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Abstract—In this paper, a three-class machine learning (ML)
model is implemented on an unmanned aerial vehicle (UAV) with a
Raspberry Pi processor for classifying two global positioning system
(GPS) spoofing attacks (i.e., static, dynamic) in real-time. First,
several models are developed and tested utilizing a dataset collected
in a previous work. This dataset conveys GPS-specific features,
including location information. Models evaluations are carried out
using the detection rate, F-score, false alarm rate, and misdetection
rate, which all showed an acceptable performance. Then, the
optimum model is loaded to the processor and tested for real-time
detection and classification. Location-dependent applications, such
as fixed-route public transportations are expected to benefit from
the methodology presented herein as the longitude, latitude, and
altitude features are characterized in the developed model.

Index Terms— Global positioning system (GPS), machine learning
(ML), spoofing classification, unmanned aerial vehicles (UAVs).

I. INTRODUCTION

HE contributions of unmanned arial vehicles (UAVs)

have exponentially increased in many applications, such

as infrastructure inspection, traffic surveillance, landslide
monitoring, 3D modeling of historic sites, urban planning,
disaster management, communications for hard-to-reach areas,
modern agriculture, transportation, and mailing delivery [1-3].
These critical applications leverage the grave importance of
maintaining the cybersecurity and trustworthiness of UAVs
against threats that may lead to irreversible consequences.

A wide range of cyberattacks endangers the UAVs integrity by
targeting different components, such as the onboard sensors and
modules [4]. One instrumental yet vulnerable component is the
global positioning system (GPS) receiver, which uses
unencrypted communications to obtain the UAV location. Due to
this unencrypted nature, attacks including GPS spoofing can be
launched to falsify positioning awareness, resulting in damaging
private properties, public infrastructure, or compromising both the
payload and technology [5—10]. Thus, different spoofing detection
solutions were studied, such as autocorrelating received signals,
exploiting spatial processing, comparing GPS data with that from
other measurement units (e.g., inertia unit), using vision-based
methods, and featuring artificial intelligence [11-19]. Although
such solutions were successfully validated, they require hardware
modifications or expensive computations, and face practical
limitations, especially those developed in simulated environments.

In a previous work, multiple scenarios were established and
demonstrated for two UAV-tailored spoofing attack types:
static and dynamic [20]. These scenarios allowed for collecting
a dataset comprising several GPS features and developing
machine learning (ML) models for detecting and classifying
GPS spoofing. The developed models were trained, validated,
and tested and their performance was evaluated. The work
presented herein differs from [20] in the following aspects:

1. Several ML classifiers are trained and tested with a
subset of the features collected in [20]. These features
are readily available, in real-time, without modifying
the existing messaging protocol that facilitates the
communications between the onboard GPS receiver,
flight controller, and the processor (i.e., Raspberry P1i).

2. A spoofing detection and classification solution is
hosted in the aforementioned processor via a routine
that characterizes the optimum resulting ML classifier
and is validated with received GPS data in real-time.

The remaining of this article is organized as follows: Section
II details the development and evaluation of different ML
models for detecting and classifying GPS spoofing. Section III
elaborates on implementing the optimum model, enabling the
UAYV to classify, in real-time, two types of spoofing attacks.
Finally, conclusion and future work are provided in Section I'V.

