) =0, (4.23)

Pt =gt (4.24)
el — 4ot 4 o1 i .
AL +ou"" - Ve

l(1 —¢)(c = 1), (4.25)

=0V - (pVeTY) — Br(c*)gnTt — -

(-1 l—

where u* := 2u’ — uf~!, ¢* = 2¢f — ¢~ 1, and ¥+ is an auxiliary variable.

The scheme (4.21)—(4.25) is implemented in the following way. First, we solve
the elliptic equation (4.21) for o't subject to the boundary conditions specified in
(3.5)—(3.6) for u. We multiply both sides of (4.22) by ¢, take the divergence of the
result, and use the divergence-free condition (4.23) to obtain the elliptic equation
on 1pf*1

V@Vt = 50V (o), (4.26)
which is solved subject to the homogeneous Neumann boundary condition V)¢t -
v = 0 prescribed on Q. Next, we substitute the computed ¥**! into (4.22) and
(4.24) to obtain w‘*! and p‘*!. Finally, we substitute w‘*! and n’*! into (4.25)
and obtain the elliptic equation for ¢/+!

condition specified in (3.5) and (3.6).

, which is solved subject to the boundary

Remark 4.3. It is shown in Ref. 20 that the scheme (4.21)—(4.24) without the

source term Scy¢n’T'z is unconditionally stable.

Remark 4.4. We note that we obtain u!, p', and ¢! at the first time step using the
following first-order time discretization, which is based on the projection method
and the backward Euler method:

~ (41 o ¢

¢% -+ ¢’U,E . VUZ + SC¢VPE =S¢V - (¢Vﬁé+l) + SCW¢nZ+1Z’
041 e+l

V- (¢u™h) =0,
AL ot ot )

b—pp  Tou Ve

— 6V - (V) — Br(c)pnt — 5%(1 _ @) - 1),

Spatial discretization. We now denote the point values of u, v, p, and ¢ at the
cell centers (z;,yx) at time level t = ¢ by uf,, ¢f,, p{,, and ¢}, respectively,
and apply the second-order central difference approximations to construct a fully
discrete scheme.
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First, we discretize equation (4.21) and use the cell averages nﬁgl obtained in
Sec. 4.1 to update u“‘l and vf}*;l by solving the linear systems

~f+1 /-1 * *
3ujk 74ujk+u & o Ui, — U5k

ik 2AL ik 2Ax

¢ ¢

o Wikt~ Wik Pitik —Pj1k
U tSe

' 2Ay 2Ax

~0+1 e+l o~ 41
¢3+ ( ]+1 kT Uk ) — ¢j—%,k(“ﬂ Uy, k)
(Az)?
041 ~ 041 041~

¢j,k+ (U Uj k1 — Uk ) — (bj,kf—(ugk U 1)

(Ay)? ’

+ Sc

and

@+1 Vi -1 * *
p 3vjk — 4y, + o5 by, Sk = Yk
J 2A¢ Ik 2Ax Jk 2Ay

V) ¢
D —DPig_
+ Sc —j’k+12A k=1 S(:'ynerl
Yy

1 041 ~l41 ol
¢g+2,k( i1,k — Yik ) — ¢j7%,k(vj,k - ”j—l,k)
(Az)?
~e+ ~0+1 ~O+1  ~0+1
Gt Uit = U5k ) = G105 = 05000)
(Ay)? ’

for {ﬂftl} and {5]{7;1}, respectively. We then discretize equation (4.26) and obtain

= Sc

+ Sc

¢+ by solving the linear system

1 ¢ ¢ ¢
¢j+%,k(wjiik - T/Jjj;l) - ¢'_7 k(w J/rfl 7/’jﬂ,k)

(Az)?
e+1 o+l 041 £+1
" ¢j,k+%(¢j,k+1 - wj,k ) - qj)j,k (% k Q/Jj,kﬂ)
(Ay)?
~¢ ~¢ ~¢ ~¢
_ 3 Gkl 1 g — G-kl N Gj k10, 1y — k10, 41
2Sc At 2Azx 2Ay '

