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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Multiplexed sensing of tyrosine and uric 
acid is achieved using machine learning- 
powered electrochemical eMoSx-LIG 
sensors. 

• Compared to bare LIG, eMoSx-LIG shows 
3× higher ECSA and 1.5× higher 
heterogenous electron transfer rate. 

• Combining ML with multimodal elec
trochemical sensing enables accurate 
quantification of analytes in mixtures. 

• Using the optimized ML architecture, a 
limit of detection 100× better than 
conventional methods is obtained. 

• On-body sweat analysis is shown using 
the flexible sensor over a wide concen
tration range covering the physiological 
window.  
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A B S T R A C T   

Multiplexed detection of biomolecules is of great value in various fields, from disease diagnosis to food safety and 
environmental monitoring. However, accurate and multiplexed analyte detection is challenging to achieve in 
mixtures using a single device/material. In this paper, we demonstrate a machine learning (ML)-powered 
multimodal analytical device based on a single sensing material made of electrodeposited molybdenum poly
sulfide (eMoSx) on laser induced graphene (LIG) for multiplexed detection of tyrosine (TYR) and uric acid (UA) in 
sweat and saliva. Electrodeposition of MoSx shows an increased electrochemically active surface area (ECSA) and 
heterogeneous electron transfer rate constant, k0. Features are extracted from the electrochemical data in order 
to train ML models to predict the analyte concentration in the sample (both singly spiked and mixed samples). 
Different ML architectures are explored to optimize the sensing performance. The optimized ML-based multi
modal analytical system offers a limit of detection (LOD) that is two orders of magnitude better than 
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conventional approaches which rely on single peak analysis. A flexible and wearable sensor patch is also 
fabricated and validated on-body, achieving detection of UA and TYR in sweat over a wide concentration range. 
While the performance of the developed approach is demonstrated for detecting TYR and UA using eMoSx-LIG 
sensors, it is a general analytical methodology and can be extended to a variety of electrochemical sensors to 
enable accurate, reliable, and multiplexed sensing.   

1. Introduction 

The accuracy and reliability of diagnostics can be improved by 
simultaneous analysis of multiple biomarkers using multiplexed 
methods [1]. In addition, multiplexed detection within the same sample 
saves resources and reagents, which is critical with clinical samples that 
often have limited volume [2]. Conventionally, multiplexing is achieved 
by various approaches, such as the use of different capture molecules (as 
in multiplexed enzyme linked immunosorbent assay (ELISA) [3]) or 
using spectroscopic methods, such as surface enhanced Raman spec
troscopy (SERS), mass spectrometry [4], and high performance liquid 
chromatography [5]. While spectroscopic methods are inherently mul
tiplexed [6], they are more suited for lab-based analysis as they often 
require bulky and expensive equipment [7]. 

Electrochemical sensors have emerged as the hallmark of point of 
care (POC) and wearable technology, as they can sensitively monitor 
analytes and are portable, relatively low-cost, and compatible with IC 
technology for integration with signal processing and data transmission 
modules [8]. In particular, electrochemical sensors have found 
ever-growing interest for detection and monitoring redox-active small 
molecules, such as catecholamines and their metabolites [9–12], reac
tive oxygen species (ROS) [13,14], reactive nitrogen species [15], 
among others. Various electrochemical methods have been utilized, 
including cyclic voltammetry (CV) [16,17], square wave voltammetry 
(SWV) [18,19], differential pulse voltammetry (DPV) [20,21], and large 
amplitude AC voltammetry (LAACV) [22,23]. However, when the 
formal potential of molecules is close, there is a considerable overlap 
between their redox peaks and therefore it is more challenging to 
distinguish them in mixed samples. To achieve reliable and multiplexed 
sensing and mitigate stability issues caused by device-to-device varia
tions, machine learning (ML) offers a powerful tool [24,25]. For 
example, ML-based support vector machine (SVM) models have been 
used to estimate nitrate concentration in water sources using CV [26]. In 
other works [27,28], fast scan cyclic voltammetry (FSCV) is used along 
with ML to accurately predict the dopamine and serotonin levels in 
extracellular brain fluid. ML has also been used to selectively detect 
heavy metal ions in buffer solutions in the presence of interferents [29]. 
Convergence of ML and multimodal electrochemical readout to create 
fingerprint of analytes can help achieve multiplexing with high accuracy 
[22]. However, ML-assisted electrochemical biosensing is still in 
inceptive stage [24,31]. 

