Hardware Accelerators for Digital Signature
Algorithms Dilithium and FALCON

Luke Beckwith, Duc Tri Nguyen, Kris Gaj
George Mason University, USA
{Ibeckwit, dnguye69, kgaj} @gmu.edu

Abstract—Digital signature algorithms are the foundation of
many secure communication protocols, including those used
in Internet of Things (IoT) applications. While the current
generation of signature schemes is secure against classical at-
tacks, they are potentially vulnerable to attacks using quantum
computers. Because of this threat, multiple new schemes have
been developed and evaluated in recent years. From among these
schemes, the National Institute of Standards and Technology
standardized two and selected additional three for near-term
standardization. For use in 10T, these schemes must be sufficiently
efficient in terms of their public-key and signature sizes and
the timing of major operations. In this paper, we analyze the
choice between two primary schemes considered for extensive
use in IoT, CRYSTALS-Dilithium and FALCON, from the point
of view of developing efficient hardware accelerators supporting
cryptographic operations performed by IoT clients and servers.

I. INTRODUCTION

Public key cryptography is a central component of current
network security protocols. Digital signatures allow for strong
authentication guaranteeing the integrity and claimed origin
of a message. Currently, algorithms such as RSA and Elliptic
Curve Digital Signature Algorithm (ECDSA) are used for
these purposes. However, these algorithms base their security
upon problems that are difficult to solve on current computers
but become relatively easy to solve using future quantum com-
puters. In particular, a sufficiently powerful quantum computer
can employ Shor’s algorithm to break both RSA and ECC [1].

Because of this upcoming threat, the National Institute
of Standards and Technology (NIST) has pursued a two-
pronged approach to developing new digital signature stan-
dards. First, it selected two well-established stateful hash-
based digital signatures, XMSS (eXtended Merkle Signature
Scheme) and LMS (Leighton-Micali Signature), for short-
term standardization. Secondly, it included stateless digital
signatures in its long-term post-quantum cryptography (PQC)
standardization process initiated in December 2016. This effort
resulted in the selection of three stateless digital signature
schemes, CRYSTALS-Dilithium, FALCON, and SPHINCS+,
for near-time standardization.

Stateful digital signatures, XMSS and LMS, require state
tracking because a secret key (a.k.a. private key) is updated
every time a signature is generated. Additionally, their digital
signatures are relatively large. Hence, the key management
and transmission requirements of these schemes make them
ill-equipped for Internet of Things (IoT) applications. Among
the three other schemes, SPHINCS+ is based on similar math-
ematical principles, which makes its signature sizes relatively

large. Consequently, CRYSTALS-Dilithium (since here re-
ferred to as Dilithium) and FALCON are two algorithms with
the best near-term potential for adoption in IoT applications.

While quantum computers large enough to break RSA and
ECC have not yet been developed, work to deploy quantum-
secure cryptography needs to begin now. Integrating these
new algorithms into security protocols and deploying hardware
accelerators to make their physical realizations efficient and
secure will take a substantial amount of time. In this paper, we
compare and contrast Dilithium and FALCON with a focus on
their use in IoT client devices, performing primarily signature
verification.

II. BACKGROUND
A. Cryptography in loT

Cryptographic algorithms provide many functionalities that
are used in the Internet of Things. The simplest example is
non-repudiation (a.k.a. strong authentication), where a digital
signature is used to ensure that a server cannot deny having
sent a message, such as code updates and instructions for
IoT clients. In this case, the server uses its secret key to
sign the message and sends the signed message along with
the server’s certificate to the client. The certificate contains a
copy of the server’s public key signed by a trusted certificate
authority. The client can then verify the server’s public key
using the certificate authority’s public key and then use the
server’s public key to verify the message. In this scenario,
the computational cost of the client is the verification of two
signatures, and the overall transmission cost is approximately
equal to the size of the server’s public key, the signature of the
certificate authority, and the server’s signature on the message.
The only information the client must store is a public key of
the certification authority.

Another common application of public-key cryptography
is in the popular Internet protocol called Transport Layer
Security (TLS). In this protocol, public-key algorithms are
used for secure key exchange. However, even in this protocol,
clients are usually not required to either generate their public-
secret key pairs or sign messages. Thus, the primary concerns
for the client device are the performance of the signature
verification and the size of the public key and signature.

