CONCORDANCE SURGERY AND THE OZSVATH-SZABO 4-MANIFOLD
INVARIANT

ANDRAS JUHASZ AND IAN ZEMKE

ABSTRACT. We compute the effect of concordance surgery, a generalization of knot surgery defined
using a self-concordance of a knot, on the Ozsvath—Szab6 4-manifold invariant. The formula
involves the graded Lefschetz number of the concordance map on knot Floer homology. The proof
uses the sutured Floer TQFT, and a version of sutured Floer homology perturbed by a 2-form.

1. INTRODUCTION

Let X be a smooth, connected, closed, and oriented 4-manifold with b3 (X) > 2. Suppose that
T C X is a smoothly embedded, homologically essential torus with trivial self-intersection, and let
K C S be a knot. Fintushel and Stern [FS98] defined the knot surgery operation on X, resulting in
the 4-manifold Xx. This is obtained by gluing X \ N(T) and S! x (S3\ N(K)) via an orientation-
reversing diffeomorphism of their boundaries that maps a meridian of T to a longitude of K. They
showed that

where SW denotes the Seiberg—Witten invariant, and Ak (z) is the symmetrized Alexander polyno-
mial of K. The variable z corresponds to exp(2[T]), where [T] is the homology class induced by T
in Hy(Xk).

If m(X\T) =1, then X and Xy are simply-connected and have the same intersection form,
and are hence homeomorphic by Freedman’s theorem. Note that every symmetric integral Laurent
polynomial p(z) satisfying p(1) = 41 is the Alexander polynomial of a knot in S3. Consequently,
if SW(X) # 0, then we obtain infinitely many pairwise non-diffeomorphic smooth structures on X.
When X is the K3 surface, SW(X) = 1, and hence we obtain a different smooth structure on X for
every such Laurent polynomial.

Mark [Marl3, Theorem 3.1] obtained a result analogous to equation (1.1) for the Ozsvath—Szabd
4-manifold invariant [OS06], which is expected to coincide with the Seiberg—Witten invariant. For
a closed 4-manifold X with b3 (X) > 2, Ozsvéth and Szabé’s invariant takes the form of a map

Py Spmc(X) — Fs.

We write ®x , for the value of ®x on s. It is convenient to organize the invariants of different Spin®
structures into a single polynomial. Recall that Spin®(X) is an affine space over H?(X), so the

difference of two Spin® structures is a well-defined cohomology class. If b = (by,...,b,) is a basis of
H?(X;R), we can arrange the 4-manifold invariant into the element
@X;b — Z (PX75 . Zﬁi*(ﬁfﬁo)ubl;[X]> . Z,Sli*(ﬁ_so)Ub"7[X]>
sE€Spin®(X)

of the n-variable Novikov ring over Fa, where s¢ is some choice of base Spin© structure on X, and
iv: H?(X) — H?(X;R) is induced by the map of coefficients Z < R. If H?(X) is torsion-free, then
®x ., completely encodes the map ®x. It is natural to view ®x.1, as a perturbed version of the
mixed invariant; see Proposition 4.3.
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Concordance surgery is a generalization of knot surgery due to Fintushel and Stern; see Akbu-
lut [Akb02, Section 2] and Tange [Tan05]. Let K be a knot in a homology 3-sphere Y (note that
Akbulut only considered the case Y = S3). Given a self-concordance C = (I x Y, A) from (Y, K)
to itself, we can construct a 4-manifold X, as follows. We glue the ends of A together to form a
2-torus T¢ embedded in S' x Y. After removing a neighborhood of T¢, we get a 4-manifold W
with boundary T3. Viewing N(T) as T x D?  we pick any orientation-preserving diffeomorphism
¢: O(X \ N(T)) — ON(T¢) that sends [{p} x dD?] to [{q} x ¢k], where p € T, g € S, and {f is a
longitude of K. We write X¢ for any manifold constructed as the union

Xe = (X\N(T)) Us We.

Fintushel and Stern asked in the late 90s whether a formula similar to equation (1.1) relates SW(X)
and SW(X¢); see Akbulut [Akb02, Remark 2.2].

Our main result gives a formula relating the Ozsvath—Szab6 4-manifold invariants of X and X¢
in terms of the graded Lefschetz number of the concordance map

Fe: HFK(Y,K) — HFK (Y, K)

defined by the first author [Juh16]. This map preserves the Alexander and Maslov gradings [JM18,
Theorem 5.18]. The graded Lefschetz number is the polynomial

Lef.(C) := )  Lef (Fclmwy,,(,i) : HFK (Y, K,i) — HFK (Y, K, i)) 2t
i€Z
We note that the concordance map ﬁc on knot Floer homology depends on some extra decorations
that we are suppressing from the notation. Nonetheless, we will see that the graded Lefschetz

number is independent of these decorations.
If [T] # 0 € H2(X;R), then we can pick a basis b = (by,...,b,) of H?(X;R), such that

(1.2) (b1,[T])) =1and (b;,[T]) =0 for i > 1.

There are natural isomorphisms H?(X;R) = H?(X¢;R) and Spin®(X) = Spin®(X¢). By a slight
abuse of notation, we will use the same notation for corresponding second cohomology classes and
Spin® structures on X and X¢. In particular, the base Spin® structure sy on X corresponds to a
base Spin® structure so on X¢, and we define the 4-manifold invariants ® x., and ®x, ., using this
correspondence. We now state our main result:

Theorem 1.1. Let X be a closed, oriented 4-manifold such that b;r(X) > 2. Suppose that T is
a smoothly embedded 2-torus in X with trivial self-intersection, such that [T] # 0 € Ha(X;R).
Furthermore, let b = (by,...,b,) be a basis of H?(X;R) satisfying equation (1.2). If C is a self-
concordance of (Y, K), where Y is a homology 3-sphere, then

(ch;b = Lele (C) . ®X;b~

If C is the product concordance (I x Y, I x K), then Fp is the identity of ﬁﬁ((Y, K), so Lef,(C) is
the graded Euler characteristic of OFK (Y, K), which is Ak (t). Hence, as a special case, we recover
the formula of Mark [Marl3, Theorem 3.1]; i.e., the Heegaard Floer version of the Fintushel-Stern
knot surgery formula.

When (X \T) =1 and Y = 53, the manifold X¢ is homeomorphic to X. In contrast, we have
the following corollary to Theorem 1.1, which we prove in Section 5.1:

Corollary 1.2. IfLef.(C) # 1 and ®x., # 0, the 4-manifold X¢ is not diffeomorphic to X.

Since Lef,(C) is always symmetric and satisfies Lef,(C)(1) = =£1, it is unclear whether, using
concordance surgery, we obtain any smooth structures not arising from knot surgery. Nonetheless,
in [JMZ], we use the techniques of this paper to produce infinite families of exotic orientable surfaces
in B4

We note that the proofs of the knot surgery formula (1.1) due to Fintushel and Stern for the
Seiberg—Witten invariant, and to Mark for the Ozsvath—Szabd invariant, are based on the skein
relation for the Alexander polynomial, and hence are only well-suited to knots in S3. Our theorem
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applies to a more general setting, where K is allowed to be a null-homologous knot in an arbitrary
homology 3-sphere Y. Our proof of Theorem 1.1 also extends to the situation where we consider
a self-concordance (W,C) of a pair (Y, K), such that W is an integer homology cobordism from Y
to itself, though we restrict to the setting where W = I x Y to simplify the notation. The key
technical advancement that led to this proof is our previous computation of the sutured Floer trace
and cotrace cobordism maps [JZ20, Theorem 1.1].

Our Theorem 1.1 could be used to construct exotic smooth structures on 4-manifolds with non-
trivial fundamental group. Suppose that m (X \T) = 1. If ®x, # 0, and K and K’ are knots in
a homology 3-sphere Y such that Xy and Xk are homeomorphic and ®x., - Ag(z) and ®x.p, -
A (2z) are not equivalent under the action of automorphisms of Ho(X), then X and Xk are non-
diffeomorphic 4-manifolds with fundamental group 71 (Y)/([K]), where ([K]) is the normal subgroup
of m (V) generated by K.

After proving Theorem 1.1, we give an account of the naturality and functoriality of the perturbed
versions of sutured Floer homology and Heegaard Floer homology, since these are more subtle than
in the unperturbed setting, and many details are only sketched in the literature.

Finally, we note that it might be possible to carry out our argument for the Seiberg—Witten
invariant using the work of Zhenkun Li [Li18] to construct gluing and cobordism maps for Kronheimer
and Mrowka’s sutured monopole Floer homology [KM10]. A key technical step which has not yet
been completed in this program is the computation of the induced maps by the trace and cotrace
cobordisms, which we performed in the setting of sutured Floer homology in [JZ20, Theorem 1.1].

1.1. Organization. In Sections 2 and 3, we give an overview of the construction of the perturbed
Floer homology groups, and the perturbed cobordism maps, and we state the properties that are
most relevant to the proof of Theorem 1.1. In Section 4, we give some background on the Ozsvath—
Szab6 4-manifold invariant. In Section 5, we prove Theorem 1.1. In Sections 6 and 7, we give a
proof of the naturality of the perturbed sutured Floer groups, the well-definedness of the cobordism
maps, and also several useful properties.

1.2. Acknowledgements. We would like to thank Ciprian Manolescu, Thomas Mark, and Zoltdn
Szabé for helpful discussions, and Ronald Fintushel and Ronald Stern for their comments on the
history of this problem. We would also like to thank an anonymous referee for a very careful reading
and helpful suggestions. The first author was supported by a Royal Society Research Fellowship, and
the second author by an NSF Postdoctoral Research Fellowship (DMS-1703685). This project has
received funding from the European Research Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement No 674978).

2. PERTURBING SUTURED FLOER HOMOLOGY BY A 2-FORM

Ozsvéth and Szabd [OS04a, Section 3.1] defined a version of Heegaard Floer homology for closed
3-manifolds perturbed by a second cohomology class, which we now extend to sutured manifolds.
The unperturbed version of sutured Floer homology was defined by the first author [Juh06], and its
naturality was shown by Thurston and the authors [JTZ12].

Let A denote the Novikov ring over Fs in a single variable z. Its elements are formal sums
Y wer Nzz”, where n, € Fa, and the set

{z € (—o00,c]:n; #0}
is finite for every ¢ € R. Note that A is a field.

Suppose that (M,~) is a balanced sutured manifold, and w is a closed 2-form on M. Then w
induces an action of Fo[H(M,0M)] = Fo[Ha(M)] on A, via the formula

ea 'ZI — Zw-‘rfaw
for x € R and a € Hy(M). We denote by A,, the ring A viewed as a module over Fo[H*(M,dM)).
For a sutured manifold (M, v), equipped with a closed 2-form w and a relative Spin® structure s, we

write SFH (M, ~,s; A,,) for the perturbed sutured Floer homology, which we describe in this section.
Using the terminology of Baldwin and Sivek [BS16], the most natural category for SFH (M, ~,s; Ay)
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is the category of projective transitive systems. See Section 2.1 for a precise definition. We state the
following version of naturality for perturbed sutured Floer homology:

Theorem 2.1. Suppose (M,~) is a sutured manifold, and w is a closed 2-form on M.

(1) Ifs € Spin®(M, ), then SFH (M, ~,s; A,,) forms a projective transitive system of A-modules,
indexed by the set of pairs (H,J), where H is an admissible diagram for (M,~), and J is a
generic almost complex structure.

(2) If w = dn for a 1-form n, then SFH(M,~;Ay) (the sum over all Spin® structures) forms a
projective transitive system of A-modules, indexed by the set of pairs (H,J), as above.

We will prove Theorem 2.1 in Section 6, though we describe the construction of the perturbed
groups in Section 2.2.

Remark 2.2. Our construction of SFH (M,~; A,) gives neither a genuine transitive system when we
restrict to a single Spin® structure on M, nor a projective transitive system when we sum over all
Spin® structures. See Example 6.7 and Lemma 6.8 for counterexamples.

2.1. Transitive systems and their morphisms.

Definition 2.3. Suppose that C is a category and [ is a set. A transitive system in C, indexed by
1, is a collection of objects (X;);cr, as well as a distinguished morphism U, X; = X; for each
(i,4) € I x I, such that

(1) VoW, ,; =W, and

(2) ¥,,; =idx;.

Example 2.4. Transitive systems in the following categories are important to our present paper.

(T-1) The category C = R—Mod of left modules over a ring R. The morphism set Home (X7, X2)
is equal to the set Homg (X1, X2) of R-module homomorphisms from X; to Xs.

(T-2) The projectivized category of A-modules C = P(A—Mod). The objects are A-modules and
the morphism set Home (X7, X2) is the projectivization of Homy (X5, X2) under the action
of elements of A of the form 2% € A.

(T-3) The homotopy category C = K(R—Mod) of chain complexes over the ring R. The objects
are chain complexes over R. If X; and X5 are two chain complexes, the set of R-module
homomorphisms Homg (X7, X3) is a chain complex with differential Opom(f) = f o dx, —
Ox, o f for f € Homg (X1, X5). The morphism set Home (X7, X3) in C is the homology
H,.(Homg (X3, X5)). Equivalently, Hom¢ (X1, X2) is the set of chain maps modulo chain
homotopy.

(T-4) The projectivized homotopy category C = P(K(A—Mod)). The objects of C are chain com-
plexes over A. The morphism set Home (X7, X5) is the projectivization of H,(Homp (X7, X3))
under the action of elements of A of the form z*.

The categories in (T-1) and (T-3) are preadditive (i.e., the morphism sets are abelian groups),
while the categories in (T-2) and (T-4) are not. In these latter categories, composition of projective
morphisms is well-defined, though addition of morphisms is not.

Following the terminology of Baldwin and Sivek [BS16], we call a transitive system over one of
the categories (T-2) and (T-4) a projective transitive system. In category (T-2), given morphisms
f, g € Homy (X4, X2), we will use the notation f = g if f = 2* - g for some z € R. Similarly, in
case (T-4), given chain maps ¢, ¥ € H.(Homu (X1, X5)), we write ¢ = ¢ if ¢ ~ 2% - ¢ for some
x € R, where ~ denotes chain homotopy equivalence. If ¢ =~ 1, we say ¢ and 1 are projectively
equivalent. Finally, if X is a A-module and a, b € X, we write a = b if a = 2% - b for some x € R.

There is a natural notion of morphism between transitive systems:

Definition 2.5. If (C;);er and (D;);es are two transitive systems in the category C, a morphism
of transitive systems is a collection of morphisms

F(i,j): Cl — Dj
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in C such that
Vimjr o Fig) o Virmi = Flar o)
for all i, € I and j, j' € J.

Remark 2.6. If f: C;; — Dj, is an element of Hom¢(C;,, Dj,) for some fixed iy € I and jo € J,
then f induces a unique morphism F{; ;) of transitive systems from (Cj)ier to (Dj) e, given by

Flijy = Wjomj o fo Wiy,

If C is a category, then the collection of transitive systems over C itself forms a category, for which
we write T (C). Hence, we can define a transitive system of transitive systems over C.

Remark 2.7. If X = ((Xij)jet.)ier is a transitive system in 7(C), we may naturally view X as a
transitive system over C indexed by K := (J;o; Ji.

2.2. The perturbed chain complexes. In this section, we define the perturbed sutured Floer
complexes. We use the cylindrical reformulation of Heegaard Floer homology, due to Lipshitz [Lip06].
Suppose (M,) is a balanced sutured manifold with a closed 2-form w. If H = (3, «,3) is an
admissible diagram, we pick an almost complex structure on ¥ x I x R that is tamed by the split
symplectic form. The surface ¥ splits M into two sutured compression bodies, for which we write
U, and Ug. We let D, and Dg be two choices of compressing disks for U, and Ug, equipped with
radial foliations, such that D, intersects X along o, and similarly for Dg.

A homotopy class ¢ € m(x,y) of disks determines a 2-chain D(¢) on X, which has boundary on
a U B. We cone D(¢) along the compressing disks D, and Dg to obtain a 2-chain D(¢). We note
that the 2-chain D(¢) depends on the choice of radial foliations on Dq and Dg. The 2-chain D()
is closed if and only if x =y.