In this work, we demonstrate a ML-powered multimodal analytical 
device based on electrodeposited molybdenum polysulfide (eMoSx) on 
laser induced graphene (LIG) for multiplexed detection of tyrosine 
(TYR) and uric acid (UA) in sweat and saliva samples. To enable auto
mated multimodal readout, a customized electrochemical data collec
tion setup is developed which automatically sweeps through multiple 
electrochemical modalities. The developed platform enables automated 
background subtraction and peak identification which filters the back
ground signals before being passed to the ML model for regression in 
order to detect TYR and UA in mixed samples. TYR is a precursor for 
production of catecholamine neurochemicals [32], and under stress, its 
level decreases [33]. Abnormal levels of UA is indicative of kidney 
failure [34]. High concentration of UA leads to gout [35] and other 
medical conditions, such as kidney stones, diabetes, and cardiovascular 
diseases [36]. Hence, detection and tracking the levels of TYR and UA is 
important for early disease diagnosis, prognosis, and treatment. TYR and 
UA are present in saliva and sweat in considerable quantities allowing 

for non-invasive testing, which is an essential criterion for routine pre
ventive care and personalized medicine. Supplementary Information (SI, 
Section S2) summarizes some of the prior works reported for detecting 
TYR and/or UA, including a few recent reports based on LIG. In our 
work, compared to bare LIG, eMoSx-functionalized LIG has a 300% 
larger electrochemically active surface area (ECSA) and a 50% larger 
standard heterogenous electron transfer rate constant (k0), both of 
which lead to an improved sensitivity to TYR and UA. Using a 
custom-made automated hardware/software analytical system, several 
voltammetry methods (CV, SWV, DPV, LAACV) are investigated to study 
multimodal data fusion for enhancement of the analytical performance, 
which has not been previously studied in detail to the best of our 
knowledge. To analyze the multimodal data, the ML architecture is 
optimized, enabling selective and sensitive detection of TYR (LOD 100 
nM) and UA (LOD 10 nM) in saliva and sweat at pH 6.7. Finally, on-body 
experiments demonstrate the application of the eMoSx–LIG sensor as a 
wearable patch for sweat analysis. While the ML-based multimodal 
electrochemical analytical method is demonstrated using TYR and UA, 
the developed methodology can be extended to other sensory systems 
including environmental monitoring, food safety, biodefense, and mo
lecular diagnostics. 

2. Experimental details 

2.1. Sensor fabrication and functionalization of laser induced graphene 
(LIG) 

Commercially available polyimide sheets are rinsed with 2-propanol 
(IPA) followed by air drying to clean the surface and are mounted on the 
metal workbench in a commercial CO2 laser cutter (VLS2.30, Universal 
Laser Systems, Inc.) using adhesive tapes at the edges of the polyimide 
sheet. A 25 W laser is used to ablate polyimide into conductive laser 
induced graphene (LIG) [37]. The laser writing parameters are opti
mized in order to get good conductivity and structural integrity [38]. 
The laser beam is focused onto the polyimide sheet and a power scaling 
of 10.5% with a speed scaling of 5.5% and a resolution of 1000 pixels per 
inch (ppi) in raster mode is used to directly write the sensor pattern onto 
the polyimide substrate. 

The sensor has a three-electrode design with a working electrode 
(WE; eMoSx-LIG), a counter electrode (CE; LIG), and a reference elec
trode (RE) configured with pads to be able to be inserted into a com
mercial zero insertion force (ZIF) connector as shown in Fig. 1. 
Commercial Ag/AgCl glass reference electrode (MF-2052, Bioanalytical 
Systems, Inc.) is used to characterize the sensors initially. For on-chip 
and on-body measurements, a pseudo reference electrode is fabricated 
by writing upon the LIG RE pattern using a conductive silver pen (Circuit 
Scribe). 

LIG is functionalized with MoSx using electrodeposition, as shown in 
Fig. 1. Amperometric electrodeposition at −0.8 V in 1 mg mL−1 ammo
nium tetra-thiomolybdate (ATTM) with 1 mg mL−1 potassium chloride 
(KCl) as supporting electrolyte is used to deposit MoSx onto the WE with 
platinum CE and Ag/AgCl RE [39]. Silicone (Ecoflex 5, Smooth-On, Inc.) 
is used to passivate the sensor region from the electrical contact pads. 
The sensor pattern also has visual cues in the form of electrically 
disconnected LIG dots and lines to help consistent and repeatable 
application of the passivation layer on the surface. After fabrication, the 
sensors are either used immediately or stored in N2 or dry environment 
(ambient) for three weeks to determine the shelf life. 

V. Kammarchedu et al.                                                                                                                                                                                                                        



Analytica Chimica Acta 1232 (2022) 340447

3

2.2. Hardware and software setup 

Commercially available potentiostat (MultiPalmsens, PalmSens) is 
used to perform the following standard voltammetry measurements: CV, 
SWV, and DPV. In order to perform LAACV [23], a custom hardware 
platform is built similar to our previously reported work [12]. The 
custom hardware is programmed to apply a sinusoid with frequency of 
100 Hz and Vpk = 100 mV imposed upon a ramp waveform potential to 
the electrochemical cell and measure the current. 

