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Abstract. Convolutions are one of the most important operations in signal

processing. They often involve large arrays and require significant computing
time. Moreover, in practice, the signal data to be processed by convolution

may be corrupted by noise. In this paper, we introduce a new method for

computing the convolutions in the quantized tensor train (QTT) format and
removing noise from data using the QTT decomposition. We demonstrate the

performance of our method using a common mathematical model for synthetic
aperture radar (SAR) processing that involves a sinc kernel and present the

entire cost of decomposing the original data array, computing the convolutions,

and then reformatting the data back into full arrays.

1. Introduction. Convolution operations are used in different practical applica-
tions. They often involve large arrays of data and require optimization with respect
to memory and computational cost. While input data are usually available only in
a discrete form, the standard realization based on a vector-matrix representation is
not often efficient since it leads to using sparse matrices. On the other hand, a ten-
sor decomposition looks very attractive because it might reduce the volume of data
very drastically, minimizing the number of zero elements. In addition, arithmetic
operations between tensors can be implemented efficiently.

There are different forms of tensor decomposition. The most popular approach is
based on the canonical decomposition [12] where a multidimensional array is repre-
sented (might be approximate) via a sum of outer products of vectors. For matrices,
such decomposition is reduced to skeleton decomposition. However, it is known to
be unstable in the cases of multiple tensor dimensions, also referred to as tensor
modes. The Tucker decomposition [27] represents a natural stable generalization of
the canonical decomposition and can provide a high compression rate. The main
drawback of the Tucker decomposition is related to the so-called curse of dimen-
sionality; that is, the algorithm’s complexity grows exponentially with the number
of tensor modes. A way to overcome these difficulties is to use the Tensor Train
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(TT) decomposition, which was originally introduced in [23, 24]. Effectively, the
TT decomposition represents a generalization of the classical SVD decomposition
to the case of multiple modes. It can also be interpreted as a hierarchical Tucker
decomposition [10].

Computing the TT decomposition fully can be very expensive if we use the
standard TT-SVD algorithm given, e.g., by Algorithm 1 below. Therefore, many
modifications to this algorithm were proposed in the literature to help speed it up.
One such improvement was presented in [18], where results comparable to those
obtained by the TT-SVD algorithm were produced in a fraction of the time for
sparse tensor data. Another algorithm that uses the column space of the unfolding
tensors was designed to compute the TT cores in parallel; see [26]. The most
popular approach to efficiently compute the TT decomposition is based on using a
randomized algorithm; see, e.g., [1, 5, 13].

Maximal compression with the TT decomposition can be reached with matrices
whose dimensions are powers of two, as proposed in the so-called Quantized TT
(QTT) algorithm [20]. As shown in [15], the convolution realized for multilevel
Toeplitz matrices via QTT has a logarithmic complexity with respect to the number
of elements in each mode, N , and is proportional to the number of modes. It is
proven that the result cannot be asymptotically improved. However, this algorithm
is improved for finite and practically important N ∼ 104 in [25] thanks to the
cross-convolution in the Fourier (image) space. The improvement is demonstrated
for convolutions with three modes with Newton’s potential. It is to be noted that
QTT can also be applied to the Fast Fourier Transform (FTT) to decrease its
complexity, as shown in [3]. This super-fast FFT (QTT-FFT) beats the standard
FFT for extremely large N such as N ∼ 260 for one mode tensors and N ∼ 220 for
tensors with three modes.

For practical applications, a critical issue is denoising. Real-life data, such as
radar signals, are typically contaminated with noise. Denoising is not addressed in
the papers we have cited previously. However, TT decomposition itself potentially
has the property of denoising, owing to the SVD incorporated in the algorithm [4,8].
In the current work, we propose and implement the low-rank modifications for
the previously developed TT-SVD algorithm of [21]. These modifications speed
up the computations. We also demonstrate the denoising capacity of numerical
convolutions computed using the QTT decomposition. Specifically, we employ a
common model for synthetic aperture radar (SAR) signal processing based on the
convolution with a sinc imaging kernel (called the generalized ambiguity function)
[6, Chapter 2] and show that when a convolution with this kernel is evaluated in
the QTT format, the noise level in the resulting image is substantially reduced
compared to that in the original data.

It should be observed that most papers on tensor convolution only consider the
run time cost of the convolution after the tensor decomposition has been applied
to the objective function and the kernel function and either ignores the cost of the
actual tensor decompositions or puts it as a side note. In this paper, we consider
every step of computing the convolution using the QTT-FFT algorithm, including
the decomposition of the arrays into the QTT format using the TT-SVD algorithm
(see Algorithm 1), computation of the QTT-FFT algorithm once in that format, and
then extracting the data back after the computation is conducted (Section 5). As the
QTT decomposition is computationally expensive, we consider several approaches
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to speed up the decomposition run time. Without these modifications to the TT-
SVD decomposition algorithm, the convolution can take a long to compute and is
not a practical approach. We provide more detail in section 7.1.

The methods we use to speed up our TT decompositions are based on truncating
SVD ranks in the decomposition algorithm (Algorithm 1) and lead to a significant
noise reduction in the data (Section 6). Thus, in Chapter 6, we present algorithms
to compute convolutions in a reasonable time while significantly reducing the noise
in the data at the same time. Our contribution includes developing and analyzing
new approaches to speeding up the tensor train decomposition, see Section 5. In
Section 6, we consider the effects of convolutions on removing noise in data. Finally,
in Section 7, we show numerical examples and compare our results with other
approaches to computing convolutions.

2. Convolution. The convolution operation is widely used in different applications
in signal processing, data imaging, physics, and probability, to name a few. This
operation is a way to combine two signals, usually represented as functions, and
produce a third signal with meaningful information. The D-dimensional convolution
between two functions f and g is defined as

I(x) = [f ∗ g](x) =

∫
RD

f(y)g(x− y) dy, ∀x ∈ RD. (1)

Often to compute the convolution numerically, we assume the support of f and
g, denoted supp(f) and supp(g) respectively, are compact. For simplicity, in this
paper, we assume supp(f) = supp(g) = [−L,L]D for some L ∈ R. Next, we
discretize the domain [−L,L]D uniformly into ND points such that

xj = (xj1 , . . . , xjD ),

xjd = −L+
∆x

2
+ jd∆x, jd = 0, . . . , N − 1, d = 1, . . . , D,

where ∆x = 2L
N and j = (j1, . . . , jD). We then let f and g be D-dimensional arrays

such that

fj = f(xj), gj = g(xj)

for all j. This leads to the discrete convolution I such that

Ij := (∆x)D
∑
i

figj−i+(N2 −1)1 ≈ I(xj), (2)

where 1 = (1, . . . , 1) and the sums are over all indices i = (i1, . . . , iD) that lead to
legal subscripts. This Riemann sum approximation (2) to the integral (1) uses the
midpoint rule, thus having O(∆x2) accuracy.

