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Abstract. We develop new adaptive alternative weighted essentially non-oscillatory (A-
WENO) schemes for hyperbolic systems of conservation laws. The new schemes employ
the recently proposed local characteristic decomposition based central-upwind numeri-
cal uxes, the three-stage third-order strong stability preserving Runge-Kutta time inte-
grator, and the fth-order WENO-Z interpolation. The adaptive strategy is implemented
by applying the limited interpolation only in the parts of the computational domain
where the solution is identi ed as rough with the help of a smoothness indicator. We
develop and use a new simple and robust local smoothness indicator (LSI), which is ap-
plied to the solutions computed at each of the three stages of the ODE solver. The new
LSI and adaptive A-WENO schemes are tested on the Euler equations of gas dynamics.
We implement the proposed LSI using the pressure, which remains smooth at contact
discontinuities, while our goal is to detect other rough areas and apply the limited in-
terpolation mostly in the neighborhoods of the shock waves. We demonstrate that the
new adaptive schemes are highly accurate, non-oscillatory, and robust. They outperform
their fully limited counterparts (the A-WENO schemes with the same numerical uxes
and ODE solver but with the WENO-Z interpolation employed everywhere) while being
less computationally expensive.
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1. Introduction

This paper focuses on developing high-order nite-difference methods for hyperbolic
systems of conservation laws. We consider one-dimensional (1-D),

U, +F(U), =0, (1.1)
and two-dimensional (2-D),
U.+F(U), +GU), =0, (1.2)

systems, though the proposed techniques can be directly extended to higher-dimensional
cases. Here, x and y are spatial variables, t is the time, U R? is a vector of unknown
functions, and F : RY  R? and G: R? RY are nonlinear uxes.

It is well-known that solutions of (1.2) may develop complicated wave structures, in-
cluding shocks, rarefactions, and contact discontinuities, even when the initial data are
in nitely smooth. Therefore, it is challenging to develop highly accurate and robust nu-
merical methods for (1.2). We refer the reader to various existing numerical methods, in-
cluding high-order ones, e.g., the monographs and review papers [8,30,35,40,55,56,60]
and references therein.

Semi-discretization of (1.1) and (1.2) offers one of the popular frameworks for con-
structing high-order nite-volume and nite-difference schemes: the spatial derivatives
are approximated using appropriate numerical uxes. At the same time, the time evolution
is conducted with the help of a high-order and stable ODE solver. To achieve a high or-
der of spatial accuracy, the numerical uxes must be evaluated using the point values of U
obtained by an appropriate piecewise polynomial reconstruction (interpolation) of the com-
puted solution. In order to enforce nonlinear stability, the reconstructions have to employ
nonlinear limiters designed to prevent spurious oscillations in the nonsmooth parts of the
solutions. Popular nite-volume reconstructions, such as essentially non-oscillatory (ENO)
(see, e.g., [1,28,29,56]) and weighted ENO (WENO) (see, e.g., [6,31,44,55,56]) ones
are highly accurate, but typically nite-volume ENO and WENO schemes are computation-
ally expensive, especially in the multidimensional case. More ef cient implementations of
ENO and WENO reconstructions can be carried out within the nite-difference framework
in a dimension-by-dimension manner; see, e.g., [7,11,12,31,57,58]. Unfortunately, the

nite-difference schemes, which are directly based on nite-volume reconstructions, rely on

ux splittings, substantially increasing the amount of numerical diffusion present in nite-
volume ENO and WENO schemes. This drawback of nite-difference WENO schemes was
overcome in [32] (also see [43]), where alternative WENO (A-WENO) schemes were in-
troduced. A-WENO schemes employ standard nite-volume numerical uxes (without any
need for ux splitting and related modi cations), whose accuracy, in the context of nite-
difference schemes, is limited to the second order, while a high order is achieved using
the ux Taylor expansion and high-order WENO-Z interpolations, which were developed
in[16,21,32,43,64]. For several recent AAWENO schemes based on different nite-volume
numerical uxes, we refer the reader to [62-64].
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Even though WENO-Z interpolations are relatively computationally inexpensive and
can be applied in a dimension-by-dimension manner, the computational cost can be further
reduced by avoiding the use of any nonlinear limiters in the smooth parts of the solution
as it was done in the context of hybrid WENO schemes; see, e.g., [14,41,46]. In general,
in order to derive a robust scheme adaption technique, one needs to detect nonsmooth
parts of the solution ef ciently. This can be done in many ways using various existing
smoothness indicators. In [2,46], a very simple indicator based on undivided differences
was introduced. In [9,10], discontinuities were detected using Richardson-type estimates
of the local truncation error of the solution. A total variation based troubled-cell indicator
was developed in [50,66]. A more heuristic approach is examined in [47,51], where the
local wave strengths of the upwind scheme were used as a measure of solution smoothness.
In [3-5,14], multiresolution coef cients of wavelets expansions were used. In [22,23], the
edges in the computed solution were detected using its Fourier coef cient. One can also
identify the rough parts of the computed solution using the numerical production of entropy
(see, e.g., [48,49]), the entropy residual (see, e.g., [26,27]), or the weak local residual (see,
e.g., [15,33,34]).

In this paper, we develop a new, very simple, and robust local smoothness indicator
based on the Taylor expansion in time, applied to the computed solutions obtained at each
stage of the three-stage third-order strong stability preserving (SSP) Runge-Kutta solver;
see, e.g., [24,25]. We rst demonstrate that the proposed LSI can accurately detect smooth
and nonsmooth solution regions. We then apply the new LSI to design the following scheme
adaption strategy in the context of the A-WENO schemes: we use the fth-order nonlinear
WENO-Z interpolation in the detected rough parts of the computed solutions while em-
ploying a nonlimited fth-order interpolants in smooth areas.

The developed scheme adaption strategy is implemented using the recently proposed
local characteristic decomposition based central-upwind numerical ux from [13] and ap-
plied to both the 1-D and 2-D Euler equations of gas dynamics, for which we design the
LSI based on the pressure rather than on the density or any other conservative variable.
This choice is motivated by the results obtained in [15], where it has been demonstrated
that applying a nonlinear stabilization mechanism is crucial for the shock areas while iso-
lated linearly degenerate contact waves can be accurately captured using the nonlimited
high-order reconstruction. We test the resulting adaptive fth-order A-WENO scheme on
several numerical examples and demonstrate that it outperforms the corresponding fth-
order A-WENO the scheme, which is implemented without the proposed adaptation, that
is, employs the WENO-Z interpolation throughout the entire computational domain.

The paper is organized as follows. In Section 2, we brie y describe the proposed 1-D
and 2-D fth-order AAWENO schemes. In Section 3, we introduce the new LSI and then
illustrate its performance on the Sod shock-tube problem for the 1-D Euler equations of gas
dynamics. In Section 4, we describe 1-D and 2-D scheme adaption strategies based on the
proposed LSI. In Section 5, we present a number of the 1-D and 2-D numerical results to
demonstrate the performance of the proposed adaptive A-WENO schemes and compare it
with the fully limited A-WENO schemes. Finally, in Section 6, we give concluding remarks.
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2. Fifth-Order A-WENO Schemes

In this section, we describe the fth-order nite-difference A-WENO schemes introduced
in [32] (see also [43,62-64]).

