
Constellation: An Open-Source SoC-Capable NoC
Generator

Jerry Zhao
U.C. Berkeley

Berkeley, CA 94720
jzh@berkeley.edu

Animesh Agrawal
U.C. Berkeley

Berkeley, CA 94720
animesha@berkeley.edu

Borivoje Nikolic
U.C. Berkeley

Berkeley, CA 94720
bora@berkeley.edu

Krste Asanović
U.C. Berkeley

Berkeley, CA 94720
krste@berkeley.edu

Abstract—In response to growing application diversity, System-
on-Chip (SoC) architectures have become increasingly hetero-
geneous, with diverse cores and accelerators, as well as non-
uniform memory systems. However, existing open-source design
frameworks for SoCs and NoCs (Network-on-Chips) have been
unable to facilitate design exploration of heterogeneous SoC
architectures with irregular NoCs. We present Constellation, a
new NoC RTL generator framework designed from the ground
up to support integration in a heterogeneous SoC and evaluation
of highly irregular NoC architectures. Constellation implements
a highly decoupled specification system that allows an architect
to specify an exponentially large design space of irregular virtual-
channel wormhole-routed NoC architectures. Additionally, Con-
stellation provides a diverse set of systems, regression tests,
and evaluation tools to provide confidence in the correctness
and performance of the generated hardware. Constellation is
open-sourced and integrated into the Chipyard SoC design
framework, allowing full-system exploration of heterogeneous
SoC architectures with irregular memory fabrics.

Index Terms—network-on-chip, system-on-chip, open-source

I. INTRODUCTION

As workloads diversify and general-purpose performance
scaling wanes, architects have turned to specialization and
heterogeneity to meet targets for power, performance, and
area. A modern SoC might integrate a heterogeneous core
architecture with dozens of specialized compute units, includ-
ing GPU, NPU, DSPs, ISPs, and IO processors [1]–[7]. This
extreme heterogeneity has become prevalent across a wide set
of deployment scenarios, from mobile to cloud, and we expect
this trend to continue to dominate SoC architectures well into
the future.

The dominance of heterogeneous compute architectures
suggests the importance of heterogeneous or irregular mem-
ory architectures as well, to address both application-specific
memory access patterns and physical design constraints. Re-
cent research has re-examined longstanding assumptions about
memory architectures and proposed novel approaches for
memory protocols, cache coherence, memory organization,
and data movement.

Research was partially funded by NSF CCRI Award #2016662 and partially
by SLICE Lab industrial sponsors and affiliates. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United
States Government or any agency thereof.

NPU

App Core

LLC Bank
1

Efficient
Core 0

GPU Core
0

GPU
Core 2

GPU
Core 2

GPU
Core 4

Scratch
SRAM

IO

DRAM

LLC Bank
0

GPU
Core1

DSP

GPU
Core 0

Efficient
Core 1

DRAM

NPU

App Core

LLC Bank
1

Efficient
Core 0

GPU Core
0

GPU
Core 2

GPU
Core 2

GPU
Core 4

Scratch
SRAM

IO

DRAM

LLC Bank
0

GPU
Core1

DSP

GPU
Core 0

Efficient
Core 1

DRAM

Fig. 1. Physical design and floorplanning concerns in heterogeneous SoCs
preclude the implementation of simple, regular NoC architectures.

Open-source SoC design frameworks are popular tools
for researchers studying heterogeneous architectures. These
frameworks package libraries of SoC components, including
cores and memory systems, into highly parameterized SoC
generators. By generating physically realizable RTL, these
SoC generators enable full system evaluation of power, perfor-
mance, and area, as architects can evaluate novel SoCs using
FPGA prototyping, physical design flows, taped-out test chips,
and real software workloads.

While these SoC design frameworks have been successful
at modeling compute heterogeneity, we observe that they have
generally not allowed significant customization of the NoC
component in an SoC. These frameworks generally assume a
static, regular NoC topology or crossbar, with perhaps limited
support for scaling the dimensions of the network. While
suitable for studying homogeneous multi-core architectures,
we believe that existing frameworks cannot accurately describe
NoC architectures for extremely heterogeneous systems.

Highly flexible NoC generators have been developed for
isolated evaluation of diverse NoC designs [8]–[11]. However,
the challenges of SoC integration have prevented the inclusion
of these systems into existing SoC design frameworks. These
NoC generators often implement only a simple idealized
network protocol.