Remark 2.1. The convolution defined in (2) is equivalent to Matlab’s convn
function with the optional shape input set to ‘same’ and then multiplied by (∆x)D.

To compute this convolution directly takes O(N2D) operations, but it can be
reduced to O(ND log(ND)) by using the fast Fourier transform (FFT) and the
discrete convolution theorem. The FFT algorithm is an efficient algorithm used to
compute the D-dimensional discrete Fourier transforms (DFT) of V ∈ RN×...×N ,

V̂α := DFT (V) =

N−1∑
j=0

Vjωj·αN
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where the sum is over the multi-indexed array j,

α = (α1, . . . , αD), αd = 0, . . . , N − 1, d = 1, . . . , D,

N = (N, . . . , N), 0 = (0, . . . , 0),

and ωN = e−
2πı̂
N , where ı̂ =

√
−1 is the imaginary unit. Similarly, the D-dimensional

inverse discrete Fourier transform (IDFT), such that

V = IDFT (DFT (V)),

of the array V̂ ∈ RN×...×N is given by

Vj =
1

ND

N−1∑
α=0

V̂αω−j·αN .

Using the discrete Fourier transform, we can compute the circular convolution
Ic = (V ~W) defined as

Icj =

N−1∑
i=0

ViW̄j−i

W̄ i1,...,iD = Wj1,...,jD , id ≡ jd mod(N), d = 1, . . . , D,

by taking the DFT of W and V , multiplying the results together, and then taking
the IDFT of the given result. Thus, we have

Ic = IDFT (DFT (W)�DFT (V))

where � is Hadamard product (element-wise product) of D-dimensional arrays.
The circular convolution is the same as the convolution of two periodic functions
(up to a constant scaling), thus to obtain the convolution given in (2) (also known
as a linear convolution), we need to pad the vectors f and g with at least N − 1
zeros in each dimension. For example, given the vectors f0, g0 ∈ R2N−1 with

f0
j =

{
fj 0 ≤ j ≤ N − 1

0 j > N − 1
, and g0

j =

{
gj 0 ≤ j ≤ N − 1

0 j > N − 1
,

and Ic = (f0~g0) as the circular convolution between them, the linear convolution
I in (2) is given by

Ij = ∆xIc
j+N−1

2

, j = 0, . . . , N − 1.

In this paper, we let g be a predefined kernel, such as the SAR generalized
ambiguity function (GAF) (see Section 3 and [6, Chapter 2] for detail) and f be a
smooth gradually varying function contaminated with white noise. To compute the
convolution, we use the QTT decomposition [16] and the QTT-FFT algorithm [3].
The QTT decomposition is a particular case of the more general TT decomposition
(see Section 4 and [21] for detail).

3. Synthetic aperture radar (SAR). SAR is a coherent remote sensing tech-
nology capable of producing two-dimensional images of the Earth’s surface from
overhead platforms (airborne or spaceborne). SAR illuminates the chosen area on
the surface of the Earth with microwaves (specially modulated pulses) and gen-
erates the image by digitally processing the returns (i.e., reflected signals). SAR
processing involves the application of the matched filter and summation along the
synthetic array, which is a collection of successive locations of the SAR antenna
along the flight path. Matched filtering yields the image in the direction normal to
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the platform flight trajectory or orbit (called cross-track or range), while summa-
tion along the array yields the image in the direction parallel to the trajectory or
orbit (along-the-track or azimuth).

Mathematically, each of the two signal processing stages can be interpreted as
the convolution of the signal received by the SAR antenna with a known function.
Equivalently, it can be represented as a convolution of the ground reflectivity func-
tion, which is the unknown quantity that SAR aims to reconstruct the imaging
kernel or generalized ambiguity function (GAF). The advantage of this equivalent
representation is that it leads to a very convenient partition: the GAF depends on
the imaging system’s characteristics, whereas the target’s properties determine the
ground reflectivity function. Moreover, image representation via GAF allows one to
see clearly how signal compression (a property that pertains to SAR interrogating
waveforms) enables SAR resolution, i.e., the capacity of the sensor to distinguish
between closely located targets.

In the simplest possible imaging scenario, when the propagation of radar signals
between the antenna and the target is assumed unobstructed, and several additional
assumptions also hold; the GAF in either range or azimuthal direction is given by
the sinc (or spherical Bessel) function:

g(x) = A sinc

(
π
x

∆x

)
≡ A

sin
(
π x

∆x

)
π x

∆x

, (3)

where the constant A is determined by normalization, x denotes a given direction,
and the quantity ∆x is the resolution in this direction. From the formula (3), we see
that the resolution is defined as half-width of the sinc main lobe, i.e., the distance
from is central maximum to the first zero. When x is the range direction (cross-
track), the resolution ∆x is inversely proportional to the SAR signal bandwidth,
see [6, Section 2.4.4]. When x is the azimuthal direction (along-the-track), the
resolution is inversely proportional to the length of the synthetic array, i.e., synthetic
aperture, see [6, Section 2.4.3]. Note that lower values of ∆x correspond to better
resolution because SAR can tell between the targets located closer to one another.
It can also be shown that as ∆x → 0 the GAF given by (3) converges to the δ-
function in the sense of distributions [7, Section 3.3]. In this case, the image, which
is a convolution of the ground reflectivity with the GAF, coincides with ground
reflectivity. This would be ideal because the image would reconstruct the unknown
ground reflectivity exactly. This situation, however, is never realized in practice
because having ∆x → 0 requires either the SAR bandwidth (range direction) or
synthetic aperture (azimuthal direction) to become infinitely large, which is not
possible.