2.1. 1-D A-WENO schemes

We  rst consider the 1-D system (1.1) and introduce uniform cells C; := [x;j 1 2,Xj41 2]
of size Xj11 2 Xj 12 x centered at x; = (x; 1 2+ X4 o) 2for j=1,...,N,, so that
the computational domain is [x; 5, Xy 41 2]. We suppose that at a certain time t 0, the
point values of the computed solution, U;(t), are available, and in what follows, we will
suppress the time-dependence of all of the indexed quantities for the sake of brevity.

Following [32], U; are evolved in time by numerically solving the following system of
ODEs:

du. . ,
i _ j+1 2 j 12’ @1
dt x
where ., o is the fth-order accurate numerical ux de ned by
1
+ _ W + 2
j+1 2 Uj+1 Z’Uj+1 2 T j+12 Uj+1 Z’Uj+1 2 2_4( x) (Fxx)j+1 2
7
+ %( x)4(Fxxxx)j+1 2- (2.2)
FV

Here, 412 is a nite-volume numerical ux, and (F,,)j11 2 and (Fyyyy)j+1 2 are the
higher-order correction terms computed by the fourth- and second-order accurate nite
differences, respectively

1
48( x)?

_ 1
(Fxxxx)j+1 2= m Fj 2

(Fxx)j+1 2 = SFJ 2 + 39F] 1 34F] 34F]+1 + 39F]+2 5Fj+3 5

3F; | +2F;+2Fj,, 3F,+Fj;3 ,

where F; := F(U;).

In the numerical experiments reported in Section 5.1, we have used a recently proposed
local characteristics decomposition (LCD) based central-upwind (CU) numerical ux from
[13], which reads as

F, +F,
FV + _ 4+ +
12 U 2Ujn o = 5 D12 Uy 5Ufy 5 s (2.3)
where Dj,; , is the following numerical diffusion term:
F,+F,
+ — 1 J j+1
Div12 Upyy 05Uy p =R 2P 2Ry, F Uy, ——5—

1 +
*tRj11 2Mjn 2Rj+1 2 F Uj+1 2 2

1 +
TR 2Qj11 2Rj+1 2 Uj+1 2 Uj+1 2 @4
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Here, Rj, , is the matrix used for the LCD in the neighborhood of x = x;,; , (see Ap-
pendix B),

Pji1 o =diag (P1)jy1 25--->(Padjs1 2 >
M1 2 = diag (Ml)j+1 2)---;(Md)j+1 2
Qj1 2 =diag (Q1)j41 25--+>(Qadjs1 2

with

(P)js1 2o (Mp)je1 2,(Qi)js1 2
1

( ;r)j+1 2 ()1 25 ( ;r)j+1 2 djy12, if 12> 5
= j+1 2

0, otherwise,

where ;11 5:=( 1)js+12 ( ;)j41 2- The one-sided local characteristic speeds,

( Djpa=max ;AW ,), ;AU],,),0,
i/] . t j+1 2 t i+12 i=1,....d (2.5)
( i )j+1 2 = min i A(U]+1 2) > A(UJ+1 2) > 0 >
are computed using the eigenvalues ;(A) 4(A) of the JacobianA= F U, and

is a very small desingularization constant, taken = 10 !° in all of the numerical examples
reported in Section 5.

In (2.3)-(2.5), Uj 41 o are the right/left-sided values of U at the cell interface x = Xjt1 2
In order to ensure the desired fth order of accuracy, one needs to use a fth order accurate
approximation of the point values U, 41 o- Itis also important to guarantee that the resulting
scheme is (essentially) non-oscillatory. This can be done by implementing a certain nonlin-
ear limiting procedure like the fth-order WENO-Z interpolation from [16, 21, 32,43, 64]
(see Appendix A) applied to the local characteristic variables (see Appendix B), or a certain
adaption strategy like the one we will introduce in Section 4.

2.2. 2-D A-WENO schemes

We now turn our attention to the 2-D system (1.2) and describe 2-D fth-order A-WENO
schemes.

We consider a rectangular computational domain [x; 5, Xy 41 2] [¥1 2, YN, +1 5], which
is covered with uniform cells C; ;. :=[x; 1 2,Xj11 2] [V 1 2,Yk+1 2] centered at (x;j, i) =
(O 12+ X541 2) 2,00k 12+ Yke12) D with x5 X5 19 xand yri12 Yk 12

y forj=1,...,N,and k =1,...,N,. We also assume that the computed point values
Ujr U(xj, yk t) are available at a certain time level t. We then evolve U;; in time by
numerically solving the following system of ODEs:

dUje  ji1 2k i12k jk+l 2 gk 12

2.6
- - . , (2.6)
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where  j,; g and g o are the fth-order accurate numerical uxes de ned by

1
i1 2k = )FJY1 2k U]E,k,U]‘-/YrLk 2—4( x)2(Fey)it1 ok
7
+ %( X)4(Fxxxx)j+1 2,k> (2.7a)

1
_ Fv N S il 2
Jj,k+1 2 — jk+1 2 Uj,k’Uj,k+1 24( y) (ny)j,k+1 2

7 4
+ %( y) (nyyy)j,k+1 2- (2.7b)
Here, ]11’1 o and 11':,\15+1 , are nite-volume uxes, whereas (Fy,)i11 2% (Gyy)jks1 2

(Fyxxx)j+1 2,k and (Gy .y )j k41 2 are the higher-order correction terms computed by the
fourth- and second-order accurate nite differences, respectively

1
(Fex)jr1 24 = 480 x2 SF; 5 +39F; 1 34F;; 34Fj 1, +39F; 5 SFi3y

1
(Frxxx)j+1 2k = 20 0F F; o 3F; 1x+2F; +2F; 1 3Fj ik +Fjy3x »
1
(Gyy)jks+1 2= 23 )2 5Gjx 2+39Gj 1 34Gj; 34Gj;1+39Gj 42 5Gjiye3

1
(Gyyyy)jk+1 2= 3 )7 Gik 2 3Gk 112Gk +2Gjk1 3Gjre2tGjkes
where Fj; := F(U; ;) and G; ;. := G(Uj ).
In the numerical experiments reported in Section 5.2, we have used the 2-D LCD-based
CU numerical uxes from [13]

Fiy+Fiqx

FV E W _ _ E W
J+1 2,k Uj,k’Uj+1,k - 2 +tDji1 2k Uj,k’Uj+1,k ’
2.8
Gkt Gjk+1 (28)
v, uNub = 2—2" 4D, U, US
jk+1 2 ik Yik+1 2 Jok+1 2 Yo Y k41 0
where D 5 and Dj ;4 5 are numerical diffusion terms de ned by
F,,+F;
E W _ 1 E Lk T Tk
DJ'+1 2,k Uj,k’Uj+1,k —Rj+1 2,kpj+1 2J<Rj+1 2,k F Uj,k 2
F, . +F;
1 A\ Lk T j+Lk
TR 2kMjr1 xRy o F U =5
1 w E
T Rjv1 2xQj1 2480 ox Ujsax Ujk > 2.9)
G +G; :
N 7S _ 1 N j,k j,k+1
Djj+1 2 Uj,k’Uj,k+1 =Rj k1 2Pjkn 2Rj,k+1 2 G Uj,k 2
G +G;
1 S j,k j,k+1
FTRjk+1 2Mjks 2R jy1 5 G Ujpyq - 5

1 S N
TRjk+1 2Qjk+1 2R ki1 2 Ui Uje -
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The matrices Rj,q 5 and R; ;1 o are used for the LCD in the neighborhoods of (x,y) =
(Xj+l 2> yk) and (X, J’) = (Xj5 Yk+1 2)5 reSpeCtiVCly, and