We define

Aulo)= /75<¢> -

When the choice of w is clear from the context, we just write A(¢).
There is a map H: me(x,x) — Ho(M), obtained by coning off the periodic domain D(¢) for
¢ € ma(x,%); see [Juh06, Definition 3.9]. In particular,

H(g) = [D(s)] -

The chain complex CF(H,s; A.,) is the free A-module generated by intersection points x € T,NTg
which satisfy s(x) = s. The differential is given by counting holomorphic curves in ¥ x I x R via
the formula

oxi= Y. Y (M@)/R moed2)-A?.y
yE€T.NTg pEm2(x,y)
n(d)=1

for x € T, N Tg. The fact that 0% = 0 follows by analyzing the ends of the 1-dimensional moduli
spaces M(¢)/R for classes ¢ with Maslov index 2. We set

SFH(H,s; M) == H, (CF(H,s; \,), d).

The group SFH(H,s;A,) also depends on J and the compressing disks, though we omit the extra
data from the notation.

2.3. Perturbed sutured cobordism maps. In [Juh16], the first author defined a notion of cobor-
dism between sutured manifolds, and constructed functorial cobordism maps.

Definition 2.8. A cobordism of sutured manifolds
W= (W, Z,I[¢]): (Mo,v0) = (M1,m)
is a triple such that

(1) W is a compact, oriented 4-manifold with boundary,
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(2) Z is a compact, codimension-0 submanifold with boundary of OW, and oW \ int(Z) =
— My U M,,

(3) [¢] is an equivalence class of positive contact structures on Z (see [Juh16, Definition 2.3]),
such that 0Z is a convex surface with dividing set «; on dM;, for i € {0,1}.

In Section 7, we will define perturbed versions of the sutured manifold cobordism maps. If
W = (W, Z,[£]) is a sutured manifold cobordism from (M, o) to (M7,71), and w is a closed 2-form
on W, then we will define a chain map

Fyyior SFH (Mo, 705 M|y, ) = SFH (M1, 715 Mgy, )

which is only well-defined up to an ambiguity described in Proposition 2.9.
If H is a Heegaard diagram for (M, ), we can view

SFH(H;An)= @  SFH(M,sA).

geSpin“(M,'y)
Consequently, there are inclusion and projection maps
is: SFH(H,s;A,) — SFH(H;A,) and ms: SFH(H;A,) — SFH(H,s;A.).

Proposition 2.9. Suppose W = (W, Z,[£]): (Mo, v0) — (M1,71) s a sutured manifold cobordism,
and w is a closed 2-form on W.

(1) If 5; € Spin®(M;,~;) fori € {0,1}, then the map

Ts oFW;w Oig(]: SFH(M07'707§0;AMMO) — SFH(M17’717§1;AW\Ml)

1
is well-defined up to an overall factor of 2%, for x € R.

(2) More generally, if [w|ar,] = 0, then Fyy,, ois, is well-defined up to an overall factor of 2*. If
[wlnr,] =0, then s, 0 Fyy,, is well-defined up to a factor of 2. If [w|a,] = 0 and [w|ar,] =0,
then the total map Fyy,, is well-defined up to an overall factor of z*.

The main idea of the construction is to incorporate the coning construction of Ozsvath and
Szab6 [0S04a] at each step of the construction of the unperturbed sutured cobordism maps in [Juh16].
In Section 7, we describe the construction in detail, and prove Proposition 2.9. We note that, to
define the total cobordism map in part (2) of Proposition 2.9, we use our formula for the sutured
trace cobordism map [JZ20, Theorem 1.1]; see Section 7.6. In Section 7.7, we will prove the following
composition law for the perturbed sutured cobordism maps:

Proposition 2.10. Suppose the sutured manifold cobordism W = (W, Z, [£]) decomposes as Wao Wy,
where

Wi = (Wi, Zy, [61]): (Mo,v0) — (My,m1)  and Wa = (Wa, Za, [€2]): (M1,71) — (Ma,2).

Let w be a closed 2-form on W, and write w1 = wlw, and wy = w|w,.
(1) If [w] restricts trivially to My, My, and Ma, then

Fovis = Py © Fyvyson -
(2) More, generally, if [w] restricts trivially to My and Mz, and s, € Spin®(My, 7o), then
Fwiwois, = Fiyw, © Fwy i, Ots,-
Similar formulas hold if [w] restricts trivially to both My and My, or to just M.

2.4. Alexander gradings and perturbations on cylinders. We now state a simple formula for
the sutured cobordism map for a perturbation of the identity cobordism of a knot complement,
which we need for our proof of Theorem 1.1.

Suppose that K is a knot in an integer homology sphere Y. Let Y (K) denote Y\ N(K), decorated
with two oppositely oriented meridional sutures. A sutured Heegaard diagram (3, a, 3) for Y (K)
is equivalent to a doubly-pointed diagram for (Y, K): To obtain a doubly-pointed diagram from
(%, e, B), we collapse each of the boundary components of ¥ to a basepoint. We let w denote the
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point where K intersects X negatively, and z denotes the point where K intersects ¥ positively.
There is a tautological isomorphism

HFK (Y, K) = SFH(Y (K)),
since the generators and differential coincide.
The relative Alexander grading on HFK (Y, K) is given as follows. If x, y € T, NTg, then we pick

a class ¢ € ma(x,y) on (X, ¢, B, w, ) (possibly going over w and z). The relative Alexander grading
is given by the formula

A(Xa y) = nz(¢) - nw(¢)
The relative Alexander grading admits an absolute lift, which can be specified by a symmetry
requirement on }TF?((Y, K); see [0S04c, Section 3.5].
Let Sk be a Seifert surface of K. Let

ws € (I xY(K),0I x Y(K))
be a closed 2-form dual to {1} x Sk under Poincaré-Lefschetz duality
H*(I xY(K),0I x Y(K)) = Hy(I x Y(K),I x 0Y (K)).
By definition, ws, vanishes on I x Y (K).

Lemma 2.11. Up to an overall factor of z%, the map FIxY(K);wsK is given by

Ax)

FIXY(K);UJSK (Zw . X) = 2T - X,

where A(x) denotes the Alexander grading.
We will prove Lemma 2.11 at the end of Section 7.2.

2.5. Changing the 2-form on W. We now state another result which will be helpful for proving
Theorem 1.1:

Lemma 2.12. Suppose that W = (W, Z,[£]): (Mo, v0) — (M1,71) is a sutured manifold cobordism,
w is a closed 2-form on W, and n is a I-form that vanishes on a neighborhood of My and M. If
[w] vanishes on My U My, then

FW;wiFW;w-I—dn-
If [w] is non-vanishing on My and My, then the above equation holds when restricted to fized Spin®
structures on My and M.

We will prove Lemma 2.12 in Section 7.8.

3. PERTURBED HEEGAARD FLOER HOMOLOGY OF CLOSED 3-MANIFOLDS

We review some background on Heegaard Floer homology, due to Ozsvéth and Szabd [0S04b)
[0S06]. To a closed 3-manifold Y with a Spin® structure s, Ozsvath and Szabé assign Fy[U]-modules
HF~(Y,s), HF*(Y,s), and HF " (Y,s) that fit into a long exact sequence

(3.1) o L HF(Y,5) = HF®(Y,s) > HF"(Y,s) > HF = (Y,s) — - - -

There is also an [Fa-vector space f{?(Y,s).

If W is a cobordism from Yj to Y7, and s € Spin®(W) restricts to 5o on Yy and to s; on Y7, then

there are maps
FI?V,S: HFO(Y(),ﬁo) — HFO(Yl,El)
for o € {—, 00,4+, A} that commute with the maps in the long exact sequence in equation (3.1).

If w is a closed 2-form on Y, Ozsvath and Szabé [OS04a] described an Fo[H!(Y)]-module denoted
HF°(Y,s;A,), using the same coning procedure we described in Section 2.2. Similarly, if w =
(W1, . ..,wy) is an n-tuple of closed 2-forms on Y, we can define the Fo[H!(Y)]-module HF° (Y, s; A,,),
which is also a A, [U]-module, where A,, is the n-variable Novikov ring over Fo. In this section, we
focus on perturbing by a single 2-form, to simplify the notation.
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Ozsvéth and Szabé [OS04a] defined perturbed versions of their cobordism maps (and more gen-
erally, fully twisted versions in [OS06]). The naturality and functoriality results described above for
sutured Floer homology have analogues for the perturbed versions of the closed 3-manifold invariants,
which we state here.

Theorem 3.1. (1) Suppose Y is a closed 8-manifold with a chosen basepoint and a closed 2-
form w. If s € Spin°(Y) and o € {—,00,+,A}, then HF°(Y,s;A,,) forms a projective
transitive system of A[U]-modules, indexed by the set of pairs (H,J), where H is an s-
admissible diagram of Y, and J is a generic almost complex structure.

(2) Suppose W is a connected, oriented cobordism from Yy to Y1, with a chosen path connecting
the basepoints of Yy and Y1, a Spin® structure s € Spin®(W), and a closed 2-form w on W.
Then the cobordism map

F&V,s;w : HFO(}/O’E‘YO;AMYO) - HFO(Y1’§|Y1;ALU|Y1)
due to Ozsvdth and Szabd [OS04a] is well-defined up to overall multiplication by z° for x € R.

Ozsvath and Szabd’s construction of the perturbed cobordism maps is similar to the construction
we describe in Section 7 for sutured Floer homology. One important difference is how the maps
are associated to Spin® structures on W. If W is decomposed as W7 U W5 U W3, where W; is an
index ¢ handle cobordism, then the restriction map Spin®(W) — Spin®(W3) is an isomorphism. If
(3, a,8,3,w) is a triple for the 2-handle attachment, Ozsvath and Szabé [0S06, Section 8.1.4]
define a map

Syt T2(X,y,2) — Spin®(Wa).
The map Fyy, ., counts only triangles with s, (¢) = s|w,.

The Spin® composition law is slightly subtle in the perturbed setting, since we are working in
a projectivized category; see Example 2.4. The morphism sets in a projectivized category are not
abelian groups, so sums of maps are not well-defined. Nonetheless, a Spin® composition law can still
be stated, as we now describe.

Suppose that & C Spin®(WW) is a subset of Spin® structures. We suppose that each s € & has the
same restriction to OW, unless [w]aw] = 0. If o € {—, 00}, we must also assume that there are only
finitely many s € & such that Fyj, ., # 0. In this situation, we may define a cobordism map

FIEV,G;M HF® (Yy; Aw\yo) — HF°(Yy; AW|Y1 ),
which is well-defined up to multiplication by z* for some x € R. The 2-handle portion of the map

Py ., counts triangles such that s,,(¢) is the restriction of an element of &.
By construction, we may find representatives of the maps Fy;, ., for s € & such that

[e] - o
FW,G;UJ - E FW,E;w'
€6

The proof of the composition law given by Ozsvéth and Szabd [OS06, Theorem 3.4] extends to give
the following:

Proposition 3.2. Suppose W is a cobordism which decomposes as Wy o W1. Suppose further that
w is a closed 2-form on W, and &1 C Spin®(W7) and Sy C Spin®(Ws) are subsets as above. Let

S(W,61,62) = {s € Spin®(W) : slw, € &1 and s|lw, € G2 }.
Then
F‘?V,G(W,Gl,Gg)w = FI;/Q,GZW\WQ ° Fﬁ)vl,e;l;w\wl-
We have the following analogue of Lemma 2.12:

Lemma 3.3. Suppose that W: Yy — Y7 is a sutured manifold cobordism, & C Spin®(W) is a set
of Spin® structures as above, w is a closed 2-form on W, and n is a 1-form that vanishes on a
neighborhood of Yo and Yi. If [w] vanishes on Yy U Y, then

o -
FW,G;w_FW7G§W+dW'
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If [w] is non-vanishing on Yy and Yy, then the above equation holds when restricted to fixed Spin®
structures on Yy and Yi.

Proof. This can be shown similarly to Lemma 2.12; see Section 7.8. O

Lemma 3.4. Let W be a cobordism from Yy to Y1, and w a closed 2-form on W that vanishes on
OW . Furthermore, let & C Spin®(W) be a set of Spin® structures. If o € {—, 00}, we also assume
there are only finitely many s € & for which Fyy,  # 0. If 59 € Spin®(W) is an arbitrary base Spin®
structure, then

(3.2) F e = Z Ao (s=50) U], IWOW]) | e,
’ €6
We will prove Lemma 3.4 in Section 7.9.
Remark 3.5. As a consequence of Lemma 3.4, if w is a closed 2-form on W that vanishes on W,

then Fy, .., = Fy ;. We note that it is natural to normalize the perturbed maps in this situation by
defining

Fyyow = o (in(s=50)Uw],[W,0W]) gy,
and
F‘?V;w = Z F‘L’)V,s;w = Z ix(5—50)U[w],[W,0W]) ‘Fﬁv,sa
sE€Spin¢(W) s€Spin¢(W)

for o € {A, +}. For o € {—, 00}, we may take this convention in the case when FYj, is non-vanishing
for only finitely many s. It is straightforward to see that this normalization convention is compatible
with the composition law.

4. BACKGROUND ON THE OzSVATH-SZABO MIXED INVARIANTS
For a closed 4-manifold X with by (X) > 2, Ozsvéath and Szabé defined a map
®x: Spin°(X) — Fs.

We write ®x ; for the value of ®x on 5. The map ®x is referred to as the mized invariant of X,
because it uses both HF* and HF ™.

The map ®x is defined by picking a connected, codimension one submanifold N C X that cuts
X into two pieces, W; and Ws, such that b;(WZ) > 0, and such that the restriction map

H*(X) — H*(Wy) @ H*(Wy)
is an injection. Such a cut is called admissible. If we view W, as a cobordism from S to N, and

W, as a cobordism from N to S3, the maps F5o and F39 vanish [0S06, Lemma 8.2].

Wi,s|w, Wa,slw,
Consequently, Fy;, . may be factored to have codomain
HF __,(N,s|n) := ker (HF_(N,5|N) — HFOO(N,5|N)) ,
and FVJ;% may be factored to have domain

HF (N, s|n) := coker (HF™(N,sy) — HF(N,s|y)).

52

The boundary map 4 in the long exact sequence (3.1) induces an isomorphism between HE ¥ (N, s|x)
and HF _ (N, s|n).

The invariant ®x , is defined as the coefficient of the bottom-graded generator @, of HF'(S3)
in the expression

+ -1 -
<FW2,5|W2 05 OFW1,5|W1> (1)7

where 1 denotes the top-graded generator of HF ™~ (S3) 2 Fo[U]. Ozsvéth and Szabd prove that this
is independent of the admissible cut N.

We now describe how to compute the mixed invariants using the perturbed cobordism maps. To
do that, we will need the following two results:
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Lemma 4.1. Let X be a closed, oriented 4-manifold with by (X) > 2, and let b € H*(X). Given
an admissible cut X = W1 Uy Wa, there is a closed 2-form w on X such that

(1) [w] =be€ H*(X;R), and

(2) wly =0.

Proof. Choose ¢ € Q2(X) such that [¢] = b. Since N gives an admissible cut, the coboundary map
HY(N) — H?(X) is zero. This is Poincaré dual to the inclusion Hy(N) — Hz(X), so this is trivial
as well. Hence, the restriction map from H?(X;R) to H?(N;R) is trivial. In particular, [p|y] =0
in H?(N;R), and so there is a 1-form 1 € Q*(N) such that ¢|x = dn.

Let v(N) be a tubular neighborhood of N in X, and write p: v(N) — N for the projection. Choose
a smooth function f on X that is 0 outside v(N), and is 1 on a neighborhood of N contained in the
interior of ¥(N). We define

w:=p—d(f-p'n).

Then w satisfies the required conditions. O

Lemma 4.2. Let X be a closed, oriented 4-manifold with by (X) > 0, and let X = Wy Uy Wy be
an admissible cut. If w is a tuple of closed 2-forms on X that vanish on N, then Fy, and

+
Wa,uiw|w,

17t§w‘W1

are non-zero for only finitely many t € Spin®(W1) and u € Spin®(Ws).