The literature on SAR imaging is vast. Among the more mathematical sources,
we mention the monographs [2] and [6].

4. Tensor train decomposition. Consider the K-mode, tensor A ∈ CM1×...×MK

such that

A = a(i1, . . . , iK), ik = 0, . . . ,Mk − 1, k = 1, . . . ,K,

where Mk is the size of each mode, and a(i1, . . . , iK) ∈ C are the elements of the
tensor A for all ik = 0, . . . ,Mk − 1 and k = 1, . . . ,K. The tensor train format of

A decomposes the tensor into K cores A(k) ∈ Crk−1×Mk×rk such that

a(i1, . . . , iK) = A
(1)
i1
A

(2)
i2
· · ·A(K)

iK
,
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where the matrices A(k)(:, ik, :) = A
(k)
ik
∈ Crk−1×rk , for all ik = 0, . . . ,Mk − 1, k =

1, . . . ,K (In Matlab notation, A
(k)
ik

= squeeze(A(k)(:, ik, :)), where squeez() is used

to convert the Crk−1×1×rk tensor into a Crk−1×rk matrix). The matrix dimensions
rk, k = 1, . . . ,K, are referred to as the TT-ranks of the tensor decomposition, and

the 3−mode tensors A(k) are the TT-cores. Since we are interested in the case when
a(i1, . . . , iK) ∈ C, we impose the condition r0 = rK = 1. Let M = max1≤k≤KMk

and r = max1≤k≤K−1 rk, then the the tensor A, which has O(MK) elements, can
be represented with O(MKr2) elements in the TT format.

We can also represent the TT decomposition as the product of tensor contraction
operators. Define the tensor contraction between the tensors A ∈ CM1×...×MK and
B ∈ CMK×...×MK̃ (note that the first dimension size of B equals the last dimension
size of A) as C = A ◦B ∈ CM1×...×MK−1×MK+1×...×MK̃ where

C(i1, . . . , iK−1, iK+1, . . . , iK̃) =

MK−1∑
p=0

A(i1, . . . , p)B(p, . . . , iK̃).

Then the TT format of A can be represented as

A = A(1) ◦ . . . ◦A(K).

Before we show how to find the TT-cores, we first need to define a few properties
of tensors. First, let the matrix A{k} be the k-th unfolding of the tensor A such
that

A{k}(α, β) = a(i1, . . . , iK),

α = i1 + i2M1 + . . .+ ikΠk−1
l=1 Ml, β = ik+1 + ik+2Mk+1 + . . .+ iKΠK−1

l=k+1Ml.

Thus, we have that A{k} ∈ CM1M2...Mk×Mk+1Mk+2...MK which we write as

A{k} = a(i1 . . . ik, ik+1 . . . iK).

We denote the process of unfolding a tensor A into a matrix A{k} ∈
CM1M2...Mk×Mk+1Mk+2...MK as

A{k} = reshape(A, [M1M2 . . .Mk,Mk+1Mk+2 . . .MK ])

and folding a matrix into a tensor A ∈ CM1×...×MK as

A = reshape(A{k}, [M1,M2, . . . ,MK ]).

(Note this is to be consistent with the Matlab function reshape()).
From [21] it can be shown that there exist a TT-decomposition of A such that

rk = rank(A{k}), k = 1, . . . ,K.

Denote the Frobenius norm of a tensor A ∈ CM1×...×MK as

‖A‖F =

√√√√M1−1∑
i1=0

. . .

MK−1∑
iK=0

|a(i1, . . . , iK)|2,

and the εk-rank of the matrix A{k} as

rankεk(A{k}) := min{rank(B) : ‖A{k} −B‖F ≤ εk}.

Given a set {εk}Kk=1, we can approximate the tensor A with a tensor Ã in the TT

format such that it has TT- ranks r̃k ≤ rankεk(A{k}) and

‖A− Ã‖F ≤ ε, ε2 = ε2
1 + . . .+ ε2

K−1.
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In Algorithm 1, we present the TT-SVD algorithm [21], which computes a TT-
decomposition of a tensor A with a prescribed accuracy ε. In Section 5, we present
some modifications to this algorithm that relax the prescribed tolerance and allow
us to compute an approximate decomposition faster. For a tensor A ∈ CM1×...×MK ,
define

|A| = number of elements in A = M1M2 . . .MK .

Algorithm 1: TT-SVD
input : A, ε

output : TT-Cores: A(1),A(2), ...,A(K)

τ := ε√
M−1

‖A‖F
r0 := 1;

for k=1,...,K-1 do

A{k} := reshape(A, [Mkrk−1,
|A|

Mkrk−1
])

Compute truncated SVD: UΣV ∗ + E = A{k} such that ‖E‖F ≤ τ
rk := rank(Σ) = rankτ (A{k})

A(k) := reshape(U , [rk−1,Mk, rk])
A := ΣV ∗

end

A(K) := A

The TT-decomposition can also be applied to tensors with a small number of
modes by using the quantized tensor train decomposition (QTT). For instance, let

v ∈ C2K be a vector (1-mode tensor). To apply the QTT-decomposition of v, we
reshape it into the K-mode tensor V ∈ C2×...×2 such that

V(i1, i2, . . . , iK) = v(i),

where

i =

K∑
k=1

ik2k−1, ik = 0, 1,

then compute the TT-decomposition of the tensor V (you can think of iK . . . i1 as
the binary representation of i). Extending the QTT-decomposition to matrices (2-

mode tensors) V ∈ C2K×2K can be done similarly by reshaping them into 2K-mode
tensors V ∈ C2×...×2, then computing the TT-decomposition of V .