Since machine learning demands a large amount of data to be 
collected for training and testing the model, we also built a custom 
multiplexer sensor holder capable of handling multiple sensors at once, 
see schematic block diagram in Fig. S1 (SI, Section S3). This system is 
comprised of eight ZIF sensor receptacles with glass reference electrode 
mounts fabricated in commercial plexiglass sheets. Eight sensors are 
inserted at once into the connectors and the multiplexer is programmed 
to automatically route each sensor to a particular potentiostat: com
mercial potentiostat for standard electrochemical modules: CV, DPV, 
SWV and custom potentiostat for custom electrochemical module: 
LAACV. 

A Python supported Jupyter Notebook is used as the software 
interface to connect to the multiplexer to control the relays and route the 
signals. A schematic of the software flow is shown in Fig. S2 (SI, Section 
S4). Briefly, the Jupyter notebook directly interfaces to the custom 
potentiostat using a serial port. A C# based wrapper is also written for 
the commercial potentiostat so that it also could be controlled by the 
Jupyter notebook. All the data collected is automatically stored onto the 
PC with appropriate time stamps and experimental conditions. Another 
Jupyter notebook running in a loop constantly searches for new data and 
immediately partially processes and plots the data in real time. Scikit- 
learn [40] was mainly used to implement the machine learning pipe
line along with NumPy [41] and SciPy [42]. Default machine learning 
model parameters were used as is from the imported libraries unless 
specified. The machine learning model described later can analyze the 
data collected and predict the analyte concentrations in real time (<15 
secs on a standard PC after the data is collected by the potentiostat). The 
computational cost depends upon the chosen complexity of the model 
and chosen electrochemical modules (ranges from < 3 secs to < 15 secs). 
The trained model can also be implemented on an embedded or a 
smartphone system allowing for mobile computation and prediction. 

2.3. Electrochemical analyses 

TYR and UA stock solutions with concentration of 1 mM are prepared 
in artificial saliva (AS) and artificial sweat (ASW). Other concentrations 
are prepared by serial dilution of the stock solutions in the corre
sponding medium. The stock solution is remade every week to prevent 
degradation (if any) which could affect the data repeatability. In order to 
test a sensor, it is first rinsed with DI water and then a baseline AS/ASW 
drop of 100 μL is added. Cyclic voltammetry is performed to condition 
the sensor (parameters in SI, Section S5) and ensure that the electrical 
contact to the sensor is reliable and not noisy (e.g. due to loose con
nections of the wiring and ZIF connectors). Then, baseline DPV, SWV, 
and LAACV signals (parameters in SI, Section S5) are collected. To test 
the analytes, the baseline liquid is wicked off (VWR, Spec-Wipe) and 100 
uL of a given concentration is added one by one and DPV, SWV, LAACV 
data is collected making sure the concentration of the analyte always 
increases on that particular sensor to prevent back contamination and 
separate wicks are maintained to prevent cross contamination between 
the sensors. Three scans for each measurement module are obtained. To 
gauge the sensor response using the single peak analysis method 
described in Section 3.2, only the third scan is used. However, all scans 
are utilized to train the ML models described in Section 3.3. For all 
measurements, at least four sensor replicates are used. 

For the sensor shelf-life tests, a separate stock solution is maintained 
with 1 mM TYR. Two set-pairs of sensors, four in each set is maintained 
to test the storage environment. One set stays in the ambient environ
ment, whereas one set is stored in a N2 desiccator. To test the sensor 
shelf-life, three set-pairs of sensors are prepared: three sets are stored in 
N2 desiccator (<2ppm moisture) and three sets in ambient environment. 
A set from each environment is tested with a week gap using 250 uM 
TYR. For selectivity tests, all combinations of the two analyte mixture 
concentrations are tested in sequence as described above ensuring that 
no single sensor sees a decrease in concentration of a particular analyte 
being tested on it. 

Fig. 1. Fabrication, functionalization, and material characterization of eMoSx-LIG sensor. (a) First, polyimide is converted to laser induced graphene (LIG) 
using laser processing. Contact pads are passivated using silicone to define the working electrode (WE) area. Amorphous MoSx is electrodeposited using chro
noamperometry method with the WE voltage set at −0.8 V vs. Ag/AgCl. (b) SEM image (top left) and EDX maps of eMoSx-LIG confirm the 3D porous structure of the 
material and distribution of Mo, S, and O elements. 
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3. Results and discussion 

3.1. Characterization of the material morphology, surface chemistry, and 
kinetic parameters 

Scanning electron microscopy (SEM) reveals a fibrous and porous 
structure of LIG as shown in Fig. 1b. The porous structure leads to a 
significant increase of the available surface area, providing many active 
sites for electrochemical reactions [43]. Raman spectroscopy in Fig. S3 
(SI, Section S6) confirms successful carbonization of the polyimide sheet 
and presence of graphite and graphene. Energy Dispersive X-ray spec
troscopy (EDX) in Fig. 1b also confirms the presence of Mo, S, and O. 
X-Ray photoelectron spectroscopy (XPS) confirms successful electrode
position of MoSx on LIG as shown in Table S1 (SI, Section S6) [39]. 
Specifically, Mo to C ratio on the surface is observed to be ~1:6 among 
which 53% Mo is in MoS2 and 15% Mo in MoO2/MoS3. Interestingly, 
considerable amount of the Mo (32%) is in MoO3, which has also been 
reported previously [44] and has shown catalytic properties for oxida
tion reactions [45]. The amorphous MoSx is shown to transition into a 
crystalline structure following high temperature annealing in inert gas 
[10]. Fig. S3c summarizes the XRD results. The XRD of LIG shows the 
(002) and (100) plane of the graphite-2H (PDF 41-1487), consistent with 
previous reports [46]. There is no obvious MoSx characteristic peak 
found in the XRD results of the eMoSx-LIG sample since the material in 
our study is amorphous (no post-deposition thermal annealing is per
formed), consistent with previous reports [47]. 