Proof. By Lemma 3.4, it suffices to show this for the unperturbed maps Fy;,  and FVT,M‘. Note that
Fyy,  has image in HF () for every t € Spin®(W7). Let d € N be such that Ud-HF_,(N) = {0}.
If 1 is the generator of HF ~(S3), then

Fyy, (1) ¢ UT- HF [ y(N) = {0}

only for finitely many t € Spin“(W;) by [OS06, Theorem 3.3], and since HF _,(N,s) # 0 only for
finitely many s € Spin®(/N). The same argument works for F, |

Wa,usw|w, ©
Recall from the introduction that, if b = (b1,...,b,) is a basis of H%(X;R), we define
(pX;b — Z (I)X,s . Zﬁi*(5—50)Ub17[X]> . ZT(Li*(sfso)Ubn,[X]),
sE€Spin®(X)

where 5o € Spin®(X) is a choice of base Spin® structure. If H?(X) is torsion-free, then ®x,
completely encodes the map s — ®x ;. We now give a slight reformulation of ® x.,,, which is well
suited for proving Theorem 1.1:

Proposition 4.3. Suppose X is a closed, oriented 4-manifold with b;(X) > 1, and N is an admis-
sible cut, dividing X into cobordisms Wy and Wy. Suppose b = (by,...,b,) is an n-tuple of classes

in H2(X;R), represented by 2-forms w = (w1, ...,w,) that vanish on N. Write w; = w|w, and
wo = w|w,. Then the maps F‘;“'}z;wg and Fy; ., are well-defined, and satisfy
(4.1) b = ( (P, 007 0 Firy, ) (10,04 ).

Proof. Well-definedness of Fy;, , and FVJ{,Z; w, follows from Lemma 4.2, so we focus on equation (4.1).
Let sg be a fixed element of Spin®(X), and let ty = so|w, and ug = sg|w,. Since w; and wy vanish
on N, we apply a straightforward adaptation of Lemma 3.4 to obtain

Fv;l;ul - Z ZY'*(t—to)U[w1]v[W1,8W1]> "'Z7<Ii*(tfto)U[an],[Wl,QWl]) 'Fszl,u and
teSpin¢(Wy)

- Z Z(i*(u—so)U[WlL[Wz,@Wz]) .
1

(4.2)
FVJ’[}Z;‘-"Q -

,ZT(Li*(u*uo)U[wn]’[Wz,8W2]> . FV—i[_/g,u'
u€Spin¢(Ws)

Equation (4.1) is obtained by inserting equation (4.2) into the right-hand side of equation (4.1), and

using the fact that, if s € Spin®(X) restricts to t € Spin®(W1) and u € Spin®(Ws), then

<i*(t — fo) U [wi], [W1,8W1]> + (z*(u - uo) U [wi}, [WQ, 8W2]) e <Z*(5 — 50) U [wi], [X]> O
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Remark 4.4. In light of Proposition 4.3, it is natural to view ®x,, as a perturbed version of the
mixed invariant.

5. FINTUSHEL-STERN KNOT SURGERY AND CONCORDANCE SURGERY

Fintushel and Stern [FS98] described an operation on a 4-manifold X called knot surgery. Given
a knot K in S? and an embedded torus T in X with zero self-intersection, we define the 4-manifold

Xo = X \ N(T)

with boundary T3. A neighborhood of T' can be identified with 7" x D2. We pick any orientation-
preserving diffeomorphism ¢: O(T x D?) — S! x ON(K) such that ¢.([{p} x 9D?]) = [{q} x k],
where ( is a Seifert longitude on ON(K), while p € T and ¢ € S*. We let

X = Xo Uy (81 x (S°\ N(K)))

be the result of knot surgery on X using K and T'. Note that there is some ambiguity in the choice
of ¢, so we write Xg for any 4-manifold constructed in this way. It is straightforward to see that
H*(Xg) and H*(X) are canonically isomorphic.

Fintushel and Stern described a generalization of this operation called concordance surgery; see
Akbulut [Akb02]. Let K be a knot in a homology 3-sphere Y (note that Akbulut only considered
Y = $3). Given a self-concordance C = (I xY, A) from (Y, K) to itself, we can construct a 4-manifold
Xe, as follows. We take the annulus A, and glue its ends together to form a 2-torus 7Tz embedded
in S' x Y. The quotient map I x Y — S! x Y is given by (t,y) — (2™, y) fort € [ and Y € Y.
After removing a neighborhood of T¢, we get a 4-manifold W with boundary T3. We pick any
orientation-preserving diffeomorphism ¢: Xy — ON(T¢) that sends [{p} x dD?] to [{1} x ¢k]. We
write X¢ for any manifold constructed as the union

Xe = Xp Ug We.

It is easy to see that H*(X¢) and H*(X) are canonically isomorphic.
If C = (I xY,A) is a self-concordance of the knot K in Y, and a is a pair of parallel arcs on A
connecting the two components of JA, then there is an induced map on knot Floer homology

Feo: HFK(Y,K) — HFK(Y, K),

described by the first author [Juh16]. The map ﬁcﬂ preserves the Alexander and Maslov gradings
according to Marengon and the first author [JM18, Theorem 5.18], and is non-vanishing when Y = §3
by [JM16, Theorem 1.2].

Note that the group HFK (Y, K) only becomes natural once we choose a pair P of basepoints on
K, which we suppress from the notation. We require da to be disjoint from P, and also to link Oa.
We define Lef, (C) to be the polynomial

Lef,(C) == > Lef (Fc,a|ﬁF\K(Y’K)Z,); HFK (Y, K,i) — HFK(Y, K, i)) A
ez
fgr any pair of parallel arcs a connecting the two boundary components of C. Although the map
F¢., depends on the arcs a, we have the following:

Lemma 5.1. The graded Lefschetz number of ﬁc,a 1s independent of the choice of arcs a.

Proof. Changing the arcs a by a proper isotopy that does not cross the basepoints P does not
change the cobordism map ﬁc,a- Hence, it suffices to show that the Lefschetz number is unchanged
by applying a Dehn twist to a along one of the boundary components of the annulus A. The action
of a Dehn twist on HFK (Y, K) was computed by Sarkar [Sar15] when Y = S3  and by the second
author [Zem17, Theorem B] for a null-homologous knot in a general 3-manifold Y. If r, denotes the
action of a single Dehn twist, then

ry = id + @,



12 ANDRAS JUHASZ AND IAN ZEMKE

where ® and ¥ are two endomorphisms of HOFK (Y, K) that satisfy
2 = 0?2 =0, DV = TP,

Since a Dehn twist on an annulus may be pulled to either boundary component, it follows that,
if ' differs from a by a single Dehn twist along one end of the annulus, then

Few = Feq0 (i[d4+®W) = (id+0W) o Fe ,.

Consequently, the map ﬁc,a o (®U) is nilpotent, so has Lefschetz number 0 in each Alexander
grading. ([l

Lemma 5.2. The graded Lefschetz number Lef.(C) is symmetric with respect to the conjugation
—1
I A

Proof. The proof follows easily from the conjugation symmetry of the knot Floer homology groups
[0S04c, Proposition 3.10], as well as the corresponding symmetry of the knot cobordism maps
[Zem19, Theorem 1.3]. O

If X is a closed, oriented 4-manifold with a smoothly embedded 2-torus T such that [T] # 0 €
Hy(X;R), then we can pick a basis b = (by,...,b,) of H?(X;R) such that

(5.1) (b1,[T))=1and (b;,[T]) =0 for i > 1.
This induces a basis of H?(X¢;R) that we also denote by b. We restate our main theorem.

Theorem 1.1. Let X be a closed, oriented 4-manifold such that b;r(X) > 2. Suppose that T is
a smoothly embedded 2-torus in X with trivial self-intersection, such that [T] # 0 € Ha(X;R).
Furthermore, let b = (by,...,b,) be a basis of H?(X;R) satisfying equation (5.1). If C is a self-
concordance of (Y, K), where Y is a homology 3-sphere, then

‘I)Xc;b = Lele (C) . ‘I)X;b~

In order to prove Theorem 1.1, we need to perform several computations. Let C be a self-
concordance of a knot K in the homology 3-sphere Y. On the torus T C S' x Y, we pick a
pair of dividing curves, each intersecting {1} x K exactly once. Such dividing curves are deter-
mined up to Dehn twists about {1} x K. The dividing set specifies an isotopically unique, positive,
Sl-invariant contact structure & on T3 = —dN(T¢), by the work of Lutz [Lut77]. Note that this
contact structure is positive with respect to the boundary orientation from We.

Proposition 5.3. Let we be a closed 2-form on the 4-manifold We, Poincaré dual to {1} x Sk,
where Sk is a Seifert surface for the knot K. If we view We as a cobordism from —T3 to (), and
write 7¢c = wel|ow,, then

FWc;wc (6(5& TC)) = Lef. (C)7
as an element of ﬁ(@;A) = A, where ¢(éc;7c) € ﬁ(—T3;ATC) is the contact class of & twisted
by c.
Proof. We consider the sutured manifold cobordism We := (We, T3, [éc]) from the empty sutured
manifold to itself. By definition, the sutured cobordism map is defined as the composition of the
contact gluing map for gluing (T2, &¢) to the empty sutured manifold and perturbed by 7¢, followed
by 4-dimensional 1-, 2-, and 3-handle maps. Since T2 is a closed 3-manifold, the gluing map sends
the generator of SFH((; A) = A to the perturbed contact element ¢(é¢;7¢). Consequently, the
perturbed sutured cobordism map Fyy,..,. satisfies

Fivewe (1) = Fivewe (@éci1e)) -
Let us write Y (K) for the sutured manifold obtained by adding two meridional sutures to Y\ NV (K).
We decompose W as

My (r) © My (ryu—y (i) © W(C,a) Uld_y (i) 0 Uy (),

where
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Uy (k) is the cotrace cobordism from ) to Y'(K) U =Y (K),

W(C, a) is the sutured manifold cobordism from Y (K) to itself complementary to the deco-
rated concordance (C,a), and Id_y (g is the identity cobordism of —Y (K),

Idy (kyu—v (k) is the identity cobordism of Y (K) U =Y (K), and

My (k) is the trace cobordism from Y (K) L —Y (K) to (.

Since We is a sutured cobordism from @ to (, it follows from Lemma 2.12 that replacing we with
we + dn for a 1-form n only changes Fiy, ... (1) by an overall factor of 2”. Hence, we may assume
that the 2-form we restricts trivially to Uy xy, W(C,a) Uld_y k), and My (k). Its restriction w’ to
Idy (k)—v (k) is Poincaré-Lefschetz dual to {%} x Sk, for a Seifert surface S C Y(K).

By Lemma 2.11, and since Idy (x)u—y (k) is a disjoint union of two product cobordisms, we have

Flay (o v oy (X QY) = A0 (x@y),
up to an overall factor of z* for some 2 € R. By [JZ20, Theorem 1.1], we know that Uy () and
My (k) induce the canonical cotrace and trace maps, respectively. It follows that

(F@Y(K);O o F‘ldY(K)u—Y(K);W/ 0 FW(C,a)uld_y(K);O ° FL“JY(K);O)(I)

is the graded Lefschetz number Lef ;-1 (ﬁc,a)~ By Lemma 5.2, this coincides with the graded Lefschetz
number Lef, (F¢ ), completing the proof. |

The special case of the unknot U and the trivial concordance (I x S3,I x U) is important. In this
case, the dividing set on the torus S' x U C S* x S determines an S'-invariant, positive contact
structure & on T3 = —9N(S! x U). Consider the 4-manifold

Wo=8'"%x (S3\ N(U)) = S* x St x D%

Corollary 5.4. Let wy be a closed 2-form on the 4-manifold Wy, such that [wo] is Poincaré dual to
{(1,1)} x D?. If we view Wy as a cobordism from —T3 to 0, and write 1o = wolaw,, then

i (@60i0)) = 1,
as an element of ﬁ(@;A) >~ A.

A choice of dividing sets on S' x U in S! x 83 and T¢ in S' x Y induces a diffeomorphism
between S x U and T¢ that maps {1} x U to {1} x K, well-defined up to isotopy. We can extend
this diffeomorphism to a D?-bundle map from (S* x U) x D? to Te x D?. We write T? for both
—ON(S* x U) and —ON (1¢), identified via the restriction of such a diffeomorphism. Furthermore,
the contact structures &y and &¢ are identified by this diffeomorphism, and hence we will write & for
both. Similarly, the 2-forms 79 = wo|rs and 7¢ = we|ps are identified, so we write 7 € Q2(T?) for
both.

Note that Spin®(Wy) 2 Spin®(We) = Z. We write t;, € Spin®(W)) for the Spin® structure with

c1(ty) = 2k - PD[{1} x Sy,
where Sy is a Seifert surface for U in $3\ N(U), and we are using Poincaré duality
Hy(Wo, W) = H*(Wo).

Similarly, we write ¢, € Spin“(W¢) for the Spin® structure satisfying ¢;(¥,) = 2k - PD[{1} x Sk,
where Sk is a Seifert surface for K in Y\ N(K).

Corollary 5.5. As maps from HFT(=T3;A,) to HF " (0; A) = A, we have
F = Lef.(C) - F}}

We,t);we Wo,to;wo*

Furthermore, Fler/o,tk;wo and F}; vanish for every k € Z \ {0}.

We,t) we
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Proof. The contact element
(& 1) € HET(=T3; A,)
was defined by Ozsvath and Szabé [0S05] as the image of ¢(£;7) under the natural map
Lyt EF(—Tg; A;) — HFT(=T3A,).
Since ¢, commutes with the perturbed cobordism maps for Wy and We on HF and HF *, we have
FVJ{/C;NC (c+(§; 7')) =Lef,(C)
by Proposition 5.3, and
iy, (€7 (&) =1
by Corollary 5.4. Hence ¢*(&;7) # 0, and
(5.2) Fiyesoe (¢7(6,7)) = Lef2(C) - Fyp o, (¢7(6,7))
Next, we use the well-known fact that, if 7 is any non-vanishing, closed 2-form on —T3, then
HFT(=T3; A,) = A,
and HF*(—T3; A,) is supported in the torsion Spin® structure on —T%; see Ai and Peters [AP10,
Theorem 1.3], Lekili [Lek13, Theorem 14], and Wu [Wu09]. It follows that Fy, ... and Fyp, ., whose
domains are thus rank 1 over A, must be constant multiples of each other. Equation (5.2) and the
fact that ¢ (£;7) # 0 now establish that the ratio is Lef,(C), up to an overall factor of 2.
Finally, the maps in the Spin® structures t; and ¢}, for k € Z\ {0} vanish because they have trivial
domain. In particular,

= Ft

Wc,té);wc

F+

+  _ ot
Wejwe and FWo;wo = I

Wo,to;wo?

completing the proof. O

Corollary 5.6. If w = (w1, ...,wy,) is a collection of closed 2-forms on X satisfying

/wlzland/wizofori>1,
T T

and w' = (wi,...,wl) is the induced collection on Xc under the canonical isomorphism H*(Xc;R) =2
H?(X;R), then
Fif = Lef,, (C) - F

We,th;w’|w, Wo,to;w|w,

and both maps vanish for all other Spin® structures.

Proof. Let the 1-variable Novikov ring A act on the n-variable Novikov ring A,, via multiplication
by the first variable. Since the classes [ws], ..., [w,] vanish on Wy and [wh], ..., [w),] vanish on We,
arguing as in the proof of Lemma 4.1, we may assume the 2-forms ws,...,w, and w}, ..., w! have

been chosen to vanish on W,y and We. Hence, we obtain a canonical isomorphism
HF(=T% Ay)_,) = HF Y (=T% A;) ®@a A

Immediately from the definitions, we obtain that, with respect to this decomposition,

+ _ ot :
FWo,tk;w\wo - FWo,tk;wllwo ®ida,,
and similarly for F.} . The main result now follows from Corollary 5.5. ]

We, t @’ [we
We can now prove Theorem 1.1.