To address these limitations, we developed Constellation,
a highly parameterized RTL generator for virtual-channel
wormhole-routed NoCs [12]. Constellation is protocol-
agnostic, yet capable of supporting diverse protocols, including
standard cache-coherence protocols. To support describing a
large design space of irregular NoCs, Constellation provides

Logical Spec
- Flows
- Endpoints

Physical Spec
- Topology
- uArch
- Channels

Routing Spec
- Routing policy
- Allocation
- Arbitration

RTL
Generators

Route
Computer

InputUnit

VCAllocator

Switch

Channel RandomTraffic

NetraceTraffic

TileLink
NetworkIF

AXI-4
NetworkIF

Chipyard SoC
Generator

Routable

No
deadlock

No protocol
deadlock

module node_0

module node_1

NoC Parameters
Parameter
Validation

noc.v
Simple

EvalHarness

TileLink
FuzzTester

AXI-4
FuzzTester

Protocol-level
Testing

Network
Interfaces

Full-system
evaluation of NoC

Fig. 2. Flow diagram for deploying the Constellation framework. White boxes indicate Constellation-specific components. Dotted lines indicate standard
interfaces for configuring or customizing Constellation.

Listing 1. Parameterizing the NoC depicted in Figure 3. Note that the
decoupled functional high-level specification is concise, yet highly expressive.
val myNoCParams = NoCParams(
Logical specification
flows = Seq.fill(3, 3) { case (i,j) =>
Flow(ingress=i*2, egress=j*2+1, vnet=0) },

vnetBlocking = ...,
Physical topology specification
ingresses = (0 until 6 by 2).map { i =>
Ingress(payloadWidth=64, node=i) },

egresses = (0 until 6 by 2).map { j =>
Egress(payloadWidth=64, node=j+1) },

topology = (a: Int, b: Int) => {
(a + 1) % 12 == b || (a + 2) % 12 == b },

routers = (r: Int) => RouterParams(
combineRCVA = r % 2 == 0),

channels = (a: Int, b: Int) => {
Channel(nVirtualChannels = 4) },

Routing
routing = (f: Flow, p: VCID, n: VCID) = {
val dateline = p.node == 5 && n.vc >= p.vc
val one_away = f.dst == (p.node + 1) % 6
!dateline && !(one_away && n.node != f.dst) })

a modular specification system, separating specification of
physical NoC resources from specification of logical endpoint
behaviors and flow control. The generator additionally includes
verification systems that can guarantee that important proper-
ties of the specified NoC are met.

Constellation1 is open-sourced and integrated into the Chip-
yard SoC design framework, allowing for full-system evalua-
tion of heterogeneous SoC architectures with irregular NoCs.
Constellation also includes an extensible C++ framework for
standalone evaluation of NoC performance, as well as a large
suite of regression tests to ease microarchitechural exploration.

II. GENERATOR DESIGN

The software architecture for the Constellation generator is
divided into three phases, depicted in the first three columns
of Figure 2.

1) The parameterization phase decouples specification of
physical NoC resources from specification of endpoint
behavior and routing policy.

2) The validation phase constructs an abstract internal
model of the NoC and validates that all requested
properties of the NoC are achieved.

1github.com/ucb-bar/constellation

3) The elaboration phase passes the validated parameters
to RTL generators for the NoC router components,
generating complete RTL for the requested design.

A. Parameterization Phase

0 1 2 3 4 5

Fig. 3. The sample ring topology with skip-connections described by Listing
1

In the parameterization phase, the user specifies the desired
configuration for the NoC using Constellation’s specification
system, expressed as Scala configuration objects. An example
is shown in Listing 1. The aspects of NoC parameterization
are roughly orthogonalized into three categories.

1) Logical specification: The logical behavior of a NoC
describes the possible flows in the network, as well as potential
dependencies between flows. For example, to avoid protocol
deadlock, flows corresponding to one protocol channel may
need to be nonblocking with respect to flows corresponding to
another protocol channel. Constellation supports this by letting
the user assign “virtual subnetwork” identifiers to all specified
flows, as well as blocking/non-blocking properties across all
requested virtual subnets.

TABLE I
CONFIGURATION OPTIONS SUPPORTED PER-ROUTER OR PER-CHANNEL.

Field Range Default
merge RC and VA stages T/F F
merge SA and ST stages T/F F
add bypass from SA to VA T/F F
router payload width integer 64
number of VCs integer 4
buffer slots per VC integer 4
channel-speedup integer 1
input-speedup integer 1
output-speedup integer 1

2) Physical specification: The physical specification de-
scribes the requested network topology, represented as an
arbitrary directed graph. Each node in the graph represents
an individually configurable router. Each edge in the graph
represents an individually configurable physical channel. A
partial listing of frequently-used configuration options for
routers, physical channels, and virtual channels is shown in
Table I.