Brunauer-Emmett-Teller (BET) measurements were also carried out 
to estimate the surface area of the electrodes. The results are shown in 
Fig. S3d and summarized in Table S2. The BET-estimated surface area is 
similar to previously reported values for bare LIG [48]. It is found that 
electrodeposition of MoSx increases the physical surface area by about 
25%. It is also interesting to note that the pore volume of pores smaller 
than 13 Å was found to decrease nearly two times due to the MoSx 
electrodeposition. As previous studies have shown, electrodeposition 
can greatly modify the surface morphology and hence the surface area of 
the material along with other mesoporous characteristics [49]. 

The CO2 infrared laser ablates polyimide, which contains aromatic 
and repeated imide groups, and converts the sp3-carbon atoms to sp2- 
carbon atoms thus generating a three-dimensional (3D) and porous 
conductive graphite network [50]. The porous and 3D structure of LIG 
tremendously increases the surface area available for sensing applica
tions. Table 1 summarizes the calculated electrochemically active sur
face area (ECSA) and the heterogenous electron transfer rate constant, 
k0, for both LIG and eMoSx-LIG. ECSA and k0 of the LIG sensor (geo
metric area = 0.9 mm2) are characterized using redox probes (5 mM 
Ferricyanide and Ferrocyanide) in Dulbecco’s phosphate-buffered saline 
(DPBS) [38]. Cyclic voltammograms and their extracted features are 
shown in Figs. S4a and b. The linear fit and corresponding ECSA and k0 

are calculated from the data shown in Fig. S4 (SI, Section S7). The im
ages correspond to the peak current and ψ (unitless potential) vs. the 
cyclic voltammetry scan rate, v. Randles-Sevcik equation is used to 
calculate the area as follows: 

ipeak = 0.4463n1.5F1.5CA
̅̅̅̅̅̅
Dv
RT

√

Eq. 1 

The heterogeneous electron transfer rate, k0, is calculated using the 
following equation: 

ψ = k0

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
RT

πDnFv

√

=
−0.6288 + 0.0021

(
ΔEpeakn

)

1 − 0.017
(
ΔEpeakn

) Eq. 2  

where ipeak is the peak current (oxidation in this case), n is the number of 
transferred electrons (here n = 1), F is the Faraday’s constant, D is the 
diffusion coefficient of the redox probe (here D = 7.63e−6 cm2s−1), R is 
the universal gas constant, T is the temperature, C is the concentration of 
the redox probe, A is the ECSA, and ΔEpeak is the oxidation-reduction 
peak separation in mV. 

ECSA is increased by 1.3 times with bare LIG compared to the geo
metric area (0.9 mm2), while the enhancement is 4 times in eMoSx-LIG. 
Comparing k0 of LIG to eMoSx-LIG shows an improvement of 50%. These 
results confirm that electrodeposition of MoSx significantly improves the 
electrochemical properties of LIG. Previous studies have also reported 
improved electrochemical properties by the addition of transition-metal 
dichalcogenides (TMDs) [51]. Hence, eMoSx-LIG electrodes are used for 
TYR and UA quantification in the following sections, unless otherwise 
stated. We also tested the shelf-life of eMoSx-LIG sensors (Fig. S5, SI, 
Section S8). It is found that the sensors stored in the N2 inert environ
ment are stable for two weeks and then started degrading, however the 
sensors stored in ambient air started degrading after one week. 

3.2. Off-chip, multimodal measurements 

The eMoSx-LIG sensor is first tested with TYR and UA in artificial 
saliva with DPV, SWV, and LAACV. Fig. 2a shows the DPV response of a 
representative sensor to TYR and UA in artificial saliva for concentra
tions ranging from 150 nM to 1 mM. TYR and UA have distinct and 
separate oxidation peaks evident from the results. Fig. 2b shows esti
mated LOD values for TYR and UA using SWV and DPV data (sepa
rately). The peak heights are extracted from the raw data manually after 
baseline subtraction and the linear range of the sensor is identified. The 
LOD is defined as the concentration at the intersection of the linear fit of 
the response to the baseline variation magnitude. In this analysis, since 
the baseline is subtracted prior to LOD estimation, 3.3σbaseline is used to 
estimate LOD (the gray-shaded regions in Fig. 2b). The calculated LOD 
values for TYR and UA in artificial saliva are found to be 116 uM and 3.5 
uM with SWV, and 21 uM and 1.2 uM with DPV. 