Next, we find uf';l, f"‘,‘cl, and pJ ! by discretizing (4.22) and (4.24) as follows:

el el
04+1 _ ~04+1 28 A wj‘i‘Lk wj‘Lk

w e = — =Sc At
7 B 3 2Ax
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4101
1 ~e+1 2 Vikt1 — ¥k
vt =07 — =Sc At—1— 7 —
ok Bk 3 2Ay ’

/+1 _  l+1 ¢
Pix = ¥ik TPk

Finally, we discretize (4.25) and update cﬁcl by solving the linear system

€+1 l—1 * *
6|2 — AR TG Gk — G £ |yt Cikt1 ~ Gk
J» IAL 3.k 2Ax 2Ay
{41 {+1 {41 £+1
B 5¢j+é7k(cj+1,k — k) = 9i-3kleii —¢Tig)
(Az)?
0+1 0+1 R L+1
+§¢j,k+§(cj,k+1 —Cik ) — ¢j,k—l( ik Cjk— 1)
(Ay)?

~ (Gt = (1 - (! - 1),

4.3. Numerical boundary conditions

359

The boundary conditions on oy are given by (3.6), which is implemented using

m = ¢n and the ghost cell technique as follows:

—Z _d)JO—é e 0 ¢ ¥
M0 =g Mt Ujo=vjo=0, ¢o=c

Vi, L.

7,1

The boundary conditions on [ are given by (3.5). We first rewrite the second
equation in (3.5) as d(Inn)/0v = adc/Ov, which can be easily integrated on each
of the three sides of I'. We then use m = ¢n and the ghost cell technique to end up

with the following boundary conditions for the corresponding three sides:

—y Dok —o a(l—ci ) o 0 00 0
My = 7¢1 - my € Ty U = Utk Yok = Viks Cok = L,
—/ ¢N+1 k —Z a(l—cn k) 0 _ L

Myy1,x = ON 1 my, € Ty UNy1,k = UN K

¢ o ¢ _
UNt1,k = UNgs  CN41k = Ls

_Z ¢J M+1 —p Oé(lfC' 1\/[) V4 L
Mj M1 = — My py€ PN U My = UM
QS],M

) _ e 1 _
ViM+1 = Y5Mm GG M+1 = 1,
for all j, k, and /.

4.4. Summary of the numerical algorithm

Before demonstrating the performance of the proposed diffuse-domain-based numer-

ical method, we summarize our approach for solving systems of PDEs in complicated

domains in the following algorithm.
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Algorithm 4.1. Hybrid finite-volume finite-difference method.
Data: The studied system of PDEs in a complex domain.

Step 1: Use the diffuse-domain method to reformulate this system properly.
Step 2: Perform asymptotic analysis of the reformulated system:

if the diffuse-domain model asymptotically converges to the original system
then

‘ go to Step 3;
else

‘ go back to Step 1;
end
Step 3: Numerically solve the modified system on a uniform Cartesian mesh
in a large rectangle containing the original domain.

Result: Numerical solution of the studied system of PDEs.

5. Numerical Examples

In this section, we apply our new high-resolution method to simulate the bioconvec-
tion patterns of the oxygen-driven swimming bacteria in different sessile drops. In all
of the examples, we use a uniform mesh with Az = Ay = 0.01 and At = 6.25x1076,
which is chosen according to (4.19) and Remark 4.1. We fix the thickness of the
diffuse-domain boundary to be ¢ = 0.01. We follow Ref. 44 and choose the cut-off
function r(c) being (1.2) with ¢* = 0.3, and the following parameters: o = 10,
0 = 5, and Sc = 500. The values of § and « will vary and will be specified
below.