Notably, all of these parameters can be individually specified
per instance in the design, allowing for a highly heterogeneous

https://github.com/ucb-bar/constellation

NoC topology containing subgraphs with different bandwidth,
latency, power, or area specifications. For instance, in the NoC
shown in Listing 1, the even-numbered routers are configured
differently from the odd-numbered routers.

3) Routing specification: Constellation defines the routing
relation as:

R : F × V × V → B (1)

For a given flow f ∈ F that currently occupies virtual
channel v ∈ V , R(f, v, v′) returns a boolean b ∈ B whether
the policy will route f to virtual channel v′ ∈ V . In Con-
stellation, the NoC architect can leverage high-level features
of the Scala programming language to specify this routing
relation instead of directly describing the policy’s hardware
implementation. Additionally, a policy definition can reference
pre-defined routing “sub-policies”. For example, the policy
definition for fully-adaptive minimal routing on a 2D mesh
references separate sub-policies for escape routing, dimension-
ordered routing on a 2D mesh, and minimal routing a 2D mesh.

This high-level routing specification system is especially
useful for describing routing on an irregular topology, as the
routing relation can be specified separately for subsets of the
network.

B. Validation Phase

The parameter validation phase verifies that the requested
logical behavior can be achieved on the specified topology,
given the specified routing relation. Currently, this phase
checks that the constructed network is deadlock-free, and fully
routed (all flows end at the correct egress). Deadlock-freedom
between virtual subnetworks, which is necessary for protocol-
level deadlock-freedom, is also verified.

This phase constructs a virtual-channel dependency graph
considering all flows and checks that there is no cyclic
dependency [13]. For escape-channel based deadlock-freedom,
this phase checks only fir the lack of cyclic dependencies for
the subset of the graph encompassing the escape channels [14].
This phase also performs a limited degree of optimization,
primarily by marking unused virtual channels or router nodes.

C. Elaboration Phase

The validated parameters are passed to the elaboration
phase, which consists of Chisel generators for the various
components of the network. The generator for the router nodes
is fully generalized for arbitrary radix, topology, and routing
algorithm. A unique router instance is generated for each node
in the network.

The generator implements a conventional microarchitecture
for virtual-channel routing, shown in Figure 4, with the default
four routing stages being RC (route-compute), VA (virtual-
channel-allocation), SA (switch-allocation), and ST (switch-
traversal) [15]. The generator can be also configured to fuse
the RC/VA stages, as well as the SA/ST stages, if desired, as
depicted in Figure 5.

The route-computer in each router node computes the set
of all possible virtual channels that a packet in the router
node is allowed to allocate next in its wormhole-routed path

Router

Route
Computer

VC
Allocator

Switch
Allocator

Output
Unit

Crossbar
Switch

InputUnit

Channel
Generator

FlitBuffer

Channel
Widget/s

Fig. 4. Standard microarchitecture of a Constellation router. Note
channel-widgets allows configurable insertion of clock-crossings/width-
converters/buffers/monitors on each channel.

RC VA SA ST

SA ST

RC VA SA ST

SA ST

RC/
VA

SA/
ST

SA/
ST

RC/
VA

SA/
ST

SA/
ST

p0_head

p0_flit1

p1_head

p1_flit1

Default 4-cycle hops 2-cycle hops

Fig. 5. Pipeline diagrams for min-2-cycle and max-4-cycle hop cases.
Merging RC/VA is acceptable for systems with trivial routing policies.
Merging SA/ST is acceptable for low-radix routers.

through the network. Formally, the route computer generates
a hardware implementation of:

RN : FN , VN , V̂N → B (2)

Where FN ⊂ F represents only the subset of flows that might
arrive at router N , VN ⊂ V contains the virtual channels that
inject to router N and V̂N ⊂ V contains the virtual channels
that eject from router N . Since FN , VN , and V̂N are each
known after the validation phase, the generator can generate
the minimal hardware for correct point-to-point routing on the
network by using the Quine-McCluskey method to generate
the decode table.

For virtual-channel allocation, several different allocator
generators are provided, including generators for iSLIP and
PIM [16], [17]. The default router generator implements a
crossbar switch. All the generators for the router components
are fully generalized and can be used for any routing policy,
for any NoC topology. The router generators can also take
advantage of the optimization opportunities discovered by the
parameter validation.