We can approximate the discrete Fourier transform of a vector v ∈ R2K (or 2D

discrete Fourier transform of a matrix V ∈ R2K×2K ) in the QTT format using
what is known as the QTT-FFT approximation algorithm [3]. Let v̂ = DFT (v) be

the discrete Fourier transform of v and let V and V̂ be the tensors in the QTT-
format that represent the vectors v and v̂ respectively. Given V , the QTT- FFT
approximation algorithm can approximate V̂ with a tensor Ṽ such that

‖Ṽ − V̂‖F ≤ ε (4)

for some given tolerance ε. Similarly, we could prescribe some maximum TT-rank,
R̂max, for the QTT-FFT algorithm such that r̃k ≤ R̂max for all TT-ranks of Ṽ ,
{r̃k}Kk=0. The QTT-FFT algorithm can easily be modified to the inverse Fourier
transform of a vector (or matrix) in the QTT format, which we denote as the QTT-
iFFT algorithm.
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5. Computing the convolution with QTT decomposition. In practice, we
often need to compute the convolution (1), where f is the function of interest and
g is a given kernel, but f is not given explicitly. Instead, we are given noisy data

(fξ)j = f(xj) + ξj (5)

at discrete points xj , j = (j1, . . . , jD). In particular, representing the ground
reflectivity function for SAR reconstruction in the form (5) helps one model the noise
in the received data. We assume that ξj is white noise from a normal distribution
with the standard deviation σ, i.e., ξj ∼ N (0, σ2).

Since the kernel function g is known, we can discretize it as

gj = g(xj),

for the same xj values as in (5). We assume the D-dimensional spatial domain is
uniformly discretized into ND points where N = 2K−1 − 1, see (2). To compute
the discrete convolution (2), we propose using the quantized tensor train (QTT)
decomposition. To represent the arrays in the QTT format, we pad them with

zeros such that the new arrays are D-mode tensors in R2K×...×2K . We can relax the
condition on the size N , but to compute the convolution with an FFT algorithm,
we need to zero-pad each dimension with at least N − 1 extra zeros (see Section 2).
Also, for the QTT decomposition, we need each dimension to be of size 2K for some
K ∈ N. Let Fξ,G be the zero-padded tensors representing fξ and g respectively
in the QTT format. Here, we assume that the discretization of f , f , has a low,
but not exactly known, TT-rank in the QTT-format. This is motivated by the
fact that many standard piecewise smooth functions naturally have a low TT-rank,
see [9, 16,22].

To find approximations of these tensors in the TT-format, we modify the original
TT-SVD algorithm. This is because with the full TT-SVD algorithm, if the toler-
ance ε is small, see equation (4), the TT-decomposition has close to full rank. Not
only does it take a very long time to compute these decompositions, but most of
the noise is still present. However, if ε is too large, the TT-SVD algorithm loses too
much information about the true function f . For these reasons, we present slight
modifications to the TT-SVD algorithm. They are needed to significantly reduce
the computing time, as illustrated by the example in Section 7.1.

We consider three different modifications to the TT-SVD algorithm. These mod-
ifications are as follows:

(1) Set some max rank Rmax and truncate the SVD in Algorithm 1 with ranks
less than or equal to this threshold. Denote this method as the max rank
TT-SVD algorithm.

(2) Set some max rank Rmax and replace the SVD in Algorithm 1 with a random-
ized SVD (RSVD) given in [11] with max ranks set to Rmax (see Appendix A).
Denote this method as the max rank TT-RSVD algorithm. Note that for
this algorithm, we also need to prescribe an oversampling parameter p. We
could choose from several randomized SVD algorithms, but due to simplic-
ity and effectiveness, we use the approach described in Appendix A. This
algorithm implements the direct SVD.

(3) Truncate the SVD in Algorithm 1 based on when there is a relative drop in
singular values, i.e., if σk+1

σk
< δ (0 < δ < 1) for a given threshold δ, then

truncate the singular values less than σk. Denote this method as the SV
drop off TT-SVD algorithm.
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For the max rank TT-RSVD, if the unfolding matrices A{k} ∈ Rmk×nk , where
min(mk, nk) ≤ Rmax + p, then we revert to the max rank TT-SVD algorithm
(without the randomized SVD).

We can modify the QTT-FFT and QTT-iFFT algorithms similarly to our modi-
fications of the TT-SVD algorithms to get a low-rank approximation to the discrete
Fourier transform representations of Fξ and G. For this, we replace the SVD in the
QTT-FFT algorithm (QTT-iFFT) with the truncated SVD algorithms (1)-(3) given

above, but with possibly a different max rank which we denote R̂max for (1) and

(2), or different threshold δ̂ for (3). For the examples in Section 7, we distinguish

between Rmax and R̂max. However, we use the same threshold for δ in the TT-SVD
algorithm and the QTT-FFT algorithm. Thus, we do not distinguish between the
two. Note that using the threshold (1) in the QTT-FFT algorithm is not new and
is mentioned in [3].

With these above modifications to the TT-SVD algorithm and QTT-FFT (QTT-
iFFT) algorithms, we propose the following algorithm (Algorithm 2) to approximate
the convolution between the D-dimensional arrays f and g. For this algorithm, we
denote

• QFFTR̂max(δ̂): QTT-FFT algorithm with a max rank of R̂max (or threshold

δ̂),

• QiFFTR̂max(δ̂): QTT-iFFT algorithm with a max rank of R̂max (or threshold

δ̂).

Algorithm 2: QTT convolution
input : fξ, g

output : I
Step 1: Fξ = reshape(fξ, [2, . . . , 2]), G = reshape(g, [2, . . . , 2])

Step 2: Decompose Fξ and G into the QTT format using one of the modified TT-SVD

algorithms.
Step 3: I = QiFFTR̂max(δ̂)(QFFTR̂max(δ̂)(Fξ)�QFFTR̂max(δ̂)(G)).

Step 4: Retrieve I from I. (see Algorithm 3)

In Theorem 5.2, we show the asymptotic run time behavior of computing a
convolution in one spatial dimension (D = 1) with the max rank TT-SVD algo-
rithm. First, we prove an auxiliary result about the size of the unfolding matrices
for this algorithm; see Lemma 5.1. For Theorem 5.2, we consider the whole process
of converting the vector into the QTT-format, computing the convolution, then
converting the convolution in the QTT format back into a vector, as is demon-
strated in Algorithm 2. For the last step, to convert a tensor in the TT-format
back into the standard format, we use the ‘full’ algorithm from the Matlab tool-
box oseledets/TT-Toolbox. This is given in Algorithm 3. We then reshape this
tensor into a vector with a bit of run time.

Lemma 5.1. Let A ∈ R2×...×2 be a K-mode tensor. Let {A{k}}K−1
k=1 be the un-

folding matrices of A in the max rank TT-SVD algorithm with a max rank of Rmax

and with each A{k} ∈ Cmk×nk . Then

mk = 2rk−1 ≤ 2Rmax and nk = 2K−k.