The selection of the numerical experiments is motivated by the bacterial swim-
ming and oxygen transport dynamics in sessile drops; see Ref. 44. We begin with
Examples 1 and 2, where one can observe the formation of the stable stationary
plumes (also shown in Ref. 15) in sessile drops of two different shapes as well
as the behavior of the bacteria and fluid near solid-air-water contact lines. It is
worth noting that the geometry of sessile drops is so complex that it is difficult to
use standard numerical methods directly for such domains. Moreover, the plots of
time evolution of kinetic energy are shown to verify the asymptotic stability of the
system. We then increase the length of the drops in Examples 3 and 4 to study
the influence of droplet geometry on the nonlinear dynamics of the model (1.1).
In addition, we consider the case of larger cell density, which may result in more
complicated bacteria propagation dynamics: Indeed, mushroom-shaped plumes will
form in Examples 5 and 6, and this phenomenon is similar to the experimental one
shown in Ref. 25. Finally, in Examples 7 and 8, we consider the cases of sessile
drops surrounded by oxygen (this would occur when droplets are placed on superhy-
drophobic surfaces): Bioconvection phenomena in such cases are also interesting to
study.
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5.1. Stable stationary plumes

In this section, we consider four sessile drops of different shapes determined by
a given function f(z,y) representing the original domain Q = {(x,y)| f(z,y) >
0,y > 0}, for which we compute the signed distance function d(z,y) to T' =
{(z,y)| f(z,y) = 0,y > 0} needed to obtain the diffuse-domain function ¢(x,y);
see (3.7). In order to implement the proposed diffuse-domain-based method, € is
imbedded into a larger domain €, which is taken either Q = [5,5] x [0, 1.5] (Exam-
ples 1 and 2) or Q = [~7.5,7.5] x [0,1.5] (Examples 3 and 4).
In Examples 1-4, we take the parameters 8 = 10 and v = 1000.

Example 1. In the first example, we solve the system (3.1)-(3.8) subject to the
following initial data:

1 ify > 0.499 — 0.01sin(r(z — 1.5)),
n(z,y,0) =
0.5 otherwise,

o(z,y,0) =1, u(z,y,0) = v(z,y,0) =0,
which is prescribed in the domain ) determined by

4.8+ 2z — (0.9y +0.2)2 — 0.1(0.9y + 0.2)16 if z <0,

flzy) =
4.8 —x — (0.9y +0.2)% — 0.1(0.9y + 0.2)'6  otherwise;

see the upper left panel in Fig. 3, where the shape of the drop and initial cell density
are plotted.

The time evolution of the cell density n is also shown in Fig. 3. As one can see,
the bacteria first (¢ = 0.1) aggregate along the boundary I' as the concentration

n(z,y,t =0 t=0.1
s (z,y, ) s n(z,y, )
OS—D 05' .:
n(z,y,t=0.2) t=0.3
15 Y, P n(z,y, )
Os_ﬂ 05l l:
n(z,y,t=1) t=2
15 Y, s n(x,y, ) .1
i
2 A 0 1 2 3 4 5
n(z,y,t = 6) c(x,y,t =6)

15 1 15
Fig. 3. (Color online) Example 1: Time snapshots of the computed cell densities n at different
times and the computed oxygen concentration ¢ at the final time.
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x10%

0 0.5 1 1.5 2
t

Fig. 4. (Color online) Example 1: Time-evolution of the kinetic energy |lull2q)-

of the oxygen is high there, but then (¢ = 0.2) the gravity forces start playing an
essential role and some of the bacteria fall down forming the plumes (¢ = 0.3) both
at the corners and in the middle of the drop. Later on, the shape of the plumes
slightly changes (¢ = 1) and by time ¢t = 2 the plumes are already stationary
(compare with the cell density at the very large time ¢ = 6). For the sake of brevity,
we plot the c-component of the computed solution only at time ¢ = 6. The obtained
results confirm the ability of the proposed numerical method to capture stationary
plumes in a stable manner.

In order to numerically verify the stability of the plumes, we check the time
evolution of the kinetic energy (see Fig. 4), which clearly converges to a constant
value. In addition, we plot the velocity field together with the n = 0.7 cell density
level set at time ¢t = 1 (see Fig. 5), which illustrate how the stationary plumes are
supported by the fluid.

We note that the obtained results are in a very good qualitative agreement
with the results reported in Ref. 15, where the system (1.1) was considered in a
rectangular domain subject to the periodic boundary conditions in the horizontal
direction. In addition, the diffuse-domain-based numerical method proposed here is
capable of treating non-rectangular domains and resolving the accumulation layers
at the drop corners and creation of vortices there.