The resulting RTL is fully synthesizable, and can be passed
to physical design tools, or coupled with synthetic traffic
generators for standalone evaluation of the network.

III. SOC INTEGRATION

While the intent for Constellation was to support stan-
dard SoC memory transport protocol, it was designed to be
protocol-independent. As a result, Constellation exposes only
a very minimal packet interface at the endpoints, shown in
Table II.

Higher-level protocols, such as the AMBA family or
TileLink, typically are decomposed into channels, with each
channel carrying some subset of message types [18], [19].
Furthermore, deadlock-freedom guarantees in the protocol are

TABLE II
ENDPOINT PACKET/FLIT INTERFACE.

Field Width
head 1
tail 1
payload configurable
ingress_id log2(# ingresses)
egress_id log2(# egresses)

only provided if non-blocking properties between channels are
met. The complexity increases when recursive messages are
present, as in the case where L1-to-LLC and LLC-to-DRAM
messages share the same network resources.

The simple approach would be to route each channel on an
independent network, while a more efficient implementation
would try to multiplex several channels onto the same routing
resources. Constellation supports both use cases, as it can be
configured with an arbitrary number of virtual subnetworks,
while each virtual subnetwork is mapped to an individual
protocol channel.

Network interfaces convert a standard high-level protocol
to the simple packet format in Constellation. These blocks
convert the protocol-level routing information, typically in the
form of an address, to the egress_id field in a Constellation
packet. The protocol channel identifier is implicitly encoded in
this field as well. All other fields in the protocol message can
be packed in the payload field. The network interface can
arbitrarily convert protocol messages to Constellation packets,
as there is no limit on the length of a Constellation packet.

Notably, Constellation does not maintain ordering between
packets corresponding to the same flow, breaking some of the
ordering assumptions in protocols like AXI-4, where messages
with the same source ID and destination remain ordered.
Constellation assumes that endpoint buffering can recover
ordering in such cases, and we note that recent revisions of the
AMBA protocols suggest that endpoint reordering is expected
in modern NoC implementations [20].

IV. USING CONSTELLATION

Listing 2. Configuring a heterogeneous SoC with a heterogeneous Constel-
lation NoC by mixing provided specification fragments.
class HeteroSoCArchConfig(

WithNGPUCores(6),
WithNSmallCores(2),
WithNBigCores(1),
WithNMiniCores(0),
WithNCacheBanks(2),
WithNDRAMChannels(2),
WithScratchpad)

class HeteroNoCSoCConfig(
constellation.WithMapping(Map(

"big_core" -> 4, "small_core0" -> 1, ...)),
constellation.WithSBusNoC,
constellation.WithNode(node=4, combineRCVA=true),
constellation.WithChannel(src=0, dst=4, nVC=5),
constellation.WithUniformChannels(nVC=4),
constellation.WithRouting(Mesh2DEscapeRouting(4,4)),
constellation.WithTopology(Mesh2D(4,4)),
HeteroSoCArchConfig())

While Constellation can model highly irregular NoC archi-
tectures, it is designed to remain accessible to SoC architects
without a deep background in NoC implementation. Although

the detailed specification system allows for fine-grained con-
trol over the NoC generator, a library of existing definitions
encodes the specification of common design points, as shown
in Listing 2. Example topology and routing definitions for
configurable torus, butterfly, tree, and mesh topologies are
provided.

Specification fragments for router microarchitecture, chan-
nel parameterization, and legal flows are also provided. These
fragments are generally orthogonal to each other, allowing
them to be composed together to describe a very large design
space of potential NoCs.

For SoC integration, protocol converters for AMBA AXI-4
and TileLink are provided, in addition to specification frag-
ments that properly set up the virtual subnetwork mapping for
protocol channels. While the AXI-4 and TileLink converters
can be used to generate a standalone, protocol-compliant NoC,
they can also integrate Constellation with Rocketchip’s Diplo-
matic memory system graph framework. This enables plug-
and-play integration into Chipyard or Rocketchip-based SoCs,
replacing the existing crossbar-based interconnects in these
systems with Constellation-generated NoCs. To support SoC-
level evaluation of Constellation, we integrate Constellation
into Chipyard, making it the default NoC implementation for
all Chipyard-based SoCs.

A. NoC Evaluation

Although Constellation was designed to support full-system
SoC-level evaluation, it still provides functionality for evaluat-
ing the NoC in isolation. An included C++ traffic injection and
measurement framework integrates with an RTL simulation
of a Constellation NoC through DPI calls. The tool models
warmup, measurement, and drain phases of evaluation, and
collects statistics on per-flow bandwidth and latency, similar
to the Booksim SW modeling framework [21].

