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ARTICLE INFO ABSTRACT
Keywords: Multiplexed detection of biomolecules is of great value in various fields, from disease diagnosis to food safety and
Multiplexed biosensor environmental monitoring. However, accurate and multiplexed analyte detection is challenging to achieve in

Multimodal sensing
Machine learning
Laser induced graphene

mixtures using a single device/material. In this paper, we demonstrate a machine learning (ML)-powered
multimodal analytical device based on a single sensing material made of electrodeposited molybdenum poly-
Sweat sulfide (eMoSy) on laser induced graphene (LIG) for multiplexed detection of tyrosine (TYR) and uric acid (UA) in
Saliva sweat and saliva. Electrodeposition of MoSy shows an increased electrochemically active surface area (ECSA) and
Wearable heterogeneous electron transfer rate constant, k. Features are extracted from the electrochemical data in order
to train ML models to predict the analyte concentration in the sample (both singly spiked and mixed samples).
Different ML architectures are explored to optimize the sensing performance. The optimized ML-based multi-
modal analytical system offers a limit of detection (LOD) that is two orders of magnitude better than

Abbreviations: LIG, Laser induced graphene; ML, Machine learning; TYR, Tyrosine; UA, Uric acid; eMoSy, Electrodeposited molybdenum polysulfide; LOD, Limit of
detection; ECSA, Electrochemically active surface area.
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conventional approaches which rely on single peak analysis. A flexible and wearable sensor patch is also
fabricated and validated on-body, achieving detection of UA and TYR in sweat over a wide concentration range.
While the performance of the developed approach is demonstrated for detecting TYR and UA using eMoS-LIG
sensors, it is a general analytical methodology and can be extended to a variety of electrochemical sensors to
enable accurate, reliable, and multiplexed sensing.

1. Introduction

The accuracy and reliability of diagnostics can be improved by
simultaneous analysis of multiple biomarkers using multiplexed
methods [1]. In addition, multiplexed detection within the same sample
saves resources and reagents, which is critical with clinical samples that
often have limited volume [2]. Conventionally, multiplexing is achieved
by various approaches, such as the use of different capture molecules (as
in multiplexed enzyme linked immunosorbent assay (ELISA) [3]) or
using spectroscopic methods, such as surface enhanced Raman spec-
troscopy (SERS), mass spectrometry [4], and high performance liquid
chromatography [5]. While spectroscopic methods are inherently mul-
tiplexed [6], they are more suited for lab-based analysis as they often
require bulky and expensive equipment [7].

Electrochemical sensors have emerged as the hallmark of point of
care (POC) and wearable technology, as they can sensitively monitor
analytes and are portable, relatively low-cost, and compatible with IC
technology for integration with signal processing and data transmission
modules [8]. In particular, electrochemical sensors have found
ever-growing interest for detection and monitoring redox-active small
molecules, such as catecholamines and their metabolites [9-12], reac-
tive oxygen species (ROS) [13,14], reactive nitrogen species [15],
among others. Various electrochemical methods have been utilized,
including cyclic voltammetry (CV) [16,17], square wave voltammetry
(SWV) [18,19], differential pulse voltammetry (DPV) [20,21], and large
amplitude AC voltammetry (LAACV) [22,23]. However, when the
formal potential of molecules is close, there is a considerable overlap
between their redox peaks and therefore it is more challenging to
distinguish them in mixed samples. To achieve reliable and multiplexed
sensing and mitigate stability issues caused by device-to-device varia-
tions, machine learning (ML) offers a powerful tool [24,25]. For
example, ML-based support vector machine (SVM) models have been
used to estimate nitrate concentration in water sources using CV [26]. In
other works [27,28], fast scan cyclic voltammetry (FSCV) is used along
with ML to accurately predict the dopamine and serotonin levels in
extracellular brain fluid. ML has also been used to selectively detect
heavy metal ions in buffer solutions in the presence of interferents [29].
Convergence of ML and multimodal electrochemical readout to create
fingerprint of analytes can help achieve multiplexing with high accuracy
[22]. However, ML-assisted electrochemical biosensing is still in
inceptive stage [24,31].