Pii1 o =diag (P1)jt1 205 --+>(Pa)jr1 2k »
P11 2 =diag (P1)jk+1 2o-++>(Pa)jk+1 2 »
Mjyq o =diag (M1)i41 26> (Mg 2k
Mj g1 2 =diag (M1)js41 25> (Mgdjpes1 2
Qjy1 2k = diag (Q1)j41 26 ---5(Qadjr1 2k >
Qjk+1 2 =diag (Q1)jx+1 25--+5(Qa)jk+1 2

with

(Pir1 200 Mi)jt1 206 (Qi)i41 2,k

1 .
—( ) ; ( ;r)j+1 2d ()i 20 ( ;r)j+1 okC djx1 2k > i djxa 26>
= i)j+1 2,
0, otherwise,
(P k1 20 (M) a1 25(Qi)j k1 2
1 .
(ot C ks 2o Cigert 20 Djrsr 20 djgrr2 > i Cdjrrr 2>
= i)jk+1 2
0, otherwise.
Here
( i)j+1 2,k = ;L)j+1 2,k ( i )j+1 2,k>
— +
( Dikr12:=0 Djarr2 € )jksr 2
and

Djn gx=max ; AWUS) , AU, ) 0,

(

( ;)j+1 2,k =min A(UEk) i A(UYY i+16) >0 2.10)
( Djks12=max ; B(U; k) B(Usk+1) 0,

(

Djks12=min; BUY) ,  B(Uj,),0 ,

where (A) 4(A) and (B) 4(B) are the eigenvalues of the Jacobians
A= F UandB= G U, respectively

In (2.8)-(2.10), UE U;’le , and UJ " U]Sk ., are the one-sided values of U at the cell
interfaces (x,y) = (x]+1 2 0,y;) and (x,y) = (xj,¥k41 2 0), respectively. In order to
achieve fth-order accuracy, U (W) and UN( ) are, as in the 1-D case, approximated either
using the fth-order WENO-Z 1nterpolant apphed to the local characteristic variables in the
x- and y-directions, respectively, or with the help of the adaptive strategy, which we will
introduce in Section 4.
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3. A New Local Smoothness Indicator (LSI)

In this section, we introduce a very simple LSI, which we will later use as a base for
a scheme adaption strategy.
We rst consider a function (,t) and introduce the following quantity:

D (,t ):=E (,t 2) 2 (,t )+ (,0), (3.1)

where > 0and stand for a certain spatial coordinate. If is smooth, then one can use
the Taylor expansion about the point (,t ) to obtain

2
D (it J=— ult )+ (M. (3.2)

This suggests that for piecewise smooth  the magnitude of D is proportional to 2 in the
areas where is smooth and is (1) elsewhere.

In order to design an LSI based on (3.1), we proceed as follows. We begin with the 1-D
case, denote by U(t) := Uj(t) , and let [U(t)] be the nonlinear operator representing
the right-hand side (RHS) of (2.1). Assuming that the computed solution is available at
a certain discrete time level t = t", we evolve it to the next time level t"™! := t" + t" by
numerically integrating the ODE system (2.1) using the three-stage third-order SSP Runge-
Kutta method, which reads as (see [24,25])

v =v@Om+ ¢ O,
3 1

U =200+ 2 vPE)+ o v (3.3)
1 2

U(g)(t”)=§U(0)(t")+§ udem+ " uBem)

where UQ(t") := U(t"), UD(¢") and U (¢") are the intermediate stage solutions, which
are lower-order approximations of U at time levels t"™! and t"*! 2 := t" + " 2, re-
spectively, and UG)(¢") := U(¢™*1). In (3.3), the time step " is selected based on the
following CFL-based stability restriction:

X
t" ——, a:=max max ( )12 ( (Jis12 - (3.4
2a j

Next, we introduce quantities 5 () = (UJ( )(¢"), = 0,1,2,3, and the corre-

sponding LSI based on (3.1) with = t" 2

1 ®) 3)
ny_ - n n n

Dj(t)—2 j(t) 2j(t)+ j(t). (3.5)

Similarly, the 2-D LSI is given by
1 o @ 3)
ny_ - n n n
Dj,k(t )= 2 j,k(t ) 2 j,k(t )+ j,k(t ), (3.6)

where . (t") := (U]{k)(tn)), =0,1,2,3.
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Remark 3.1. We note that in the formulae (3.5) and (3.6) for the LSI we have not used

Sl)(t") and Sllz(t") as these values are lower-order approximations of the quantities,
(3)
7k

which are more accurately approximated by 5.3)(t”) and 7 (t"), respectively.

While the computation in (3.2) is based on the smoothness of , the LSIs (3.5) and
(3.6) can, in principle, be used for detecting rough areas of nonsmooth computed solu-
tions. However, before these LSIs can be used for the development of the robust adaptation
strategies, one may need to smear the introduced quantities in space by introducing

Ej (t"):= 1

c D; () +4D; (") +D;,,(e") 3.7)

and

— 1
D, (tY==D, ,, (t")+D,

36 j 1,k+1(tn)+D'

i 1)+ Dy ()
+4 D, 1,k(t”)+Dj,k l(t")+Dj,k+1(t")+Dj+1,k(t") +16D].,k(t”)

in the 1-D and 2-D cases, respectively.

In order to verify the plausibility of possible adaptation strategies based on the intro-
duced LSI, we measure its size in the following numerical example in which we compute the
solution of a benchmark using the fully limited A-WENO scheme that employs the WENO-Z
interpolant throughout the entire computational domain (see Section 2.1).

Example 3.1 (Sod Shock-Tube Problem for Euler Equations of Gas Dynamics). We consider
the 1-D Euler equations of gas dynamics, which reads as

t+( u)x :O,
( W.+( v®*+p), =0, (3.8)
E, +[u(E+p)l, =0,

where , u, p, and E are the density, velocity, pressure, and total energy, respectively. The
system (3.8) is completed through the following equations of state:

p=( 1 E 12 u*, (3.9)

where the parameter represents the speci c heat ratio (we take = 1.4). We consider
the following initial conditions [59]:

(1,0,1.0), x < 0.5,
( ,u,p)(x,0) = (3.10)
(0.125,0,0.1), x> 0.5,

prescribed in the interval [0, 1] subject to the free boundary conditions.
We compute the numerical solution by the A-WENO scheme introduced in Section 2.1
until the nal time t = 0.16 on a uniform mesh with x =1 100. In Fig. 1, we plot the
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Figure 1: Density (left) and the corresponding values of the pressure based LSI (right).

obtained density together with the reference solution computed on a much finer uniform
mesh with Ax = 1/4000 and the pressure-based LSI (5; defined in (3.7) with ¢ = p)
computed at the final time step. As one can see, the LSI can detect the shock wave’s location
and indicate the area of a rarefaction corner. At the same time, the LSI values in the contact
discontinuity neighborhood are very small. If, however, one is interested in identifying
contact discontinuities as well, one can use the density-based LSI (1_)}0 defined in (3.7) with
WP =p).