This tool can be extended to support a variety of different
traffic pattern generators. Currently, the “Synthetic” model lets
the user specify per-flow injection rates, while the “Netrace”
model uses trace-driven dependency-graph models of NoC
traffic from the Netrace framework [22].

For SoC-level evaluation, Constellation can generate per-
physical-channel performance counters. These counters can be
memory mapped and read by system software to monitor NoC
behavior.

B. NoC Testing

To provide confidence in Constellation-generated designs,
and to support the health of the project, Constellation includes
a large battery of functional regression tests. A pull request
to the Constellation repository triggers over 100 different
regression tests across a wide set of configurations. Simple
tests use a no-protocol traffic generator to load the network,
confirm all packets are routable, and the network does not
deadlock. AXI-4 and TileLink protocol-level tests confirm that
the protocol interfaces correctly encode and decode protocol
messages, and that the network is free from protocol deadlock.

Finally, performance tests verify that any requested desired
throughput, median latency, and max latency are achieved.

Collectively, these tests run millions of cycles of NoC
simulation on every pull request. In the development of
Constellation, they were extremely useful at catching obscure
RTL bugs or performance regressions, and we hope they will
encourage future community contributions.

V. USE CASES

We discuss several representative use cases for Constella-
tion, demonstrating independent NoC exploration and eval-
uation using Constellation’s features, as well as full-system
SoC-integrated evaluation.

A. NoC Exploration

App Core

LLC
Bank 1

Efficient
Core 0

Efficient
Core 1

LLC
Bank 1

GPU
Core 0

GPU
Core 1

GPU
Core 2

GPU
Core 3

GPU
Core 4

GPU
Core 5

IO Core

Scratch
SRAM

IO

DRAM
Chan. 1

DRAM
Chan. 0

64 64 64

64 64 64

64 64 64

64 64 64

64

64

64

64

64

64

64

64

64

64

64

64
0 1

45

2

3

App Core
LLC

Bank 1

LLC
Bank 1

Efficient
Core 0

Efficient
Core 0

IO CoreIO

Scratch
SRAM

GPU
Core 0

GPU
Core 1

GPU
Core 2

GPU
Core 3

GPU
Core 4

GPU
Core 5

64

64

64

64

64

64

64

DRAM
Chan. 0

DRAM
Chan. 0

2x64b 2x64b

2x64b 2x64b

2x64b 2x64b

64

64

64

64

64

64

64

64

64

64646464
64

Fig. 6. Example NoC architectures for a hypothetical heterogeneous SoC.
Both the regular 2D mesh NoC and the irregular NoC can be described.

We consider a hypothetical heterogeneous SoC architecture
with a single high-performance application core, 2 low-power
“efficiency” cores, a 6-core GPU complex, and an I/O proces-
sor core. The memory system of this SoC contains 2 banks of
LLC cache, 2 DRAM channels, 1 incoherent scratchpad, and
1 I/O channel.

We first choose to map the SoC architecture to a con-
ventional 4x4 2D mesh NoC, with adaptive-minimal rout-
ing, shown in Figure 6. Deadlock-freedom is provided by
dimension-ordered escape channels. We configure Constella-
tion to generate a NoC for this design using existing library
specification fragments.

Figure 6 also shows an alternative hypothetical topology
for this SoC. The memory system is distributed along a high-
bandwidth ring, with subgraphs isolating some local traffic.
Despite the changes, this topology is still logically equivalent
to the regular mesh, with all managers accessible to all clients.
We leverage the flexibility of the Constellation specification
framework to rapidly describe the physical topology and
routing algorithm of this new system. Defining the topology
and routing together takes fewer than 100 lines of code, with
the NoC framework automating much of the validation and
RTL elaboration.

We approximate a traffic matrix for this system, and use
Constellation’s synthetic traffic evaluation tool to evaluate
latency and under synthesized load. The traffic matrix used
in this experiment approximates traffic in a heterogeneous
architecture, where the cores access L2 at different rates, the
I/O core predominantly acceses I/O, and DRAM is primarily

Fig. 7. Packet latency histogram comparing the two configurations in Section
V-A.