Interestingly, while SWV shows similar sensitivity to DPV for TYR (in 
linear scale: SWV 4.1 mAM−1; DPV 4.5 mAM−1), it has slightly higher 
sensitivity for UA (in linear scale: SWV 27.8 mAM−1; DPV 19.6 mAM−1). 
In contrast, DPV offers a much lower LOD and wider linear range for 
both analytes. The enhanced background rejection of pulse-based 
techniques such as DPV and SWV is due to the difference in decay 
rates of the faradaic and non-faradaic currents. Such background 
rejection makes them more sensitive as compared to linear sweep vol
tammetry methods [52]. In particular, it has been previously reported 
that SWV is superior compared to other methods when reversible and 
quasi reversible reactions are concerned, however limited with sluggish 
reactions (i.e. when there is a large potential difference between anodic 
and cathodic peaks [53]), as is the case in the present work for UA and 
TYR (see CV curves in Fig. S8). As such, we believe that because of the 
poor reaction reversibility, the DPV method performs better (lower LOD 
and wider linear range) compared to SWV, which is consistent with prior 
works [54]. Previous studies have also shown the difference in perfor
mance when comparing SWV and DPV [52,54,55]. 

Conventional electrochemical analytical methods usually house a 
circuit that can apply potential waveforms and read the current which is 
then used as the signal to detect the target molecules. While simple 
amperometry at a constant applied potential is extensively used, more 
complex input waveforms, such as ramps (CV), saw-tooth (Linear sweep 
voltammetry; LSV), and pulse voltammetry (SWV, DPV) produce 
commensurate outputs which could be used to extract more information 
about the system. The processed output data generally consists of peaks 
that correspond to different oxidation and reduction potentials of the 

Table 1 
The calculated electrochemically active surface area (ECSA) and the heteroge
nous electron transfer rate constant (k0) and comparison between LIG and 
eMoSx-LIG.   

ECSA (mm2) k0 (x 10−3 cm/s) 

LIG 1.20 1.43 
eMoSx-LIG 3.69 2.18  
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involved species. Some species might undergo several intermediate 
oxidation-reduction steps and produce several peaks, especially if the 
measurement is repeated several times with the same sample solution 
[56]. Usually, for quantitative analysis of a specific analyte, the most 
prominent peak among these is selected and its magnitude is used to 
estimate the concentration of the analyte (as also demonstrated in 
Fig. 2b). 

It has been shown that data fusion could enhance the sensitivity of 
electrical sensors, such as physiological sensors for measuring body 
movements and applied forces, pressure sensors, and skin/chest/scalp 
electrodes for monitoring electrocardiogram (ECG), electromyogram 
(EMG), and electroencephalogram (EEG) signals [57]. Hence, measur
ing/fusing multiple electrochemical peaks/signatures could also be 
beneficial for electrochemical sensors. However, processing the data is 
challenging, especially when multiple analytes are involved. More 
advanced electrochemical methods, such as semicircular voltammetry 
(SCV) [58] or large amplitude AC voltammetry (LAACV) methods [23] 
apply complicated waveforms to the working electrode measuring a 
complex current which is rather hard to infer from without further 
processing. The idea of probing the system with a complex input has 
been theorized to provide a lot of data which could be used to increase 
the sensitivity and selectivity of the sensor [22]. In the following sec
tions, we explore this idea and demonstrate that multiplexed detection 
can be achieved with high accuracy by using multimodal sensing and 
machine learning (ML), achieving LODs more than 2 orders of magni
tude lower than the single-peak, single-voltammetry methods shown in 
Fig. 2. It should be noted that using single DPV peak analysis, Yang et al. 
[60] demonstrated a wearable sensor solely based on LIG for detecting 
UA and TYR down to 0.74 μM and 3.6 μM in sweat in pH 4.6. In com
parison, our ML-based multimodal analytical device in this paper en
ables selective and sensitive detection of UA and TYR with LOD of 10 nM 
and 100 nM, respectively, in saliva and sweat in pH 6.7 (neutral 
solution). 

To develop, train, test, and implement ML models, we built a 
customized setup capable of multimodal measurements through auto
mated data collection and processing (details about the hardware and 
software setups are provided in Section 2.2 and in Fig. S1, SI, Section S3 
and Fig. S2, SI, Section S4). An example LAACV result is shown in Fig. S7 
(SI, Section S10), showing the various harmonics that could be extracted 
from the LAACV data. The DC component corresponds to the cyclic 
voltammetry (CV) data (example CV curves shown in Figs. S8c–d, SI, 
Section S11), whereas the higher harmonics have varied peaks which 
help extract more features for training the ML model. Other methods 
used in this paper, such as SWV (example SWV curves shown in 
Figs. S8a–b, SI, Section S11) and DPV, focus only on the oxidation re
action of the analytes missing out on the reduction cycle, however 
LAACV contains data for both forward and reverse scans, i.e. the 

oxidation and reduction cycles, providing more information about the 
reactions occurring with the analytes, and hence adding to the feature 
space for ML training. 