Fig. 5. (Color online) Example 1: Velocity field w and the n = 0.7 level set at time ¢t = 1.
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n(z,y,t=0) n(z,y,t =0.1)
1 45 I1
i 05
2 A 0 1 2 3 4 5
(z,y,t =0.2) n(z,y,t = 0.3)
_ﬂ1 15_
1 . . P 05 '
n(z,y,t = 0.5) n(z,y,t=1)
m 1 wsm
n(z,y,t = 6) c(x,y,t =6)

15 1 oas
1
e m
0
-5 -4 -3 -2 -1 0 1 2

Fig. 6. (Color online) Example 2: Time snapshots of the computed cell densities n at different
times and the computed oxygen concentration ¢ at the final time.

Example 2. Next, we consider the same initial setting as in Example 1 but in a
sessile drop of a different shape determined by

48+ 7 — |15y — 0.7525 — (1.5y — 0.75)10 if <0,
fl,y) =
4.8 —z — 1.5y — 0.75/*% — (1.5y — 0.75)'%  otherwise.

Compared with the drop in the previous example, this one has rounded edges while
still having a flat bottom interface; see the upper left panel in Fig. 6, where the
shape of the drop and initial cell density are plotted.

The time evolution of the cell density n is also shown in Fig. 6. As one can see,
the evolution process is similar to the one in Example 1 with the only exception
that the structure of the aggregated area at the edges of the drop is different as the
oxygen supply is available underneath that part of the drop considered here. The
solution converges to a stationary state containing bacteria plumes, which can be
seen in the bottom row of Fig. 6 (the oxygen concentration ¢ at the final time ¢ = 6
is also shown there). The convergence towards the steady state is also confirmed by
following the time evolution of the kinetic energy (Fig. 7), which clearly flattens by
time ¢t = 1. As in Example 1, we also plot the velocity field together with the n = 0.7
cell density level set at time ¢t = 1 (Fig. 8), which illustrate how the stationary
plumes are supported by the fluid.

Once again, we emphasize that the proposed diffuse-domain-based numerical
method is capable of numerically solving the fluid-chemotaxis system in rather
complicated domains.
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x10%
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N
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t

Fig. 7. (Color online) Example 2: Time-evolution of the kinetic energy [lull 12 q)-

Fig. 8. (Color online) Example 2: Velocity field w and the n = 0.7 level set at time ¢t = 1.

Example 3. In the third example, we consider the same initial setting as in Exam-
ple 1 but the drop is now longer. Its precise shape is determined by

2

48 + qw - 0.9y +0.2)% = 0.1(0.9y + 0.2)'® if x <0,
flz,y) = )

48— gz - (0.9y +0.2)% — 0.1(0.9y + 0.2)*®  otherwise;

see the upper left panel in Fig. 9, where the shape of the drop and initial cell
density are plotted. The time evolution of the cell density n as well as the profile
of the oxygen concentration c at the final time ¢ = 2, by which the solution reaches
its steady state, are also shown in Fig. 9. As one can see, the proposed numerical
method can handle longer drops and the only qualitative difference between the
steady states here and in Example 1 is in the number of plumes emerging during
the evolution process.

Example 4. The final example of this section is a modification of Example 2 as
we now take a longer drop determined by

2

48+ — 1.5y — 0.75/*° — (1.5y — 0.75)** if 2 <0,
flz,y) = )

48— cw - 1.5y — 0.75/*5 — (1.5y — 0.75)**  otherwise;
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n(z,y,t =0)

—:

nLyJ701

ﬁ:

nT?,t—OZ
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Fig. 9. (Color online) Example 3: Time snapshots of the computed cell densities n at different
times and the computed oxygen concentration c at the final time.

see the upper left panel in Fig. 10, where the shape of the drop and initial cell
density are plotted. The time evolution of n, which converges to the steady state
by t = 2, together with the profile of ¢ at the final time can be also seen in Fig. 10.
The obtained stationary solution contains two additional plumes compared with
the solution reported in Example 2, but rather than this these two solutions are
qualitatively similar, which confirms the robustness of our numerical method.