B. Dilithium and FALCON

Both Dilithium and FALCON are lattice-based digital sig-
nature schemes. This means that they base their security



upon the difficulty of specific hard problems over algebraic
structures called lattices. Examples of such problems include
the Module Learning with Errors (M-LWE), Module Short
Integer Solution (M-SIS), and NTRU Short Integer Solution
(NTRU-SIS) [2], [3].

The core operations of the Dilithium and FALCON veri-
fication are polynomial multiplications modulo an irreducible
polynomial ™ 4 1. Each polynomial has n coefficients, where
n = 256 for Dilithium and n = 512 or 1024 for FALCON.
Most polynomials have coefficients in the range between 0
and ¢ — 1, where ¢ = 8380417 = 223 — 213 1 for Dilithium
and ¢ = 12289 = 12 - 2'9 + 1 for FALCON. However, some
polynomials have coefficients limited to a much smaller range.
We refer to the two types of polynomials mentioned above
as polynomials with large and small coefficients, respectively.
Multiplication of polynomials may be performed using various
algorithms, with different trade-offs between execution time
and area. However, for the specific values of parameters n
and ¢ selected in Dilithium and FALCON, the most efficient
method is using the so-called Number Theoretic Transform
(NTT). The NTT allows performing multiplication in the
time proportional to n - log,(n) while keeping the area of
the hardware implementation (other than the memory usage)
independent of n.

1) Dilithium: Our work is based on the NIST PQC round
3 parameter set of Dilithium described in [2]. Inputs, out-
puts, and intermediate results in Dilithium have the form of
matrices and vectors of polynomials mentioned above. While
all polynomials have the same number of coefficients, n, the
security level determines the matrix and vector dimensions.
In particular, Dilithium uses matrices of polynomials of the
dimensions k x [ = 4 x 4 for security level 2 (equivalent
to the security of SHA-256), 6 x 5 for security level 3
(equivalent to the security of AES-192), and 8 x 7 for security
level 5 (equivalent to the security of AES-256). If only one
NTT unit is used, the execution time of these operations is
approximately proportional to the product k - [. At the same
time, resource utilization is almost independent of security
level. The overhead of supporting all security levels in one
implementation is negligible.

The two primary operations determining the execution time
and resource utilization of Dilithium’s verification are 1) gen-
erating a k x [ matrix A of polynomials with n pseudorandom
coefficients (a.k.a. polynomial sampling). The pseudorandom
string is obtained using the SHA-3 eXtandable Output Func-
tion (XOF) - SHAKEI28 - with the input seed, p being a
part of the public key. The output string is then divided into
equal-size chunks and converted into coefficients uniformly
distributed in the range between 0 and g—1 through the process
called rejection sampling. 2) Multiplying the mentioned above
k x [ matrix A by an [ x 1 polynomial vector z being a part
of the signature.

The execution time of the former operation is determined
by the speed and the number of SHA-3 cores (a.k.a. Keccak
cores). The execution time of the latter is determined by the
speed and the number of NTT units.

In Dilithium, key generation (KeyGen) and signing (Sign)
involve very similar basic operations as those used during ver-
ification (Verify). This feature benefits applications in which
all three operations must be performed by the same device
(typically a server).

Another interesting quality of Dilithium is that its signature
generation time is variable. Since some attempts at signing
may lead to signatures leaking information about the secret
key, these attempts must be repeated (with different random
input) until the predefined security conditions are met. Conse-
quently, it is common to report both the best (the first-attempt)
and the average time required for signing.

2) FALCON: The major operations of FALCON’s verifica-
tion include 1) multiplication of a polynomial h, obtained by
decoding the public key, and the polynomial s, obtained by
decompressing a part of the signature, 2) decoding the public
key, 3) calculating the norm of two vectors s; and so. The
execution time of all these operations is proportional to the
number of coefficients in each polynomial, n, which is 512 for
security level 1 (equivalent to AES-128) and 1024 for security
level 5 (equivalent to AES-256). One of the remaining major
operations, hashing the message using SHAKE?256, can be, in
most cases, overlapped with the polynomial multiplication.

