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Abstract—In this paper, a three-class machine learning (ML) 

model is implemented on an unmanned aerial vehicle (UAV) with a 

Raspberry Pi processor for classifying two global positioning system 

(GPS) spoofing attacks (i.e., static, dynamic) in real-time. First, 

several models are developed and tested utilizing a dataset collected 

in a previous work. This dataset conveys GPS-specific features, 

including location information. Models evaluations are carried out 

using the detection rate, F-score, false alarm rate, and misdetection 

rate, which all showed an acceptable performance. Then, the 

optimum model is loaded to the processor and tested for real-time 

detection and classification. Location-dependent applications, such 

as fixed-route public transportations are expected to benefit from 

the methodology presented herein as the longitude, latitude, and 

altitude features are characterized in the developed model. 

 
Index Terms— Global positioning system (GPS), machine learning 

(ML), spoofing classification, unmanned aerial vehicles (UAVs). 

 

I. INTRODUCTION 

HE contributions of unmanned arial vehicles (UAVs) 

have exponentially increased in many applications, such 

as infrastructure inspection, traffic surveillance, landslide 

monitoring, 3D modeling of historic sites, urban planning, 

disaster management, communications for hard-to-reach areas, 

modern agriculture, transportation, and mailing delivery [1–3]. 

These critical applications leverage the grave importance of 

maintaining the cybersecurity and trustworthiness of UAVs 

against threats that may lead to irreversible consequences. 
 

A wide range of cyberattacks endangers the UAVs integrity by 

targeting different components, such as the onboard sensors and 

modules [4]. One instrumental yet vulnerable component is the 

global positioning system (GPS) receiver, which uses 

unencrypted communications to obtain the UAV location. Due to 

this unencrypted nature, attacks including GPS spoofing can be 

launched to falsify positioning awareness, resulting in damaging 

private properties, public infrastructure, or compromising both the 

payload and technology [5–10]. Thus, different spoofing detection 

solutions were studied, such as autocorrelating received signals, 

exploiting spatial processing, comparing GPS data with that from 

other measurement units (e.g., inertia unit), using vision-based 

methods, and featuring artificial intelligence [11–19]. Although 

such solutions were successfully validated, they require hardware 

modifications or expensive computations, and face practical 

limitations, especially those developed in simulated environments. 

 
 

In a previous work, multiple scenarios were established and 

demonstrated for two UAV-tailored spoofing attack types: 

static and dynamic [20]. These scenarios allowed for collecting 

a dataset comprising several GPS features and developing 

machine learning (ML) models for detecting and classifying 

GPS spoofing. The developed models were trained, validated, 

and tested and their performance was evaluated. The work 

presented herein differs from [20] in the following aspects: 
 

1. Several ML classifiers are trained and tested with a 

subset of the features collected in [20]. These features 

are readily available, in real-time, without modifying 

the existing messaging protocol that facilitates the 

communications between the onboard GPS receiver, 

flight controller, and the processor (i.e., Raspberry Pi). 
 

2. A spoofing detection and classification solution is 

hosted in the aforementioned processor via a routine 

that characterizes the optimum resulting ML classifier 

and is validated with received GPS data in real-time. 
 

The remaining of this article is organized as follows: Section 

II details the development and evaluation of different ML 

models for detecting and classifying GPS spoofing. Section III 

elaborates on implementing the optimum model, enabling the 

UAV to classify, in real-time, two types of spoofing attacks. 

Finally, conclusion and future work are provided in Section IV. 
 

II. CLASSIFIERS DEVELOPMENT AND TESTING 

In [20], three distinctive scenarios were established to collect 

a dataset capturing three cases of a UAV: 1) under no attack, 2) 

experiencing a static attack, and 3) experiencing a dynamic 

attack. The static attack forces the target to lock on a fake GPS 

signal with a location defined by the adversary that is different 

from the actual target location. On the other hand, in a dynamic 

attack, a GPS signal with moving coordinates along a 

predefined path is launched by the adversary to spoof the 

target’s flightpath with a fake one, even though it may be 

stationary or moving along a different path. The resulting 

dataset conveyed twenty-seven GPS-specific signal features for 

developing location-dependent and location-independent 

spoofing classification schemes. The former scheme contains 

location-specific features (e.g., latitude, longitude, altitude); 

whereas the latter scheme does not use such features to develop 

T 
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TABLE I 

GPS FEATURES DESCRIPTION 

Extracted Feature Short Description Unit 

lat Latitude in 1E–7 Degrees 

lon Longitude in 1E–7 Degrees 

alt Altitude in 1E–3 above sea level Millimeters 

hdop Horizontal dilution of precision – 

vdop Vertical dilution of precision – 

vel GPS ground speed Meters/second 

COG Course over ground Radians 

satellites Number of satellites used – 

 

the ML classifiers. In this work, the location-dependent scheme 

is brought into practice as it does not require modifications to 

the messaging protocol (more details are given in Section III). 