5.2. Mushroom-shaped plumes for high-density data

In this section, we choose the parameters 8 = 100 and ~ = 10,000, which correspond
to a 10-times larger reference cell density n,; see (2.2). The evolution process will
now be substantially faster so that we conduct the simulations for a shorter period
and take the final time ¢ = 0.5.
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Fig. 10. (Color online) Example 4: Time snapshots of the computed cell densities n at different
times and the computed oxygen concentration ¢ at the final time.

The goal of the simulations reported in Examples 5 and 6 is to demonstrate
the ability of the proposed diffuse-domain-based numerical method to handle more
complicated bacteria propagation dynamics, which are expected to occur when the
reference cell density n,. is larger.

Example 5. In this example, we use precisely the same shape of the drop and
initial data as in Example 1. The time evolution of the computed cell density n is
shown in Fig. 11. As one can see, compared with Example 1 heavier mushroom-
shaped plumes are formed by time ¢ = 0.08. Later on (by time ¢ = 0.1) these
plumes are disintegrated and a part of the bacteria fall to the bottom of the drop
and become inactive due to the low oxygen concentration there. After that, smaller
mushroom-shaped plumes are re-emerged and then disintegrate several times. At
the same time, one can observe the propagation of the bacteria along the top part
of the drop towards its corners. Eventually, the evolution process seems to converge
to the steady state by the final time ¢ = 0.5 as confirmed by the stabilization of the
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Fig. 11. (Color online) Example 5: Time snapshots of the computed cell densities n at different
times and the computed oxygen concentration ¢ at the final time.
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Fig. 12.  (Color online) Example 5: Time-evolution of the kinetic energy ||u||p2(q)-

kinetic energy by then; see Fig. 12. It may also be instructive to see the final time
distribution of the oxygen concentration ¢ (see the bottom right panel in Fig. 11),
which indicates that after falling down the bacteria in the lower part of the drop
remain inactive.
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Fig. 13. (Color online) Example 6: Time snapshots of the computed cell densities n at different
times and the computed oxygen concentration c at the final time.

Example 6. In the next example, we use precisely the same shape of the drop
and initial data as in Example 2. Time snapshots of the computed cell density n
at different times are shown in Fig. 13. In principle, the time evolution is quite
similar to what was observed in Example 5, but due to the difference in the shape
of the drops, several distinctive features can be seen. While the mushroom-type
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Fig. 14. (Color online) Example 6: Time-evolution of the kinetic energy [|ul|p2(q)-

plumes formed at about ¢ = 0.08 are qualitatively similar to those in Fig. 11, the
solution at later time develops a different symmetry: by the time ¢t = 0.16-0.17 three
plumes (one in the center of the drop and two plumes propagating to the sides)
are formed. Later on they keep disintegrating and re-appearing and by ¢ = 0.24,
one can see only one plume, which remained in the center of the drop as the other
two plumes practically merged with the top boundary cell layer. After that, the
remaining plume keeps disintegrating and re-emerging until the solution reaches
its steady state. This convergence is confirmed by the stabilization of the kinetic
energy (see Fig. 14) and also by the final time oxygen distribution (see the bottom
right panel in Fig. 13).

5.3. Plumes in sessile drops surrounded by oxrygen

In this section, we consider the sessile drop surrounded by oxygen. The shape of
the drop is determined by the function

fo) 48 +x — 1.5y — 0.95125 — (1.5y — 0.95)10 if <0,
T, Y) =

4.8 —z — 1.5y — 0.95/>% — (1.5y — 0.95)'° otherwise,
representing the original domain Q = {(z,y)| f(z,y) > 0,y > 0.1}, for which we
compute the signed distance function d(z,y) to

892{(x,y)|f(x,y) ZO,y>0.1}U{(l‘,y)|f(I,y) >O’y:O'1}

needed to obtain the diffuse-domain function ¢(z,y) in (3.7). In order to implement
the proposed diffuse-domain-based method, €2 is imbedded into € = [—5, 5] x [0, 1.5].