In this work, we demonstrate a ML-powered multimodal analytical
device based on electrodeposited molybdenum polysulfide (eMoSyx) on
laser induced graphene (LIG) for multiplexed detection of tyrosine
(TYR) and uric acid (UA) in sweat and saliva samples. To enable auto-
mated multimodal readout, a customized electrochemical data collec-
tion setup is developed which automatically sweeps through multiple
electrochemical modalities. The developed platform enables automated
background subtraction and peak identification which filters the back-
ground signals before being passed to the ML model for regression in
order to detect TYR and UA in mixed samples. TYR is a precursor for
production of catecholamine neurochemicals [32], and under stress, its
level decreases [33]. Abnormal levels of UA is indicative of kidney
failure [34]. High concentration of UA leads to gout [35] and other
medical conditions, such as kidney stones, diabetes, and cardiovascular
diseases [36]. Hence, detection and tracking the levels of TYR and UA is
important for early disease diagnosis, prognosis, and treatment. TYR and
UA are present in saliva and sweat in considerable quantities allowing

for non-invasive testing, which is an essential criterion for routine pre-
ventive care and personalized medicine. Supplementary Information (SI,
Section S2) summarizes some of the prior works reported for detecting
TYR and/or UA, including a few recent reports based on LIG. In our
work, compared to bare LIG, eMoSx-functionalized LIG has a 300%
larger electrochemically active surface area (ECSA) and a 50% larger
standard heterogenous electron transfer rate constant (k°), both of
which lead to an improved sensitivity to TYR and UA. Using a
custom-made automated hardware/software analytical system, several
voltammetry methods (CV, SWV, DPV, LAACV) are investigated to study
multimodal data fusion for enhancement of the analytical performance,
which has not been previously studied in detail to the best of our
knowledge. To analyze the multimodal data, the ML architecture is
optimized, enabling selective and sensitive detection of TYR (LOD 100
nM) and UA (LOD 10 nM) in saliva and sweat at pH 6.7. Finally, on-body
experiments demonstrate the application of the eMoS,-LIG sensor as a
wearable patch for sweat analysis. While the ML-based multimodal
electrochemical analytical method is demonstrated using TYR and UA,
the developed methodology can be extended to other sensory systems
including environmental monitoring, food safety, biodefense, and mo-
lecular diagnostics.

2. Experimental details

2.1. Sensor fabrication and functionalization of laser induced graphene
(LIG)

Commercially available polyimide sheets are rinsed with 2-propanol
(IPA) followed by air drying to clean the surface and are mounted on the
metal workbench in a commercial CO; laser cutter (VLS2.30, Universal
Laser Systems, Inc.) using adhesive tapes at the edges of the polyimide
sheet. A 25 W laser is used to ablate polyimide into conductive laser
induced graphene (LIG) [37]. The laser writing parameters are opti-
mized in order to get good conductivity and structural integrity [38].
The laser beam is focused onto the polyimide sheet and a power scaling
of 10.5% with a speed scaling of 5.5% and a resolution of 1000 pixels per
inch (ppi) in raster mode is used to directly write the sensor pattern onto
the polyimide substrate.

The sensor has a three-electrode design with a working electrode
(WE; eMoS4-LIG), a counter electrode (CE; LIG), and a reference elec-
trode (RE) configured with pads to be able to be inserted into a com-
mercial zero insertion force (ZIF) connector as shown in Fig. 1.
Commercial Ag/AgCl glass reference electrode (MF-2052, Bioanalytical
Systems, Inc.) is used to characterize the sensors initially. For on-chip
and on-body measurements, a pseudo reference electrode is fabricated
by writing upon the LIG RE pattern using a conductive silver pen (Circuit
Scribe).

LIG is functionalized with MoSy using electrodeposition, as shown in
Fig. 1. Amperometric electrodeposition at —0.8 V in 1 mg mL~! ammo-
nium tetra-thiomolybdate (ATTM) with 1 mgmL~! potassium chloride
(KCl) as supporting electrolyte is used to deposit MoSy onto the WE with
platinum CE and Ag/AgCl RE [39]. Silicone (Ecoflex 5, Smooth-On, Inc.)
is used to passivate the sensor region from the electrical contact pads.
The sensor pattern also has visual cues in the form of electrically
disconnected LIG dots and lines to help consistent and repeatable
application of the passivation layer on the surface. After fabrication, the
sensors are either used immediately or stored in N5 or dry environment
(ambient) for three weeks to determine the shelf life.
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2.2. Hardware and software setup

Commercially available potentiostat (MultiPalmsens, PalmSens) is
used to perform the following standard voltammetry measurements: CV,
SWV, and DPV. In order to perform LAACV [23], a custom hardware
platform is built similar to our previously reported work [12]. The
custom hardware is programmed to apply a sinusoid with frequency of
100 Hz and Vpi = 100 mV imposed upon a ramp waveform potential to
the electrochemical cell and measure the current.

Since machine learning demands a large amount of data to be
collected for training and testing the model, we also built a custom
multiplexer sensor holder capable of handling multiple sensors at once,
see schematic block diagram in Fig. S1 (SI, Section S3). This system is
comprised of eight ZIF sensor receptacles with glass reference electrode
mounts fabricated in commercial plexiglass sheets. Eight sensors are
inserted at once into the connectors and the multiplexer is programmed
to automatically route each sensor to a particular potentiostat: com-
mercial potentiostat for standard electrochemical modules: CV, DPV,
SWV and custom potentiostat for custom electrochemical module:
LAACV.