0 1

45

2

3

App Core
LLC

Bank 1

LLC
Bank 1

Efficient
Core 0

Efficient
Core 0

IO CoreIO

Scratch
SRAM

GPU
Core 0

GPU
Core 1

GPU
Core 2

GPU
Core 3

GPU
Core 4

GPU
Core 5

DRAM
Chan. 0

DRAM
Chan. 0

Fig. 8. A low-cost, low-bandwidth control NoC sits alongside the main data
NoC in a hypothetical SoC.

accessed by the GPU cores and L2 banks. Figure 7 shows the
results of simulation from the tool. Under our defined traffic
matrix, the irregular topology reduces median latency using
lower-radix routers, at the expense of tail latency.

B. SoC Design

Approximate RTL for the hypothetical SoC in Section
V-A can be generated when running Constellation within the
Chipyard SoC generator framework. We use a RISC-V BOOM
core to represent the application core and RISC-V Rocket
cores for the efficiency and IO cores [23]. We also use Rocket
as a rough approximation for the GPU cores.

While the NoC in Section V-A provides low-latency, high-
bandwidth data movement through the SoC, we observe that
a low-power, latency-insensitive ”control” NoC is useful for
out-of-band system monitoring and configuration. Since Con-
stellation is integrated as a generic NoC generator, we can
use it to implement a narrow 16-bit wide ring ”control” NoC
alongside the main data NoC.

To demonstrate this, we run a simple test where the IO-core
monitors NoC traffic, and throttles the efficiency cores if the
traffic from the L2s exceeds some threshold. When software-
managed throttling is enabled, the application-core memcpy
throughput is 1.3x the case when throttling is disabled.

C. Many-core Architectures

Constellation can scale-out to implement many-core SoC
NoCs. We configured a hypothetical SoC with 72 RISC-V
cores, 64 banks of LLC, and 8 DRAM channels with an 8x8
mesh NoC. Constellation was able to elaborate functioning
RTL for the NoC in this system.

Fig. 9. A heterogeneous multi-core SoC designed and taped-out by 20
undergraduates in an advanced undergraduate course, featuring a 10-node ring
network. Red indicates NoC router components.

D. Test-chip Evaluation

In a recent VLSI course at our institution, 20 undergrad-
uate students were coached to develop and tape-out a multi-
core heterogeneous SoC in an advanced process node. The
Constellation generator was provided to them, along with the
rest of the Chipyard SoC generator framework. The students
developed a multi-core SoC for low-precision sparse machine
learning and pixel processing, with 5 heterogeneous cores
attached to a banked memory subsystem through a ring
configuration of the Constellation NoC.

Constellation acted as the system backbone for this project,
simplifying integration in a hierarchical design flow. The
memory system closed timing at 500 MHz in this technology,
for a 64b-wide 12-node ring interconnect. The successful
tapeout of this configuration demonstrates how Constellation
is useful for scaling out heterogeneous test-chips, or for simply
getting physical design feedback for NoC configurations.

VI. RELATED WORK

A. NoC Generators

OpenSoC and OpenSMART are Chisel-based NoC gen-
erators supporting several configurable topologies [8], [9].
OpenSoC supports mesh and butterfly topologies, as well
as AXI-4 transport. While the BSV variant OpenSMART
supports arbitrary topologies, we found that the open-source
Chisel variant of OpenSMART only provides support for fixed
2D Mesh topologies. OpenSMART also does not implement
any real interconnect protocol.

Unlike OpenSoC and OpenSMART, Constellation imple-
ments a multi-phase decoupled approach to NoC generation,
enabling more detailed fine-grained customization of NoC
implementation, and out-of-the-box support for a much wider
set of design points.

CONNECT and Nocgen are other NoC generator frame-
works that support varied topologies and configurations [10],
[11]. However, these frameworks do not provide support for
transporting a real interconnect protocol, and are thus not
suitable for integration into an SoC.

Paulo et. al. proposes a framework for homogeneous NoCs
implemented on a heterogeneous floorplan [24]. Unlike this

work, Constellation is capable of generating synthesizable
RTL for arbitrary heterogeneous NoC configurations.

Unlike all of these systems, Constellation was designed with
SoC integration as a first-order goal, while still providing
convenient interfaces for low-level NoC design exploration.
Constellation’s specification system also provides a far more
expressive mechanism for concisely describing a wide set of
topologies and routing policies. Additionally, we believe the
fine-grained per-channel and per-router configuration space in
Constellation expands the potential design space far beyond
what existing frameworks support.

B. SoC Design Frameworks

Open-source SoC design frameworks provide a unified,
accessible flow for generating and evaluating SoCs. ESP,
OpenPiton, Chipyard, and Blackparrot are prominent research
frameworks in this space, and all have implemented various
features to enable rapid design space exploration of custom
SoCs [25]–[28].