In order to investigate the plausibility of the LSI-based adaptive strategies, we compute
the numerical solutions on a sequence of uniform meshes with Ax = 1/200, 1/400, 1/800,
1/1600, 1/3200, 1/6400, and measure the asymptotic behavior of the LSI in different parts
of the computational domain. The obtained results are reported in Table 1, where one can
observe quite significant differences in the order of magnitude of the LSI. For example, on
the mesh with Ax = 1/200, the local maxima of the D” are ~ 107° near the rarefaction
corner and in a smooth region within the rarefaction wave, ~ 10~ near the contact discon-
tinuity, and ~ 10~ at the shock (the last local maximum is, in fact, the global maximum
of D”). One can also see that away from the shock, the LSI decays when the mesh is re-
fined. The rate of decay is second-order in the smooth region and about the first-order
near the rarefaction corner. In the contact wave area, the LSI is very small, and when the
coarse mesh is refined, the LSI decays very rapidly there. At the same time, near the shock,
the size of D” is practically independent of the mesh size, as expected. This suggests that
the proposed LSI can be used as an efficient and accurate tool to detect shocks and other
rough parts of the computed solution except for the isolated contact waves, which can be
treated in the same way as smooth parts of the computed solution; see the description of
the adaption strategy we propose in the next section.

4. Scheme Adaption

In this section, we develop a scheme adaption strategy based on the LSIs from Section 3
and the A-WENO schemes described in Section 2. This will lead to new adaptive A-WENO
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Table 1: Local and global maxima of D’ and the corresponding rates of change.

x max DY Rate max DY Rate
ax; b/ ax; b J
Rarefaction corner, a = 0.25,b = 0.35 | Smooth subregion, a = 0.35,b = 0.45
1 100 [ 7.94e-06 - 3.87e-06 -
1 200 [ 2.86e-06 1.47 1.09e-06 1.83
1 400 1.28e-06 1.17 2.72e-07 2.01
1 800 | 4.81e-07 1.41 6.75e-08 2.01
1 1600 | 2.27e-07 1.08 1.66e-08 2.02
1 3200 | 9.76e-08 1.22 4.14e-09 2.01
1 6400 | 4.43e-08 1.14 1.03e-09 2.00
Contact wave, a =0.6,b =0.7 Everywhere (Shock), a=0,b=1
1 100 6.59¢e-07 - 2.58e-03 -
1 200 1.33e-07 2.31 2.36e-03 0.13
1 400 1.54e-09 6.43 1.82e-03 0.38
1 800 [ 6.55e-10 1.23 2.37e-03 -0.38
1 1600 | 3.50e-10 0.90 5.76e-04 2.04
1 3200 | 2.00e-10 0.80 2.00e-03 -1.79
1 6400 | 8.28e-11 1.27 2.39e-03 -0.26

schemes, in which the WENO-Z interpolation will only be used in the rough areas indicated
by the LSI.

One-Dimensional Algorithm. Assume that U;(t") = U](.g)(t” D, Ui = U](.O)(t” b,

and U](Z)(t” 1 are available for all j. We then compute the LSI values given by (3.7) and
identify the rough areas as follows. We rst nd all of the points x = x; at which

D, (t" V)>c( " 1), 4.1)
where C is a positive tunable constant to be selected for each problem at hand, and pre-
sume that the solution at time t = t" ! 2 is rough there. Due to the nite speed of propa-
gation and the CFL condition (3.4), one may presume that the solution at the time interval
[t", t™F1] (that is, at all of the three Runge-Kutta stages (3.3)) is rough at the nearby points
Xj 12and xj 3.

After identifying each of the points x;,; , as either rough or smooth, we compute either
nonlimited U]. 41 o or limited Uj +1 o point values there, and then evaluate the nite-volume
numerical uxes needed in (2.1)-(2.2) (and hence in (3.3)) by

FV + e -
FV j+1 2 Uj+1 Z’Uj+1 27 if Xj+12 18 rough,
b2 v Ut if xj.1, issmooth.

j#12 Yj+1 2Yj+1 2 0
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Two-Dimensional Algorithm. An extension of the 1-D scheme adaption algorithm to the
2-D case is relatively straightforward.

The main component of the 2-D algorithm is identifying the rough parts of the solution,
in which the one-sided interpolated values are to be computed using the WENO-Z inter-
polant. As in the 1-D case, this is done using the LSI. Namely, we presume that the solution
at time t = t" ! 2 is rough in all of the cells C; s, in which

D, (t" H)>C( " 1) (4.2)

Then, due to the nite speed of propagation and the appropriate CFL condition with the
CFL number 1/2, one may presume that the solution at the time interval [¢", t"*!] is rough
at the nearby points (x; 1 2, ¥k 1), (xj 1 2, Y1), (xj 3 2, %) and (x; 1, ¥k 1 2), (X, ¥ 1 2)s

(x Yk 3 2)-
Equipped with the information about the rough and smooth parts of the computed so-

lutions, we proceed with the proposed adaption strategy and compute either nonlimited

UJ}.ZECW’N’S) or limited UJ}.ZECW’N’S) point values there, and then evaluate the nite-volume nu-
merical uxes needed in (2.6)-(2.7) by
FV E p7W . .
FV _ j+1 2,k U]',k) U]'+1,k 5 if (xj+1 25 .yk) 1S rough:
J+1 2,k T FV E 11W . :
1 2k U].,k,U].H’k , if (xj41 2,¥) is smooth,
FV N 717S : :
FV _ jk+1 2 Uj,k’ Uj,k+1 5 if (xj, Yk+1 2) 15 rough’
Jok+1 27 FV N 7S : _ .
k4 2 Ui Ulkr if (xj,Yk+1 2) is smooth.

Remark 4.1. The fact that the constants C in (4.1) and (4.2) must be tuned is a weak point
of our adaption strategy. One may, however, tune C on a coarse mesh and then use the
same value of C on ner meshes to minimize an extra computational cost as it was done,
e.g., in [36] in the context of an adaptive arti cial viscosity method. The plausibility of this
strategy in the current scheme adaption algorithm is supported by a numerical experiment;
see Example 5.1 in Section 5.1 below.

Remark 4.2. As no past time solution is available at the rst time step, at t° = 0, we
complete the rst evolution step using a fully limited A-WENO scheme that employs the
WENO-Z interpolation throughout the entire computational domain.

5. Numerical Examples

In this section, we test the developed adaption strategy on several numerical examples.
To this end, we apply the adaptive A-WENO schemes to several initial-boundary value prob-
lems for the 1-D and 2-D Euler equations of gas dynamics and compare their performance
with the fully limited A-WENO schemes. In the rest of this section, we will refer to the
proposed adaptive A-WENO schemes as to adaptive schemes and the fully limited A-WENO
schemes as to limited schemes.

In all of the examples below, the speci c heat ratiois = 1.4 (except for Example 5.11,
where =5 3), and the CFL number is 0.45.
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5.1. One-dimensional examples

Example 5.1 (1-D Accuracy Test). In the first example taken from [13,37], we consider
the (3.8)-(3.10) subject to the following smooth initial data:

2
—1

u(x,0)= sin(% + %), p(x,0)= [z‘_/_; (u(x,0)+ 10)] , p(x,0)=p"(x,0).

We impose periodic boundary conditions and compute the numerical solution on the com-
putational domain [0, 10] on a sequence of uniform meshes with Ax =1/10, 1/20, 1/40,
1/80, 1/160, 1/320, 1/640 until the final time ¢ = 0.1 using the adaptive scheme with
C = 0.1. Since we use a fifth-order spatial discretization and only third-order time inte-
grator, we select At ~ (Ax)°/3 in order to be able to achieve the overall fifth order of
accuracy.