Proof. Since Mk = 2 for all k, the proof for mk = 2rk−1 ≤ 2Rmax is trivial by the
first line inside the for loop in Algorithm 1. For nk, we do a proof by induction.
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Algorithm 3: Full

input : A(1),A(2), ...,A(K), and size of output tensor [M1, . . . ,Mk]

output : A ∈ CM1×...×Mk

Let A = A(1)

for k=2,...,K do

A = reshape(A, [
(|A|)
rk−1

, rk−1])

B = reshape(A(k), [rk−1, 2rk])

A = AB
end
A = reshape(A, [M1, . . . ,Mk])

First, note that |A{1}| = 2K and r0 = 1, thus

n1 =
|A{1}|

2r0
=

2K

2
= 2K−1.

Assume n` = 2K−` for all 1 ≤ ` ≤ k − 1. Then,

nk =
|A{k}|
2rk−1

=
|Σk−1V

∗
k−1|

2rk−1
=
rk−1nk−1

2rk−1
=
nk−1

2
=

2K−(k−1)

2
= 2K−k.

Thus, we get

mk = 2rk−1 ≤ 2Rmax and nk = 2K−k.

Theorem 5.2. Let fξ, g ∈ R2K−1−1 for some positive integer K. Then the com-
putational complexity, CQTT-conv, of approximating the convolution fξ ∗ g with the
max rank TT-SVD and max rank QTT-SVD algorithms described above is

CQTT-conv ≤ O(R2
max2K),

where Rmax is the prescribed max rank for both the TT-SVD algorithms and the
QTT-FFT algorithm.

Proof. We show that the computational complexity is dominated asymptotically by
the max rank TT-SVD algorithms and the full tensor algorithm. First, let Csvd be
the computational cost of the SVD in big O notation. Then, for a matrixA ∈ Cm×n,
Csvd(A) = O(mnmin(m,n)). Note that, in Algorithm 1 (as well as in our max rank
modifications), the computational complexity is dominated by the SVD algorithm.
Denote the unfolding matrices at the kth iterations as A{k} ∈ Cmk×nk . Hence, the
computational cost of the max rank TT-SVD algorithm is

K−1∑
k=1

Csvd(A{k}) =
K−1∑
k=1

O(mknk min(mk, nk))

≤
K−1∑
k=1

O((2Rmax)22K−k)

= 4R2
max

K−1∑
k=1

O(2k)

= 4R2
maxO(2K − 2)

= O(R2
max2K).
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From [3], we have that for the QTT-FFT and QTT-iFFT algorithms, the compu-
tational complexity is O(K2R3

max). In Algorithm 3, the computational complexity

comes from the multiplication AB in every loop. For the kth loop, A ∈ C2k−1×rk−1

and B ∈ Rrk−1×2rk for k = 2, . . . ,K, thus the computational complexity is propor-
tional to the cost of multiplying A by B, i.e.,

Cfull =
K∑
k=2

O(2k−1rk−12rk)

≤ R2
max

K∑
k=2

O(2k)

= R2
maxO(2K+1 − 4)

= O(R2
max2K).

Hence, the total computational complexity is

O(R2
max2K) +O(K2R3

max) +O(R2
max2K) = O(R2

max2K).

For the randomized SVD, we have the computational complexity Crsvd(A
{k}) =

O(mknk(Rmax + p)) = O(2K−kRmax(Rmax + p)). Thus, the run time for the convo-
lution with a max rank TT-RSVD is similar when p is small. In D spatial dimen-
sions, we can obtain a similar result but by replacing K with DK in the max rank
TT-SVD algorithm and the full tensor algorithm, and the QTT-FFT algorithm is
O(DK2R3

max). Hence, the total run time complexity in D spatial dimensions is
O(R2

max2DK).

6. Denoising. It is well known that the SVD can remove noise from matrix data,
as seen in [4,14], but little research has been done in denoising with tensor decom-
positions. In [17] and [19], the Tucker decomposition was used to help remove noise
from point cloud data and electron holograms, respectively. In [8], it was shown
that the TT-decomposition might have some advantages to denoising as opposed to
the Tucker decomposition. This is because a low-rank Tucker matrix guarantees a
low TT-rank for the data. However, the converse statement is not always true.

Let F be the low TT-rank tensor representing f in the QTT format. Then

for some core tensors F (k) ∈ Rrk−1×2×rk with tensor slices F (k)(:, ik, :) = f
(k)
ik
∈

Rrk−1×rk , ik = 0, 1. Each element of F can be represented in the TT format as

F(i1, . . . , ik) = f
(1)
i1

. . .f
(K)
iK

, ik = 0, 1, k = 1, . . . ,K,

where each f
(k)
ik

is a low rank matrix. In practice, it is unlikely the data collected
has a low-rank TT decomposition since almost all real radar data has noise due to
hardware limitations or other signals interfering with the data. Instead, we have
the noisy data fξ whose tensor representation is

Fξ = F + ξ,

where ξ is the realization of the random noise in the TT format. The tensor Fξ

almost surely has full TT-rank when represented exactly in the QTT format. Ideally,
we would like to be able to find an approximate TT decomposition F̃ with TT-

cores F̃ (k)
, k = 1, . . . ,K, using the noisy data such that F̃ (k) ≈ F (k). However,

it is hard to guarantee any bound on this. We argue, though, that by using our
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proposed methods when given the noisy data Fξ, we can find a TT decomposition

F̃ with low rank such that F̃ ≈ F .
Consider the first iteration of the for loop of algorithm 1, with A = A0 + Aξ

as the sum of a smooth tensor (A0) and a noisy tensor (Aξ). Then, after it is
reshaped, we obtain the matrix

A{1} = A
{1}
0 +A

{1}
ξ ,

where A
{1}
0 is a low rank matrix and A

{1}
ξ is added noise. Let A{1} = UΣV ∗ +E

be the truncated SVD of A{1} and A
{1}
0 = U0Σ0V

∗
0 be the SVD of A

{1}
0 . Note

that UΣV ∗ ≈ A
{1}
0 does not imply that U ≈ U0, and thus the TT-core A(1)

is not guaranteed to be approximately equal to A(1)
0 , where A(1)

0 is the first TT-

core of A0. However, if we let A2 = A on the second iteration of the loop in
Algorithm 1 (and similarly for A0), we do get that the elements of the tensor

contraction A(1) ◦A2 ≈ A(1)
0 ◦A

2
0. Similarly, if we can approximate the noise-free

component on every iteration of the for loop, we obtain an approximation for the
tensor A0. While we do not have a theoretical bound on this error, our experiments
in Section 7 show that this method works well at removing the noise. Since our
method computes multiple SVDs, it can reduce a lot more noise than if we just did
a single SVD and can do so without excessive smearing.