A Python supported Jupyter Notebook is used as the software
interface to connect to the multiplexer to control the relays and route the
signals. A schematic of the software flow is shown in Fig. S2 (SI, Section
S4). Briefly, the Jupyter notebook directly interfaces to the custom
potentiostat using a serial port. A C# based wrapper is also written for
the commercial potentiostat so that it also could be controlled by the
Jupyter notebook. All the data collected is automatically stored onto the
PC with appropriate time stamps and experimental conditions. Another
Jupyter notebook running in a loop constantly searches for new data and
immediately partially processes and plots the data in real time. Scikit-
learn [40] was mainly used to implement the machine learning pipe-
line along with NumPy [41] and SciPy [42]. Default machine learning
model parameters were used as is from the imported libraries unless
specified. The machine learning model described later can analyze the
data collected and predict the analyte concentrations in real time (<15
secs on a standard PC after the data is collected by the potentiostat). The
computational cost depends upon the chosen complexity of the model
and chosen electrochemical modules (ranges from < 3 secs to < 15 secs).
The trained model can also be implemented on an embedded or a
smartphone system allowing for mobile computation and prediction.
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2.3. Electrochemical analyses

TYR and UA stock solutions with concentration of 1 mM are prepared
in artificial saliva (AS) and artificial sweat (ASW). Other concentrations
are prepared by serial dilution of the stock solutions in the corre-
sponding medium. The stock solution is remade every week to prevent
degradation (if any) which could affect the data repeatability. In order to
test a sensor, it is first rinsed with DI water and then a baseline AS/ASW
drop of 100 L is added. Cyclic voltammetry is performed to condition
the sensor (parameters in SI, Section S5) and ensure that the electrical
contact to the sensor is reliable and not noisy (e.g. due to loose con-
nections of the wiring and ZIF connectors). Then, baseline DPV, SWV,
and LAACYV signals (parameters in SI, Section S5) are collected. To test
the analytes, the baseline liquid is wicked off (VWR, Spec-Wipe) and 100
uL of a given concentration is added one by one and DPV, SWV, LAACV
data is collected making sure the concentration of the analyte always
increases on that particular sensor to prevent back contamination and
separate wicks are maintained to prevent cross contamination between
the sensors. Three scans for each measurement module are obtained. To
gauge the sensor response using the single peak analysis method
described in Section 3.2, only the third scan is used. However, all scans
are utilized to train the ML models described in Section 3.3. For all
measurements, at least four sensor replicates are used.

For the sensor shelf-life tests, a separate stock solution is maintained
with 1 mM TYR. Two set-pairs of sensors, four in each set is maintained
to test the storage environment. One set stays in the ambient environ-
ment, whereas one set is stored in a N5 desiccator. To test the sensor
shelf-life, three set-pairs of sensors are prepared: three sets are stored in
N, desiccator (<2ppm moisture) and three sets in ambient environment.
A set from each environment is tested with a week gap using 250 uM
TYR. For selectivity tests, all combinations of the two analyte mixture
concentrations are tested in sequence as described above ensuring that
no single sensor sees a decrease in concentration of a particular analyte
being tested on it.

O Ka1

S Kal

2.5um

Fig. 1. Fabrication, functionalization, and material characterization of eMoS,-LIG sensor. (a) First, polyimide is converted to laser induced graphene (LIG)
using laser processing. Contact pads are passivated using silicone to define the working electrode (WE) area. Amorphous MoS; is electrodeposited using chro-
noamperometry method with the WE voltage set at —0.8 V vs. Ag/AgCl. (b) SEM image (top left) and EDX maps of eMoS,-LIG confirm the 3D porous structure of the

material and distribution of Mo, S, and O elements.
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3. Results and discussion

3.1. Characterization of the material morphology, surface chemistry, and
kinetic parameters

Scanning electron microscopy (SEM) reveals a fibrous and porous
structure of LIG as shown in Fig. 1b. The porous structure leads to a
significant increase of the available surface area, providing many active
sites for electrochemical reactions [43]. Raman spectroscopy in Fig. S3
(SI, Section S6) confirms successful carbonization of the polyimide sheet
and presence of graphite and graphene. Energy Dispersive X-ray spec-
troscopy (EDX) in Fig. 1b also confirms the presence of Mo, S, and O.
X-Ray photoelectron spectroscopy (XPS) confirms successful electrode-
position of MoSx on LIG as shown in Table S1 (SI, Section S6) [39].
Specifically, Mo to C ratio on the surface is observed to be ~1:6 among
which 53% Mo is in MoS; and 15% Mo in MoOy/MoSs. Interestingly,
considerable amount of the Mo (32%) is in MoOs, which has also been
reported previously [44] and has shown catalytic properties for oxida-
tion reactions [45]. The amorphous MoSy is shown to transition into a
crystalline structure following high temperature annealing in inert gas
[10]. Fig. S3c summarizes the XRD results. The XRD of LIG shows the
(002) and (100) plane of the graphite-2H (PDF 41-1487), consistent with
previous reports [46]. There is no obvious MoSx characteristic peak
found in the XRD results of the eMoSy.LIG sample since the material in
our study is amorphous (no post-deposition thermal annealing is per-
formed), consistent with previous reports [47].