3.3. Development and optimization of the machine learning model 

The raw data obtained from the sensors varies with respect to the 
peak currents, baseline fluctuation, and sensor-sensor variation. In order 
to train the ML model, the features should be extracted from the raw 
data. The raw data is first checked using a script to get rid of any obvious 
outliers using specific hardcoded conditions (bad electrical connection, 
instrumentation failure, failed passivation resulting in erratic signal, 
etc.). Then the raw data for each electrochemical module – DPV, SWV, 
and LAACV – is processed as follows: 

For each module, a specific preset constraint is set with respect to the 
constituent gaussian peak heights, locations, and widths. Then these 
peaks are fit to best represent the raw DPV (Fig. S9a, SI, Section S12), 
SWV (Fig. S9b, SI, Section S12), and LAACV (Fig. S7, SI, Section S10) 
data. An optimization algorithm is developed to decompose each indi
vidual measurement into its constituent parabolic baseline and gaussian 
peaks by fitting their sum to the raw data as shown in Fig. S7. Initial 
constraints are chosen to fit most of the data. Once all the raw data of a 
module are fit, a second run is performed similarly with tighter con
straints. The tighter constraints are obtained from the first fit. The upper 
limit is chosen as the 99th percentile value of the first fit and the lower 
value is chosen as the 1st percentile. This eliminates outliers and allows 
the model to have tight enough constraints to prevent overfitting [61]. 
The resulting fit parameters from the second run (gaussian peak heights, 
locations, widths) are used as features to train and test the ML algo
rithms. This process is schematically described in Fig. 3. 

Several architectures and core ML algorithms including linear 
regression (LR), support vector regressor (SVR), k-Nearest neighbors 
(kNN), decision tree regressor (DT), and Bayesian ridge (BR) are tested 
with the data to identify the optimized model. Mainly, we focus on su
pervised machine learning models that could be used for regression. For 
all models, leave-one-out cross validation [62] is utilized to maximize 
the data usage for testing. A thousand runs of these tests are performed 
in which 90% of the data is used for training and the remaining 10% of 
the unseen data is used for testing. In order to accommodate two ana
lytes under test, either multiclass regression algorithms are used, or 
multiple single class regression algorithms are collated by the archi
tecture to emulate a multiclass regressor. A two-step accept-reject 
classifier is also used to determine if the given measurement is within the 
threshold of detection of the system to prevent false positives and neg
atives by the main classifier. 

All the features extracted from each of the electrochemical modules 
are collated and used to train and test the ML models. To obtain an 

Fig. 2. Sensor performance defined using 
traditional strategy in electrochemical sen
sors. (a) Representative differential pulse vol
tammetry (DPV) curves with eMoSx-LIG sensor in 
response to uric acid (UA; red) and tyrosine 
(TYR; blue) in artificial saliva. (b) Calibration 
curves obtained using DPV (dashed) and square 
wave voltammetry (SWV; solid) after baseline 
subtraction. Limit of detection (LOD) is extracted 
and values are added on the plots for each 
method. The gray shaded area shows the blank 
current variation (3.3σbaseline, where σbaseline is 
the standard deviation of baseline). Healthy 
concentration range for TYR and UA in saliva are 
depicted by vertical shaded bands. (Error bars: 
standard deviation, Number of data points in 
each error bar: 3, total number of devices: 2). 
(For interpretation of the references to colour in 

this figure legend, the reader is referred to the Web version of this article.)   
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optimum architecture, two designs are investigated (named as one-step 
regressor and two-step regressor). Before discussing each method, we 
should highlight that in order to quantify the sensitivity of each archi
tecture, a threshold concentration (TC) is defined to easily compare 
between models. TC is defined as the concentration c at which 
R2|1 − m|

−1 is maximized if a linear fit is made between concentration c 

and the highest concentration, where m is the slope and R2 is the R- 
squared parameter corresponding to the fit. This would in essence 
maximize the fit such that the slope is nearly ideal. By comparing the TC 
values, the chosen features, ML algorithm, and architecture are 
optimized. 

One-step regressor: First, a single multi-class regressor is used to 
predict the concentrations of both TYR and UA. In this case, among 

Fig. 3. Data collection, pre-processing, 
and machine learning analysis. Sche
matic flow chart depicting the electro
chemical measurement modules, data flow, 
and data processing steps for training and 
testing the machine learning model. First, 
the multiplexer automatically chooses the 
electrochemical module to test using a 
developed script. Electrochemical modules 
include cyclic voltammetry (CV), square 
wave voltammetry (SWV), differential pulse 
voltammetry (DPV), and large amplitude AC 
voltammetry (LAACV). The raw data is pro
cessed to extract the constituent peaks and 
used to train the machine learning model 
through an iterative process using a data 
distribution based fit-constraint optimizer. 
The optimized model is used to test on un
seen data to predict the analyte and its 
concentration.   