7. Numerical simulations. This section presents some examples in one and two
spatial dimensions. The original code for the TT-decompositions and the QTT-
FFT algorithms comes from the Matlab toolbox oseledets/TT-Toolbox. We have
modified it accordingly for the max rank TT-SVD, max rank TT-RSVD, and
SV drop off TT-SVD algorithm, as discussed in Section 5. For all our examples,
we compare the run time and errors of computing the convolution (1) using several
methods. The error for every example is the l2 relative error

E2(I) =
‖I − Iref‖2
‖Iref‖2

, (6)

where in D spatial dimensions

‖I‖2 =

√√√√ 1

ND

N−1∑
j=0

|Ij |2.

The reference solution, Iref, is the discrete convolution (2) computed without any
noise. In all of the examples, we compare our methods against computing the
convolution with the randomized TT-SVD algorithm from [13], as well as computing
the true noisy convolution with FFT. In two space dimensions, we also approximate
the convolution using a low matrix rank approximation to the noisy data fξ, where
the truncated rank is determined by the actual matrix rank of f .

For all of these examples, we use the normalized sinc imaging kernel that corre-
sponds to the GAF (3) truncated to a sufficiently large interval [−L,L]:

g(x) =
sinc(π x

∆x
)∫ L

−L sinc(π x
∆x

) dx
, x ∈ [−L,L] (7)
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for D = 1, and

g(x, y) =
sinc(π x

∆x
)sinc(π y

∆y
)∫∫ L

−L sinc(π x
∆x

)sinc(π y
∆y

) dxdy
, (x, y) ∈ [−L,L]× [−L,L] (8)

for D = 2, where the resolution ∆x in (7) and ∆x = ∆y in (8) is a given parameter.
The one- dimensional kernel (7) for ∆x = 0.04π is shown in Figure 1.

In Table 1, we present the relative error for each example for K = 20 when D = 1,
and K = 10 when D = 2. In this table, the convolution fξ ∗ g is denoted by Iξ
and computed using the FFT algorithm, the QTT-convolution computed with the
max rank TT-SVD algorithm is denoted by IQTT0

, the QTT-convolution com-
puted with the max rank TT-RSVD is denoted by IQTTr , and the convolution
computed using the SV drop off TT-SVD algorithm is denoted by Iδ. In turn,
the convolutions computed using the randomized TT-decomposition are denoted by
IRTT , and in two dimensions, the convolution computed using low-rank approxima-
tions of f is denoted by Ilr. For Iδ and Ilr, we also denote what parameter δ and
truncation matrix rank R are used, respectively, for each example using a subscript
of the error.

Figure 1. Kernel function (7) with ∆x = 0.04π.

For each example, we show the TT-ranks of the original function without noise,
f , in the QTT format given by the tensor F . This QTT approximation is computed
with Algorithm 1 with the tolerance ε = 10−10. We compute these TT-ranks for
K = 20 when D = 1 and K = 10 when D = 2. However, it is worth noting that
these TT-ranks do not change much for any data size. Notice that the max TT-ranks
we choose for our algorithms are less than the TT-ranks of f from Algorithm 1, yet
still provide a reasonable estimate.

Table 1. l2-norm relative error for K = 20 for examples 1 and 2,
and K = 10 for example 3.

example Iξ IQTT0
IQTTr Iδ IRTT Ilr

1 0.0383 0.0028 0.0102 0.0280δ=0.02 0.0430 -
2 0.0131 0.0011 0.0075 0.0068δ=0.01 0.0201 -
3 0.1142 0.0151 0.0447 0.1650δ=0.09 0.1534 0.0470rank=23
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7.1. Example 1. For this example, let

f(x) = e−( 3x
10 )2(0.4 sin(8πx)− 0.7 cos(6πx)), x ∈ [−10, 10],

and

(fξ)j = f(xj) + ξj ,

xj = −10 +
∆x

2
+ j∆x, j = 0, . . . , N − 1, ∆x =

20

N
, N = 2K−1 − 1,

with ξj ∼ N (0, 0.02). We also set the resolution ∆x = 4∆x in (7), where ∆x is the
size of the spatial discretization. Thus, the width of the main lobe of the sinc is
8∆x on the x-axis.

As we can see in Figure 2, the FFT-QTT algorithm removed much of the noise
in the data compared to the true convolution. For K = 20, we also tried computing
the convolution using the original TT-SVD algorithm given in Algorithm 1 with
multiple values of ε. The smallest error, as defined in (6), occurred when ε = 0.01
and gave the relative error of E2(I) = 0.03202. This is close to the error of the true
convolution of the noisy data and took over 100 seconds to compute. However, as
we can see in Table 2, the run times for all of our methods on the same grid took
less than a second. This indicates that the original TT-SVD algorithm is practically
unsuitable for removing data noise.

The max TT-rank of the discretization of f(x) in the QTT format, F , is 17, yet
we were able to achieve our approximation using a max rank of Rmax = 10 for the
max rank TT-SVD and max rank TT-RSVD algorithms and R̂max = 15 for
the QTT-FFT algorithm. Thus, even if we do not know the exact TT-rank, we can
still compute a good approximation.

Table 2 shows run times for different grid sizes for each method. We can see that
computing the convolution with FFT is faster than our methods for these values
of K. However, the convolution with our QTT methods gets closer to the FFT
run time as K increases. This is shown in the last column of Table 2 where we see
the ratio of the max rank TT-SVD convolution method to the FFT convolution
method is getting smaller as K grows. This helps verify our theoretical result
that for some constant max rank Rmax (and R̂max), the max rank TT-SVD
convolution method is asymptotically faster than computing the convolution with
FFT. The amount of data needed for our method to outperform the FFT method
may be impractical for most real-world applications in 1-2 spatial dimensions.