Proof of Theorem 1.1. As before, let Xo = X \ N(T). Since b] (X) > 2, by analyzing the Mayer—
Vietoris sequence for X = X, U N(T), it is easy to see that by (Xo) > 1. Hence, there is a surface Q
of positive self-intersection in the complement of T. Let N denote the boundary of a tubular
neighborhood of Q. The manifold N is an admissible cut of X by [OS06, Example 8.4]. We write
W1 = N(Q) and Wy = X \ int(N(Q)).
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By Lemma 4.1, there are 2-forms w = (wy, . . .,wy,) such that [w;] = b; and w;|;y = 0. Furthermore,
we can arrange that wi|y(r) = wo and w;|y(r) =0 for i > 1. We let w’ = (wy,...,w;,) be such that
wi|n(r) = we and wj|y(ry = 0 for i > 1, while wj|x, = wi|x, for i € {1,...,n}.

By Proposition 4.3,

Oxb = ( (P, @010 Pty ) (1,04 )

We now apply the composition law, Proposition 3.2, to the splitting Wy = Wy Ups W', where
Wo = N(T) and W’ = W5 \ int(N(T)), to obtain that

F = Ff, o FY,

Wz;w‘w2 - Wo;wlwo W’;w\W/'

Similarly, if W3 := We Ups W, then we have

_ + -1, p-
Pxeib = < (FWQ’;w'Wé ) OFW1§WIW1> (1),0+ >,

where

o FT

Wi |y

F+

= Ft
Wi g Wesw’ |we

By construction of w’, we have w’|w, = w|w, and w’|y = w|w. Hence, it follows from Corollary 5.6
that

(53) (ch;b = Lele (C) . Cbx;b.

Equality in equation (5.3) can be established using the conjugation symmetry of the Ozsvath—Szabé
4-manifolds invariants [OS06, Theorem 3.6]. O

5.1. Concordance surgery and diffeomorphism types of 4-manifolds. As an application of
Theorem 1.1, we prove Corollary 1.2, which states that X and X¢ are not diffeomorphic if ® x,p, # 0
and Lef,(C) # 1:

Proof of Corollary 1.2. Choose a basis b = (by,...,b,) of Hy(X;R) that is induced by a basis of
H?(X)/ Tors. In this situation, the invariant ® y 1, takes values in the integral group ring F[Z"]. It
is convenient to use the group ring notation

e(a17~--;an) = Z?l . Zgn’

where (aq,...,a,) € Z". If b= (by,...,b,) is an n-tuple of cohomology classes, we abbreviate
(ix(s — 50) Ub, [X]) := ((ix(s — 50) U b1, [X]), ..., (ix(5 — 50) U by, [X])).
Performing a change of basis to Theorem 1.1, we obtain

(5.4) Dx,b = Lef b,y (C) - Px 1.

AJ: added miss-
On the other hand, if ¢: X¢ — X were an orientation preserving diffeomorphism, then ing RHS of (5.5)

and last line of
(5.5) Pxs = Pxc pr(s) (5.6)
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for all 5. Hence

Dy = Z e lix (5—50)Ub, [X]) Dy,
s€Spin©(X)

_ Z (@71 (s—50)Us" (b),[Xc]) | @Xc@*(s)
sE€Spin®(X)
_ Z el (5=07(s0))Ug™ (b),[Xc]) | Dx,s
(56) 5€Spin®(X¢)

= Z elix(5—50)Ue™ (b),[Xc]) By
s€Spin®(X¢)

— MM, Z elix(s=50)Ub,[Xc]) | D, s
s€Spin®(Xc¢)

— MM, D xpb-

Here, M(¢*) denotes the element of GL,(Z) induced by ¢* after identifying H?(X)/Tors and

H?(X¢)/ Tors with Z™ via the basis b, and M (¢*)! denotes its transpose. Also, we are writing

eM @' for the endomorphism of F[Z"] given by M@ ea — eM(‘z’*)t'a, where we view a as a column

vector.

Equation (5.6) is justified as follows. The first equality is a definition. The second equality follows
from equation (5.5), and the naturality of cohomology. The third equality follows from rearranging
the sum. The fourth equality follows since ®x., is invariant, up to overall multiplication by a
monomial, of the choice of base Spin® structure s9. The fifth equality can be computed directly, and
the final equality again holds by definition.

The ring F[Z"] is a UFD, since it is the localization of the polynomial ring F[z1, ..., 2,] at mono-
mials. Furthermore, the units are exactly the monomials. The map e Gl preserves the number of
irreducible factors since eM (@) (f . g) = (M) . £)(eM(4)". g). the map eM(®")" sends monomials
to monomials, and e @")" is invertible.

In particular, if Lef,(C) # 1 and ®x., # 0, equation (5.4) implies that ® x,,p has more irreducible
factors than ® x.p, while equation (5.6) implies they have the same number, a contradiction. (]

6. NATURALITY OF PERTURBED SUTURED FLOER HOMOLOGY

This section is devoted to defining transition maps on perturbed sutured Floer homology for
naturality, and proving Theorem 2.1.

6.1. Changing the 2-form. We first describe transition maps for changing the 2-form by a bound-
ary. Unlike the transition maps for changing the Heegaard diagrams, we usually do not want to
view sutured Floer homology as a transitive system over closed 2-forms which represent the same
cohomology class. Nonetheless, the transition maps for changing the 2-form are convenient to define.

Let H be an admissible diagram of the balanced sutured manifold (M,~), and let w and w’ be
closed cohomologous 2-forms on M. Suppose 7 is a 1-form such that dyp = w’ — w. Then we may
define a chain isomorphism

Uywin: CF 5 (H; Ay) — CF ;(H; Aur)

via the formula

qu—)w’;n(zz . X) = Zerf“fx m.

X7
where we obtain 7y by connecting x to the centers of the disks D, and Dg along radii. We orient
7x from D, to Dg. The map ¥, is a chain map by Stokes’ theorem, and is an isomorphism

since W,y is its inverse.

Lemma 6.1. When restricted to a single Spin® structure, the map Wy, .,y is independent of the
1-form n satisfying dn = W' — w, up to an overall factor of z*.
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Proof. It is sufficient to show that, if 7 is a closed 1-form, then ¥, _,., is equal to overall multipli-
cation by 2% for some z € R, when restricted to a single Spin® structure. Hence, it is sufficient to
show that, if s(x) = s(y) and dn = 0, then

[o=L

The condition that s(x) = s(y) is equivalent to the condition that the integral 1-cycle vyx — vy is 95,
for some integral 2-chain S. By Stokes’ theorem,

/ n=/dn=0,
oY S

completing the proof. O

x—Vy

In general, the map V.., is not independent of 7 when working with multiple Spin® structures
at once, even if [w] = [w'] = 0; see Remark 7.3.

6.2. Change of almost complex structure maps. Suppose H is an admissible diagram of (M, ).
If J and J’ are two cylindrical almost complex structures on ¥ x I x R, there is a standard Floer
theoretic construction that gives a transition map from CF j(H;A,) to CF ;. (H; A,). Pick a generic
almost complex structure J on X x I x R such that

J=J on ¥xIx(—00,d

and

J=J on ¥ xIXx|[boo),
where a < 0 and b > 0. Define
Uy g CFJ(H;AW) — CFJ’(H;Aw)

via the formula

Uy (2" Z Z (|M7(¢)\ mod 2) o A9) Ly
YET.NTg pema(x,y)
p(4)=0

Lemma 6.2. The map ¥ ;_, ;s is a chain map, and is independent of j, up to chain homotopy.

Proof. The claim that ¥;_, ; is a chain map is proven by counting the ends of the moduli spaces of
index 1, J- holomorphic curves. The claim that ¥, ;s is independent of J is proven by taking two
generic choices Jo and Jl, and connecting them via a path (J Jter. A chain homotopy between the
map which counts JO holomorphic curves and the map which counts jl—holomorphic curves is given
by counting index —1 curves that are jt—holomorphic for some t € I. O

6.3. Perturbed stabilization maps. Suppose that H = (X, ,3) is an admissible diagram of
(M,~), and H' = (X, aU{a'},BU{B'}) is a stabilization of H; i.e., there is a 3-ball B in int(M)
such that

(1) BNnXis adisk and BNY' is a punctured 2-torus that contains the curves o/ and 8, and is

disjoint from a U 3,
(2) ¥\ B=%'\ B, and
(3) o and B’ intersect transversely at a single point c.
The stabilization map
o: CF(H) — CF(H')

is given by o(x) = x x ¢. According to [0S04b, Theorem 10.2], for a sufficiently stretched almost
complex structure, the map o is a chain map. We define the perturbed stabilization map

o: CF(H;A,) = CF(H'; Ay)

via the formula o(z” - x) = 27 - (x X ¢).
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Lemma 6.3. For a sufficiently stretched almost complex structure, the perturbed stabilization map
o: CF(H;A,) — CF(H'; Ay) is a chain map.

Proof. If ¢ € ma(x,y) is a class on H, there is a unique class ¢’ € ma(x X ¢,y X ¢) whose domain
agrees with ¢ on X\ B. The class ¢’ has the same Maslov index as ¢. Ozsvdth and Szab6 showed
that, if u(¢) = 1, and if the almost complex structure on X’ is sufficiently stretched, then

(6.1) [M(¢)/R| = IM(¢')/R| mod 2.

We note that the 2-chain D(¢') only differs from D(¢) in the 3-ball B. Furthermore, there is an
integral 3-chain C3 (a sum of solid tori) such that

D(¢/) + 9Cs = D(9).
Hence A, (¢") = A, (), so equation (6.1) implies that o is a chain map on the perturbed complex. [

6.4. Perturbed isotopy maps. Suppose that (¢;):c; is an isotopy of M, satisfying ¢g = idps. For
convenience, let us assume that ¢; is constant for ¢ in a neighborhood of dI. If H = (¥, e, 3) is an
admissible diagram for (M,~), write H' for the diagram obtained by pushing forward ¥ along ¢;.
Let J be a cylindrical almost complex structure on ¥ x I x R, and let J’ denote its pushforward
along ¢1. Given a choice of compressing disks D, and Dg for H, we use ¢1(Dy,) and ¢1(Dg) for H'.

If x € T, N Ty is an intersection point on H, let v« denote the 1-chain obtained by coning the
points of x into U, and Ug, and let I'y ¢, denote the 2-chain in M obtained by sweeping out ~x
under ¢;. We define

(¢t)*: CFJ(H§ Aw) — CF (Hl§ Aw)

via the formula
9‘+fo,

w
ot - 1(X).
Stokes’ theorem can be used to show that (¢;). is a chain map. We define the transition map for
the isotopy (¢¢)es from H to its image H' to be (¢Py)«.

Z¥ Xz

Remark 6.4. As a special case of the above construction, when ¢; fixes the Heegaard surface pointwise
for all ¢, the map (¢;). induces a map for transitioning between collections of compressing disks
that are related by an ambient isotopy fixing ¥ pointwise. A similar construction gives a map for
transitioning between collections of compressing disks that are instead only isotopic as maps from
D? into Y, relative to dD?. The construction also adapts to give a transition map for changing the
choice of radial foliation on the disks.

The map (¢:). depends only on ¢1, in the following sense:

Lemma 6.5. Suppose that (¢1)ier and (¥i)ier are two isotopies of (M,7), such that ¢ = g =
id(ar,y), and ¢1 = 1. Then (¢r)« = (Yi)« on each Spin® structure. If [w] = 0, then (¢¢)s = (i)«
on all of CF y(H;Ay).

Proof. Suppose that x and y are two intersection points that represent the same Spin® structure.
This is equivalent to the condition that vx —vy = 05 for some integral 2-chain S in M. The isotopies
¢¢ and v, applied to S sweep out 3-chains Cy4, and Cy,. We have

(6.2) 80@ = Fx@t — Fy7¢t - S+ ¢1(S),

and a similar formula holds for 0Cy,. Integrating dw = 0 on Cy, and Cy,, and using equation (6.2)
and Stokes’ theorem, we obtain
w = / w— / w.
T,y r

(6.3) /F I /F N

Equation (6.3) implies that (¢;). and (¢;). differ only by an overall factor of z*, when restricted to
a single Spin® structure.

Suppose now that [w] = 0, and let x and y be any two intersection points. Since yx — 7y is a
1-cycle, (T'x,6, —Ty.¢,) — (Tx, 5, — 'y 4, ) is a 2-cycle, so w integrates to zero over it, and equation (6.3)
follows. ]

Y. b¢
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Let ¢ be an automorphism of (M,v). If H = (¥, e, 3) is an admissible diagram of (M,~) with
a cylindrical almost complex structure J on ¥ x I x R, and H' = ¢(H) and J' = ¢.(J) are their
pushforwards, then there is a tautological chain isomorphism

1aut: CF ;(H;A,) — CFJ’(HIQA¢*(W))’

obtained by sending z% - x to 2% - ¢(x). If ¢.(w) = w, we have the following relation between the
tautological map and the map from naturality:

Lemma 6.6. If (¢1)icr is an isotopy of (M,v) such that ¢g = id and (¢1)«(w) = w, then
(01)s = (d1)"

on each Spin® structure.

s

Proof. By definition, (¢¢)«(2*-x) = 2 + * . x, where Ty 4, is the 2-chain swept out by v« under
¢¢. Hence, it is sufficient to show that, if x and y represent the same Spin® structure, then

[ o=
Ix, ¢t 1—‘y a¢t

As in the proof of Lemma 6.5, write S for a 2-chain such that 95 = v« —7y. By equation (6.2), and

since dw = 0, we have
/ wf/ w:/wf/ o.
vad’t I S I(S)

Since (¢1)«(w) = w, we have f¢1(S) w= f¢1(s)(¢1)*(w) = [4w, and the result follows. O

¥, bt

6.5. Monodromy. In this section, we give several examples which illustrate the existence of mon-
odromy around loops of Heegaard diagrams.

Ezample 6.7. Suppose D, for t € I is a path of compressing disks that moves just one of the
compressing disks D;. Further, assume that the center of D; traces out a small loop in U, that
bounds a disk Dy. Following Remark 6.4, by modifying the transition maps for isotopies, the path
D, induces a transition map. Write x ; for the 1-chain obtained by coning x using D, ;, and write
I'x for the 2-chain swept out by vy« for t € I. Then I'y U Dy is a closed 2-chain, which is a boundary
since Hy(U,) = {0}. Hence, the monodromy of the transition maps around the loop D, ; is overall
multiplication by

which may be non-zero.

We now show that the perturbed isotopy maps can have projectively non-trivial monodromy over
loops of Heegaard diagrams if we consider multiple Spin® structures simultaneously.

Lemma 6.8. Suppose that H is an admissible diagram for (M,~) and (¢1)ter is an isotopy of M
such that ¢o = ¢1 = id(ar,). Let

fZ Hl(M) — HQ(M)

denote the composition Hi(M) — Ho(M x S') — Hy(M), where the first map is obtained via
the cross product with the fundamental class of S*, and the second map is induced by ¢;. If 5, €
Spin®(M, ) is a fized Spin® structure, then the isotopy map (summed over all Spin® structures)

((bt)*: CF(,HvAw) - CF(HvAw)
is projectively equivalent to the map

X = fo(Pn[gx)—;o]) “lx.
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Proof. As in the proof of Lemma 6.5, let I'x 4, denote the 2-chain obtained by sweeping out 75 under
¢+. Let xo be some fixed intersection point on H, and let 5, = s(x¢). If x is an arbitrary intersection
point, then

PDls(x) = 5o = 1% = ¥xo
by [Juh06, Lemma 4.7]. The claim now follows from the computation

r r Fx,m—Fx()m

x, Pt x0,Pt
/ —
f( Yx —Vxq )

w. O

/J”(PDE(X)—%D

Ezample 6.9. Let D C T? be a closed disk, and set M = (T?\ int(D)) x S*. Let the sutures v C OM
be the images of two points in 0D under the action of S!. The S'-action induces a loop ¢; of
automorphisms of (M, ) based at id s ). The map f is non-zero in this case, and hence (¢;). is
projectively non-trivial when considered over the whole chain complex by Lemma 6.8.