Brunauer-Emmett-Teller (BET) measurements were also carried out
to estimate the surface area of the electrodes. The results are shown in
Fig. S3d and summarized in Table S2. The BET-estimated surface area is
similar to previously reported values for bare LIG [48]. It is found that
electrodeposition of MoSy increases the physical surface area by about
25%. It is also interesting to note that the pore volume of pores smaller
than 13 A was found to decrease nearly two times due to the MoSy
electrodeposition. As previous studies have shown, electrodeposition
can greatly modify the surface morphology and hence the surface area of
the material along with other mesoporous characteristics [49].

The CO; infrared laser ablates polyimide, which contains aromatic
and repeated imide groups, and converts the sp3—carbon atoms to spz—
carbon atoms thus generating a three-dimensional (3D) and porous
conductive graphite network [50]. The porous and 3D structure of LIG
tremendously increases the surface area available for sensing applica-
tions. Table 1 summarizes the calculated electrochemically active sur-
face area (ECSA) and the heterogenous electron transfer rate constant,
kO, for both LIG and eMoS,-LIG. ECSA and k° of the LIG sensor (geo-
metric area = 0.9 mm?) are characterized using redox probes (5 mM
Ferricyanide and Ferrocyanide) in Dulbecco’s phosphate-buffered saline
(DPBS) [38]. Cyclic voltammograms and their extracted features are
shown in Figs. S4a and b. The linear fit and corresponding ECSA and k°
are calculated from the data shown in Fig. S4 (SI, Section S7). The im-
ages correspond to the peak current and y (unitless potential) vs. the
cyclic voltammetry scan rate, v. Randles-Sevcik equation is used to
calculate the area as follows:

. Dv
ipear = 0.4463n' F'SCA4/ RT Eq. 1

The heterogeneous electron transfer rate, k°, is calculated using the
following equation:

Table 1

The calculated electrochemically active surface area (ECSA) and the heteroge-
nous electron transfer rate constant (k°) and comparison between LIG and
eMoS,-LIG.

ECSA (mm?) k° (x 1072 em/s)
LIG 1.20 1.43
eMoS,-LIG 3.69 2.18
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VBN 2Dy T 1= 0.017(AE en)
where ip.q is the peak current (oxidation in this case), n is the number of
transferred electrons (here n = 1), F is the Faraday’s constant, D is the
diffusion coefficient of the redox probe (here D = 7.63e° cm?s~1), R is
the universal gas constant, T is the temperature, C is the concentration of
the redox probe, A is the ECSA, and AEp.q is the oxidation-reduction
peak separation in mV.

ECSA is increased by 1.3 times with bare LIG compared to the geo-
metric area (0.9 mm?), while the enhancement is 4 times in eMoS-LIG.
Comparing k° of LIG to eMoSy-LIG shows an improvement of 50%. These
results confirm that electrodeposition of MoSy significantly improves the
electrochemical properties of LIG. Previous studies have also reported
improved electrochemical properties by the addition of transition-metal
dichalcogenides (TMDs) [51]. Hence, eMoSx-LIG electrodes are used for
TYR and UA quantification in the following sections, unless otherwise
stated. We also tested the shelf-life of eMoSx-LIG sensors (Fig. S5, SI,
Section S8). It is found that the sensors stored in the N5 inert environ-
ment are stable for two weeks and then started degrading, however the
sensors stored in ambient air started degrading after one week.

Eq. 2

3.2. Off-chip, multimodal measurements

The eMoS4-LIG sensor is first tested with TYR and UA in artificial
saliva with DPV, SWV, and LAACV. Fig. 2a shows the DPV response of a
representative sensor to TYR and UA in artificial saliva for concentra-
tions ranging from 150 nM to 1 mM. TYR and UA have distinct and
separate oxidation peaks evident from the results. Fig. 2b shows esti-
mated LOD values for TYR and UA using SWV and DPV data (sepa-
rately). The peak heights are extracted from the raw data manually after
baseline subtraction and the linear range of the sensor is identified. The
LOD is defined as the concentration at the intersection of the linear fit of
the response to the baseline variation magnitude. In this analysis, since
the baseline is subtracted prior to LOD estimation, 3.30paseline iS used to
estimate LOD (the gray-shaded regions in Fig. 2b). The calculated LOD
values for TYR and UA in artificial saliva are found to be 116 uM and 3.5
uM with SWV, and 21 uM and 1.2 uM with DPV.