At security level 5 (equivalent to AES-256), the total size of
the public key and signature in FALCON is 3.1 KB, compared
to 7.2 KB for Dilithium, making the related certificate more
than two times smaller. However, in FALCON, key generation
and signature generation are very complex, involving floating-
point Fast Fourier Transform, matrix decomposition, and a
complex trapdoor sampler [3]. Consequently, FALCON is
not very suitable for applications in which the client device
must perform all three operations or where there are strict
performance goals for all operations.

III. PREVIOUS WORK

Prior to this work, the fastest implementation of Diltihium
(considering all timing metrics other than the average time
of signing) was by Zhao et al. [4]. This design utilized a
high-performance NTT architecture for multiplication and a
high-performance Keccak module, which allowed on-the-fly
generation of matrices and vectors in parallel with polynomial
multiplications. This implementation was also designed to
pipeline major operations, which supported high performance
with relatively low resource utilization.

The best lightweight implementation was by Gupta et al. [5].
This design used a single compact Keccak implementation
and a smaller NTT implementation. Due to the slower Keccak
design, the designers chose to compute the public matrix only
once and then keep it in memory between signature attempts.
These design decisions led to much higher latency and BRAM
usage but much lower LUT, FF, and DSP utilization as
compared to Zhao et al.

Our work builds upon the publicly available implementation
of Dilithium by Beckwith et al., described in [6]. We revisited
this design, focusing on achieving high-performance results
comparable to those reported by Zhao et al. We then narrowed



down the functionality of this design to achieve lower resource
utilization and perform a fair comparison with FALCON.

FALCON has not received any full hardware implementa-
tion prior to this work. This is likely due to the complexity
of the algorithm. In particular, the key generation and sign-
ing functions are both complex and not naturally hardware-
friendly. For example, these functions require floating-point
FFT operations with 53 bits of precision, which are costly to
implement on FPGAs. The tree sampling of signature genera-
tion requires recursive FFT operations, which are challenging
to implement in hardware and require a large amount of
memory.

The only previous work related to FALCON in hardware is
the hardware/software codesign of the verification operation
of FALCON reported by Karl et al. [7]. This work discussed
a RISC-V processor with hardware accelerators to perform
some of the operations needed in Dilithium and FALCON. In
particular, hardware accelerators are used for the Keccak hash
function and the NTT operations of both algorithms.

IV. METHODOLOGY
A. Dilithium

We developed three hardware architectures for Dilithium
using as a starting point our own high-performance design
reported in [6]. The first architecture is a relatively minor
modification of the original design, optimized for speed and
energy usage. It supports all operations and security levels
and allows selection between them at run-time. This design
is particularly suitable for accelerating the operation of IoT
servers.

We then developed two architectures focused on client
devices. One is a high-performance verification-only design
for clients that need high performance and are not substantially
constrained by resource utilization. The second is a lightweight
verification-only design for devices that are constrained in
terms of resource utilization but run applications that are less
demanding in terms of speed.

In all architectures, the primary challenge is to properly op-
timize the polynomial sampling and NTT operations. Sampling
of polynomials requires a substantial amount of pseudorandom
data from the SHAKE XOF functions. These functions are
time-consuming to perform and costly to accelerate. Simi-
larly, the NTT operation is the slowest polynomial operation
required in Dilithium and needs to be performed for each mul-
tiplication. The NTT operation requires an expensive modular
multiplier and significant RAM bandwidth to perform quickly.
These two operations are the primary bottlenecks of Dilithium.

1) High-Performance General-Purpose: A high-level view
of our high-performance general-purpose architecture is shown
in Fig. 1. The design is partitioned into several functional
units: a) polynomial arithmetic, which performs the NTT
and other polynomial operations, b) polynomial packing unit,
which encodes polynomials into byte-arrays for hashing and
generating final results, c) polynomial sampling, which sam-
ples the polynomial matrices and vectors, d) hash modules,
which contain the Keccak instances for hashing and sampling,

e) polynomial unpacking modules, which unpack the encoded
polynomials within keys and signatures, and f) memory bank,
which contains the BRAM for storing temporary results. The
connections among these units are wide enough to handle four
polynomial coefficients in parallel.