In other words, the existing protocol forwards the location-

dependent features together with the horizontal/vertical dilution 

of precision, velocity, course over ground, and number of seen 

satellites to the processor from the GPS receiver through the 

flight controller without modifying the protocol in the flight 

controller firmware. Table I summarizes the features used to 

implement the real-time detection and classification solution. It 

is noteworthy to point out that further details about the attack 

setups and the overall set of features can be found in [21]. 
 

The features in Table I are analyzed for correlation using the 

Spearman algorithm, which assumes nonlinearity among features. 

The resulting correlation depicted in Fig. 1 suggests weakly 

correlated pairs; thus, validating their use for model development 

without the need for feature elimination. Also, a standard scaling 

is applied such that xijˊ = (xij – μj)/σj, where xijˊ is the scaled ith 

sample of the jth feature, and μj and σj are the mean and standard 

deviation of the sample values within the jth feature, respectively. 
 

A total of 37,506 samples per feature are used to develop 

seven models; particularly, random forest (RF), k-nearest 

neighbor (KNN), multi-layer perceptron (MLP), logistic 

regression (LR), decision tree (DT), support vector machine 

(SVM), and naïve Bayes (NB). Model development entailed 

optimizing the associated hyperparameters using random 

search; whereas training and testing are carried out following a 

10-fold cross-validation process. Training, validating, and 

testing the ML models are performed on a PC with 64-bit 

Windows 10, AMD® RyzenTM 7 3700X CPU @ 3.6 GHz 

processor and 32 GB of DDR4-3600 MHz memory. Table II 

shows the optimized parameters for all the models; whereas 

Table III presents their evaluation scores, characterized by the 

detection rate (DR), Precision, Recall, F-Score (FS), false alarm 

rate (FAR), and miss detection rate (MDR). The DR is a 

measure of the percentage of correctly classified samples. The 

precision measures the classifier performance in classing 

negative samples as negatives and positive samples as positives. 

The recall measures the ability of the classifier to correctly 

predict all positive samples. The FS calculates the harmonic 

mean of the precision and recall. The FAR measures the 

probability of false detection. Finally, the MDR measures the 

probability of not detecting an attack. It is paramount to point 

out that the aforementioned evaluation metrics are obtained 

with the use of the following equations: 
 

 

TABLE II 

OPTIMIZED HYPERPARAMETERS 

Category Classifier Parameter 

Ensemble RF Quality of split criterion: Log loss 

Max. tree depth: 21 

Min. number of samples at a leaf node: 33 

Min. number of samples to split a node: 183 

Number of trees: 129 

Cost-complexity pruning parameter: 9.3E–3 

Instance KNN Leaf size: 48 

Number of neighbors: 12 

Weight function: Distance 

Nearest neighbor comp. algorithm: Brute 

Distance metric: Euclidean 

Power parameter for distance metric: 4 

SVM Norm used in penalty: L2 

Loss function: Squared Hinge 

Dual optimization algorithm: False 

Max. number of iterations: 701 

Regularization parameter: 9.479 

Regularization LR Optimization: Stochastic AVG gradient 

Norm used in penalty: None 

Regularization parameter: 2.079 

Max. number of iterations: 834 

Tree DT Quality of split criterion: Log loss 

Max. tree depth: 21 

Min. number of samples at a leaf node: 33 

Min. number of samples to split a node: 183 

Node split strategy: Best 

Cost-complexity pruning parameter: 9.3E–3 

Neural network MLP Optimization: Limited-memory Broyden–

Fletcher–Goldfarb–Shanno 

Hidden layers and neurons: 1 and 232 

Activation function: Logistic 

Max. number of iterations: 866 

L2 regularization term strength: 93.7E–3 

Early stopping: True 

Bayesian Gaussian NB Smoothing stability parameter: 23.96E–3 
 

Detection Rate (DR)
TP TN

TP TN FP FN




  
          (1.a)    

 

      Precision
TP

TP FP



           (1.b)                           

 

Recall
TP

TP FN



           (1.c)                         