II. CLASSIFIERS DEVELOPMENT AND TESTING

In [20], three distinctive scenarios were established to collect
a dataset capturing three cases of a UAV: 1) under no attack, 2)
experiencing a static attack, and 3) experiencing a dynamic
attack. The static attack forces the target to lock on a fake GPS
signal with a location defined by the adversary that is different
from the actual target location. On the other hand, in a dynamic
attack, a GPS signal with moving coordinates along a
predefined path is launched by the adversary to spoof the
target’s flightpath with a fake one, even though it may be
stationary or moving along a different path. The resulting
dataset conveyed twenty-seven GPS-specific signal features for
developing location-dependent and location-independent
spoofing classification schemes. The former scheme contains
location-specific features (e.g., latitude, longitude, altitude);
whereas the latter scheme does not use such features to develop
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TABLE I TABLE II
GPS FEATURES DESCRIPTION OPTIMIZED HYPERPARAMETERS
Extracted Feature Short Description Unit Category Classifier Parameter
lat Latitude in 1E-7 Degrees Ensemble RF Quality of split criterion: Log loss
lon Longitude in 1E-7 Degrees Max. tree depth: 21
alt Altitude in 1E-3 above sea level Millimeters Min. number of samples at a leaf node: 33
hdop Horizontal dilution of precision - Min. number of samples to split a node: 183
vdop Vertical dilution of precision - Number of trees: 129
vel GPS ground speed Meters/second Cost-complexity pruning parameter: 9.3E-3
COG Course over ground Radians Instance KNN Leaf size: 48
satellites Number of satellites used — Number of neighbors: 12
Weight function: Distance
the ML classifiers. In this work, the location-dependent scheme Nearest neighbor comp. algorithm: Brute
. ht i . it d . dificati Distance metric: Euclidean
is brought 1.nto practice as it does 1.10t require modi 1ca.t10ns to Power parameter for distance metric: 4
the messaging protocol (more details are given in Section III). SVM  Norm used in penalty: L2
In other words, the existing protocol forwards the location- Bossl function: Squalred ﬁlilngeF |
. . . . . ual optimization algorithm: False
depend.el.lt features‘together with the horizontal/vertical dilution Max. number of iterations: 701
of precision, velocity, course over ground, and number of seen Regularization parameter: 9.479
satellites to the processor from the GPS receiver through the Regularization LR Optimization: Stochastic AVG gradient
flight controller without modifying the protocol in the flight Norm used in penalty: None
. Regularization parameter: 2.079
controller firmware. Table I summarizes the features used to Max. number of iterations: 834
implement the real-time detection and classification solution. It Tree DT Quality of split criterion: Log loss
is noteworthy to point out that further details about the attack Max. tree depth: 21
. Min. number of samples at a leaf node: 33
setups and the overall set of features can be found in [21]. Min. number of samples to split a node: 183
. . . Node split strategy: Best
The features in Table I are analyzed for correlation using the Cost {inlexityplguynmg parameter: 9.3E-3
Spearman algorithm, which assumes nonlinearity among features. Neural network MLP Optimization: Limited-memory Broyden—
The resulting correlation depicted in Fig. 1 suggests weakly Fletcher-Goldfarb—Shanno
lated pairs: th lidating thei f del devel t Hidden layers and neurons: 1 and 232
corre ated pairs; thus, valida ing their use for model developmen Activation function: Logistic
without the need for feature elimination. Also, a standard scaling Max. number of iterations: 866
is applied such that x;” = (x; — w)/a;, where x; is the scaled i 1}52 qegilmz_a“onT term strength: 93.7E-3
th ) i arly stopping: True
Sam.p 1? of the] feature, and 4 a.nd. oj are the mean and Sta.ndard Bayesian Gaussian NB  Smoothing stability parameter: 23.96E-3
deviation of the sample values within the j* feature, respectively.
TP +TN
A total of 37,506 samples per feature are used to develop Detection Rate (DR) = —————— (1.a)
seven models; particularly, random forest (RF), k-nearest TP+IN+FP+FN
neighbor (KNN), multi-layer perceptron (MLP), logistic » TP
. .. . Precision = —— (1.0)
regression (LR), decision tree (DT), support vector machine TP + FP
(SVM), and naive Bayes (NB). Model development entailed P
optimizing the associated hyperparameters using random Recall = —— (1.0)
search; whereas training and testing are carried out following a TP+ FN
10-fold cross-validation process. Training, validating, and 2 x Precision x Recall 1
. . . F1-score (FS) = (1.d)
testing the ML models are performed on a PC with 64-bit Precision + Recall
Windows 10, AMD® Ryzen™ 7 3700X CPU @ 3.6 GHz Fp
processor and 32 GB of DDR4-3600 MHz memory. Table II False Alarm Rate (FAR) = ———— (l.e)
shows the optimized parameters for all the models; whereas FP+IN
Table III presents their evaluation scores, characterized by the . . FN
. P .. y Misdetection Rate (MDR) = ———— (1.9
detection rate (DR), Precision, Recall, F-Score (FS), false alarm TP + FN

rate (FAR), and miss detection rate (MDR). The DR is a
measure of the percentage of correctly classified samples. The
precision measures the classifier performance in classing
negative samples as negatives and positive samples as positives.
The recall measures the ability of the classifier to correctly
predict all positive samples. The FS calculates the harmonic
mean of the precision and recall. The FAR measures the
probability of false detection. Finally, the MDR measures the
probability of not detecting an attack. It is paramount to point
out that the aforementioned evaluation metrics are obtained
with the use of the following equations:

where TP, TN, FP, and FN are the positive samples predicted
as positive (i.e., true positive), negative samples predicted as
negative (i.e., true negative), negative samples predicted as
positive (i.e., false positive), and positive samples predicted as
negative (i.e., false negative), respectively. Table III illustrates
that RF has the optimum performance with a DR of 91.78%,
FAR 0f 5.50%, and MDR of 9.66%, these scores are associated
with a reasonable prediction time of 43.36 ms. On the other
hand, LR, DT, and SVM have demonstrated the lowest
prediction times among all the developed models at the expense
of either lower DRs and/or higher MDRs.
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TABLE III
ML MODELS EVALUATION SCORES (PT: PREDICTION TIME)
Model DR (%) Precision (%) FS FAR (%) MDR (%) PT (ms)
RF 91.78 92.44 0.91 5.50 9.66 43.36
KNN 85.11 86.33 0.84 9.01 22.96 109.28
MLP 88.70 89.35 0.88 7.42 13.24 22.36
LR 66.06 73.28 0.67 19.02 27.14 0.29
DT 89.26 89.64 0.89 6.64 16.68 0.29
SVM 70.47 79.77 0.72 15.48 24.03 0.29
NB 84.95 86.74 0.84 8.38 23.41 137
1.00 1. The values of & and o; for each feature are stored in the
- 075 classification model (hosted at the processor) to scale the
mmm- ' received live samples. Such values are obtained from the
0.50 training dataset as detailed in Section II.
-0.3; -0.089  -0.098 -0.093
--- 0.25 2. The MAVLink GPS RAW INT messages are streamed to a
hdop preprocessing routine for the extraction of features. Here,
o 0.00 feature samples are scaled with x4 and o; and are fed to the
0.5 hosted RF classification model.
050 3. The predicted class is appended to an array to calculate live
COG ﬂ accuracy rates. Classes 0, 1, and 2 are assigned for no attack,
~0.75 static attack, and dynamic attack, respectively. Such
saelies m 100 accuracies are calculated as follows:

COG satellites

lat lon alt hdop  vdop vel

Fig. 1. Spearman correlation of the features described in Table L

The resulting optimum model (i.e., RF) is also tested on the
Raspberry Pi processor to compare its training and prediction
times with those achieved with the PC. Such a processor is
equipped with 64-bit ARM Cortex-A72 quad-core CPU @ 1.5
GHz and 1 GB of memory. Table IV shows that the Raspberry
processor has a prediction time of 671.74 ms, which is
significantly higher than its counterpart obtained with the PC.
Nevertheless, the reported times are from predicting the entire
testing dataset, which consists of 9,600 samples. Hence, the
resulting prediction time per sample with the Raspberry Pi is
around 70 ps, facilitating real-time detection and classification.

III. IMPLEMENTATION AND EVALUATION

In this section, the RF model developed in Section II is
implemented on an open-source Clover drone from COEX,
which is equipped with a Pixracer flight controller that uses
PX4 autopilot and a u-blox M8 GPS receiver [22-24]. The RF
model is loaded to the onboard processor, which is interfaced
with the flight controller via a USB connection. The micro air
vehicle link (MAVLink) messaging protocol is used to live
stream the data collected by the GPS receiver module through
the flight controller to the processor. In particular, the
GPS_RAW INT message is utilized to stream the eight features
detailed in Table I. Fig. 2 shows the configuration of the
hardware tools and their functions in validating the real-time
classification procedure, which can be summarized as follows:

TABLE IV
PC AND RASPBERRY COMPARISON (TT: TRAINING TIME, PT: PREDICTION TIME)
Device TT (ms) PT (ms)
PC 1515 43
Raspberry Pi 18602 671

No. of correctly predicted samples
Accuracy (%) = )
Total No. of predicted samples

4. The actual attack, its classification, and the live accuracy
are printed and saved for further processing.

Hardware

GPS receiver

Flight controller

Raspberry Pi

use

(@]
@blox
Capture GPS signal
e Compute GPS features
e Forward features to flight

controller

Execute .py routine

Load trained model

Stream GPS_RAW_INT
Predict spoofing in real-time
Calculate accuracy with (2)
Print prediction and accuracy
Write prediction to text file

Process GPS features

e Create Mavlink messages
o Send messages to Raspb-Pi

e o 0o 0 0 0

Fig. 2. The hardware devices and their functions in detecting and classifying
the GPS spoofing attacks.