Interestingly, while SWV shows similar sensitivity to DPV for TYR (in
linear scale: SWV 4.1 mAM~!; DPV 4.5 mAM1), it has slightly higher
sensitivity for UA (in linear scale: SWV 27.8 mAM~!; DPV 19.6 mAM1).
In contrast, DPV offers a much lower LOD and wider linear range for
both analytes. The enhanced background rejection of pulse-based
techniques such as DPV and SWV is due to the difference in decay
rates of the faradaic and non-faradaic currents. Such background
rejection makes them more sensitive as compared to linear sweep vol-
tammetry methods [52]. In particular, it has been previously reported
that SWV is superior compared to other methods when reversible and
quasi reversible reactions are concerned, however limited with sluggish
reactions (i.e. when there is a large potential difference between anodic
and cathodic peaks [53]), as is the case in the present work for UA and
TYR (see CV curves in Fig. S8). As such, we believe that because of the
poor reaction reversibility, the DPV method performs better (lower LOD
and wider linear range) compared to SWV, which is consistent with prior
works [54]. Previous studies have also shown the difference in perfor-
mance when comparing SWV and DPV [52,54,55].

Conventional electrochemical analytical methods usually house a
circuit that can apply potential waveforms and read the current which is
then used as the signal to detect the target molecules. While simple
amperometry at a constant applied potential is extensively used, more
complex input waveforms, such as ramps (CV), saw-tooth (Linear sweep
voltammetry; LSV), and pulse voltammetry (SWV, DPV) produce
commensurate outputs which could be used to extract more information
about the system. The processed output data generally consists of peaks
that correspond to different oxidation and reduction potentials of the
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involved species. Some species might undergo several intermediate
oxidation-reduction steps and produce several peaks, especially if the
measurement is repeated several times with the same sample solution
[56]. Usually, for quantitative analysis of a specific analyte, the most
prominent peak among these is selected and its magnitude is used to
estimate the concentration of the analyte (as also demonstrated in
Fig. 2b).

It has been shown that data fusion could enhance the sensitivity of
electrical sensors, such as physiological sensors for measuring body
movements and applied forces, pressure sensors, and skin/chest/scalp
electrodes for monitoring electrocardiogram (ECG), electromyogram
(EMG), and electroencephalogram (EEG) signals [57]. Hence, measur-
ing/fusing multiple electrochemical peaks/signatures could also be
beneficial for electrochemical sensors. However, processing the data is
challenging, especially when multiple analytes are involved. More
advanced electrochemical methods, such as semicircular voltammetry
(SCV) [58] or large amplitude AC voltammetry (LAACV) methods [23]
apply complicated waveforms to the working electrode measuring a
complex current which is rather hard to infer from without further
processing. The idea of probing the system with a complex input has
been theorized to provide a lot of data which could be used to increase
the sensitivity and selectivity of the sensor [22]. In the following sec-
tions, we explore this idea and demonstrate that multiplexed detection
can be achieved with high accuracy by using multimodal sensing and
machine learning (ML), achieving LODs more than 2 orders of magni-
tude lower than the single-peak, single-voltammetry methods shown in
Fig. 2. It should be noted that using single DPV peak analysis, Yang et al.
[60] demonstrated a wearable sensor solely based on LIG for detecting
UA and TYR down to 0.74 uM and 3.6 pM in sweat in pH 4.6. In com-
parison, our ML-based multimodal analytical device in this paper en-
ables selective and sensitive detection of UA and TYR with LOD of 10 nM
and 100 nM, respectively, in saliva and sweat in pH 6.7 (neutral
solution).

To develop, train, test, and implement ML models, we built a
customized setup capable of multimodal measurements through auto-
mated data collection and processing (details about the hardware and
software setups are provided in Section 2.2 and in Fig. S1, SI, Section S3
and Fig. S2, SI, Section S4). An example LAACV result is shown in Fig. S7
(SI, Section S10), showing the various harmonics that could be extracted
from the LAACV data. The DC component corresponds to the cyclic
voltammetry (CV) data (example CV curves shown in Figs. S8c—d, SI,
Section S11), whereas the higher harmonics have varied peaks which
help extract more features for training the ML model. Other methods
used in this paper, such as SWV (example SWV curves shown in
Figs. S8a-b, SI, Section S11) and DPV, focus only on the oxidation re-
action of the analytes missing out on the reduction cycle, however
LAACV contains data for both forward and reverse scans, i.e. the

10u 100y 1m
Concentration (M)

concentration range for TYR and UA in saliva are
depicted by vertical shaded bands. (Error bars:
standard deviation, Number of data points in
each error bar: 3, total number of devices: 2).
(For interpretation of the references to colour in

oxidation and reduction cycles, providing more information about the
reactions occurring with the analytes, and hence adding to the feature
space for ML training.