Table 2. Run time (seconds): Example 1 convolutions.

K Iξ IQTT0
IQTTr Iδ IRTT IQTT0

/Iξ

16 0.005 0.325 0.369 1.485δ=0.02 0.414 65
20 0.067 0.653 0.694 0.479δ=0.02 0.609 9.7463
24 1.21 4.41 4.86 3.10δ=0.02 2.80 3.6446
26 5.77 17.75 19.68 13.93δ=0.02 10.97 3.0763
28 66.6 95.5 108.7 79.0δ=0.02 62.49 1.4339

Table 3 shows the number of elements to represent the data fξ fully versus how
many elements are required to store the data in the QTT-format with a prescribed
max rank of Rmax = 10, Fξ, in Example 1. As we can see, storing all the elements
takes a lot of data and grows exponentially in K, while storing the elements in the
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Figure 2. Top Left: True convolution of data without noise, I.
Top Right: Function data with noise, fξ. Middle Left: True

convolution of data with noise, Iξ. Middle Right: Convolution
using the max rank TT-SVD algorithm, IQTT0

. Bottom Left:
Absolute error of Iξ. Bottom Right: Absolute error of IQTT0 .

QTT format takes a lot less data and only grows linearly in K. These values for
the QTT-data storage can be found by looking at the size of the core tensors. For
the tensor Fξ in the QTT format and with a max TT-rank of Rmax = 10, we have
the TT-cores

F (1)
ξ ,F (K)

ξ ∈ R1×2×2,

F (2)
ξ ,F (K−1)

ξ ∈ R2×2×4,
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Table 3. Data storage for Example 1.

K fξ Fξ

16 65,536 2088
20 1,048,576 2888
24 16,777,216 3688
26 67,108,864 4088
28 268,435,456 4488

F (3)
ξ ,F (K−2)

ξ ∈ R4×2×8,

F (4)
ξ ,F (K−3)

ξ ∈ R8×2×10,

F (k)
ξ ∈ R10×2×10, k = 5, . . . ,K − 4.

Thus, the number of elements, Nel, that make up this QTT tensors is:

Nel = 2(1×2×2) + 2(2×2×4) + 2(4×2×8) + 2(8×2×10) + (K−8)(10×2×10).

The max rank TT-RSVD algorithm is not able to produce results as good as
the max rank TT-SVD (see Table 1 for relative error comparison and Table 2 for
a run time comparison) but is still able to produce a reasonably low error. While the
run time for the max rank TT-SVD is faster than the max rank TT-RSVD for
all of our methods, the max rank TT-RSVD can be faster for tensors with larger
mode sizes. This is due to the SVD in max rank TT-SVD algorithm with mode
sizes, Mk, may be computed on a matrix with mk = MkRmax rows. In contrast,
for the max rank TT-RSVD algorithm, the SVD is computed on a matrix with
mk = Rmax + p rows when Mk = 2 (such as for the QTT decomposition). The
difference in the sizes of mk does not make up for the extra amount of work the
RSVD algorithm does. Although this paper focuses on the QTT-decomposition and
thus Mk = 2, we believe this is important to note as the max rank TT-RSVD
algorithm can speed up the TT-decomposition for higher mode tensor data and
still produce accurate approximations. We verify this by computing the max rank
TT-SVD algorithm and the max rank TT-RSVD algorithm on a tensor with
K = 8 modes with each mode of size Mk = 10, k = 1, . . . ,K. Each element of
this tensor is taken from the uniform distribution U [0, 1). The max rank TT-SVD
algorithm took 9.57 seconds, and the max rank TT-RSVD algorithm only took
5.12 seconds, almost half the time of the max rank TT-SVD algorithm.

7.2. Example 2. If we were to choose a coarser resolution for the example of
Section 7.1 (i.e., a wider sinc function), we could reduce the noise using the standard
convolution at the cost of smoothing out the solution’s peaks. Doing this gives
similar results for the true convolution and with our methods (Section 5). In this
section, we show an example where the ground reflectivity is very oscillatory. Here,
the resolution ∆x determined by the GAF must be small (i.e., the sinc function
must be “skinny”). Otherwise, if the sinc window is close to or larger than the
characteristic scale of variation of the ground reflectivity, then the convolution can
smooth out the actual oscillations instead of just the noise, losing most of the
information in f .

We choose the ground reflectivity as

f(x) = e−(3x)2(0.9 sin(
2xπ

5∆x
) + 1.4 cos(

xπ

3∆x
)), x ∈ [−1, 1],
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and

(fξ)j = f(xj) + ξj ,

xj = −1 +
∆x

2
+ j∆x, j = 0, . . . , N − 1, ∆x =

2

N
, N = 2K−1 − 1,

with ξj ∼ N (0, .01). We use ∆x = 2∆x and the max TT-rank of the discretization
of the smooth function f(x) in the QTT-format is 26.

Figure 3. Top Left: True convolution of data without noise, I.
Top Right: Zoomed in graph of Iξ, IQTT0

, and Iref . Bottom Left:
Absolute error of Iξ. Bottom Right: Absolute error of IQTT0

.

Again, we use the max ranks of Rmax = 10 and R̂max = 15 for the max rank
TT-SVD and QTT-SVD algorithms, respectively. As the function is too oscillatory
to see a lot of helpful information in the full graph (see top left of Figure 3), we show
a zoomed-in plot of the graph of Iξ, IQTT0 , and Iref (see top right of Figure 3). While
there is some error, the QTT-FFT convolution agrees with the true convolution Iref
very well, whereas Iξ has a more considerable noticeable difference. This is verified
by the graphs of the absolute error given in Figure 3, where the bottom left shows
the error for Iξ, and the bottom right shows the error for IQTT0

.