Internally, we use the same NTT architecture as discussed
by Beckwith et al. [6]. This architecture uses four butterfly
units in a 2 X 2 configuration, which enables the NTT opera-
tions to be performed in 256+d cycles, where d is the pipeline
depth of the module. All basic polynomial operations require
only 64 cycles. However, we have made substantial changes
to the other modules and the top-level architecture to reduce
the LUT and BRAM resources required and improve the
design’s performance. First, we noticed that several modules
had similar datapaths and were not used within the same
operation. For example, the samplers for the random y vector
and secret vectors were both uniform samplers, but the y
sampler was only used in signing, and the secret sampler
was only used in key generation. Thus, they could be easily
merged to reduce resource utilization without any reduction in
performance since they never needed to operate at the same
time. The number of samples processed per cycle was also
adjusted so that these modules minimize area while remaining
just faster than the NTT operation. This ensures these modules
do not limit the performance of the design while also ensuring
no extra area is wasted.

Similarly, we identified several other modules which could
be reduced in the area without any loss in performance. The
hint unpacking module and the challenge sampler both con-
sumed a substantial amount of area as they were designed to
minimize the latency of their respective operations. However,
by adjusting the ordering of operations, these functions could
be performed in parallel with slower NTT operations. Doing
so allowed these modules to be scaled down without any
performance loss. The Keccak module used in the original
design also consumed more resources than those used in other
works. The interface of the design prioritized simplicity and
flexibility. However, Dilithium has very limited requirements
for the hash unit as only the SHAKE modes are used, and most
hash inputs are byte-aligned. Thus, we were able to create
a specialized wrapper for the hash core that required fewer
resources. To reduce BRAM utilization, we adopted the on-
the-fly sampling approach for the public matrix used by Zhao
et al. [4].

To improve the performance of the design, we decided to
increase the number of Keccak instances from three to four
and to use four polynomial arithmetic units. This approach
improved the pipeline balance during matrix multiplication
since the four Keccak units could sample the next four
matrix polynomials in parallel with the polynomial arithmetic
units performing polynomial multiplication. Due to the area
improvements of the previously discussed submodules, the net
look-up table (LUT) and block RAM (BRAM) consumption
was still reduced. However, the flip-flop (FF) and digital signal
processing unit (DSP) utilization did increase.



DOUT

Polynomial Memory
Arithmetic
Poly Arith BRAM
L]
L]
L]
BRAM
Poly Arith
.
.
.
Polynomial BRAM
Packing
Encoder
| >
Decomposer BRAM

Polynomial
Unpacking

Decoder

UseHint

HASH

Keccak o o 0 Keccak

v

Polynomial
Sampling

Challenge

<::I

Fig. 1: High-Level Block Diagram of Dilithium Hardware Accelerator

Memol
v Packing
HASH SAMPLE
Norm |::> DOUT
o Rejection |::>
BRAM
Polynomial
Polynomial Arithmetic
Unpacking
DIN Decoder l___> BRAM _
Poly Arith

Fig. 2: High-Level Block Diagram of FALCON Verify Hardware Accelerator

2) Verification-Only: ~The Dilithium high-performance
verification-only design is able to slightly reduce resource
utilization since only a few submodules are only required for
key generation and signing. In particular, the secret sampling,
some decoding modes, make hint, and control logic for key
generation and signing are not needed for the verification-
only architecture. The rest of the architecture is unchanged
for the high-performance design. However, since most of the
resources are consumed by the hash and polynomial arithmetic
units, it is only a slight improvement.

The lightweight architecture keeps the same top-level design
but reduces the datapath width from four coefficients wide to
one coefficient wide. The internal submodules are also scaled

down proportionally. For example, in the high-performance
design, four polynomial coefficients were decoded per cy-
cle in the unpacking modules, whereas in the lightweight
architecture, only one is decoded per cycle. Additionally,
only one Keccak instance is used for hashing, and only one
polynomial arithmetic module with a single modular multiplier
is used. This change has increased the latency of operations
by approximately a factor of nine but has greatly reduced the
design’s resource consumption.

B. FALCON Verify

As mentioned previously, we have focused on the verify
operation of FALCON. Similarly to our Dilithium design, we
present both high-performance and lightweight architectures



to support both low-cost and low-latency applications. The
high-level block diagram of our FALCON-verify design can
be seen in Fig. 2. The same structure is used for both the high-
performance and lightweight designs, with the primary change
between the architectures being in the level of parallelization
within the submodules. For both architectures, the hashing of
the message and sampling of the ¢ polynomial is performed
in parallel with the decoding and multiplication of the public
key and signature polynomials.