3.3. Development and optimization of the machine learning model

The raw data obtained from the sensors varies with respect to the
peak currents, baseline fluctuation, and sensor-sensor variation. In order
to train the ML model, the features should be extracted from the raw
data. The raw data is first checked using a script to get rid of any obvious
outliers using specific hardcoded conditions (bad electrical connection,
instrumentation failure, failed passivation resulting in erratic signal,
etc.). Then the raw data for each electrochemical module — DPV, SWV,
and LAACV - is processed as follows:

For each module, a specific preset constraint is set with respect to the
constituent gaussian peak heights, locations, and widths. Then these
peaks are fit to best represent the raw DPV (Fig. S9a, SI, Section S12),
SWV (Fig. S9b, SI, Section S12), and LAACV (Fig. S7, SI, Section S10)
data. An optimization algorithm is developed to decompose each indi-
vidual measurement into its constituent parabolic baseline and gaussian
peaks by fitting their sum to the raw data as shown in Fig. S7. Initial
constraints are chosen to fit most of the data. Once all the raw data of a
module are fit, a second run is performed similarly with tighter con-
straints. The tighter constraints are obtained from the first fit. The upper
limit is chosen as the 99 percentile value of the first fit and the lower
value is chosen as the 1% percentile. This eliminates outliers and allows
the model to have tight enough constraints to prevent overfitting [61].
The resulting fit parameters from the second run (gaussian peak heights,
locations, widths) are used as features to train and test the ML algo-
rithms. This process is schematically described in Fig. 3.

Several architectures and core ML algorithms including linear
regression (LR), support vector regressor (SVR), k-Nearest neighbors
(kNN), decision tree regressor (DT), and Bayesian ridge (BR) are tested
with the data to identify the optimized model. Mainly, we focus on su-
pervised machine learning models that could be used for regression. For
all models, leave-one-out cross validation [62] is utilized to maximize
the data usage for testing. A thousand runs of these tests are performed
in which 90% of the data is used for training and the remaining 10% of
the unseen data is used for testing. In order to accommodate two ana-
lytes under test, either multiclass regression algorithms are used, or
multiple single class regression algorithms are collated by the archi-
tecture to emulate a multiclass regressor. A two-step accept-reject
classifier is also used to determine if the given measurement is within the
threshold of detection of the system to prevent false positives and neg-
atives by the main classifier.

All the features extracted from each of the electrochemical modules
are collated and used to train and test the ML models. To obtain an
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Fig. 3. Data collection, pre-processing,
and machine learning analysis. Sche-
matic flow chart depicting the electro-
chemical measurement modules, data flow,
and data processing steps for training and
testing the machine learning model. First,
the multiplexer automatically chooses the
electrochemical module to test using a

Ccv

Machine learning
model training

ZIF
connector

Sensor ‘Feature weights

. Data distribution-
4— based constraint

developed script. Electrochemical modules
include cyclic voltammetry (CV), square
wave voltammetry (SWV), differential pulse
voltammetry (DPV), and large amplitude AC
voltammetry (LAACV). The raw data is pro-
cessed to extract the constituent peaks and
used to train the machine learning model
through an iterative process using a data
distribution based fit-constraint optimizer.
The optimized model is used to test on un-
seen data to predict the analyte and its
concentration.

EYI |

optimizer

Optimized mode| ) Prediction

Testing on
unseen data

optimum architecture, two designs are investigated (named as one-step
regressor and two-step regressor). Before discussing each method, we
should highlight that in order to quantify the sensitivity of each archi-
tecture, a threshold concentration (TC) is defined to easily compare
between models. TC is defined as the concentration ¢ at which

-1 . .. . . . . .
R?|1 — m|™" is maximized if a linear fit is made between concentration c

(a) (©

and the highest concentration, where m is the slope and R? is the R-
squared parameter corresponding to the fit. This would in essence
maximize the fit such that the slope is nearly ideal. By comparing the TC
values, the chosen features, ML algorithm, and architecture are
optimized.

One-step regressor: First, a single multi-class regressor is used to
predict the concentrations of both TYR and UA. In this case, among

(€)

s g 1m
Features from raw \E 1 00|J'| <
curves kel 1 S =
ISR 5
;" g /
o 1 © 100
S 10n s e
UA TYR 8 1 ’ S z
regressor regressor Ee] 1 7 8 7
2 Ve _ P
8 100p] TYR 8 , TYR
s 1~ —UA g 1om —UA
5uM 0 uM o 1ptm—————— =t
1p 100p 10n 1y 100M o 100 Toon
(d) Nominal concentration (M) (f) Nominal concentration (M)
(b) —
g s 1m
Features from raw = oop.l ‘E —TYR
curves _5 ; o ——UA Z
g g
g ¥ E y
§ 10n] S
gw ¥ ] ] 4 g
regressor @D
g1oop| 7 —TYR B
R —UA 3
L & At — & 1oy
1p 100p 10n 14 100u 10u 100 1m