Unlike the drops considered up to now, here we model the drop surrounded by
oxygen. Therefore, the boundary conditions

v-u=0, v-Vu-7)=0, (anVec—Vn)-v=0, c=1, VY(z,y) € 09,

which were used along the top portion I' in (2.8), are now set along the entire
boundary 9f2.
We solve the system (3.1)—(3.4), (3.7), (3.8) subject to the boundary conditions

v-Vu=0, (anVe—Vn)-v=0, c=1, Y(zy)ec N
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Fig. 15. (Color online) Example 7: Time snapshots of the computed cell densities n at different
times and the computed oxygen concentration c at the final time.

instead of the previously used (3.5)—(3.6), and the following initial data:

1 if y > 0.599 — 0.01 sin(w(x — 1.5)),
n(x? y7 0) =
0.5 otherwise,

0(1‘7%0) = 1a ’U,(i&y,O) = U(.’E,y, O) =0.

Example 7. In this example, we take § = 20 and v = 2000 and we compute
the solutions until the final time ¢ = 5. In Fig. 15, the computed cell densities at
different times are plotted along with the oxygen concentration, which is shown at
the final time only. The major difference between this example and Examples 1-6 is
that the oxygen is now accessible around the entire boundary of the drop. Therefore,
the bacteria immediately start propagating along the boundary towards the lower
part of the drop (this can be seen even at a small time ¢ = 0.1). At the same time,
the gravity causes the formation of the plumes (see, e.g. the solution at ¢ = 0.2).
These plumes are unstable and later on more plumes are formed. At larger times,
a small plume at the center of the drop is merged and it seems to be stable as the
solution converges to its steady state by the final time; see also Fig. (16), where the
kinetic energy is depicted.

Example 8. The final example is similar to Example 7 with the only exception that
here we take 5 = 40 and v = 4000. These values correspond to a twice larger refer-
ence cell density n,., which leads to a faster dynamics. Indeed, as one can clearly see
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Fig. 17. (Color online) Example 8: Time snapshots of the computed cell densities n at different
times and the computed oxygen concentration c at the final time.
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Fig. 18. (Color online) Example 8: Time-evolution of the kinetic energy ||ul|.2(q)-

from Figs. 17 and 18, the solution converges to its steady state substantially faster
than in Example 7. It should also be observed that the obtained steady state quali-
tatively different from the one reported in Fig. 15: the steady state now contains two
plumes (not only one plume as in the previous example) and there is a slightly larger
concentration of bacteria in the internal part of the drop (this can be clearly seen
from the final time oxygen distribution shown in the lower right panel of Fig. 17).
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6. Conclusion

In this paper, we have introduced a new positivity preserving and high-resolution
method for the coupled chemotaxis-fluid system in a sessile drop. Our method is
based on the diffuse-domain approach, which is implemented to derive a cf-DD
model. We have shown that the obtained cf-DD system converges to the original
chemotaxis-fluid system as the thickness of the diffuse-domain interface shrinks to
zero. In order to numerically solve the resulting cf-DD system, we have developed
a second-order hybrid finite-volume finite-difference method, which preserves non-
negativity of the computed cell density.

We have tested the proposed diffuse-domain-based method on a number of
numerical experiments, in which we have not only demonstrated the ability of our
method to handle complex computational domains, but also systematically studied
bacteria collective behavior in sessile droplets of a variety of different shapes. It
has been observed that when the amount of bacteria is moderate, stable station-
ary plumes are formed inside the droplet and substantial amount of the bacteria
will aggregate in the corners of the droplet while creating vortices there. When the
amount of bacteria is increased, the finger-like plumes flare out into mushroom-
shaped plumes, which are, however, unstable and disintegrate in time. At the same
time, the solutions converge to nontrivial steady states in all of the studied exam-
ples. Based on the obtained numerical results, we conjecture that the evolution
of bacteria is related to both the total amount of bacteria in the droplet and the
shape of the droplet. The main goal of the presented simulations is to demonstrate
that the proposed numerical method can provide one with a valuable insight on the
bacteria collective behavior in complex geometries, whose detailed study is left for
the future work.
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