1) High-Performance: The datapath of the high-
performance architecture is four coefficients wide to
take advantage of the same NTT architecture used for
Dilithium. Due to the larger number of coefficients of the
polynomials used in FALCON, the NTT latency is 640 + d
and 1280 + d cycles for level 1 and level 5, respectively.
The only modifications required were a) changing the
arithmetic units to support the smaller modulus of FALCON,
b) updating to use the twiddle factors of FALCON’s NTT,
and c) the addition of a conditional bypass of the two NTT
butterflies since FALCONS512 requires an odd number of
NTT layers. Decoding the public key polynomial is a simple
deserialization that can be performed using a bus width
converter. Decompression is somewhat more complicated, but
it can be performed in hardware using a priority encoder and
a conditional subtraction. The decoder is optimized to handle
four coefficients per cycle so that the first NTT operation
can begin as soon as possible. However, decompression is
performed in parallel with an NTT optimization. Thus, it
only decompresses one coefficient per cycle to minimize
area. The norm module calculates the sum of squares for all
coefficients of s; and s, and signals to the controller that the
signature is invalid if the norm exceeds the predefined limit.

2) Lightweight: For the lightweight architectures, the pri-
mary change is the reduction of the datapath to one coefficient
wide. All submodules are scaled down to match this width.
The sampler, norm module, and decoder are reduced to handle
one polynomial per cycle. The polynomial arithmetic module
uses a single modular multiplier in place of the four used in
the high-performance design. This change reduces the area but
with a substantial increase in latency.

V. RESULTS

We benchmarked all our designs and provide results for
Artix-7 FPGAs to enable a fair comparison with the best pre-
viously reported implementations. We focus on level 5 security
as it is the only security level supported by both Dilithium and
FALCON. It is also the only security level approved for use
in the Commercial National Security Algorithm (CNSA) 2.0
Suite [8], which is used for United States national security
systems. All compared implementations of Dilithium (except
the lightweight design by Gupta et al.) support all security
levels, which can be selected at run time. The design by
Gupta supports only security level 5. All FALCON designs
support only one security level, level 1 or level 5, based on
the selection made at the synthesis time.

We provide a complete set of results for our designs in
Table I. Figures 3 and 4 illustrate the comparison with the best
other implementations we are aware of, briefly summarized in
Section III.

A. FALCON-Verify vs. Dilithium-Verify

Our most important result is the comparison between Verify-
only hardware implementations of Dilithium and FALCON
for the common security level, 5, equivalent to the security
of AES-256. This comparison is summarized in Table 1. For
high-speed designs, FALCON outperforms Dilithium by 10%.
Additionally, the resource utilization of FALCON1024-VER-
HS is smaller than Dilithium-VER-HS by the factors 3.7x for
LUTs, 5.1x for FFs, 8 x for DSP units, and 6 x for BRAMs.
For lightweight designs, FALCON outperforms Dilithium by
a factor of 2.2 in terms of verification latency. Additionally,
the resource utilization of FALCON1024-VER-LW is smaller
than Dilithium-VER-LW by the factors 1.3x for LUTs, 1.6x
for FFs, 2x for DSP units, and 3x for BRAMs.

B. Comparison with other hardware implementations

Compared to the previous work, we have made substan-
tial performance improvement over our own earlier design,
denoted in Figs. 3 and 4 by Dilithium-HS (GMU), reported
in [6]. As shown in Fig. 3, the latency of key generation
and verification is reduced by approximately 4%, and signing
latency is reduced by approximately 2.4x. The increase in the
number of polynomial arithmetic and hashing units enabled by
our improved operation scheduling is the primary reason for
this improvement. This speed-up comes at the cost of doubling
the number of DSP units, as shown in Fig. 4. However, the
number of LUTs and BRAMs is slightly reduced due to more
efficient implementation of the encoding modules and on-the-
fly sampling of the public matrix.

The high-performance design by Zhao et al. [4] had a sim-
ilar performance to our previous design but used fewer FPGA
resources. Compared to the improved design, Dilithium-HS
(TW), the resource utilization reported by Zhao et al. is still
lower. However, our design achieves much better performance,
with the key generation, average-case signing, and verification
being 2.8x, 2.9x, and 3x faster, respectively.