6.6. Perturbed triangle maps. Suppose (X, e, 3) is an admissible diagram for (M, ), and o' is
obtained from a by a sequence of handleslides and isotopies. Suppose further that (3, o/, o, 3) is
admissible. Then there is an unperturbed holomorphic triangle map

Fyap: CF(E,d,a)® CF (2, a,8) — CF(X,d/, 3).

Pick compressing disks Dy, Dy, and Dg for o, a, and B, respectively. Note that, since U, = Uy,
the disks D, and D, are compressing disks for the same handlebody. If ¢ € m3(x,y, z) is a homology
class of triangles, we may cone the domain of v along the compressing disks to obtain a 2-chain 5(¢)
in M. By integrating w over 25(1/)), we obtain a real number A, (¢). Hence, we obtain a perturbed
version of the triangle map

Fyapw: CF(3,a o Aw|UQ) ® CF (X, a, B;A,) = CF(Z,a/, B; Ay).

Some care is required in interpretting CF (3, &', a; A, ), as its definition differs slightly from the
other two complexes. If x, y € T, N T, and ¢ € my(x,y), we cone the class ¢ in U,, using the
compressing disks D, and D,.. We define A, (¢) as the integral of w over this 2-chain in U,.
Since H?(U,) = 0, we may write w|y, = dn, for some 1-form n € Q'(U,). There is a chain
isomorphism
Vol m: OF (3, a',a) @ A = CF(E, &, 05 Ay, ),

whose construction is analogous to the one in Section 6.1. The complex CF(X,a’, ) contains a
cycle O, o whose homology class is the top-graded generator of SFH (X, o, a). The cycle Oy o is
unique up to adding a boundary. We define

(6.4) @Z/ﬂ = \IJO_>W|UQ;7](®O/,Q X 1A) S CF(E7 o/, a,Aw|Ua).

A simple modification of Lemma 6.1 implies that [©¢, ,] is independent of 5, up to overall multipli-
cation by 2”.
If the triple (X, &', ¢, 3) is admissible, then the transition map
Wi _.: OF (S, B;A,) — CF(S,a/, B A,)

a—a’
is defined via the formula

U0 (=) = Fara,p: (0% 00 —).

If (X, e, o, 3) is not admissible, we define i by picking a collection a’ such that the triples

a—a’

3, a,a”,8) and (X, ", e, 3) are both admissible, and setting lllﬁ_m, to be the composition of
the triangle maps for (X, a’,a”,8) and (X, a”, «,3). A similar construction works for changes of

the beta-curves.
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If (X,,8) and (3, a’, 3") are two admissible diagrams, then we define a transition map

(6.5) \EGHESE CANRS il

a—a’

As in the unperturbed setting, the right-hand side of equation (6.5) is chain homotopic to \Ifg,_w "o
\Ilg - A chain homotopy may be constructed by counting holomorphic quadrilaterals. More

generally, an associativity argument gives the following:
\I,ﬁﬁﬁ/

s is well-defined up to chain homotopy and overall

Proposition 6.10. The transition map
multiplication by z*. Furthermore,
e e
6.7. Compatibility of the triangle and isotopy maps. We now address compatibility of the
maps induced by isotopies with the maps induced by counting holomorphic triangles.
Let (¥, a, B) be an admissible diagram, and (oai)ies a small Hamiltonian isotopy with ag = e,
which extends smoothly over ¢ € R and is constant outside I. Then there is a continuation map

Fat,J;w : CFJ(E, o, /6; Aw) - CF](E, ay, /6; Aw)
that counts index-0 J-holomorphic curves with boundary on the cylinders
Co, ={(p,0,t) :p € ay,t e R} and Cps:={(p,1,t):p€ B,t R},

weighted by their w-area. The cylinder Cj is Lagrangian for the product symplectic form, while C,,
is Lagrangian with respect to a symplectic form that has been deformed slightly near ¥ x {0} x R;
see [LOT16, Equation (3.25)]. Finiteness of the counts contributing to I'y, s, follows from the work
of Ozsvéath and Szab6 [OS04b, Lemma 7.4], using the admissibility assumption on (X, a, 3).

Compatibility of the triangle and continuation maps is given by the following lemma, adapted
from the work of Lipshitz [Lip06, Section 11]:

Lemma 6.11. Suppose that (3, o, B) is an admissible diagram for (M,v), and &’ is a obtained from
a by a small Hamiltonian isotopy oy (for some symplectic form on ), such that |af Naj| = 20,4,
where §;; denotes the Kronecker delta. Let J denote a cylindrical almost complex structure on
Y xI xR, andlet Ty, jw: CF (8, e, B;A,) — CF;(X,0/,8;A,) denote the continuation map.
Then
Fat,J;w(_) =~ Fa’,aﬁ;w(@z’,w _)-

Proof. The proof is an adaptation of the proof of the result in the unperturbed setting [Lip06,
Proposition 11.4]. Lipshitz’s proof considers the moduli space of holomorphic monogons associated
to the isotopy o, which are maps from a Riemann surface S to ¥ x [0, 00) x R, which have punctures
asymptotic to an intersection point x € Ty N T,, and have boundary mapping to the cylinder

Co, ={(p,0,t) : p € ay,t € R}.

Following Lipshitz’s proof, a deformation of the almost complex structure on ¥ x I x R gives a
chain homotopy between I',, j,, and the composition

Fa’,a,ﬁ;w(Mat;w(l), _)7
where M,,.., is a map from A to CF (%, &', a; A, ) that sums over the count of index 0 monogons
at all intersection points x € T, N T,. If x € T, NT, is an intersection point and ¢ € my(x) is a
class of monogons, then ¢ may be coned along a family of compressing disks D,,, to obtain a 2-chain
5(41)), on which we may integrate w. According to [Lip06, Lemma 11.8], there are no index 0 classes
¢ € ma(x) with representatives unless x = O, o. Furthermore, a model computation involving a
stabilized diagram of S* can be used to show that My,.,(1) = 27 - ©%, , for some z € R. We refer
the reader to [Lip06, Proposition 11.4] for more details on the model computation. O

Next, we consider a diffeomorphism ¢: ¥ — X, which is near idy, and is the time 1 flow of
a Hamiltonian vector field for some symplectic form on . Write ¢; for the time ¢ flow of this
Hamiltonian vector field. In particular, ¢; = ¢. By extending ¢; to an isotopy of M, we obtain an
isotopy map (¢¢)s on the perturbed Floer homology, as in Section 6.4.
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Proposition 6.12. Suppose (X, at, B) is an admissible diagram for a sutured manifold (M, ), which
is equipped with a closed 2-form w, and ¢r: ¥ — X is the flow of a Hamiltonian vector field (for
some symplectic form on X), as above. Write oy = ¢1(ax) and B, = ¢+(8). Then the perturbed
isotopy map (¢¢)s satisfies

(00)s = Wy, gy 0 WOT0L.

Proof. The first step is to interpret the isotopy map (¢¢).« as a continuation map. Consider the two
cylinders C,, and Cg,, where a; and 3, are the images of o and 3 under ¢;. Let J denote the almost
complex structure on ¥ x I x R obtained by pushing forward a generic cylindrical almost complex
structure J along the map ®(x,s,t) = (¢¢(x),s,t). For ¢, sufficiently small, J will be tamed by a
product symplectic form, and achieve transversality at index zero holomorphic curves with boundary
on C,, and Cjg,. Hence, if Fa“ By T denotes the map that counts index zero j—holomorphic curves
with boundary on C,, and Cg,, we have

(6.6) Lo (30 = (60 ().

We now consider a 1-parameter family of cylinders Cy;, Csr, and almost complex structures JT
for 7 € [0,00), as follows. The cylinder C,; is obtained by translating C,, downward in the R-
direction by 7 units. The Cyhnder Cgr commdes with C, for all 7. The almost complex structure

J™ is obtained by translating J upward in the R-direction by 7 units.
A chain homotopy H is defined by counting index —1, J7- holomorphic curves with boundary on
Ca7 and Cp; for 7 € [0, 00), weighted by their w-area. Applying Gromov compactness to the moduli

space of index 0, J T-holomorphic curves with boundary on Cy; and Cp; for 7 € [0,00), we obtain
that

(67) Fat,ﬁf,,j;w + \I/J_>¢*(J) OFﬁ’hJ OFat“] = 8OH+H08

Indeed, at 7 = 0, we obtain Fat 8,7 At 7 — oo, we obtain W;_,4 (7)ol's, s0l, ;. The only other
way a curve may break is for a family to split into an index —1 curve, giving H, and an index 1
curve, giving 0. Combining equations (6.6) and (6.7) with Lemma 6.11, the result follows. O

6.8. Proof of naturality. We now prove Theorem 2.1, naturality of the perturbed invariants:

Proof of Theorem 2.1. Our proof follows the framework of [JTZ12]. Suppose that (M,~) is a bal-
anced sutured manifold with a closed 2-form w. We define a directed graph Gy ), as follows. The
vertices of G,y consist of isotopy diagrams of (M,~); i.e., tuples (X, A, B) consisting of an em-
bedded Heegaard surface X, and isotopy classes A and B of attaching curves. If H = (3, ¢, 3) is a
Heegaard diagram, we write [H] for the induced isotopy diagram.

If Hy and Hy are two isotopy diagrams, we define the set of edges in Gy ) connecting H; and
Hs to be the union

(6.8) Giary) (Hy, Ho) i= Go(Hy, Ha) U Gs(Hy, Ha) U Getan(H1, Ha) U Glig (Hy, Ha),

as follows. The set G, (H;, Ha) consists of a single arrow if H; and Hj share the same Heegaard sur-
face, have isotopic beta-curves, and have alpha-curves that are related by a sequence of handleslides
and isotopies. The set G, (Hi, H2) is empty otherwise. The set Gg(H1, H2) is defined similarly. The
set Gstab (H1, H2) has a single arrow if H; and Hs are related by a stabilization or destabilization,
and is empty otherwise. Finally, G4, (H, H2) is the set of all automorphisms of (M, ) which move
H, to Hy, and are isotopic to the identity of (M,~y). Write G, for the union over all pairs (H;, Hs)
of Go(H1, Hs), and define Gg, Ggtan, and Gl similarly.

If H is an isotopy diagram, write SFH(H; A,,) for the projective transitive system of A-modules,
indexed by pairs (H, J), where H = (X, e, B) is an admissible Heegaard diagram with [H] = H, and
J is a generic almost complex structure on X x I x R. The transition maps may be constructed using
the holomorphic triangle maps, as in Section 6.6, as well as change of almost complex structure maps
from Section 6.2. Propositions 6.10 and 6.12 imply that this gives a projective transitive system of
A-modules.

We consider the following cycles in Gz 4):
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diffeomorphism a-equivalence

f-equivalence
-

FIGURE 6.1. A simple handleswap, which is a loop of diagrams consisting of an a-
handleslide, a S-handleslide, and a diffeomorphism. The green curve is the boundary
of the punctured genus two surface P that is obtained by identifying the circles
marked with corresponding letters (namely, B and D). We draw the a-curves in
red and the S-curves in blue.

(L-1) A loop formed by a stabilization followed by a destabilization.
(L-2) A rectangular subgraph

HléHg

lr s

H3L>H4

of G(r,y), where one of the following hold:

-1) Both e, h € G, and f, g € G3.

2) Either e, h € G,, or e, h € Gg. Furthermore, f, g € Gstab.

) Either e, h € G4, or e, h € Gg. Furthermore, f, g € G%p.

) The edges e, f, g, h are all in Ggap. Furthermore, e and h correspond to stabilizing in

a 3-ball B, while f and g correspond to stabilizing in a 3-ball B’, and BN B’ = ().
(R-5) Both e, h € Ggtapb, while f, g € Gl4. Furthermore, f and g may be induced by the

same diffeomorphism ¢ of (M,~), and the stabilization 3-ball for e is pushed forward
to the stabilization 3-ball for h by ¢.

(L-3) A loop formed by an edge in G35 (H, H).

(L-4) A simple handleswap loop; see Figure 6.1, which is [JTZ12, Figure 4], for a depiction.

(R
(R
(R
(R

3
4

Commutativity of the transition maps along the loops (L-1)—(L-4) correspond to the axioms for a
strong Heegaard invariant [JTZ12, Definition 2.32]. According to [JTZ12, Theorem 2.38], it suffices
to prove that the perturbed transition maps have no monodromy around loops (L-1)—(L-4).
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As in Remark 2.7, to define a projectively transitive system indexed by all pairs (H,J), it is
sufficient to define a morphism of transitive systems for each edge of G,/ ), and show that there is
only projective monodromy around loops (L-1)—(L-4).

We define chain maps for edges in G, (Hi, H2) and Gg(H1, Hz) to be triangle maps, as described
in Section 6.6. Chain maps for stabilizations are described in Section 6.3. Maps for edges in
QgiH(H 1, H2) are defined in Section 6.4. It is straightforward to see that these chain maps induce
morphisms of transitive systems between the transitive systems associated to each isotopy diagram.

The main subtlety compared to the unperturbed setting is that the map associated to a diffeo-
morphism ¢ in GS4(Hi, Hz) is defined with an auxiliary choice of an isotopy ¢; connecting ¢ to
id(az,4). The induced map ¢ is only well-defined as a projective map when restricted to each Spin®
structure by Lemma 6.5, or when [w] = 0. See Remark 6.8 for an example illustrating the subtlety.

We now verify that the monodromy around Loops (I-1)—(L-4) is of projective type. The mon-
odromy around loops of type (L-1) is clearly trivial. Similarly to the unperturbed setting, associa-
tivity of the holomorphic triangle maps, Proposition 6.10, implies that loops of type (L-2) induce
projectively trivial monodromy. Loops of type (L-3) induce projectively trivial monodromy by
Lemma 6.5 and Proposition 6.12, when restricted to individual Spin® structures, or when [w] = 0.
The main claim follows once we verify that there is only projective monodromy around simple
handleswap loops (L-4), which is verified in Lemma 6.13 below. |

Lemma 6.13. Suppose (M,~y) is a balanced sutured manifold, with a closed 2-form w, and s €
Spin®(M, ). Suppose further that

Hq
1 Ho

Ha

is a simple handleswap loop, where Hi, Ha, and Hs are admissible diagrams of (M,~), and ey € Gq,
es € Gg, and (¢¢)ier is an isotopy with ¢o = id(ary. Then

(¢t)* @] \Ijeg [¢] \Ije,,, ~ idCF(”Hl,g;Aw) .
The same statement holds for the total compler CF(Hq;Ay) if [w] = 0.

Proof. By definition, the diagrams Hi, Ha, and Hs are all 2-fold stabilizations of a fixed diagram
H = (Z,a,pB). Ifiec {1,2,3}, write H: = (X0, !, 3;,po) for the genus 2 portion of H; in the
handleswap region. With this notation, we think of H; as H#H,, where the connected sum is taken
at po € X and a point p € . The diagrams H/ are all genus 2 diagrams for S3. Note that

By,=p8, and o} =al.

The map V¥._, may be computed as the composition of a triangle map for an alpha-handleslide,
followed by a continuation map to move the alpha-curves on H back to their original position. Sim-
ilarly, the map W, may be computed as the composition of the triangle map for a beta-handleslide,
followed by a continuation map to move the beta-curves on H back to their original position. The
map (¢¢)« is the isotopy map described in Section 6.4.

For a sufficiently stretched almost complex structure J(7') along the connected sum tube of X#3,
the proof of stabilization invariance implies that the unperturbed complex for H; decomposes as a
tensor product:

(6.9) CF i1y (Hi) = CF (1) ®r, (€i),
where {c;} = T, NTg, and (c;) denotes the 1-dimensional vector space over Fa, generated by c;,

for i € {1,2,3}.
In the unperturbed setting, handleswap invariance [JTZ12, Theorem 9.30] is proven by showing

(6.10) e, = (Tars 0 W2 ) @ (01 2)

a—af
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with respect to the chain isomorphism of equation (6.9), where o’ is a small Hamiltonian translate
of a, and o is a Hamiltonian isotopy moving a! back to a.. A similar tensor product description
holds for the unperturbed version of W.,.