Algorithm: Real-Time GPS Spoofing Classification
Define Class_Actual =0, 1, or 2

: Procedure: Real Time GPS_Spoofing_Classification
: Load the values of i; and g; for each feature

: Load trained MLmodel

File = open(Output_File.txt)

: Start live-streaming GPS_ features

: Standardize the features using x; and g;

: Prediction = MLmodel.predict(GPS_Features)

: Class.append(Prediction)

9: DR = DetectionRate(Class_Actual, Class)
10: Loop: for each Prediction do

11: print Prediction to console window

12: print DR to console window

13: File.write(Prediction, DR, Class_Actual)

14: end for

15: end Procedure

Fig. 3. Pseudocode of the GPS spoofing classification procedure.
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Prediction ACC(%) Actual class Prediction ACC(%) Actual class Prediction ACC(%) Actual class
1. 0 1.00 0 1. 1 1.00 1 1. 2 1.00 2
2.0 1.00 0 2. 1 1.00 1 2: 2 1.00 2
30 1.00 0 31 1.00 1 32 1.00 2
4. 0 1.00 0 4. 1 1.00 1 4: 2 1.00 2
5 0 1.00 0 5 2 0.80 1 5 2 1.00 2
6: 0 1.00 0 6: 1 0.83 1 6: 2 1.00 2
7. 0 1.00 0 7: 1 0.86 1 7. 2 1.00 2
8: 0 1.00 0 8 1 0.88 1 8 2 1.00 2
9: 0 1.00 0 9: 1 0.89 1 9. 2 1.00 2
10: O 1.00 0 10: 1 0.90 1 10 2 1.00 2

(@ ®) ©

Fig. 4. Model output file in the case of exposing it to live data samples of (@) clean (i.e., no attack), () static attack, and (c) dynamic attack.

Predicted Label
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Fig. 5. Confusion matrix of the real-time classification test.

Fig. 3 depicts a pseudo code for the real-time classification
procedure, which is tested with live data presenting classes 0,
1, and 2. The attacks are prepared using the open-source library
GPS-SDR-SIM and launched with an Ettus B210 software
defined radio [25, 26]. Static spoofing is created by specifying
the fake coordinates, which are fed to GPS-SDR-SIM along
with the ephemeris data file that conveys precise information
about the satellites orbits. Then, GPS-SDR-SIM generates the
attack file, which consists of the bit stream of the spoofing signal.
This generated file is loaded into GNURadio, which is the
companion software for the B210 that is used to launch the attack.
On the other hand, dynamic spoofing is created by generating a
user motion file using SatGen3 [27]. This file contains the
moving coordinates of the spoofed flightpath along with the
altitudes and velocities. This motion file is used in GPS-SDR-
SIM in conjunction with the ephemeris data to generate the attack
file, which is then launched via the radio. Elaborations on both
attacks with greater details can be found in [20, 21].

Sample output files of the classification model are shown in Fig.
4. Each class is executed individually for a length of 100 samples.
With these samples, the model yielded a DR of 98.67%. Also, this
live real-time testing achieved an excellent overall FAR of 1.00%
and MDR of 2.00% as depicted from the confusion matrix shown
in Fig. 5. The values of such metrics will be in proximity to those
reported in Table III as more samples are fed to the model.

IV. CONCLUSION

A real-time ML model for classifying static and dynamic
GPS spoofing attacks is implemented on an open-source UAV
with an onboard Raspberry Pi processor. The training data is
obtained from a previous work. Only the features that do not
impose modifications on the messaging protocol are used to
develop the model. These features include the 3D coordinates;
therefore, this study is best suited for fixed route applications.
The resulting model is evaluated and tested, and the associated
DR, FS, FAR, and MDR are 91.78%, 0.91, 5.50%, and 9.66%,
respectively. The open-source nature of the hardware and
software used herein justify the adoption of the proposed model
in a wide variety of readily available UAVs. Future work entails
exploring GPS spoofing attack mitigation techniques.
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