We then compute L!-errors and estimate the experimental convergence rates using the
following Runge formulae, which are based on the solutions computed on the three consec-
utive uniform grids with the mesh sizes Ax, 2Ax, and 4Ax and denoted by (-)2*, (-)?A%,
and (-)*A*, respectively:

52 o
Error(Ax)~ —2 Rate(Ax)~ log (—24)
1612 — 524l 61
Here, 515 := ||(-)2*—(-)?2X||;1 and 654 := ||(-)*2*—(-)**¥|| ;1. The computed L!-errors and

corresponding convergence rates for the density, momentum, and total energy are reported
in Table 2, where one can clearly see that the fifth order of accuracy is achieved.

Table 2: Example 5.1: The L! errors and experimental convergence rates for the density (p), momentum
(pu), and total energy (E).

P pu E
Error Rate Error Rate Error Rate

1/40 | 3.87e-05 | 4.75 | 1.27e-04 | 4.76 | 5.61e-04 | 4.76
1/80 | 1.03e-06 | 5.23 | 3.37e-06 | 5.23 | 1.49e-05 | 5.23
1/160 | 3.83e-08 | 4.75 | 1.25e-07 | 4.75 | 5.54e-07 | 4.75
1/320 | 1.20e-09 | 4.99 | 3.93e-09 | 4.99 | 1.74e-08 | 4.99
1/640 | 3.82e-11 | 4.98 | 1.25e-10 | 4.98 | 5.53e-10 | 4.98

Ax

Example 5.2 (Sod Shock-Tube Problem). In the second example, we once again consider
(3.8)-(3.10) subject to the free boundary conditions and compute the numerical solution
until the final time t = 0.16 using both the limited and adaptive schemes. In this exam-
ple, we take C = 0.05 while implementing the scheme adaption strategy. The obtained
solutions, computed on a uniform mesh with Ax = 1/200 and the corresponding refer-
ence solution computed by the limited scheme on a much finer mesh with Ax = 1/4000
are presented in Fig. 2. We also plot the LSI D” and 0.05(At)3/2 along with log;, D” and
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log;,(0.05( t)®2), computed during the adaptive scheme evolution at the nal time mo-
ment in Fig. 3. One can observe that the computed LSI can capture the shock wave position
accurately, and the results obtained by the adaptive scheme are sharper than those obtained
by the limited scheme, even though there are small oscillations near the contact wave cap-
tured by the adaptive scheme. It is also instructive to point out that choosing the adaption
constant C on a coarse mesh is a robust strategy. This is evident from the graphs of log; D?
and log;((0.05( t)* 2) depicted in Figs. 3 (right) and 4. The presented results illustrate
that the rough parts of the computed solutions can be accurately identi ed using (4.1),
while the same constant C = 0.05 is used on three different meshes.

Example 5.3 (Shock-Bubble Iteration Problem). In the third example taken from [39], we
consider the shock-bubble interaction problem. The initial data for the 1-D Euler equations
(3.8)-(3.9),

(13.1538,0, 1), x <0.25,
( ,u,p)(x,0)= (1.3333, 0.3535,1.5), x>0.75,
(1,0,1), otherwise

correspond to a left-moving shock, initially located at x = 0.75, and a bubble with a radius
of 0.25, initially located at the origin.

We compute the numerical solution in the computational domain[ 1, 1] on the uniform
mesh with x = 1 100 and impose the solid wall boundary conditions at x = 1 and
free boundary conditions at x = 1. In Figs. 5 and 6, we plot the numerical solutions at
the nal time t = 3 obtained by the limited and adaptive (with C = 0.0015) schemes.
These solutions are compared with the corresponding reference solutions computed by the
limited scheme on a much ner mesh with x = 1 2000. In Fig. 7, the graphs of LSI
D and 0.0015( t)? 2 are depicted along with their logarithm forms. As one can observe,
the LSI accurately captures the position of the shock waves, and the results obtained by the
adaptive scheme are a little sharper compared to those obtained by the limited counterpart.

Example 5.4 (Shock-Entropy Wave Interaction Problem). In the fourth example taken from
[57], we consider the shock-entropy wave interaction problem. The system (3.8)-(3.9) is
numerically solved subject to the following initial condition:

(1.51695,0.523346,1.805), x < 4.5,

,u,p)(x,0) =
( 2 ) (1+40.15sin(20x),0,1), x> 4.5,

which corresponds to a forward-facing shock wave of Mach number 1.1 interacting with
high-frequency density perturbations, that is, as the shock wave moves, the perturbations
spread ahead.

We compute the numerical solution using both the limited and adaptive schemes with
C = 0.006 in the computational domain [ 5,5] covered by a uniform meshwith x =1 40
and implement free boundary conditions. The numerical results at time ¢t = 5 are presented
in Fig. 8 along with the corresponding reference solution computed by the limited scheme
onamuch nermeshwith x =1 800. Asin the previous example, we also plot (in Fig. 9)
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Figure 2: Example 5.2: Density computed by the limited and adaptive schemes (left) and zoom at
x [0.61,0.68] (right).

-3
x10 0 —
25¢ —Ep ] _IOglOD
. 5 3
--=-0.05(At)? —-=-log,(0.05(At)?)
2 7 /\
5 ~
1.5] | ‘\/v"/‘f
1 ’ -10
0.5
0 { 15
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Figure 3: Example 5.2: D” and 0.05( )’ ? (left) and log,,D” and log,,(0.05( t)*?) (right) for x =
1 200.
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Figure 4: Example 5.2: log,,D” and log;,(0.05( t)*2) for x =1 400 (left) and 1 800 (right).
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p p
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Figure 5: Example 5.3: Density  (left) and pressure p (right) computed by the limited and adaptive
schemes.
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Figure 6: Example 5.3: Velocity u computed by the limited and adaptive schemes (left) and zoom at
x [ 0.95, 0.8] (right).
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Figure 7: Example 5.3: D” and 0.0015( ) 2 (left) and the corresponding logarithmic quantities (right).
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Figure 8: Example 5.4: Density computed by the limited and adaptive schemes (left) and zoom at
x [ 21, 1] (right).
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Figure 9: Example 5.4: D” and 0.006( t)? 2 (left) and the corresponding logarithmic quantities (right).

the graphs of the LSID? and 0.006( t)® 2 together with log; D? and log;,(0.006( t)32).
One can observe that the LSI can capture the position of the shock waves accurately, and
the results obtained by the adaptive scheme are non-oscillatory and slightly sharper than
those obtained by the limited scheme.

Example 5.5 (Shock-Density Wave Interaction Problem). In the last 1-D example taken
from [58], we consider the shock-density wave interaction problem. The initial data,

27 4 35 31
( ,u,p)x,00= 77 9 "3~
(14+0.25in(5x),0,1), x> 4

x < 4,

are prescribed in the computational domain [ 5,15] subject to the free boundary condi-
tions.

We compute the numerical solution by the limited and adaptive (with C = 0.04) schemes
on the uniform mesh with x =1 20 until the nal time t =5 and present the obtained
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Figure 10: Example 5.5: Density computed by the limited and adaptive schemes (left) and zoom at
x [8,10] (right).
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Figure 11: Example 5.5: D” and 0.04( t)? 2 (left) and the corresponding logarithmic quantities (right).

numerical results in Fig. 10 together with the corresponding reference computed by the
limited scheme on a much ner mesh with x =1 400. We also plot D” and 0.04( t)3 2
together with log,,D” and log,,(0.04( t)* 2) in Fig. 11. It can be seen clearly that the LSI
can accurately capture the position of the shock waves, and the adaptive scheme produces
slightly sharper results compared to those obtained by the limited scheme.