Our verification-only high-performance design provides
slight area improvements, requiring 14% fewer LUTs, 6%
fewer FFs, and 46% fewer BRAMs than the general-purpose
design. The number of DSP units remains the same. Only a
few submodules are specifically required for key generation
and signing. Thus, the elimination of these modules does not
significantly benefit resource utilization.

The lightweight verification-only design is much more com-
pact, as shown in Figure 4. However, it comes at almost a
9x increase in latency. While the design’s average power is
lower, the energy consumption is higher due to the increased
latency. Thus the lightweight architecture is primarily suitable
for designs with strict area or power limits. Compared to the
lightweight work by Gupta et al. [5], this design achieves lower
latency with approximately 40% fewer LUTs, half the DSPs,



TABLE I: Full Performance and Area results. Sign performance is the average latency. TW denotes this work. *Reports best-

case sign latency, not the average latency

Area

Latency (us)

Implementation Designer KeyGen/Sign/Verify
LUT [K] FF[K] DSP BRAM f[MHz] Levell Level 2 Level 3 Level 5
Dilithium-HS TW 48.6 30 32 22.5 185 - 12.2/98.3/14.4  22.6/166.7/25.4 30.3/196.3/33.2
Dilithium-VER-HS TW 42 28.2 32 12 185 - -/-/14.4 -/-125.4 -/-/33.2
FALCON1024-VER-HS ™ 114 5.5 4 2 160 - - - -/-129.5
FALCONS512-VER-HS ™ 12.1 6.2 4 2 160 -/-115.3 - - -
Dilithium-VER-LW T™W 8.1 6.1 2 6 185 - -/-1121.9 -/-1181.2 -/-1258.8
FALCON1024-VER-LW T™W 6.3 39 1 2 160 - - - -/-1117
FALCONS512-VER-LW TW 6.3 39 1 2 160 -/-154.4 - - -
Dilithium-HS (Zhao) [4] 30 10.4 10 11 96.9 - 42.3/326.1/45.4 60.9/510.8/64 90.8/570.7/92.9
Dilithium-HS (GMU) [6] 532 28.3 16 29 116 - 41.3/257.1/55.9  70.5/424.8/83.4  120.4/473.9/125.6
Dilithium-LW (Gupta) [51* 14 6.8 4 35 163 - - - 387/699/416
KeyGen
117 Sign (Avg.)
FALCON-VER-LW (TW) I Sign (Best)
Verify
259
Dilithium-VER-LW (TW)
416
Dilithium-LW (Gupta) 699
387
30
FALCON-VER-HS (TW)
33
Dilithium-VER-HS (TW)
Dilithium-HS (TW)
Dilithium-HS (GMU) 474
Dilithium-HS (Zhao) 571
b 100 200 300 400 500 600 700

Latency (us)

Fig. 3: Accelerator Latency Results for Level 5 Security on Artix-7 FPGA

and one-sixth of the BRAMSs. However, the design by Gupta
et al. also supports key generation and signing.

In our FALCON design, each instance only supports one
security level. Due to the need to bypass the last layer
of the NTT, the area of high-performance FALCONS512 is
slightly larger than for FALCON1024. The only hardware
work available for comparison is the hardware/software co-
design by Karl et al. [7]. This work uses a set of shared
coprocessors connected to a RISC-V soft-core processor to
accelerate all operations of Dilithium and the Verify operation
of FALCON. The maximum frequency for FPGA is not

reported. However, in terms of cycles, our high-performance
hardware implementation has 130x lower latency, and our
lightweight design has 32x lower latency. The overhead of the
coprocessor used in the hardware/software co-design is 7.2K
LUTs, 3.3K FFs, 6 BRAMs, and 7 DSPs, which is larger than
our lightweight hardware implementation of FALCON-Verify.