For the perturbed versions, an extension of Lemma 6.3 to genus 2 stabilizations gives an analog
of equation (6.9) to the perturbed setting, namely:

(6.11) CFJ(T)(Hi,g; A,) =2 CF ;(H,s;A,) ®F, (Ci).
We now show that a similar tensor product decomposition as in equation (6.10) holds for the per-

turbed versions of W, and W, .
Firstly, if Y41y is a class of triangles on (S#X, o U al, U o), 3U B}), then

(6.12) Au(b#bo) = Au () + Aw(¥o).

According to the proof of [JTZ12, Proposition 9.31], for a sufficiently stretched almost complex
BUB;
\IlaUal’l—mzHUa’z

structure, all index 0 triangles 1)#1)y that are counted by
if u(p) = 0, then

(6.13) (M) = > [M($#¢0)| mod 2.
1[)0671’2(@&/21&/1 ,Cl,Cg)

Npg (wo):”p ("Z))

have p(¢) = 0. Furthermore,

Next, we claim that A, (1) is independent of the triangle class o € 72(0qay,a;,C1,¢2). This is
established by observing that any two classes in 7r2(®a/2’0/1 ,C1, C2) differ by a sum of doubly periodic
domains. Doubly periodic domains on H/ cone to closed 2-chains in C3(S?), and hence do not affect
the w-area, so A, () is independent of the triangle class. A similar claim holds for triangles in
7'('2(C27 @ﬁivﬁé’ Cg).

Combining equations (6.12), (6.13), and the independence of A, (¢p) from 1y, we obtain that the
perturbed transition maps satisfy

(¢t)* o \I'eg o \I/ea
=(¢¢)« © ((Fb’t o \Ilg_”BH) ® (ca — 03)) o ((Fat o \I/i_mH) ® (c1 — cz)) ,

with respect to the tensor product decomposition from equation (6.11).
Since the isotopy ¢; is supported in the 3-ball of the handleswap, it follows that

(6.15) (#t)« = ider,sin,) ®(c3 = c1).
Furthermore, by Lemma 6.11,

(6.14)

(6.16) g, o Ul=8"

Combining equations (6.14), (6.15), and (6.16) yields the main statement. O

A B A
4+ =~ ldCF(H,g;AW) and Fat o \Ija%aH >~ ldCF(H,g;Aw) .

7. PERTURBED SUTURED COBORDISM MAPS

In this section, we define the perturbed sutured cobordism maps, and prove that they are well-
defined in Proposition 2.9. Furthermore, we prove the composition law, Proposition 2.10, the effect
of changing the 2-form on the cobordism, Lemma 2.12, and finally compare the perturbed and
unperturbed maps when the 2-form vanishes on the boundary in Lemma 3.4.

7.1. The perturbed contact gluing map. We now describe a perturbed version of the Honda—
Kazez—Mati¢ contact gluing map [HKMO08]. Suppose (M,7) is a sutured submanifold of (M’,~")
(i.e., M is a submanifold with boundary of M’ such that M C int(M')), w and ' are closed 2-
forms on M and M’, respectively, such that w = w’|ps, and £ is a co-oriented contact structure on
M’ \ int(M). Let s be a Spin® structure on M represented by a non-vanishing vector field v, and let
s’ be the Spin® structure on M’ obtained by gluing v to £+. We will define a gluing map

Pg: SFH(—M, —v,5;Ay) = SFH(=M', -, 8'; Au),
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by adapting the construction from the unperturbed setting. Our description will use the refor-
mulation of the gluing map given in [JZ20] using contact handles. See [JZ20, Definition 3.11] for
background on contact handles in this setting.

Remark 7.1. We require M’ to have no closed components, though we allow M’ \ int(M) to have
what Honda, Kazez, and Matié refer to as isolated components, which are components of M’ \ int(M)
that are disjoint from dM’. These are permitted since the construction from [JZ20] had a contact
3-handle map, which was not present in [HKMOS].

On Heegaard diagrams, adding a contact 0-handle has the effect of adding a disk D to the Heegaard
surface, with no alpha or beta-curves. The contact 0-handle map is the canonical chain isomorphism
between CF (X, a,8) and CF(X U D, «,3). This extends to the perturbed setting via the formula

Qe (2¥ - x) = 27 - X,

for any closed 2-form on the 0-handle.

Adding a contact 1-handle has the effect of attaching a band to the boundary of the Heegaard
surface. The contact 1-handle map is the canonical chain isomorphism between CF (X, a,3) and
CF(X U B, a, 8), which extends to a map on the perturbed complexes with no complications.

The contact 2-handle map is slightly more involved. The effect on diagrams is to add a band
and a pair of new curves,  and [, which have a single intersection point ¢ in the band. See
[JZ20, Figure 3.11] for the precise configuration. The contact 2-handle map is defined via the
formula

Be(2¥-x) =2 -x x e
To see that this is a chain map on the perturbed complexes, note that all disks counted by 9(x X ¢)
have homology class of the form ¢#e., where ¢ € mo(x,y) is a homology class, and e,. is the constant
class at c¢. However, A, (¢#e.) = A,(¢). Hence, the contact 2-handle map is a chain map on the
perturbed complexes.

Finally, a contact 3-handle is attached along a boundary component S? C 9M which is a 2-sphere
with a single suture s. Then pick a diagram (X, aU{ag}, BU{So}), where ap and 3y are parallel to
the boundary component of ¥ corresponding to s, and intersect each other in a pair of points. The
contact 3-handle map is obtained by filling s C 9% with a disk D, and setting

ZzZT.x =0,
0 if @ =07",

x

Qg;w(zz +X X 9) = {

where {07,607} = oy N By, with relative grading p(67,07) = 1 induced by the Maslov index on
(=2, aU{ap},BU{Bo}). (The formula is the same as the 4-dimensional 3-handle map). Note
that the contact 3-handle map is only defined if M has at least one other boundary component.
Furthermore, we must either choose (X, aU{ag}, BU{By}) so that ap and Sy are adjacent to another
component of 9%, or we must stretch the almost complex structure along a circle bounding ay and
Bo. We focus on the case when (X, aU{ag}, BU{Bo}) has been chosen so that ¥ has an additional
boundary component adjacent to ap and By. (The more general case requires using a holomorphic
degeneration argument [OS08, Proposition 6.5], but follows similarly.) In this situation, an index 1
class on (=%, a U {a}, BU{fp}) with holomorphic representatives has one of the following forms:

e ¢#ep, where ¢ is an index 1 class on (—X U D, e, B), with zero multiplicity on D, and ey is
the constant class at 0 € ag N By.
e ex#Hpo, where ¢ is one of the two bigons between o and .

To see that the contact 3-handle map is a chain map, it suffices to show that the two bigons have the
same w-area. The difference of the bigons is a periodic domain, which cones to a 2-sphere bounding
the S? boundary component of M which is filled in by the 3-handle. Since w extends over the
contact 3-handle, w must integrate to zero on this 2-sphere, and hence have equal area on the cones
of the two bigons.

As in the unperturbed case, the composition of the contact handle maps for a canceling pair of
contact ¢ and i+ 1 handles coincides with the transition map from naturality (up to an overall factor
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of z%); see [JZ20, Figures 3.13, 3.14]. By following our contact handle proof of invariance of the
contact gluing map in the unperturbed case [JZ20, Theorem 3.14], it follows that the perturbed
contact gluing map is well-defined up to an overall factor of z*, when restricted to each Spin®
structure on (M,~). Furthermore, if [w'] = 0, then the gluing map is well-defined on all Spin®
structures, up to an overall factor of z*.

7.2. Perturbed maps for cylinders. We now define the 4-dimensional cobordism maps for W =
I x M, equipped with a closed 2-form w.

Recall that a sutured manifold cobordism is called special if it is a product along the boundary,
with an [-invariant contact structure compatible with the dividing sets; see [Juh16, Definition 5.1].
Suppose that W = (W, Z, [¢]): (Mo, o) — (M1,71) is a special cobordism which is equipped with a
Morse function f with no critical points, and let v be a gradient-like vector field for f.

To define the map for W, we first pick an admissible diagram Ho = (2o, o, 8,) for (Mg, v0). The
flow of v induces a diffeomorphism between My and M7, and we write H1 = (X1, a1, 3;) for the
push-forward of #H, under this diffeomorphism. If x € Tq, N Tp,, we write v,(x) € T, N Tp, for
the corresponding intersection point. Write I'yx for the 2-chain traced out by the flow of v applied
to vx € M.

We define the perturbed cylinder map

Fw.w (o) CF(Hoi Ay, ) = CF(Has Ay, )
via the formula
(7.1) Py (50) (27 - x) = e, (x).

As in Remark 2.6, for a choice of diagram Hg of (Mo, o) and s € Spin®(Mpy, o), equation (7.1) gives
a morphism of transitive systems from CF (Mo, o, 5; AwIMO) to CF(My,v1,vs(8); A

wIMl)'

Lemma 7.2. Suppose that W = (W, Z,[€]) is a special cobordism with a Morse function f with no
critical points and gradient-like vector field v.

(1) The map Fyy o (fv) 15 a chain map.

(2) The induced morphism of transitive systems is independent of the choice of Heegaard diagram

Ho for (Mo, 0)-
(8) The induced morphism of transitive systems is independent of v.

Proof. Claim (1), that Fyy .y, is a chain map, follows from Stokes’ theorem.

We now consider claim (2), that the morphism induced by Fyy .. (f,.) is independent of Hg. This
amounts to showing that the maps Fyy ,,;(s) commute with the transition maps for changing dia-
grams, up to an overall factor of z*. We focus on the case when we have two diagrams for (Mo, o)
that are related by a single beta-handleslide or isotopy. We leave verification of claim (2) for other
Heegaard moves to the reader.

Suppose that (2o, g, By, B5) is an admissible Heegaard triple for a beta-handleslide or isotopy in
(Mo, 70)- Set Ho = (3o, @0, Bg) and Hf, = (Xg, o, Bp)- Let Hy and H) denote their images in M;
under the flow of v.

It is sufficient to consider the claim when the top-graded generator of SFH (X, 3, 3;) is repre-
sented by a single intersection point ©g, 5 € Tg, N Tp;, since a general beta-isotopy or handleslide
may be decomposed into a sequence of beta-isotopies and handleslides which each satisfy this con-
dition.

Let ¢ € ma(x, O5,,8> z) be a homology class of triangles, where x € Ty, NTg, and z € Ty, N Tg;-
Let ®: I x My — W denote the flow of v/v(f). Let C5 C W be the 3-chain ®(I x D(¢)), where
D(1h) C My is the 2-chain constructed in Section 6.6. Since

(7.2) 9C; = ® ({1} x D)) - @ ({0} x D(®)) +T, T~ To

it follows that w evaluates trivially on the sum of the 2-chains on the right-hand side of equation (7.2).
The quantities f*I’({O}xﬁ(w)) w and f<1>({1} $D(y)) W are the area contributions of Wy, 3 (x) and

80,8}’
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sy, 2 (v4(x)), Tespectively. The quantity Jp. w is the area contribution of Fyy., (f..)(2), and
Jp. w is the area contribution of Fyy.,, s,.)(x). Hence

“Jrg
©60.8

Py, (£0) (W9 (X)) = 2 W s (P, (£,0) (X))

Since fFe w is independent of x and z, the result follows.
Bo,ﬁ{)
We now consider claim (3), independence from the gradient-like vector field. Any two v may be
connected by a 1-parameter family (v:):er. As before, let Hy = (2o, ag, By) denote a diagram for
(Mo,70). Fort € I, let ®;: I x My — W denote the flow of v:/vi(f).

Write ¢;: My — M, for the diffeomorphism (®; o ®;1)[5s,. Claim (3) amounts to showing

(7.3) FWw (fv1) = (¢¢)« OFW;w,(f,vo)v

where (¢;). denotes the isotopy map from Section 6.4.
Let I'x ¢ denote the 2-chain ®;( x 1) € W, and let I}, C M; denote the 2-chain swept out by
@, ({1} x 7x) as t ranges over I. Equation (7.3) amounts to showing that

fo bk

is independent of x.

Write ®@: I x I x My — W for the map ®(t,s,z) = ®.(s,z). Let C3 be the 3-chain defined by
applying ® to I x I x 7x. Equation (7.4) is equal to fa(IX[)X7 ®*(w). Since f03 dw = 0, Stokes’
theorem implies that equation (7.4) is equal to [ IxIx~ <f>*(w) Since Ovx is independent of x, it
follows that the quantity in equation (7.4) is also independent of x, completing the proof. O

We are now ready to prove Lemma 2.11.

Proof of Lemma 2.11. By construction, the map FIXY(K);wsK sends 27 - x to 2% rewsic . x, where
I'x =1 X 7. It is sufficient to show that

(75) /F T WSk = 7A(X7 Y)7

where A(x,y) is the relative Alexander grading.
Since ws, is the Poincaré-Lefschetz dual of {3} x Sk, we have

/ ws = #(1x —Yy) N Sk
I, —Ty
If ¢ € ma(x,y) is a class of disks, then, by definition,
A(x,y) = n:(¢) — nw(9).
On the other hand,
8D(¢) = — Vx:

Using the Leibniz rule for intersections, we have

#(x — %) NS = —#(@D(¢) N Sk)

(7.6) -
—#(D(¢) N OSk).

Since 0Sk = K, equation (7.6) gives

#(7x — ) NSk = —#(D($) N K),

which is —(n,(¢) — ny(d)) = —A(x,y), because, by convention, K intersects ¥ positively at z and
negatively at w. ]
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Remark 7.3. In Lemma 6.1, we described a transition map ¥,,_,.,, for changing between cohomol-
ogous closed 2-forms w and w’ when dn = w’ — w, though the map was only independent of n when
restricted to a fixed Spin® structure. Lemma 2.11 is a perfect example of why this is important. The
2-form wg,, is a boundary on I x Y(K). Write ws, = dn, and write 7; := n|{;}xy (k). Note that
ws, restricts trivially to {i} x Y(K) for i € {0,1}. An easy Stokes’ theorem argument shows that
the diagram

‘I’Oﬂdnomo

SFH(Y (K); Ao) SFH(Y (K); Aan,)
(7.7) J/FIXY(K);wSK lFIXY(K);O
SFH(Y (K); Ag) - SFH(Y(K); Ay, )

Vany —0;—ny
commutes up to an overall factor of z*. Hence FIXy(K);wSK = Wo_,0:50—n:, but this does not imply
that FIXy(K);wSK = id, since Lemma 6.1 only applies if we restrict to a single Spin® structure.

7.3. Perturbed 1-handle and 3-handle maps. We now describe the cobordism maps for 1-
handles and 3-handles. We focus on 1-handles, since the 3-handle maps are algebraically dual.

Suppose that

Wi = (W, Zy, [&1]): (Mo, v0) — (M1, m)
is a special cobordism with a Morse function f that has a single index 1 critical point py. Let v be
a gradient-like vector field for f. We use f and v as auxiliary data to construct the cobordism map
for Wj.

The stable manifold of v at py intersects My in two points, p1 and ps. Let Ho = (2o, g, B) be
an admissible diagram for (Mp, o), such that p1, p2 € Lo \ (oo U By). Let Dy and D2 be two small
disks in g, centered at p; and py. The flow of v induces an embedding of X \ (D U Ds) into Mj.

A Heegaard diagram (31, a1, 3;) for (Mi,~y1) is constructed as follows. The surface ¥; is obtained
by connecting the boundary components of the image of 3¢ \ (D1 U Ds) under the flow of v with an
annulus in the 1-handle region. The attaching curves a; and 3 are given by a1 U{«a} and B, U{S},
where a and 8 are contained in the 1-handle annulus, intersect transversely, are homologically
essential therein, and satisfy |a N B] = 2. Write a N B = {01,607}, where 6T has the larger relative
Maslov grading.