Remark 5.1. It is instructive to compare the computational costs of the studied limited
and adaptive A-WENO schemes. To this end, we have measured the CPU times consumed
by both schemes. The results obtained for the four studied 1-D examples are reported
in Table 3, where we show the relative CPU time consumption of the adaptive A-WENO
scheme relative to the fully limited one. As one can see, the proposed adaptive the scheme
is more ef cient than the fully limited one. Notice that the numbers in Table 3 are different
as the part of the computational domain indicated as rough varies. The CPU times for the
adaptive scheme also depend on the values of C: the use of larger C leads to a more ef cient
but potentially more oscillatory adaptive A-WENO scheme.
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Table 3: Examples 5.2 5.5: CPU times consumed by the adaptive A WENO scheme relative to the fully
limited A WENO scheme.

Example 5.4
66%

Example 5.5
67%

Example 5.3
76%

Example 5.2
66%

5.2. Two-dimensional examples

In this section, we demonstrate the performance of the proposed adaptive A-WENO
scheme on several examples for the 2-D Euler equations of gas dynamics, which read as
pe+(puwy +(pv), =0,
(pu), + (pu® +p)y + (puv), =0,
(pV)e + (puv), +(pv*+p), =0,
E¢+[u(E +p)], +[V(E+p)], =0,

(5.1)

where v is the y-component of the velocity, and the rest of the notations are the same as in
the 1-D case. The system is completed through the following equations of state:

p=(r—D[E-2w+v?)].

Example 5.6 (2-D Accuracy Test). In the first 2-D example taken from [13,37], we consider
the 2-D Euler equations of gas dynamics subject to the following periodic initial conditions:

(5.2)

px,y,0)=1+sin(n(x+)), uxy,00=1, v(x,y,00=-07, p(xy,0)=1,

The exact solution of this initial value problem is given by

plx,y,t)= 1+% sin[:rr(x+y—0.3t)}, u(x,y,t)=1, v(x,y,t)=-0.7, p(x,y,0)=1.

We first compute the numerical solution on the computational domain [—1,1]x [—1,1]
until the final time t = 0.1 using the adaptive scheme with C = 0.1 on a sequence of uni-
form meshes with Ax = Ay = 1/50, 1/100, 1/200, 1/400, and the time step chosen to
be proportional to (Ax)>/3. We then measure the L-errors and compute the correspond-
ing experimental convergence rates for the density. The obtained results are presented in
Table 4, where one can see that the fifth order of accuracy is achieved by the proposed
adaptive scheme.

Table 4: Example 5.6: The L! errors and experimental convergence rates for the density p.

Ax=Ay Error Rate
1/50 2.49e-07 —
1/100 7.80e-09 | 4.99
1/200 2.44e-10 5.00
1/400 7.62e-12 5.00
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Example 5.7 (2-D Riemann Problem). In the second 2-D example, we consider Configu-
ration 3 of the 2-D Riemann problems from [38] (see also [52,53,65]) with the following
initial conditions:

(1.5,0,0,1.5), x>1, y>1,

(0.5323,1.206,0,0.3), x<1, y>1,
(p,u,v,p)(x,y,0)=

(0.138,1.206,1.206,0.029), x<1, y<1,

(0.5323,0,1.206,0.3), x>1, y<l1.

We compute the numerical solution until the final time t = 1 by the limited and adaptive
(with C = 3) schemes on the uniform mesh with Ax = Ay = 3/2500 in the computational
domain [0,1.2] x [0, 1.2] subject to the free boundary conditions. The obtained results are
presented in Fig. 12, where one can see that the adaptive scheme outperforms the limited
one as it better captures the sideband instability of the jet in the zones of strong along-jet
velocity shear and the instability along the jet’s neck.

Limited Adaptive
1.2
16
1 14
0.8 12
1
0.6
0.8
0.4 06
0.2 0.4
0 0.2
0 02 04 06 08 1 1.2 0 02 04 06 08 1 1.2

Figure 12: Example 5.7: Density p computed by the limited (left) and adaptive (right) schemes.
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Figure 13: Example 5.7: The limited WENQ Z interpolation is used only in the part of the computational
domain indicated by the black color.
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In Fig. 13, we show the regions which the LSI detected as rough at the final time. As one
can see, the limited WENO-Z interpolation is used only in a small part of the computational
domain, mostly around the shocks.

Example 5.8 (Explosion Problem). In this example, we consider the explosion problem
taken from [42,60]. This is a circularly symmetric problem with the following initial con-
ditions:
(1,0,0,1), x2+y2 <0.16,
u,v xX,y,0)= 5.3
(,u,v,p)(x,,0) {(0.125, 0,0,0.1), otherwise. (5-3)
We numerically solve the initial value problem (5.1)-(5.3) in the first quadrant, more pre-
cisely in the computational domain [0, 1.5] x [0, 1.5] with the solid wall boundary condi-
tions imposed at x = 0 and y = O and the free boundary conditions set at x = 1.5 and
y=1.5.
In Fig. 14, the numerical solutions computed by the limited and adaptive (with C = 1)
schemes on the uniform mesh with Ax = Ay = 3/800 are plotted at the final time ¢t = 3.2.

Limited Adaptive

|0.14
0.12

0.1

0 0.5 1 1.5 0 0.5 1 1.5

Figure 14: Example 5.8: Density p computed by the limited (left) and adaptive (right) schemes.

1.57

0.5]

0
0 0.5 1 1.5

Figure 15: Example 5.8: The limited WENQ Z interpolation is used only in the part of the computational
domain indicated by the black color.
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The presented results clearly illustrate the advantage of the adaptive approach over the
fully limited one, as the contact curve captured by the adaptive scheme is much curlier and
the mixing layer is much wider.

In Fig. 15, we show the regions detected at the nal time by the LSI as rough and
demonstrate that in this example, the limiting is only used along the circular shock.

Example 5.9 (Implosion Problem). In this example taken from [42], we consider the im-
plosion problem with the following initial conditions:

(0.125,0,0,0.14), x + y <0.15,
,u,v,p)(x,y,0) = 54
( P)x.7,0) (1,0,0,1), otherwise, 5.4

prescribed in [ 0.3,0.3] [ 0.3,0.3] subject to the solid wall boundary conditions. Due
to the symmetry, we numerically solve the initial-boundary value problem (5.1), (5.2),
and (5.4) in the rst quadrant only, more precisely in the computational domain [0, 0.3]
[0,0.3] and impose the solid wall boundary conditions at x =0 and y = 0.

In Fig. 16, the numerical solutions computed by the limited and adaptive (with C = 3)
schemes on the uniform meshwith x =y =3 4000 are plotted at the nal time t = 2.5.
As one can observe, the jet generated by the adaptive scheme propagates further in the
direction of y = x than the jet produced by the limited scheme, clearly indicating that the
adaptive scheme is substantially less dissipative than the limited scheme.

The domain where the limiters have been used at the nal time is presented in Fig. 17,
where one can see how the proposed LSI identi es rough areas.

Remark 5.2. It is easy to show that the solution of the studied initial-boundary value prob-
lem is symmetric with respect to the axis y = x. It is well-known, however, that this sym-
metry may be destroyed by the roundoff errors when the solution is computed by a low-
dissipative high-order scheme. In order to prevent the loss of symmetry, we have used
a very simple strategy introduced in [62]: upon completion of each time evolution step, we

Limited

0 0.1 0.2 0.3 0 0.1 0.2 0.3

Figure 16: Example 5.9: Density computed by the limited (left) and adaptive (right) schemes.
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0
0 0.1 0.2 0.3

Figure 17: Example 5.9: The limited WENQ Z interpolation is used only in the part of the computational
domain indicated by the black color.

replace the computed point values U; ; with U i k> Where

. PixtPrj __ (pw)j i+ (PV)ij
p},k = %’ (pu)_]’k = J 2 J ,

CEptEy o ()it (pu)y;
Ej,k T 2 B (P"")j,k = 2

for all j, k. For more sophisticated symmetry enforcement techniques, we refer the reader
to, e.g., [16,17,20,61].