VI. CONCLUSIONS

Based on verification performance and transmission cost
(public key + signature), FALCON is more suitable for IoT
applications than Dilithium. It supports faster verification and



FALCON-VER-LW (TW)

Dilithium-VER-LW (TW)

Dilithium-LW (Gupta)

FALCON-VER-HS (TW)

Dilithium-VER-HS (TW)

Dilithium-HS (TW)

Dilithium-HS (GMU)

Dilithium-HS (Zhao)

LT (K]
FF [K]

B DSP

[ BRAM

35
14
11.4
12
32
28.2
42
22.5
32
30
48.6
29
16
28
53
30
0 10 20 30 40 50

Fig. 4: Accelerator Resource Utilization Results for Level 5 Security on Artix-7 FPGA

has a combined public key and signature size that is less than
half the combined size for Dilithium. In FPGAs, FALCON
verification achieves higher performance using fewer hardware
resources than Dilithium. For ASICs, this feature will likely
translate to a substantially better time-area product. However,
the complexity of FALCON’s key generation and signing
makes Dilithium a better option when new keys are frequently
needed or when client devices must perform signing.

VII. ACKNOWLEDGMENTS

This work has been partially supported by the National
Science Foundation under Grant No.: CNS-1801512 and by
the US Department of Commerce (NIST) under Grant No.:
70NANB18H218.

REFERENCES
[1] P. Shor, “Algorithms for Quantum Computation: Discrete
Logarithms and Factoring,” in 35th Annual Symposium
on Foundations of Computer Science, IEEE Comput. Soc.
Press, 1994.
[2] S. Bai, L. Ducas, E. Kiltz, et al., “CRYSTALS-Dilithium:

Algorithm Specifications and Supporting Documentation
(Version 3.1),” Feb. 2021. [Online]. Available: https://
pq- crystals.org/dilithium/data/dilithium- specification -
round3-20210208.pdf.

(3]

(4]

(5]

(6]

(7]

(8]

P-A. Fouque, J. Hoffstein, P. Kirchner, et al., “Fal-
con: Fast-Fourier Lattice-based Compact Signatures over
NTRU,” [Online]. Available: https://falcon-sign.info/.

C. Zhao, N. Zhang, H. Wang, et al, “A Com-
pact and High-Performance Hardware Architecture for
CRYSTALS-Dilithium,” IACR Transactions on Crypto-
graphic Hardware and Embedded Systems, vol. 2022,
no. 1, pp. 270-295, Nov. 2021.

N. Gupta, A. Jati, A. Chattopadhyay, and G. Jha,
“Lightweight Hardware Accelerator for Post-Quantum
Digital Signature CRYSTALS-Dilithium,” IEEE Trans-
actions on Circuits and Systems I: Regular Papers,
vol. 70, no. 8, pp. 3234-3243, Aug. 2023.

L. Beckwith, D. T. Nguyen, and K. Gaj, “High-
Performance Hardware Implementation of CRYSTALS-
Dilithium,” in 2021 International Conference on Field-
Programmable Technology (ICFPT), Dec. 2021.

P. Karl, J. Schupp, T. Fritzmann, and G. Sigl, “Post-
Quantum Signatures on RISC-V with Hardware Accel-
eration,” ACM Trans. Embed. Comput. Syst., Jan. 2023.
NSA, Cybersecurity Advisory Announcing the Commer-
cial National Security Algorithm Suite 2.0, Sep. 2022.


https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf
https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf
https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf
https://falcon-sign.info/

Luke Beckwith received his M.S. degree in computer engi-
neering from Virginia Tech in 2020. He is currently working
towards his Ph.D. degree with the Cryptographic Engineering
Research Group at George Mason University. His research
interests include hardware accelerators for lattice and code-
based digital signature schemes.

Duc Tri Nguyen earned his Ph.D. degree in Electrical and
Computer Engineering from George Mason University in
2023, specializing in cryptographic engineering. He is cur-
rently a cryptography engineer at SandboxAQ, focusing on the
high-performance software implementation of post-quantum
cryptography.

Kris Gaj is a professor and a co-director of the Cryptographic
Engineering Research Group at George Mason University.
He received his Ph.D. degree in Electrical Engineering from
Warsaw University of Technology. He has been involved in
most previous and current cryptographic competitions, from
AES to PQC.



	Introduction
	Background
	Cryptography in IoT
	Dilithium and FALCON
	Dilithium
	FALCON


	Previous Work
	Methodology
	Dilithium
	High-Performance General-Purpose
	Verification-Only

	FALCON Verify
	High-Performance
	Lightweight


	Results
	FALCON-Verify vs. Dilithium-Verify
	Comparison with other hardware implementations

	Conclusions
	Acknowledgments