 

   
2 Precision Recall

F1-score (FS)
Precision Recall

 



         (1.d)           

 

    False Alarm Rate (FAR)
FP

FP TN



         (1.e)                 

 

   Misdetection Rate (MDR)
FN

TP FN



          (1.f)  

 

where TP, TN, FP, and FN are the positive samples predicted 

as positive (i.e., true positive), negative samples predicted as 

negative (i.e., true negative), negative samples predicted as 

positive (i.e., false positive), and positive samples predicted as 

negative (i.e., false negative), respectively. Table III illustrates 

that RF has the optimum performance with a DR of 91.78%, 

FAR of 5.50%, and MDR of 9.66%, these scores are associated 

with a reasonable prediction time of 43.36 ms. On the other 

hand, LR, DT, and SVM have demonstrated the lowest 

prediction times among all the developed models at the expense 

of either lower DRs and/or higher MDRs.      
 

290

Authorized licensed use limited to: UNIVERSITY OF NORTH DAKOTA LIBRARIES. Downloaded on August 04,2023 at 21:14:48 UTC from IEEE Xplore.  Restrictions apply. 



 

TABLE III 

ML MODELS EVALUATION SCORES (PT: PREDICTION TIME) 

Model DR (%) Precision (%) FS FAR (%) MDR (%) PT (ms) 

RF  91.78      92.44 0.91    5.50      9.66  43.36 

KNN  85.11      86.33 0.84    9.01    22.96 109.28 

MLP  88.70      89.35 0.88    7.42    13.24  22.36 

LR  66.06      73.28 0.67   19.02    27.14  0.29 

DT  89.26      89.64 0.89    6.64   16.68  0.29 

SVM  70.47      79.77 0.72   15.48   24.03  0.29 

NB  84.95      86.74 0.84    8.38   23.41  1.37 

 
Fig. 1. Spearman correlation of the features described in Table I. 
 

The resulting optimum model (i.e., RF) is also tested on the 

Raspberry Pi processor to compare its training and prediction 

times with those achieved with the PC. Such a processor is 

equipped with 64-bit ARM Cortex-A72 quad-core CPU @ 1.5 

GHz and 1 GB of memory. Table IV shows that the Raspberry 

processor has a prediction time of 671.74 ms, which is 

significantly higher than its counterpart obtained with the PC. 

Nevertheless, the reported times are from predicting the entire 

testing dataset, which consists of 9,600 samples. Hence, the 

resulting prediction time per sample with the Raspberry Pi is 

around 70 µs, facilitating real-time detection and classification. 
 

III. IMPLEMENTATION AND EVALUATION 

In this section, the RF model developed in Section II is 

implemented on an open-source Clover drone from COEX, 

which is equipped with a Pixracer flight controller that uses 

PX4 autopilot and a u-blox M8 GPS receiver [22–24]. The RF 

model is loaded to the onboard processor, which is interfaced 

with the flight controller via a USB connection.  The micro air 

vehicle link (MAVLink) messaging protocol is used to live 

stream the data collected by the GPS receiver module through 

the flight controller to the processor. In particular, the 

GPS_RAW_INT message is utilized to stream the eight features 

detailed in Table I. Fig. 2 shows the configuration of the 

hardware tools and their functions in validating the real-time 

classification procedure, which can be summarized as follows: 
 

 

 

TABLE IV 

PC AND RASPBERRY COMPARISON (TT: TRAINING TIME, PT: PREDICTION TIME) 

Device TT (ms) PT (ms) 

PC   1515    43 

Raspberry Pi  18602   671 

1. The values of μj and σj for each feature are stored in the 

classification model (hosted at the processor) to scale the 

received live samples. Such values are obtained from the 

training dataset as detailed in Section II. 
 

2. The MAVLink GPS_RAW_INT messages are streamed to a 

preprocessing routine for the extraction of features. Here, 

feature samples are scaled with μj and σj and are fed to the 

hosted RF classification model.  
 

3. The predicted class is appended to an array to calculate live 

accuracy rates. Classes 0, 1, and 2 are assigned for no attack, 

static attack, and dynamic attack, respectively. Such 

accuracies are calculated as follows: 

 

 

No. of correctly predicted samples
Accuracy (%)

Total No. of predicted samples


     

(2) 

 

 

4. The actual attack, its classification, and the live accuracy 

are printed and saved for further processing. 
 