Example 5.10 (KH Instability). In this example taken from [19, 45], we study the KH
instability with the following initial conditions:

(1,—0.5+0.5e0+0-BV/Ly -y €[-0.5,—0.25),
(2,0.5—0.5eY05VLy -y €[—-0.25,0),
(2,0.5—0.5e0702)/Ly  y £]0,0.25),
(1,—0.5+ 0.5e(7*+0-2)V/Ly -y £[0.25,0.5),
v(x,y,0)=0.01sin(4ntx), p(x,y,0)=1.5,

(p(x,y,0),u(x,y,0)) =

where L is a smoothing parameter (here, we take L. = 0.00625) corresponding to a thin
shear interface with a perturbed vertical velocity field v in the conducted simulations. We
impose the 1-periodic boundary conditions in both the x- and y-directions, and take the
computational domain to be [—0.5,0.5] x [—0.5,0.5].

We compute the numerical solution until the final time t = 4 by the limited and adaptive
(with C = 1) schemes on the uniform mesh with Ax = Ay = 1/400. The numerical results
at t = 1,2.5,4 are presented in Fig. 18. As one can see, at the early time t = 1, the
vortex sheets in the limited and adaptive results are quite different, and it is hard to draw a
definite conclusion based on these results. However, at later times t = 2.5, 4, the adaptive
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Limited, t =1 Limited, £ = 2.5 Limited, t =4

04 02 0 02 04 04 02 0 02 04 04 02 0 02 04

Adaptive, t =1 Adaptive, {t = 2.5 Adaptive, t = 4
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Figure 18: Example 5.10: Time snapshots of the density p computed by the limited (top row) and
adaptive (bottom row) schemes at t =1 (left column), 2.5 (middle column), and 4 (right column).

scheme produces more complicated vortices and turbulent mixing, which indicates that the
adaptive scheme contains less numerical dissipation than the limited scheme.

In addition, in Fig. 19, we plot the solution regions to show that the limiters have been
used in a very small part of the computational domain, especially at t = 4.

It should also be noted that, as is known, the numerical solutions of the KH instability
problem do not converge in the strong sense when the mesh is refined. In fact, the limiting

0.4 \ \ 0.4 . 04 ,
: ‘ - -

02" - 02 : ~¥ 02 $ "

0 0 | 0
-0.2 - - 0.2, X, ¥ 02

f i s
-0.4 i 04 04
04 -02 0 02 04 04 02 0 02 04 04 02 0 02 04

Figure 19: Example 5.10: The limited WENO Z interpolation is used only in the part of the computa
tional domain indicated by the black color.
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Limited, p®(1/256) Limited, p(1/512) Limited, p(1/1024)

04 -02 0 02 04 -04  -0. ; I 04 -02 O 02 04

Adaptive, p(1/256) Adaptive, p©(1/1024)

Figure 20: Example 5.10: Cesaro averages of the density (1 2™) computed by the limited (top row)
and adaptive (bottom row) schemes for m = 8 (left column), 9 (middle column), and 10 (right column).

solution is not a weak solution but a dissipative weak solution; see [18] for more details.
Thus, to approximate the limiting solution, we compute the Cesaro averages of the densities
obtained at the nal time ¢t = 4 by the limited and adaptive schemes. To this end, we rst
introduce a sequence of meshes with the cells of size 1 2", n = 5,...,10, and denote by

(1 2") the density computed on the corresponding mesh. We then project the obtained
coarser mesh solutions withn =5,...,m 1 onto the ner mesh with n = m (the projection
is carried out using the dimension-by-dimension WENO-Z interpolation of the density eld)
and denote the obtained densities still by (1 2"), n = 5,...,m. After this, the Cesaro
averages are computed by

1295+ + (12m
m 4

1 2™ = , m=8,9,10. (5.5)
In Fig. 20, we plot the computed averages at time t = 4. One can observe the superiority
of the results obtained by the adaptive scheme when it comes to resolving complicated
structures.

Example 5.11 (RT Instability). In the last example, we investigate the RT instability. It is
a physical phenomenon occurring when a layer of heavier uid is placed on top of a layer
of lighter uid. To this end, we rst modify the 2-D Euler equations of gas dynamics (5.1)-
(5.2) by adding the gravitational source terms acting in the positive direction of the y-axis
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into the RHS of the system

t+( u)x+( V)y:O,
(W +( ?+p)+( w), =0,

( V)e+( w)+( v’ +p), =,
Eo+[u(E +p)], + [VE+p)], = v,

and then use the setting from [54, 62] with the following initial conditions:

(2,0, 0.025ccos(8 x),2y+1), y<O0.5,

Jqu) x’ ’0 = i
( P)x,,0) (1,0, 0.025ccos(8 x),y+1.5), otherwise,

wherec:=  p is the speed of sound. The solid wall boundary conditions are imposed
at x = 0 and x = 0.25, and the following Dirichlet boundary conditions are speci ed at the
top and bottom boundaries:

( )u) va)(xJ 1) t) = (]‘JO) 052'5)5 ( )u) va)(xJ 0) t) = (25 0) OJ 1)'

We compute the numerical solution until the nal time t = 2.95 by the limited and adap-
tive (with C = 2) schemes on the computational domain [0,0.25] [0,1] on the uniform
meshwith x= y =1 800. The numerical results at t = 1.95 and 2.95 are presented in
Fig. 21. As we can see, there are pronounced differences between the limited and adaptive
solutions. Therefore, one can conclude that the adaptive scheme achieves a much better
resolution, which again demonstrates that the adaptive scheme is less dissipative than the
limited scheme.

In Fig. 22, we show the regions which the LSI detected as rough at the nal time. As
one can see, the limited WENO-Z interpolation is only used in a relatively small part of the
computational domain.

Limited, ¢t = 1.95 Adaptive, ¢ = 1.95 Adaptive, t = 2.95
1 1 =

0.75 0.75 0.75 0.75

0.5 0.5 0.5 %

0.25 0.25 0.25 &

0 0 0 ' ’
0 0.125 0.25 0 0.125 0.25 0 0.125 0.25 0 0.125 0.26

Figure 21: Example 5.11: Density = computed by the limited and adaptive schemes at t = 1.95 and
2.95.
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t =1.95 t =2.95
1 1 e B
0.75 075 7 & . T
iy i ;;,-v ';,‘ k‘:' -.-.‘,:;;
0.5 0.5 ar 7 b T
o SN "
0.25 025, s
0 0
0 0125 0.25 0 0125 025

Figure 22: Example 5.11: The limited WENO Z interpolation is used only in the part of the computa
tional domain indicated by the black color.

As in Example 5.10, we also approximate the dissipative weak solution using the Cesaro
averages computed by (5.5) with the same sequence of meshes. We present p©(1/2!°) com-
puted by the limited and adaptive schemes in Fig. 23 at the times t = 1.95 and 2.95. Once
again, one can observe that the adaptive scheme better resolves the limiting dissipative
weak solution.