If x € Ty, NTga,, write v, (x) for the corresponding tuple of points on £;. A set of compressing
disks in My may be pushed forward under the flow of v. By adding two disks in the 1-handle region,
we naturally obtain a set of compressing disks in (M7,71). If x € Ty, N Tg,, write I'xy C W7 for the
2-chain traced out by applying the flow of v to 7x C My. We define the perturbed 1-handle map
Fwiiw,(f0) 88

Py, (5,0) (27 - Xx) i= 2ot e k(%) x 0T,

Lemma 7.4. Suppose that Wy = (W1, Z1,[&1]): (Mo,v0) — (My,71) is a special cobordism and
(f,v) is a Morse function and gradient-like vector field on W1 with a single index 1 critical point.
(1) For an almost complex structure sufficiently stretched on the two boundary components of
the 1-handle annulus, the map Fyy, ., (f.v) 18 a chain map.
(2) The morphism of transitive systems induced by Fyy, . (f.) is independent of the Heegaard
diagram for (Mg, o).
(3) The morphism of transitive systems induced by Fyy, . (f,) 15 independent of v.

Proof. The proof of claim (1), that Fyy, ., (f) is a chain map, relies on the same holomorphic
degeneration argument used in the unperturbed setting. See [OS06, Section 4.3] for the original
proof, as well as [Juh16, Section 7], or [Zem15, Section 8| for versions of the proof in several related
contexts. In the perturbed setting, one must also check that the cones of the two bigons in the
1-handle region are assigned the same w-area. Note that the difference between these two bigon
classes is a periodic domain, which cones off to a 2-sphere S that is homotopic to the belt sphere
of the 4-dimensional 1-handle. Since w is defined on all of W (in particular, on the co-core of the
1-handle), we must have [¢w = 0.
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To prove claim (2), that the morphism of transitive systems induced by Fyy, ,(f.) is independent
of the Heegaard diagram H, one repeats the standard proof of the well-definedness of the 1-handle
maps [0OS06, Theorem 4.10], while keeping track of areas as in the proof of Lemma 7.2.

Claim (3), independence from v, is proven as follows. Suppose that (v:)tcs is a path of gradient-
like vector fields. We can pick an isotopy ¢; of My, and an admissible diagram (g, o, 3,) for
(Mo, 7o) such that the stable manifold of the critical point of f is contained in ¢¢(3¢ \ (ao U By))
for all t. We can choose an isotopy ¢ of (M7, 1) such that the image of ¢:(32() under the flow of v,
coincides with 1;(2;) outside the 1-handle region. Write (3, afy, Bp) for the image of (3o, v, Bo)
under ¢, and write (X, aj, 3}) for the image of (31, a1, 3;) under ;.

It suffices to show that the following diagram commutes, up to overall multiplication by z%:

(61) =
OF(EU’QOH@O;AW\MO) — CF(E()’a()?ﬁé);Aw\MO)

(78) J{le;w’(f’vo) lel;w,(f,vl)

()«
CF(Elaala/Bl;A — CF(Ellaallngll;Aw\Ml)'

w\Ml)
We define
D: I X I xyx — Wy,
where ®(t, s, z) is the time s flow of ¢;(z) under v, /v, (f). Consider the 3-chain C = ®(I x I X vx)
in Wi. Then we have
(7.9) Cs = B(O(I x I) X vx) + O(I x I x Oyx).

Write g+ C M, for 1-chain obtained by coning §* into the two handlebodies, and let g+ ,,, € M;
denote the 2-chain swept out by the family (¢(vs,))ic;r. By definition, the difference in area
contributions from the two length 2 paths in equation (7.8) is

(7.10) / B (w) + / w.
(I XI)Xvx T

0t 9y

Applying Stokes’ theorem to equation (7.9), we see that equation (7.10) is equal to

[ @[ e
IXIX0vx T

0%y
which is independent of x. It follows that equation (7.8) commutes up to an overall factor of z%,
completing the proof. O

The perturbed 3-handle maps are dual to the 1-handle maps. We leave the details of the definition
to the reader.

7.4. Perturbed 2-handle maps. Suppose that
Wa = (W2, Zs, [&2]): (Mo, o) = (M1, 71)

is a special cobordism equipped with a Morse function f and gradient-like vector field v such that
f has only index 2 critical points, and the stable and unstable manifolds of v are transverse.

Let S; € My denote the intersection of the stable manifolds of (f,v) and M. Let (3, e, 3,8) be
a Heegaard triple subordinate to a bouquet for S;; see [Juh16, Definition 6.3]. Let

Weap,80 = Wap,6', Za,8,65 [§a,8,6'])

be the associated sutured manifold cobordism, as described in [JZ20, Section 7]. The 4-manifold
Wa..p is defined as follows. If A denotes a triangle with edges e, eg, and egr, then

Wa,ﬁ,ﬂ’ = (Z X A)U (Ua X eaUUﬁ X eﬂUUB/ X 65/)’

where Uy, Ug, and U are the sutured compression bodies corresponding to (X, a), (X, 3), and
(3,8, respectively. We view the 4-manifold W, 5 5 as having three sutured manifold boundary
components, My, Mg g/, and M;.
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From our choice of (f,v), we obtain an embedding
q)(f,v): Wa’g”g/ — Wy,

which is well-defined up to isotopy, as follows. Let {b1,...,br} C (0,1) be the critical values of
f, and let € > 0 be chosen such that e < b, < 1 —¢ for i € {1,...,k}. Let N(X) be a product
neighborhood of ¥ in My. We can view My as U, U N(X) U —Ug. We can correspondingly view
Wa,B,,B’ as
(NE)x U Uy x 1)U (=Ug x [0,e]) U (=Ugs x [1 —¢,1]).

The embedding @y, sends a point (z,t) € Ug x [0, €] to the point z € Wy which is in the flow
line of v over z € Ug C M and has f(z) = t. The embeddings on the other portions of W, g s
are defined similarly. See Figure 7.2 for a schematic. We note also that the boundary component
Mg g+ € OWa, g,3 may be naturally filled in with a sutured manifold cobordism W;g g to obtain the
sutured 2-handle cobordism Ws. A description of Wg g may be found in [Juhl6, Proposition 6.6]
(see also [JZ20, Section 8]).

M,
i UB/X é
i [1*@ 1] i
Mg g i
i N(Z) x I ;
1 Ug x [0, ¢ Ug x T 1
My

FIGURE 7.1. The triple cobordism W g s.

A homology class ¥ € m(x,y,z) on (X, a,3,3') induces a coned off singular 2-chain 5(1@ in
Wa g5, as follows. Firstly, the class ¢ induces a singular 2-chain Dy(¢)) in ¥ x A, which has
boundary on (a X €,) U (8 x eg) U (B x egr), where A = e, Ueg U eg. The 2-chain Dy(v) is
determined, up to addition of a boundary, by the property its projection to X is the domain of 1,
and that the projection onto A is degree d, where d = |a| = | 3| = |3'|. We pick compressing disks
Dy, Dg, and Dgs, and we let cq, cg, and cg: denote the sets of center points of these compressing
disks, respectively. We cone Dy () into Uy X eq, Us X eg, and Ug X eg to obtain a 2-chain 15(1/1)
in Wy g, that has boundary

—Yx — Vy T Yzt Ca X €t g Xeg+tcpg Xep.

We define A, (1) to be the integral of ®; (w) over D(¢)). We write (Mg g/, 3,5 ) for the sutured

manifold defined by the diagram (X, 3, 3'), and wg g = WM, -

Au(

By counting index 0 holomorphic triangles weighted with z4« (%) we obtain a perturbed triangle

map
(7.11) Foppiw: CF(E,a,ﬁ;AwWO) ® CF(Z,ﬂ,ﬂ';Awﬁﬁ,) — CF(E,a,ﬁ';Aw‘Ml).
Finally, the perturbed 2-handle map is given by the formula

(712) Fivgntr)(2% %) = 27 Fup o (0 0557 ).

where @;f};‘f, € CF(%, 8,6, Ay, ) is defined analogously to equation (6.4).

The domain and codomain of Fyy, ., (.., do not form projective transitive systems unless we either
restrict to a single Spin® structure on (Mg, 7o) and (Mi,71), or if [w]|a;, = 0 for ¢ € {0,1}. However,
if we fix 5, € Spin®(My, o) and s; € Spin®(My,~1), we obtain a morphism of projective transitive
systems

Ts, © FWg;w,(f,v) o igo : CF (Mo, 70,505 Aw|MO) — CF(My,71; 8, Aw|M1 )-



32 ANDRAS JUHASZ AND IAN ZEMKE

Lemma 7.5. Suppose that Wa: (My,v0) — (M1,v1) is a special cobordism with a Morse function
f and gradient-like vector field v with only index 2 critical points, which is Morse—Smale. Let S;
denote the corresponding framed link in M.

(1) The morphism of transitive systems induced by Fyy,.. (fv) is independent of the choice of
bouquet for Si, or the Heegaard triple subordinate to it.
(2) The morphism of transitive systems Fyy, ., (f,0) is independent of v.

Proof. The proof of claim (1) is similar to the original proof given by Ozsvath and Szabé [OS06,
Proposition 4.6, Lemma 4.8], and follows from associativity of the perturbed holomorphic triangle
maps. See also [Juh16, Theorem 6.9] for a more detailed explanation of the argument in the sutured
setting.

Independence from v, claim (2), is proven as follows. The space of gradient-like vector fields of f
is connected. Suppose (v;)ses is a path of gradient-like vector fields. Let S denote the intersection
of the stable manifolds of v; with Mj. Generically, v; is Morse-Smale at all but finitely many ¢, at
which time a handleslide amongst two of the components of S occurs.

We break I into two types of subintervals: [a,b], where (f,v;) is Morse-Smale for all ¢ € [a, b];
and [tg — €,to + €], where € > 0 is small, and a handleslide occurs at tg.

For the first type of subinverval [a,b], let (X, «, 3,3’) be subordinate to a bouquet for S¢. Let
(ét)tefa,p) be an isotopy of My, such that ¢, = idas,, and the diagram

(Eh Oy, ﬂt? ﬂ;) = (bt(za o, /37 /8/) c MO
is subordinate to St.
Using the abbreviation ®; for @ ,,), we obtain a family of embeddings (®¢):c[q,5 of Wa,p,5/
into Wa. Let vy My — M; denote the map (®; o ®,1)|5s,. We claim that the following diagram
commutes up to an overall factor of z”:

()=
CF(Zaaaavﬁa;Aw\Mo) I CF(Ebaabvlgb;Aw\Mo)

(7.13) lFWQ;w,(f,va) lez;mf‘m

(%1)

CF(EGJ a(l? 16;); Aw|1\41 ) % CF(Eb, ab? 16;); Awljul )'
Suppose ¥ € ma(x,Op 5,2) is a homology class of triangles on (X, , 3, 3'), where x € T, N T3 and
z € T, NTg. Write I'y g, € My and I', 5, € M; for the 2-chains swept out by 7« and 7, by ¢;
and v, for ¢ € [a, b], respectively. Commutativity of equation (7.13) up to an overall factor of z*
amounts to showing that the integral of w over

(7.14) P4(D(¥)) — ®u(D(¥)) + Tz, — 'y
is independent of v, x, and z.

The family ®; induces a map D [a,b] x Wy 3 — Wa, and we let C5 C Wy be the 3-chain
&)( [a, b] x 5(w)) Stokes’ theorem applied to dC3 implies that the integral of w over the 2-chain in
equation (7.14) is equal to the integral of w over

(7.15) Lo, ;0 +Capp

where ', , @, is the 2-chain &)([a, b] x ’y@ﬂyﬁ/), and C, g g is defined as follows. Let ¢, C U, be the
union of the centers of the alpha compressing disks, and let e, denote the alpha side of the triangle
A used to build W, g g. Let cg, csr, eg, and eg be defined similarly. Then C, g g is the image
under @ of [a,b] X (cq X €q U cg X egUcg X egr). Since equation (7.15) is independent of x, z, and
1, it follows that equation (7.13) commutes up to an overall factor of z*.

Next, we consider the case when the subinterval of I is of the form [ty — €,to + €], where a
handleslide amongst the components of S§ occurs at t = #5. Adapting the proof of Ozsvath and Szabé
[0S06, Lemma 4.14], we may pick a Heegaard triple (¥, a, 3, ') subordinate to a bouquet for S©° ¢,
such that there are attaching curves 8 and B/ on X, where 3 is obtained from 3 and B/ is obtained
from @' via a sequence of handleslides and isotopies, and (X, c, B, B/) is subordinate to a bouquet
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for S, The 4-manifold W, 54 is unchanged by isotopies and handleslides of the attaching
curves. A straightforward associativity argument shows that the two morphisms constructed with
the embedding ®;, . and either of the triples (X, a, 3,3) or (Z,a,B,B/) coincide. Similarly, the
previous argument shows that the two morphisms computed using the triple (X, o, 3, B/) and either
of the embeddings ®;,_. or ®; 4. coincide, completing the proof. O

7.5. Defining the Spin® restricted cobordism maps. In this section, we define the Spin® re-
stricted versions of the perturbed sutured cobordism maps. Suppose that
W= (VV7 Za [g]) (M07’YO) - (Mla’Yl)

is a cobordism of sutured manifolds equipped with a closed 2-form w on W. We remove a collection
of tight 3-balls from Z, adding them to My or M1, so that My U Z has no closed components, and
so that each component or W intersects My and M; non-trivially.

We can decompose W as W? o W9, where W consists of I x (Mg U Z), viewed as a cobordism
from My to My U Z, and W? consists of W, viewed as a special cobordism from My U Z to Mj.

We choose a self-indexing Morse function f on W?, with no index 0 and 4 critical points, and a
gradient-like vector field v for f. The pair (f,v) induces a decomposition

W? =Ws oWy oW,

where W; = (W;, Z;, [&:]) is a special cobordism that contains the index ¢ critical points of f.
Suppose s, € Spin®(Mo, o) and s; € Spin®(M7y,v1). The Spin® structure s, extends uniquely over
Ws. Write u for its restriction to the incoming boundary of Ws. We define

(7.16) Ts o dg.
where we have suppressed the dependence of the map Fyy,,,|,, on the Morse function f |w,. There

is no dependence on the gradient-like vector field v|y, according to Lemmas 7.2, 7.4, and 7.5.
We now prove the Spin® restricted perturbed cobordism maps are well-defined:

1 © Fyy 0 lsy = FW3§W|W3 O Ty © FWz;w|W2 © FWl;w\Wl wlamguz © s,

Proof of Part (1) of Proposition 2.9. The proof is similar to the proof of the corresponding claim
in the unperturbed setting; see [OS06, Section 4.4] and [Juhl6, Theorem 8.2]. Given two Morse
functions fy and f; on W, viewed as a special cobordism from MyU Z to M7, one may pick a generic
path (fi)ter of smooth functions that are Morse at all but finitely many ¢ and connect fy to fi.
Furthermore, using Cerf theory, one may assume that there are no index 0 or 4 critical points, and
that critical points of index 4 for i € {2,3} have values greater than the values of critical points of
index less than ¢. Furthermore, at the finitely many ¢ where f; fails to be Morse, an index 1/2 or
2/3 birth-death singularity occurs.

If f; is Morse for every t € [a,b] C [0, 1], the decompositions of W* as Wy 0o W5 0 W3 corresponding
to f, and f; are isotopic, so adaptations of Lemmas 7.4 and 7.5 show that the composition is
unchanged, up to an overall factor of z”.

Invariance under index 1/2 birth-death follows from Ozsvath and Szabd’s holomorphic triangle
computation [OS06, Lemma 4.16], with extra attention paid to areas. Invariance under index 2/3
birth-deaths follows by the same argument. (|

7.6. Defining the total cobordism map. In this section, we define the total perturbed cobordism
map Fyy.,,, when [w] restricts trivially to My and M;. This addresses Part (2) of Proposition 2.9.
As a first step, if [w] restricts trivially to My, and s, € Spin®(My, 7o), we may define the partially
Spin® restricted map Fyy,, o is, by omitting m, from equation (7.16).
This strategy does not extend to the case when [w]|p, = 0, since we also need [w]|pr,uz = 0 for
the gluing map to be well-defined. Instead, when [w] restricts trivially to My and M;, we make an
alternate construction. Pick an open collar neighborhood N C W of M. Set

N =(N,ZnN, [+,

which we view as a sutured manifold cobordism from (Mg, o) U (—Mp, o) to the empty set. Let us
write

W= (W\N,Z\N,[|zn])

AlJ: added
‘open’, and
closures in the
formula for N to
make W precise



AJ: changed
from (7.19) to
(7.20)

AJ: added figure
AJ: changed
(7.20) to (7.18)
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We view W as a cobordism from the empty set to (—Mo,v0) U (M1,71). See Figure 7.2.
The previous case gives a map

(717) . SFH(—M(),’Y();AW‘MO) X SFH(M17’)/1;AW|M1).