ESP, OpenPiton, and BlackParrot all implement config-
urable 2D mesh NoCs with dimension-ordered routing. While
these NoCs are scalable to large meshes, they have fixed
topology, and implement a fixed custom coherence protocol.
Unlike Constellation, these systems cannot express a highly
irregular NoC with fine-grained configurability. Constellation
is also protocol agnostic, and supports exploration of protocol
mapping strategies or development of new communication
protocols.

Chipyard uses Rocketchip’s library of memory system com-
ponents to generate its SoC subsystem [29]. These projects
generate the subsystem using Diplomacy, an abstract graph
framework for representing memory systems [30]. The stan-
dard implementation of a memory system in Chipyard and
Rocketchip is a crossbar-based interconnect, not a NoC. Con-
stellation plugs into Chipyard and Rocketchip as a diplomatic
widget, replacing any existing crossbar interconnect with a
configurable NoC.

VII. CONCLUSION

Constellation is a new Chisel NoC generator for enabling
design exploration and evaluation of heterogeneous NoCs.
Unlike existing frameworks, Constellation was developed with
heterogeneity and SoC integration as first-order concerns.
Constellation provides an expressive, decoupled specification
system, a modular multi-phase generator architecture, and an
extensible evaluation framework to make it useful for both
NoC researchers and SoC architects. Constellation is open-
sourced 2 and upstreamed as the standard NoC implementation
for the Chipyard SoC framework.

2github.com/ucb-bar/constellation

https://github.com/ucb-bar/constellation

REFERENCES

[1] C. Jacobi and C. A. Z. P. Design, “Real-time ai for enterprise workloads:
the ibm telum processor.,” in HCS, pp. 1–22, 2021.

[2] J. Redgrave, A. Meixner, N. Goulding-Hotta, A. Vasilyev, and
O. Shacham, “Pixel visual core: Google’s fully programmableimage,
vision, and ai processor for mobile devices,” in Proc. IEEE Hot Chips
Symp.(HCS), pp. 1–18, 2018.

[3] D. Suggs, M. Subramony, and D. Bouvier, “The amd “zen 2” processor,”
IEEE Micro, vol. 40, no. 2, pp. 45–52, 2020.

[4] E. Rotem, Y. Mandelblat, V. Basin, E. Weissmann, A. Gihon, R. Chabuk-
swar, R. Fenger, and M. Gupta, “Alder lake architecture,” in 2021 IEEE
Hot Chips 33 Symposium (HCS), pp. 1–23, IEEE, 2021.

[5] A. Frumusanu, “Apple announces the apple silicon m1: Ditching x86 -
what to expect, based on a14,” Accessed: 2022-7-25.

[6] Y. S. Shao, B. Reagen, G.-Y. Wei, and D. Brooks, “The aladdin approach
to accelerator design and modeling,” IEEE Micro, vol. 35, no. 3, pp. 58–
70, 2015.

[7] M. Hill and V. J. Reddi, “Gables: A roofline model for mobile socs,”
in 2019 IEEE International Symposium on High Performance Computer
Architecture (HPCA), pp. 317–330, IEEE, 2019.

[8] F. Fatollahi-Fard, D. Donofrio, G. Michelogiannakis, and J. Shalf,
“Opensoc fabric: On-chip network generator: Using chisel to generate a
parameterizable on-chip interconnect fabric,” in Proceedings of the 2014
International Workshop on Network on Chip Architectures, pp. 45–50,
2014.

[9] H. Kwon and T. Krishna, “Opensmart: Single-cycle multi-hop noc
generator in bsv and chisel,” in 2017 IEEE International Symposium
on Performance Analysis of Systems and Software (ISPASS), pp. 195–
204, IEEE, 2017.

[10] M. K. Papamichael and J. C. Hoe, “The connect network-on-chip
generator,” Computer, vol. 48, no. 12, pp. 72–79, 2015.

[11] J. Chan and S. Parameswaran, “Nocgen: A template based reuse
methodology for networks on chip architecture,” in 17th International
Conference on VLSI Design. Proceedings., pp. 717–720, IEEE, 2004.

[12] W. J. Dally et al., “Virtual-channel flow control,” IEEE Transactions on
Parallel and Distributed systems, vol. 3, no. 2, pp. 194–205, 1992.

[13] W. J. Dally and C. L. Seitz, “Deadlock-free message routing in multi-
processor interconnection networks,” 1988.