Fig. 4. Effect of model architecture on performance of the ML-powered electrochemical biosensor. Machine learning with a (a) one-step and (b) two-step 
regressor architecture. Predicated vs. nominal concentration of UA and TYR obtained using (c) the one-step regressor and (d) the two-step classifier with single 
analyte spiked in artificial saliva. (e) and (f) plot the results with one-step and two-step architectures, respectively, in mixture of TYR and UA. In parts d and f, the 
vertical bands represent physiological concentration of UA (red) and TYR (blue) in saliva of healthy people. (Error bars: standard deviation, Number of data points in 
each error bar: > 300, total number of devices: 16). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of 
this article.) 
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several algorithms, kNN algorithm and DT provide the best accuracy 
(Table S3, SI, Section S13). Next, we investigate a two single-class re
gressors to de-couple the analytes. This method yields a higher accuracy 
for each analyte, as each regressor is focused on one analyte. Fig. 4a 
plots the schematic of this architecture and Fig. 4c shows the output of 
the DT regressor plotted against the expected output (concentration). 
One can observe that at higher concentrations, the expectation is met, 
however at lower concentrations, the model underperforms, and the 
output is noisy. With each analyte having its own classification algo
rithm, it is found that the decision tree (DT) algorithm is the best 
considering the accuracies obtained (Table S4, SI, Section S13). 

As several electrochemical modules are utilized for data collection, 
combinations of these methods are utilized to identify the best methods 
to use for each analyte. While comparing algorithms, the best among all 
the permutations and combinations is considered. SWV and DPV are 
considered as individual methods and LAACV is considered as four 
methods with the DC component being one, and the three harmonics 
being the other three methods. Hence, total of six methods are screened, 
and the best combination is identified (Table S5, SI, Section S13). As can 
be seen, combination of SWV, DPV, and LAACV (last row in Table S5, SI, 
Section S13) provides the lowest overall TC among all other combina
tions, highlighting the power of data fusion. 

Two-step regressor: In order to set the LOD to TC, a second binary 
classifier is trained to identify whether the given data contains target 
concentrations above the TC, hence setting LOD as TC. The binary 
classifier screens the features to identify whether that particular analyte 
is present in measurable quantity, and if not, the second classifier would 
be overruled and a zero would be the output as shown schematically in 
Fig. 4b. The addition of a binary classifier results in the output plotted in 
Fig. 4d and is used to quantify the LOD of the sensor. It is found that TYR 
and UA with LODs of 100 nM and 10 nM, respectively, can be detected 
which is at least an improvement of two orders of magnitude from the 
method shown in Fig. 2b. This enhancement in LOD is attributed to the 
inclusion of data of the full potential scan window rather than just a 
single peak across different electrochemical modules and data fusion 
across SWV, DPV, and LAACV which the ML model uses to learn subtle 
patterns. This enhancement in the prediction capabilities demonstrates 
the effectiveness of the proposed ML-based analytical method for 
sensors. 

3.4. Multiplexed detection in mixtures using machine learning 

The model trained from the independent target analyte concentra
tions is used along with the training data from the mixed analyte data to 
predict the mixed analyte concentration. The architecture shown in 
Fig. 4b is utilized in order to obtain the LOD of the sensors and as seen 
from Fig. 4f, the linear region is well within the physiological limits. It is 

observed that when the training data only consists of single analyte data 
without any intermixing and the model is tested on data from mixed 
samples, the model performs poorly with the outputs having no linear 
region, hence a TC of ~500 μM. However, when both mixed and single 
analyte data are used for training and unseen mixed data is tested, the 
model performance improves substantially with improved LODs of 60 
μM and 60 μM for TYR and UA, respectively as shown in Fig. 4f 
(improvement from Fig. 4e by the two-step regressor architecture for 
LOD definition). This disparity between the performance may be 
because the model learns better to isolate and independently learn 
characteristics of each analyte eliminating common peaks that may arise 
between different analytes when it is trained on both mixed and single 
analyte data, which is not possible when it is just trained on the single 
analyte data. 

3.5. On-chip sweat analysis with a flexible sensing patch 

Similar to saliva tests, the developed ML-based approach also shows 
a linear response in sweat within the physiological window (Fig. 5a). 
The physiological concentration of TYR and UA in sweat is 40 μM and 
170 μM. Multimodal data is collected using an on-chip device (with 
pseudo-reference electrode) and the best performing ML algorithm (i.e., 
two step regressor with DT algorithm) is implemented. 