Remark 5.3. In this example, the solution is symmetric with respect to the vertical axis
x = 0.125. In order to enforce this symmetry, we have applied the strategy from [62]:

Liumited, t = 1.95 ; Adaptive, t = 1.95 Limited, t = 2,95 i Adaptive, t = 2,95
2.4
22
0.78 2
1.8
0.5 16
14

0.25

I : |
] ] ¢]
0 0.125 0.25 0 0.125 0.25 0 0.125 0.25 0 0.125 0.25

0

Figure 23: Example 5.11: Cesaro averages of the density p©(1/21°) computed by the limited and adaptive
schemes at t =1.95 and 2.95.
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upon completion of each time evolution step, we replace the computed cell averages U
with f;'j x, Where

~ PixtPmM—jx (pw); x— (PWp—jk
Pik=—"""> (Pp)jx = 5 ,
. Ejx+Ey; (V)i +(PVIM—j

j,k M—j,k — ik M—j,k
Bp= 22 (), = :

for all j,k under the assumption that j = 1,...,M. Alternative symmetry enforcement
techniques can be found in, e.g., [16,17,20,61].

Remark 5.4. As in the 1-D case, we also compare the computational costs of the studied
limited and adaptive A-WENO schemes and present the CPU times consumed by the adap-
tive scheme relative to the fully limited one. The obtained results are presented in Table 5,
where one can see that in the 2-D case, the difference in CPU times is slightly smaller than
in the 1-D examples, but the adaptive scheme is still clearly more efficient.

Table 5: Examples 5.7 5.11: CPU times consumed by the adaptive A WENQO scheme relative to the
fully limited A WENO scheme.

Example 5.7 | Example 5.8 | Example 5.9 | Example 5.10 | Example 5.11
80% 81% 81% 80% 83%

6. Conclusion

In this paper, we have developed new adaptive alternative weighted essentially non-
oscillatory (A-WENO) schemes for one- and two-dimensional hyperbolic systems of con-
servation laws. The proposed schemes employ the scheme adaption strategy, according
to which the limited WENO-Z interpolation is only used to capture rough parts of the
computed solution, while in the smooth areas, nonlimited fifth-order interpolant is imple-
mented. The rough regions are detected using a smoothness indicator. We have proposed
a new, simple and robust local smoothness indicator, which is based on the solutions com-
puted at each of the three stages of the three-stage third-order strong stability preserving
Runge-Kutta time integrator. We have applied the new one- and two-dimensional adaptive
A-WENO schemes to the Euler equations of gas and dynamics using the recently proposed
local characteristic decomposition based central-upwind numerical fluxes. We have con-
ducted several numerical experiments and demonstrated that the new adaptive schemes
are essentially non-oscillatory and robust and, at the same time, more accurate than their
fully limited counterparts.

In order to illustrate the high efficiency of the proposed adaptive A-WENO schemes, we
have compared the CPU times consumed by the studied fully limited and adaptive schemes
in each numerical example. From the reported results, we conclude that the introduced
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scheme adaption strategy leads to more ef cient and, at the same time, more accurate A-
WENO schemes. It should also be noted that if the LCD-based CU numerical uxes imple-
mented in (2.2) and (2.7) are replaced with any other nite-volume (FV) numerical uxes,
the resulting adaptive A-WENO schemes will still be substantially more ef cient than the
corresponding fully limited A-WENO schemes. However, the difference in the CPU times
may vary depending on the computational cost of the particular FV uxes used.

Appendix A. The 1-D Fifth-Order WENO-Z Interpolant

Here, we brie y describe the fth-order WENO-Z interpolant.

Assume that the point values W; of a certain function W(x) at the uniform grid points
x = x; are available. We now show how to obtain an interpolated left-sided value of W at
X = Xj41 2, denoted by WJ +1 o~ The right-sided value W;d , can then be obtained in the
mirror-symmetric way.

The term W] 41 o is computed using a weighted average of the three parabolic inter-
polants o(x), j(x)and ,(x)obtained using the stencils [x; 5,x; 1,x;], [xj 1,%j,Xj31],
and [x;, xj;1, Xj42], respectively

VV]'+1 2= k k(xj+1 2)5 (A.1)
k=0
where
3 5 15

o(xjp1 2) = §W] 2 ZWj 1t ng,
1 3 3

1(xj41 2) = §W] 1+Z j+§Wj+1, (A.2)

3 1
2(xj11 2) = gWit ZW]’+1 g Vit

Using a straightforward Taylor expansion one can show that (A.1)-(A.2) is fth-order ac-
curate if one takes the weights  in (A.1) to be

dy 1 5 5
= =, do=—, d1==, dy=—, A.3
kR T do+di+dy, 0160 1T 8 2T 16 (A-3)
resulting in the nonlimited point values, which we denote by
2
. 3 5 45 15 5
Wi o= kok(xjp12) = ij 2 EWJ' 1t 6—4Wj + Evvj+l @Wﬁz

k=0

The computed interpolation may, however, be oscillatory in rough areas of W(x) and
thus the values W] 41 o Need to be modi ed by replacing the weights (A.3) there with

k s P
k= kEmET——————————, k=dk 1+ , 5 = 2 0> (A4)
ot 1+ 2 kt
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and thus obtaining the limited WENO-Z point values

2

VV].+1 2 = k k(Xj+1 2). (AS)
k=0

In (A.4),  are the following smoothness indicators for the corresponding parabolic inter-

polants :
2 2

= ( x)?! Xk dx, k=0,1,2. (A.6)
=1

G

Evaluating the integrals in (A.6), we obtain

_ 13 2 1 2
0= 15 Wi o 2W; 1+ W; +ZWj2 4W; 1 +3W; -,
13 2 1 2
1= Wi 2Wit Wi+ Wi Wi A7)
13 2 1 2
2 = E W] 2Wj+1 + Wj+2 + Z 3W] 4Wj+1 + Wj+2 .

Finally, in all of the numerical examples reported in this paper, we have used p = 2 and
=10 2

Appendix B. 1-D Local Characteristic Decomposition

Even though the WENO-Z interpolant (A.1), (A.4), (A.5), (A.7) is essentially non-
oscillatory, it is well-known that its application to the conservative variables U in a compo-
nentwise manner may lead to spurious oscillations in the computed solution. We, therefore,
implement the reconstruction procedure described in Appendix A in the LCD framework.

Speci cally, we rst introduce the matrix A, 5 := A(Uj;; o), where Uj,; , is either
a simple average (U; +U;,,) 2 or another type of average of the U; and U, states (in the
numerical examples reported in Sections 3 and 5, we have used the simple average). As
long as the system (1.1) is strictly hyperbolic, we compute the matrices R;,; , and Rj jl )
such that Rj jl »Aj11 2Rj41 2 is a diagonal matrix and introduce the local characteristic
variables in the neighborhood of x = xj; 5

Tn=R ) Un m=j 2,..,j+3.

Equipped with the values T'; 5, T; 1, T}, 44, T4, and T3, we apply the interpolation

procedure described in Appendix A to each of the components ), i =1,...,d of T and

o . . +
obtain either the nonlimited Ty po0r limited T 41 2 i+1
T, are computed, as mentioned in Appendix A, in the mirror-symmetric way. Finally,

the corresponding nonlimited and limited point values of U are given by

point values. The valuesT. , , and

Uip 2= Rjn ol 00 Ujpy o =Ry ol

respectively.
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Remark B.1. A detailed explanation of how the average matrix A;,; 5 and the correspond-

ing matrices Rj,; 5 and R]. jl , are computed in the case of the Euler equation of gas dy-

namics can be found in, e.g., [13].
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