Wiwlw\
Implicitly, we are pre-composing with the map is , where 5, is the unique Spin® structure on the
empty set. We define the total cobordism map Fyy,,, via the formula

(7.18) Py = (Fvalﬁ & idSFH(Ml)) o (idSFH(Mo) ®FW;wIW\N) .
(2N
> K> D
My

FIGURE 7.2. Decomposing W into A" and W.

If [w] restricts trivially to My U Z and M;, then we may also define the total perturbed cobordism
map by removing the projections and inclusions of Spin® structures from equation (7.16). We claim
that this more direct construction coincides with the construction given in equation (7.18). To see
this, we note that if W = (W, Z,[¢]) is a sutured manifold cobordism which decomposes as the
composition of two cobordisms, Wy = (W1, Z1, [61]) and Wy = (Wa, Z2, [£2]), and w is a 2-form such
that [w|apuz] = 0 and [w|a,] = 0, then the original proof of the sutured cobordism composition law
[Juh16, Theorem 11.3] (see also [OS06, Theorem 3.4]), adapts to show that

(719) FW;w = FWz;wz © FWli,Wl’

where the maps in equation (7.19) are defined using the construction in equation (7.16). When [w]
restricts trivially to My U Z and M, equation (7.18) may be interpreted as a composition satisfying
these hypotheses, so the composition law of equation (7.19) implies that equation (7.18) coincides
with the construction obtained by removing the Spin® restrictions from equation (7.16).

7.7. The composition law. We now sketch a proof of the composition law, Proposition 2.10.

Proof of Proposition 2.10. We focus on part (1), as part (2) follows from a simple modification.
Assume, as in the statement, that W = (W, Z, [£]) is a sutured cobordism from (Mo, o) to (Mz,72),
which decomposes into Wy = (W1, Z1, [&1]) and We = (Wa, Za, [€2]) that meet along a sutured
manifold (M7, 7). We are interested in the case when [w] restricts trivially to My, My, and Ma.

As a first step, we claim that, via the same argument that gives equation (7.19), if [w] restricts
trivially to My U Z and M>, then

(720) FW;w o ii = FW2§UJ2 o FW1§W1 o] ig;

where s € Spin®(Mo, o), and the maps Fiy., © s, Fivyuw,, and Fiy, ., o is are defined using the
appropriate modification of equation (7.16).

We now claim that the restricted composition law stated in equation (7.20) implies the full version
of part (1) of Proposition 2.10. We recall that the full version of Proposition 2.10 involves the maps
defined in equation (7.18). Following the construction of Section 7.6, we decompose W into sutured

manifold cobordisms N; and)?\//l, and we decogpose Ws into Ny and Wg. We give W the analogous

decomposition into N7 and W := W; U Ny U Wy; see Figure 7.3.
Using the definition from equation (7.18), we have

2;""“"/2\1\12)

(7.21) Py, 0 Py, 1= (FNWWQ ® idSFH(M2)) o (idSFH(Ml) QF;
7.21

° (FMMW] ® idSFH<M1>) ° (idSFH<Mo) ®Fv~vl;wwwlwl) :
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FIGURE 7.3. Decomposing W = Wy o W, into N; and W = Wl UMNy U Wg.

By commuting tensor factors, we see that the right-hand side of equation (7.21) coincides with the
composition of FNl;w\ﬁl ® idgpm (nm,) and
(7.22)

(idSFH(Mo) ®idsrm (- M) OFNpwly, © idSFH(MQ)) o (idSFH(MO) QF,.

wlwi\vy ® FW2§“"W2\N2) '
The hypotheses stated for the restricted version of the composition law from equation (7.20) are

satisfied for decomposing W into the composition of Id_pz, LN U ldys, and Wl U Wg (note that
we are implicitly precomposing with the is , where s, is the unique Spin® structure on the empty
set). Hence equation (7.22) coincides with idgpg(ar,) @ Fy5; . Tt follows that equation (7.21)

Wiw|w\ Ny
coincides with
(FNI,le ® idSFH<M2)) ° (idSFH(MU) ®Fw;w\W\Nl>
which is the definition of Fyy,, in equation (7.18). O

7.8. Changing the 2-form on W. We now prove Lemma 2.12.

Proof of Lemma 2.12. We investigate equation (7.7) from Remark 7.3. Suppose that Hi,...,H,, is
a sequence of sutured Heegaard diagrams such that

e M, is a diagram for (My, 7o) and H,, is a diagram for (M;,~1),
e ;. is obtained from #; by either an elementary Heegaard move, the contact gluing map,
or is the result of applying a 1-handle, 2-handle, or 3-handle map.

Consider the case when H; and H;41 are diagrams for the boundaries of the 2-handle submanifold
Wy = (Wa, Zs, [€2]) of W. Furthermore, assume H; and H;;1 are subdiagrams of a triple which
is subordinate to a bouquet for a framed link in the incoming boundary of Ws. Write Ws for the
restriction of w to Ws. Write w; and w; 1 for the restrictions of w to the manifolds defined by H; and
Hit1, respectively. Define 7z, 1;, and 7;41 similarly. An argument using Stokes’ theorem implies
that the following diagram commutes up to an overall factor of z:

Wy switdnging

CF(HH sz) CF(,HH Awi+d77i)

lez;az lFWQ;QQ +dig
g

wit1+dni41in;
OF(Hi+1’Awi) w) CF(Hi+1;Awi+1+dm+1)'

In an analogous manner, we may relate H; and H;41 by a similar commutative square when
Hiy1 is obtained from H; by an elementary Heegaard move, or a 1-handle or 3-handle attachment.
Stacking the n — 1 projectively commutative squares, we obtain that the square

\I]‘*’l‘“"l USRKIY
CF(Hy; Ay, ) —22 0 OF (Hy; Ay any)

le;w J/Fw;w+dn

CF(H’UM Awn) M CF(,HR; Awn"l‘dnn)

commutes, up to an overall factor of z¥. Since |y, = m = 0 and 1|y, = 7, = 0, the maps
W swrtdnim and Yo, o 4dn..m, are the identity, completing the proof. ]
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7.9. Perturbed and unperturbed cobordism maps. We are finally ready to prove Lemma 3.4.

Proof of Lemma 3.4. Let us write W = Wy U Wy U W3, where W; is the i-handle part of W. Let
(3, o, B, 8, w) be a triple subordinate to a bouquet for the 2-handles of W, and write W, s g for the
corresponding portion of Ws. In particular, Wy := Wy \int(W, g /) is a boundary connected sum of
copies of ST x D3. As H?(W1,Yy;R) = 0 and H?(Ws3, Y1;R) = 0, the restriction maps H?(Wy;R) —
H?(Yyp;R) and H?(W3;R) — H?(Y1;R) are both injective. Furthermore, H?(Wp;R) = 0. Hence,
since w|pw = 0, we have [w|w,] = 0, [w|lw,] = 0, and [w|w,] = 0. So there is a 1-form n on W
such that n|sw = 0, and w — dn vanishes on W \ int(W, g 5/); compare the proof of Lemma 4.1. By
Lemma 3.3, we have

Fﬁ/,G;wiF&/,G;wfdn'
Hence, we may assume that w vanishes on Wy, Wy, and W3. With this assumption, the maps

[e] [e]
Wr,6 w0l and FV[,&@‘WS;WIW3 are unperturbed. Furthermore,

(ix(s — 50) U [w], [W,0W]) = (ix(s|lw, — S0lws) U [wlws], [Wa, OWa]).

So, without loss of generality, we can assume that W = Ws.
Let x, x' € T, NTg and y, y' € T, N Ts. Furthermore, let ¢ € ma(x,y,Op4) and ¢’ €
7o (x',y’, 03,5 ) be homology classes of triangles, where O 3 € Tg N Ta. Note that

HF® (%, B8, 8's Mo, ) = HF?(2,8,8) @ A,

since w|aw, = 0. Then, the coned-off domain D(¢)) — D(¢') represents the Poincaré dual of s, (1) —
s, (1) € H?(W3). Hence

Aww)—Aw(w’):[ w—/~ w = (i (5 () — 50 (') U [w], [W, OW]),
D(v) D(y')

and equation (3.2) follows. O

REFERENCES

[Akb02] Selman Akbulut, Variations on Fintushel-Stern knot surgery on 4-manifolds, Turkish J. Math. 26 (2002),
no. 1, 81-92.
[AP10] Yinghua Ai and Thomas Peters, The twisted Floer homology of torus bundles, Algebr. Geom. Topol. 10
(2010), 679-695.
[BS16] John A. Baldwin and Steven Sivek, A contact invariant in sutured monopole homology, Forum Math. Sigma
4 (2016), el2, 82. MR3510331
[FS98] Ronald Fintushel and Ronald Stern, Knots, links, and 4-manifolds, Invent. Math. 134 (1998), 363-400.
[HKMO08] Ko Honda, William Kazez, and Gordana Matié, Contact structures, sutured Floer homology and TQFT,
2008. e-print, arXiv:0807.2431.
[JM16] Andrés Juhdsz and Marco Marengon, Concordance maps in knot Floer homology, Geom. Topol. 20 (2016),
no. 6, 3623-3673.
, Computing cobordism maps in link Floer homology and the reduced Khovanov TQFT, Sel. Math.
New. Ser. 24 (2018), no. 2, 1315-1390.
[JMZ] Andrés Juhdsz, Maggie Miller, and Ian Zemke, Ezotic surfaces in the 4-ball. In preparation.
[JTZ12] Andras Juhdsz, Dylan Thurston, and Ian Zemke, Naturality and mapping class groups in Heegaard Floer
homology, 2012. e-print, arXiv:1210.4996.
[Juh06] Andras Juhdsz, Holomorphic discs and sutured manifolds, Algebr. Geom. Topol. 6 (2006), 1429-1457.
[Juh16] , Cobordisms of sutured manifolds and the functoriality of link Floer homology, Adv. Math. 299
(2016), 940-1038.
[JZ20] Andrds Juhdsz and Ian Zemke, Contact handles, duality, and sutured Floer homology, Geom. Topol. 24
(2020), no. 1, 179-307. MR4080483
[KM10] Peter Kronheimer and Tomasz Mrowka, Knots, sutures, and excision, J. Differential Geom. 84 (2010),
no. 2, 301-364. MR2652464
[Lek13] Yank: Lekili, Heegaard-Floer homology of broken fibrations over the circle, Adv. Math. 244 (2013), 268
-302.
[Li18] Zhenkun Li, Gluing maps and cobordism maps for sutured monopole floer homology (2018). e-print, arXiv:
1810.13071.
[Lip06] Robert Lipshitz, A cylindrical reformulation of Heegaard Floer homology, Geom. Topol. 10 (2006), 955—
1097.

[TM18)



arXiv:0807.2431
arXiv:1210.4996
arXiv:1810.13071
arXiv:1810.13071

[LOT16]

[Lut77]
[Mar13]
[0S04a]
[0S04b]
[0S04c]

[0S05]

[0S06]

[0S08]

[Sar15]
[Tan05]

[Wu09]

[Zem15]
[Zem17]

[Zem19]

CONCORDANCE SURGERY AND THE OZSVATH-SZABO 4-MANIFOLD INVARIANT 37

Robert Lipshitz, Peter S. Ozsvath, and Dylan P. Thurston, Bordered Floer homology and the spectral
sequence of a branched double cover II: the spectral sequences agree, J. Topol. 9 (2016), no. 2, 607-686.
MR3509974

Robert Lutz, Structures de contact sur les fibrés principauz en cercles de dimension trois, Ann. Inst. Fourier
(Grenoble) 27 (1977), no. 3, ix, 1-15.

Thomas Mark, Knotted surfaces in 4-manifolds, Forum Math. 25 (2013), no. 3, 597-637.

Peter Ozsvath and Zoltdn Szabd, Holomorphic disks and genus bounds, Geom. Topol. 8 (2004), 311-334.
, Holomorphic disks and topological invariants for closed three-manifolds, Ann. of Math. (2) 159
(2004), no. 3, 1027-1158.

Peter S. Ozsvath and Zoltan Szabd, Holomorphic disks and knot invariants, Adv. Math. 186 (2004), no. 1,
58-116.

Peter Ozsvath and Zoltan Szabd, Heegaard Floer homology and contact structures, Duke Math. J. 129
(2005), no. 1, 39-61.

, Holomorphic triangles and invariants for smooth four-manifolds, Adv. Math. 202 (2006), no. 2,
326-400.

Peter S. Ozsvath and Zoltadn Szabd, Holomorphic disks, link invariants and the multi-variable Alexander
polynomial, Algebr. Geom. Topol. 8 (2008), no. 2, 615-692.

Sucharit Sarkar, Moving basepoints and the induced automorphisms of link Floer homology, Algebr. Geom.
Topol. 15 (2015), no. 5, 2479-2515.

Motoo Tange, On the diffeomorphisms for Akbulut’s knot concordance surgery, J. Knot Theory Ramifica-
tions 14 (2005), no. 5, 539-563. MR2162113

Zhongtao Wu, Perturbed Floer homology of some fibered three-manifolds, Algebr. Geom. Topol. 9 (2009),
337-350.

Ian Zemke, Graph cobordisms and Heegaard Floer homology (2015). e-print, arXiv:1512.01184.

, Quasistabilization and basepoint moving maps in link Floer homology, Algebr. Geom. Topol. 17
(2017), no. 6, 3461-3518. MR3709653

, Connected sums and involutive knot Floer homology, Proc. Lond. Math. Soc. (3) 119 (2019), no. 1,
214-265. MR3957835

MATHEMATICAL INSTITUTE, UNIVERSITY OF OXFORD, ANDREW WILES BUILDING, RADCLIFFE OBSERVATORY QUAR-
TER, WOODSTOCK ROAD, OXFORD, OX2 6GG, UK
E-mail address: juhasza@maths.ox.ac.uk

DEPARTMENT OF MATHEMATICS, PRINCETON UNIVERSITY, PRINCETON, NJ 08544, USA
E-mail address: izemke@math.princeton.edu


arXiv:1512.01184

	1. Introduction
	1.1. Organization
	1.2. Acknowledgements

	2. Perturbing sutured Floer homology by a 2-form
	2.1. Transitive systems and their morphisms
	2.2. The perturbed chain complexes
	2.3. Perturbed sutured cobordism maps
	2.4. Alexander gradings and perturbations on cylinders
	2.5. Changing the 2-form on W

	3. Perturbed Heegaard Floer homology of closed 3-manifolds
	4. Background on the Ozsváth–Szabó mixed invariants
	5. Fintushel–Stern knot surgery and concordance surgery
	5.1. Concordance surgery and diffeomorphism types of 4-manifolds

	6. Naturality of perturbed sutured Floer homology
	6.1. Changing the 2-form
	6.2. Change of almost complex structure maps
	6.3. Perturbed stabilization maps
	6.4. Perturbed isotopy maps
	6.5. Monodromy
	6.6. Perturbed triangle maps
	6.7. Compatibility of the triangle and isotopy maps
	6.8. Proof of naturality

	7. Perturbed sutured cobordism maps
	7.1. The perturbed contact gluing map
	7.2. Perturbed maps for cylinders
	7.3. Perturbed 1-handle and 3-handle maps
	7.4. Perturbed 2-handle maps
	7.5. Defining the Spinc restricted cobordism maps
	7.6. Defining the total cobordism map
	7.7. The composition law
	7.8. Changing the 2-form on W
	7.9. Perturbed and unperturbed cobordism maps

	References