In addition to off-body tests, in order to demonstrate the application 
of eMoSx-LIG sensor for wearable applications, on-body characterization 
of the sensor is performed for detecting TYR and UA in artificial sweat. 
To evaluate the flexibility of the sensor, eMoSx-LIG based sensors with 
on chip pseudo reference electrode were fabricated and tested in a 
home-built custom bending setup shown in Fig. S6a. TYR and UA of 500 
uM concentration in artificial sweat were added to the sensor and 
various radii of curvature R were used for bending the sensor both in 
positive (lateral stretch of LIG film) and negative (lateral compression of 
LIG film) directions. The lowest magnitude of R achieved was 3.5 mm. It 
was found that even at this high bending force, the sensor response in 
the form of DPV peak height only changed by a maximum of 15% as 
compared to when the sensor was flat shown in Fig. 5b (DPV curves are 
shown in Fig. S6b). 

Finally, application of the on-chip device for on-body sweat analysis 
is demonstrated (Fig. 5c). The sensor is prepared as described previously 
using MoSx electrodeposition on LIG working electrode. However, 
instead of using silicone to passivate the sensor, the sensor is first stuck 
onto a commercial medical polyurethane (MPU) sheet (Tegaderm, 3M) 
upon which transparent nail polish is applied to passivate the sensor. 
Nail polish is chosen for passivation to reduce the thickness of the final 
sensor. Insulated single-strand copper wire is used to make electrical 
contacts to LIG contact pads using carbon paste which is air dried after 
application. A second layer of nail polish is applied over the electrical 

Fig. 5. Sweat analysis with on-chip device, flexibility analysis, and on-body testing. (a) Machine learning-based response to analytes in artificial sweat using 
eMoSx-LIG sensor with on-chip electrodes showing linearity within the physiologically relevant range (shaded vertical regions). The best performing algorithm is 
implemented. (Error bars: standard deviation, Number of data points in each error bar: >300, total number of devices: 8). (b) The peak current of DPV data with TYR 
and UA of 500 uM concentration changes by a maximum of 15% under extreme bending (R = radius of bending curvature at the sensor). Both bending to compress 
the LIG film laterally (negative R) and stretch the LIG film laterally (positive R) were carried out. (c) On-body sensor response using DPV measurement of TYR and UA 
in artificial sweat with on-chip electrodes. The figure plots change in peak amplitude ΔIn vs. the analyte concentration. Inset shows the body-worn sensor. 
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contacts to prevent any unintended electrochemical reactions. The 
sensor package is then attached on the arm and artificial sweat with 
various concentrations of TYR and UA are injected between the sensor 
and skin using a blunt syringe. DPV readout (as example) is carried out 
by closing the MPU patch. Fig. 5c shows the measurement results indi
cating successful detection of TYR and UA plotting ΔIn = I−I0

I0 
where I is 

the DPV peak amplitude and I0 is the baseline. The signal change is 
plotted against the concentration and a linearity with R2-value of 95% 
for TYR and 85% for UA is found, confirming good linearity of the 
wearable sensor. 

4. Conclusions 

In this work, we developed a novel analytical method based on 
convergence of machine learning with multimodal electrochemical 
sensing and demonstrated its application with printed eMoSx-LIG flex
ible sensors to achieve simultaneous quantification of UA and TYR with 
LOD well below the physiological concentration in saliva and sweat. We 
developed an algorithm for automatic baseline subtraction with inte
grated feature extraction to process SWV, DPV, and LAACV data and to 
produce features to train a machine learning model. Single-peak analysis 
to measure the analyte concentration is compared to the developed 
optimized machine learning model. It is shown that owing to the 
multimodal and multipeak analysis, the method is able to reduce LOD by 
two orders of magnitude. In this study, apart from the improvement of 
LODs, three main insights can be obtained as follows: (a) Firstly, ma
terial engineering in the form of electrodeposition of MoSx is performed, 
resulting in the improvement of the electrochemical (from CV mea
surements) and physical surface area (from BET measurements), as well 
as the heterogenous electron transfer rates (discussed in Section 3.1). (b) 
Secondly, because of the variation in response of different electro
chemical methods, multimodal effects are studied and reported which 
calls for further studies regarding comparison of multiple electro
chemical methods in bioanalytical systems; and (c) thirdly, due to the 
variable response of various electrochemical modules, data processing 
and fusion techniques lead to analytical improvement which we attri
bute to inclusion of multiple peaks in the analysis as compared to con
ventional single-peak analysis, further highlighting the benefits of 
multimodal electrochemical data fusion. We showed that the model is 
able to selectively quantify each analyte in a mixture and hence, 
achieving multiplexed detection using a single sensor. On-body mea
surements using a wearable patch also show favorable results for 
detection of TYR and UA in sweat. The machine learning-powered 
electrochemical diagnostic approach presented in this paper may find 
broader application in multiplexed biochemical sensing. For example, 
this method can be extended to a variety of other analytes – including 
catecholamine neurotransmitters – which are traditionally challenging 
to detect using electrochemical sensors due to similarity in molecular 
structure and overlapping redox potentials [63]. Combined with in
novations in material and device engineering for sensor development, 
analytical methods such as this work may provide unprecedented op
portunities in pharmaceuticals, life science research, food screening, 
detection of environmental toxins, and biodefense, where accurate and 
multiplexed POC testing or in-line monitoring is needed. 
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