7.3. Example 3. Let

f(x, y) = e−((2x)2+(2y)2)(sin(2πx)− cos(7πy) + cos(4πxy)− sin(3πxy),
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(x, y) ∈ [−1, 1]× [−1, 1]

and

(fξ)j,k = f(xj , yk) + ξj,k,

xj = −1 +
∆x

2
+ j∆x, yk = −1 +

∆y

2
+ k∆y,

j, k = 0, . . . , N − 1, ∆x = ∆y =
2

N
, N = 2K−1 − 1,

with ξj,k ∼ N (0, 0.1). We have ∆x = ∆y = 2∆x. Thus, the diameter of the
main lobe of the sinc is 4∆x on the xy-plane. Here, we show a 2D example whose
discretization of a smooth function f has a matrix rank of 23 and a TT-rank of
26 when represented in the QTT format. We still use the ranks Rmax = 10 and
R̂max = 15 for our max rank TT-SVD (max rank TT-RSVD) and max rank
QTT-FFT. Thus, our TT-ranks are much smaller than the true TT-ranks. In Figure
4 and Table 1, notice that our method can still capture the shape of the original
function with an error that is an order of magnitude smaller than the error from
the true convolution using FFT. The plots on the bottom of Figure 4 are a side
view of the error graphs, as it is easier to compare the errors in this view. The 2D
examples are similar to the previous test case. Thus, it is reasonable to assume our
method works about the same regardless of the spatial dimension.

In Table 4, we compare the run times for the different methods of computing the
convolution in two spatial dimensions. We get similar results as the one-dimensional
case, where the fastest run time is from the convolution with FFT, but with the
max rank TT-SVD and max rank TT-RSVD methods approaching its run
time asymptotically. In 2D, when there is the same amount of data as in the 1D
case (for example, 214×14 in 2D compared to 228 in 1D), the 2D examples do not
run as fast as the 1D example. This is due to the extra work in the 2D QTT-FFT
algorithm from [3].

Table 4. Run times (seconds): Example 3 convolutions.

K Iξ IQTT0
IQTTr Iδ IRTT Ilr IQTT0

/Iξ

8 0.0034 0.2213 0.310 7.102δ=0.04 0.297 0.0090rank=2 65.088
10 0.0629 0.9209 1.428 0.670δ=0.04 1.321 0.154rank=2 14.651
12 0.948 8.6462 11.258 22.79δ=0.04 10.27 5.15rank=2 9.121
14 58.67 147.8 151.05 1087δ=0.04 164.5 286.2rank=2 2.519

Again we compare the amount of data stored in the full format versus in the
QTT-format. Note that the spatial dimension of the original function does not
matter in how much storage it takes, just the dimensionality of the data. For

example, it takes just as much data to store a vector in R220

as it does to store a

matrix in R210×210

in the QTT format with a max rank of Rmax.

8. Conclusions. In this paper, we have shown that the QTT decomposition, along
with the QTT-FFT algorithm, can effectively remove noise from signals with full
TT-ranks when the true signal is of low rank. As we have seen in the numerical
examples, we could drastically remove the amount of noise from the signal compared
to if we took the convolution in the traditional way of using the FFT algorithm.
This comes at the cost of run time, but our methods still run at a reasonable speed
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Figure 4. Top Left: True convolution of data without noise, I.
Top Right: Function data with noise, fξ. Middle Left: True

convolution of data with noise, Iξ. Middle Right: Convolution
using the max rank TT-SVD algorithm, IQTT0

. Bottom Left:
Absolute error of Iξ. Bottom Right: Absolute error of IQTT0 .

which got closer to the FFT run time as the dimensionality of the data increased.
This is demonstrated by three different examples, two in one spatial dimension and
one in two spatial dimensions. We are even able to show that our method works
on very oscillatory data where it is required to have a sinc kernel with a narrow
main lobe. Using approximate TT-ranks smaller than the TT-ranks of the actual
signal data, we are able to recover most of the signal. This indicates that as long
as the signal is reasonably smooth, the QTT decomposition can effectively be used
for noise reduction for high-dimensional data, even if the true TT-rank is unknown.
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Table 5. Data storage for Example 3.

K fξ Fξ

8 65,536 2088
10 1,048,576 2888
12 16,777,216 3688
14 268,435,456 4488

From our three new approaches, the max rank TT-SVD convolution algorithm
works much better than the max rank TT-RSVD and the SV drop off TT-
SVD convolution algorithms. As was stated before, the max rank TT-RSVD can
outperform the max rank TT-SVD algorithm when there are larger mode sizes
that are used in this paper. For this reason, we present this algorithm, as we have
not seen it in the literature elsewhere. The SV drop off TT-SVD convolution
algorithms do not produce as accurate of a method as the max rank TT-SVD or
the max rank TT-RSVD algorithm; however, in some cases, it does run faster,
and this method may give a higher degree of confidence that the truncated singular
values are of little importance. Unfortunately, this method can also lead to long
run times, as is seen in Table 4 when K = 14.

Appendix A. Randomized SVD. Here, we give a brief overview of the random-
ized SVD (RSVD) decomposition from [11]. To compute the RSVD of the matrix
A ∈ Rm×n, the first step is to find Q ∈ Rm×(k+p) such that

A ≈ QQ∗A
where Q has orthonormal columns and whose columns are approximations for the
range of A. Here, k is the number of singular values that we want in our ap-
proximation to be close to the singular values of A, and p is what is known as an
oversampling parameter. To find Q, we use the following Algorithm 4.

Algorithm 4: Solving the Fixed-Rank Problem

input : A, k, p
output : Q
Draw random matrix Ω ∈ Rn×(k+p) such that Ωi,j ∼ N (0, 1).
Let Y = AΩ.
Compute QR factorization QR = Y .

Once we have obtainedQ, we can compute the low-rank RSVD using Algorithm 5
(Algorithm 5.1 in [11]).

Algorithm 5: RSVD

input : A, Q, k
output : UΣV ∗

1. Let B = Q∗A.
2. Compute SVD: ŨΣV ∗ = B.
3. Let U = QŨ .

With these algorithms, we obtain an approximation Ã to A such that

‖A− Ã‖ ≤ (1 + 11
√
k + p

√
min(m,n))σk+1, (9)

with probability 1 − 6p−p. If we truncate the SVD to only the leading k singular
values in Algorithm 5, then the error on the left-hand side of (9) only increases
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by at most σk+1. The computational complexity for each step of this algorithm is
given as

• O(mn(k + p))
• O((k + p)2n)
• O((k + p)2m),

Thus, for k+p < min(m,n), the overall algorithm requires O(mn(k+p)) operations.
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