Nominal concentration (M)

Nominal concentration (M)

Fig. 4. Effect of model architecture on performance of the ML-powered electrochemical biosensor. Machine learning with a (a) one-step and (b) two-step
regressor architecture. Predicated vs. nominal concentration of UA and TYR obtained using (c) the one-step regressor and (d) the two-step classifier with single
analyte spiked in artificial saliva. (e) and (f) plot the results with one-step and two-step architectures, respectively, in mixture of TYR and UA. In parts d and f, the
vertical bands represent physiological concentration of UA (red) and TYR (blue) in saliva of healthy people. (Error bars: standard deviation, Number of data points in
each error bar: > 300, total number of devices: 16). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of

this article.)
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several algorithms, kNN algorithm and DT provide the best accuracy
(Table S3, SI, Section S13). Next, we investigate a two single-class re-
gressors to de-couple the analytes. This method yields a higher accuracy
for each analyte, as each regressor is focused on one analyte. Fig. 4a
plots the schematic of this architecture and Fig. 4c shows the output of
the DT regressor plotted against the expected output (concentration).
One can observe that at higher concentrations, the expectation is met,
however at lower concentrations, the model underperforms, and the
output is noisy. With each analyte having its own classification algo-
rithm, it is found that the decision tree (DT) algorithm is the best
considering the accuracies obtained (Table S4, SI, Section S13).

As several electrochemical modules are utilized for data collection,
combinations of these methods are utilized to identify the best methods
to use for each analyte. While comparing algorithms, the best among all
the permutations and combinations is considered. SWV and DPV are
considered as individual methods and LAACV is considered as four
methods with the DC component being one, and the three harmonics
being the other three methods. Hence, total of six methods are screened,
and the best combination is identified (Table S5, SI, Section S13). As can
be seen, combination of SWV, DPV, and LAACV (last row in Table S5, SI,
Section S13) provides the lowest overall TC among all other combina-
tions, highlighting the power of data fusion.

Two-step regressor: In order to set the LOD to TC, a second binary
classifier is trained to identify whether the given data contains target
concentrations above the TC, hence setting LOD as TC. The binary
classifier screens the features to identify whether that particular analyte
is present in measurable quantity, and if not, the second classifier would
be overruled and a zero would be the output as shown schematically in
Fig. 4b. The addition of a binary classifier results in the output plotted in
Fig. 4d and is used to quantify the LOD of the sensor. It is found that TYR
and UA with LODs of 100 nM and 10 nM, respectively, can be detected
which is at least an improvement of two orders of magnitude from the
method shown in Fig. 2b. This enhancement in LOD is attributed to the
inclusion of data of the full potential scan window rather than just a
single peak across different electrochemical modules and data fusion
across SWV, DPV, and LAACV which the ML model uses to learn subtle
patterns. This enhancement in the prediction capabilities demonstrates
the effectiveness of the proposed ML-based analytical method for
Sensors.

3.4. Multiplexed detection in mixtures using machine learning

The model trained from the independent target analyte concentra-
tions is used along with the training data from the mixed analyte data to
predict the mixed analyte concentration. The architecture shown in
Fig. 4b is utilized in order to obtain the LOD of the sensors and as seen
from Fig. 4f, the linear region is well within the physiological limits. It is
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observed that when the training data only consists of single analyte data
without any intermixing and the model is tested on data from mixed
samples, the model performs poorly with the outputs having no linear
region, hence a TC of ~500 yM. However, when both mixed and single
analyte data are used for training and unseen mixed data is tested, the
model performance improves substantially with improved LODs of 60
uM and 60 uM for TYR and UA, respectively as shown in Fig. 4f
(improvement from Fig. 4e by the two-step regressor architecture for
LOD definition). This disparity between the performance may be
because the model learns better to isolate and independently learn
characteristics of each analyte eliminating common peaks that may arise
between different analytes when it is trained on both mixed and single
analyte data, which is not possible when it is just trained on the single
analyte data.

3.5. On-chip sweat analysis with a flexible sensing patch

Similar to saliva tests, the developed ML-based approach also shows
a linear response in sweat within the physiological window (Fig. 5a).
The physiological concentration of TYR and UA in sweat is 40 uM and
170 uM. Multimodal data is collected using an on-chip device (with
pseudo-reference electrode) and the best performing ML algorithm (i.e.,
two step regressor with DT algorithm) is implemented.