[14] J. Duato, “A necessary and sufficient condition for deadlock-free adap-
tive routing in wormhole networks,” IEEE Transactions on Parallel and
Distributed Systems, vol. 6, no. 10, pp. 1055–1067, 1995.

[15] W. J. Dally and B. P. Towles, Principles and Practices of Interconnection
Networks. Elsevier, 2004.

[16] N. McKeown, “The islip scheduling algorithm for input-queued
switches,” IEEE/ACM transactions on networking, vol. 7, no. 2, pp. 188–
201, 1999.

[17] T. E. Anderson, S. S. Owicki, J. B. Saxe, and C. P. Thacker, “High-
speed switch scheduling for local-area networks,” ACM Transactions on
Computer Systems (TOCS), vol. 11, no. 4, pp. 319–352, 1993.

[18] SiFive, SiFive Tilelink Specification, 2021. 1.8.1.
[19] ARM Limited, AMBA® AXI and ACE Protocol Specification, 2021. H.c.
[20] F. Socal, “Amba moves forward with major revisions to axi and chi

specifications,” Accessed: 2022-7-25.
[21] N. Jiang, G. Michelogiannakis, D. Becker, B. Towles, and W. J. Dally,

“Booksim 2.0 user’s guide,” Standford University, p. q1, 2010.
[22] J. Hestness, B. Grot, and S. W. Keckler, “Netrace: Dependency-driven

trace-based network-on-chip simulation,” in Proceedings of the Third
International Workshop on Network on Chip Architectures, pp. 31–36,
2010.

[23] J. Zhao, B. Korpan, A. Gonzalez, and K. Asanovic, “Sonicboom: The
3rd generation berkeley out-of-order machine,” in Fourth Workshop on
Computer Architecture Research with RISC-V, vol. 5, 2020.

[24] V. De Paulo and C. Ababei, “A framework for 2.5 d noc exploration
using homogeneous networks over heterogeneous floorplans,” in 2009
International Conference on Reconfigurable Computing and FPGAs,
pp. 267–272, IEEE, 2009.

[25] P. Mantovani, D. Giri, G. Di Guglielmo, L. Piccolboni, J. Zuckerman,
E. G. Cota, M. Petracca, C. Pilato, and L. P. Carloni, “Agile soc devel-
opment with open esp,” in 2020 IEEE/ACM International Conference
On Computer Aided Design (ICCAD), pp. 1–9, IEEE, 2020.

[26] J. Balkind, M. McKeown, Y. Fu, T. Nguyen, Y. Zhou, A. Lavrov,
M. Shahrad, A. Fuchs, S. Payne, X. Liang, et al., “Openpiton: An open

source manycore research framework,” ACM SIGPLAN Notices, vol. 51,
no. 4, pp. 217–232, 2016.

[27] D. Petrisko, F. Gilani, M. Wyse, D. C. Jung, S. Davidson, P. Gao,
C. Zhao, Z. Azad, S. Canakci, B. Veluri, et al., “Blackparrot: An agile
open-source risc-v multicore for accelerator socs,” IEEE Micro, vol. 40,
no. 4, pp. 93–102, 2020.

[28] A. Amid, D. Biancolin, A. Gonzalez, D. Grubb, S. Karandikar, H. Liew,
A. Magyar, H. Mao, A. Ou, N. Pemberton, et al., “Chipyard: Integrated
design, simulation, and implementation framework for custom socs,”
IEEE Micro, vol. 40, no. 4, pp. 10–21, 2020.

[29] K. Asanovic, R. Avizienis, J. Bachrach, S. Beamer, D. Biancolin,
C. Celio, H. Cook, D. Dabbelt, J. Hauser, A. Izraelevitz, et al., “The
rocket chip generator,” EECS Department, University of California,
Berkeley, Tech. Rep. UCB/EECS-2016-17, vol. 4, 2016.

[30] H. Cook, W. Terpstra, and Y. Lee, “Diplomatic design patterns: A tilelink
case study,” in 1st Workshop on Computer Architecture Research with
RISC-V, 2017.

	Introduction
	Generator Design
	Parameterization Phase
	Logical specification
	Physical specification
	Routing specification

	Validation Phase
	Elaboration Phase

	SoC Integration
	Using Constellation
	NoC Evaluation
	NoC Testing

	Use Cases
	NoC Exploration
	SoC Design
	Many-core Architectures
	Test-chip Evaluation

	Related Work
	NoC Generators
	SoC Design Frameworks

	Conclusion
	References