In addition to off-body tests, in order to demonstrate the application
of eMoSx-LIG sensor for wearable applications, on-body characterization
of the sensor is performed for detecting TYR and UA in artificial sweat.
To evaluate the flexibility of the sensor, eMoSx-LIG based sensors with
on chip pseudo reference electrode were fabricated and tested in a
home-built custom bending setup shown in Fig. S6a. TYR and UA of 500
uM concentration in artificial sweat were added to the sensor and
various radii of curvature R were used for bending the sensor both in
positive (lateral stretch of LIG film) and negative (lateral compression of
LIG film) directions. The lowest magnitude of R achieved was 3.5 mm. It
was found that even at this high bending force, the sensor response in
the form of DPV peak height only changed by a maximum of 15% as
compared to when the sensor was flat shown in Fig. 5b (DPV curves are
shown in Fig. S6b).

Finally, application of the on-chip device for on-body sweat analysis
is demonstrated (Fig. 5c). The sensor is prepared as described previously
using MoSyx electrodeposition on LIG working electrode. However,
instead of using silicone to passivate the sensor, the sensor is first stuck
onto a commercial medical polyurethane (MPU) sheet (Tegaderm, 3M)
upon which transparent nail polish is applied to passivate the sensor.
Nail polish is chosen for passivation to reduce the thickness of the final
sensor. Insulated single-strand copper wire is used to make electrical
contacts to LIG contact pads using carbon paste which is air dried after
application. A second layer of nail polish is applied over the electrical
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Fig. 5. Sweat analysis with on-chip device, flexibility analysis, and on-body testing. (a) Machine learning-based response to analytes in artificial sweat using
eMoS,-LIG sensor with on-chip electrodes showing linearity within the physiologically relevant range (shaded vertical regions). The best performing algorithm is
implemented. (Error bars: standard deviation, Number of data points in each error bar: >300, total number of devices: 8). (b) The peak current of DPV data with TYR
and UA of 500 uM concentration changes by a maximum of 15% under extreme bending (R = radius of bending curvature at the sensor). Both bending to compress
the LIG film laterally (negative R) and stretch the LIG film laterally (positive R) were carried out. (¢) On-body sensor response using DPV measurement of TYR and UA
in artificial sweat with on-chip electrodes. The figure plots change in peak amplitude AI, vs. the analyte concentration. Inset shows the body-worn sensor.
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contacts to prevent any unintended electrochemical reactions. The
sensor package is then attached on the arm and artificial sweat with
various concentrations of TYR and UA are injected between the sensor
and skin using a blunt syringe. DPV readout (as example) is carried out
by closing the MPU patch. Fig. 5¢ shows the measurement results indi-
cating successful detection of TYR and UA plotting A, = % where I is
the DPV peak amplitude and I, is the baseline. The signal change is
plotted against the concentration and a linearity with R%value of 95%
for TYR and 85% for UA is found, confirming good linearity of the
wearable sensor.

4. Conclusions

In this work, we developed a novel analytical method based on
convergence of machine learning with multimodal electrochemical
sensing and demonstrated its application with printed eMoS-LIG flex-
ible sensors to achieve simultaneous quantification of UA and TYR with
LOD well below the physiological concentration in saliva and sweat. We
developed an algorithm for automatic baseline subtraction with inte-
grated feature extraction to process SWV, DPV, and LAACV data and to
produce features to train a machine learning model. Single-peak analysis
to measure the analyte concentration is compared to the developed
optimized machine learning model. It is shown that owing to the
multimodal and multipeak analysis, the method is able to reduce LOD by
two orders of magnitude. In this study, apart from the improvement of
LODs, three main insights can be obtained as follows: (a) Firstly, ma-
terial engineering in the form of electrodeposition of MoSy is performed,
resulting in the improvement of the electrochemical (from CV mea-
surements) and physical surface area (from BET measurements), as well
as the heterogenous electron transfer rates (discussed in Section 3.1). (b)
Secondly, because of the variation in response of different electro-
chemical methods, multimodal effects are studied and reported which
calls for further studies regarding comparison of multiple electro-
chemical methods in bioanalytical systems; and (c) thirdly, due to the
variable response of various electrochemical modules, data processing
and fusion techniques lead to analytical improvement which we attri-
bute to inclusion of multiple peaks in the analysis as compared to con-
ventional single-peak analysis, further highlighting the benefits of
multimodal electrochemical data fusion. We showed that the model is
able to selectively quantify each analyte in a mixture and hence,
achieving multiplexed detection using a single sensor. On-body mea-
surements using a wearable patch also show favorable results for
detection of TYR and UA in sweat. The machine learning-powered
electrochemical diagnostic approach presented in this paper may find
broader application in multiplexed biochemical sensing. For example,
this method can be extended to a variety of other analytes — including
catecholamine neurotransmitters — which are traditionally challenging
to detect using electrochemical sensors due to similarity in molecular
structure and overlapping redox potentials [63]. Combined with in-
novations in material and device engineering for sensor development,
analytical methods such as this work may provide unprecedented op-
portunities in pharmaceuticals, life science research, food screening,
detection of environmental toxins, and biodefense, where accurate and
multiplexed POC testing or in-line monitoring is needed.
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