GPS receiver Flight controller Raspberry Pi

Execute .py routine

 Load trained model
 Stream GPS_RAW_INT
 Predict spoofing in real-time
 Calculate accuracy with (2)
 Print prediction and accuracy
 Write prediction to text file

Hardware

Function

Process GPS features

 Create Mavlink messages
 Send messages to Raspb-Pi

JST

USB

Capture GPS signal

 Compute GPS features
 Forward features to flight 

controller

 
Fig. 2. The hardware devices and their functions in detecting and classifying 

the GPS spoofing attacks. 

 
Algorithm: Real-Time GPS Spoofing Classification 

Define Class_Actual = 0, 1, or 2 

 

1: Procedure: Real_Time_GPS_Spoofing_Classification 

2: Load the values of μj and σj for each feature 

3: Load trained MLmodel 

4: File                =   open(Output_File.txt) 

5: Start live-streaming GPS_features 

6: Standardize the features using μj and σj 

7: Prediction         =   MLmodel.predict(GPS_Features) 

8: Class.append(Prediction) 

9: DR                   =   DetectionRate(Class_Actual, Class) 

10: Loop: for each Prediction do 

11:       print Prediction to console window 

12:                print DR to console window 

13:                File.write(Prediction, DR, Class_Actual) 

14: end for 

15: end Procedure 

  
Fig. 3. Pseudocode of the GPS spoofing classification procedure. 
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   Prediction                    ACC(%)            Actual class 
1:       0              1.00       0 
2:       0              1.00       0 
3:       0              1.00       0 
4:       0              1.00       0 
5:       0              1.00       0 
6:       0              1.00       0 
7:       0              1.00       0 
8:       0              1.00       0 
9:       0              1.00       0 
10:     0              1.00       0 

 

   Prediction                ACC(%)            Actual class 
1:       1              1.00       1 
2:       1              1.00       1 
3:       1              1.00       1 
4:       1              1.00       1 
5:       2              0.80       1 
6:       1              0.83       1 
7:       1              0.86       1 
8:       1              0.88       1 
9:       1              0.89       1 
10:     1              0.90       1 

 

   Prediction                 ACC(%)            Actual class 
1:       2              1.00       2 
2:       2              1.00       2 
3:       2              1.00       2 
4:       2              1.00       2 
5:       2              1.00       2 
6:       2              1.00       2 
7:       2              1.00       2 
8:       2              1.00       2 
9:       2              1.00       2 
10:     2              1.00       2 

 

(a) (b) (c) 

Fig. 4. Model output file in the case of exposing it to live data samples of (a) clean (i.e., no attack), (b) static attack, and (c) dynamic attack. 

 
Fig. 5. Confusion matrix of the real-time classification test. 

 

Fig. 3 depicts a pseudo code for the real-time classification 

procedure, which is tested with live data presenting classes 0, 

1, and 2. The attacks are prepared using the open-source library 

GPS-SDR-SIM and launched with an Ettus B210 software 

defined radio [25, 26]. Static spoofing is created by specifying 

the fake coordinates, which are fed to GPS-SDR-SIM along 

with the ephemeris data file that conveys precise information 

about the satellites orbits. Then, GPS-SDR-SIM generates the 

attack file, which consists of the bit stream of the spoofing signal. 

This generated file is loaded into GNURadio, which is the 

companion software for the B210 that is used to launch the attack. 

On the other hand, dynamic spoofing is created by generating a 

user motion file using SatGen3 [27]. This file contains the 

moving coordinates of the spoofed flightpath along with the 

altitudes and velocities. This motion file is used in GPS-SDR-

SIM in conjunction with the ephemeris data to generate the attack 

file, which is then launched via the radio. Elaborations on both 

attacks with greater details can be found in [20, 21]. 
 

Sample output files of the classification model are shown in Fig. 

4. Each class is executed individually for a length of 100 samples. 

With these samples, the model yielded a DR of 98.67%. Also, this 

live real-time testing achieved an excellent overall FAR of 1.00% 

and MDR of 2.00% as depicted from the confusion matrix shown 

in Fig. 5. The values of such metrics will be in proximity to those 

reported in Table III as more samples are fed to the model. 

IV. CONCLUSION 

A real-time ML model for classifying static and dynamic 

GPS spoofing attacks is implemented on an open-source UAV 

with an onboard Raspberry Pi processor. The training data is 

obtained from a previous work. Only the features that do not 

impose modifications on the messaging protocol are used to 

develop the model. These features include the 3D coordinates; 

therefore, this study is best suited for fixed route applications. 

The resulting model is evaluated and tested, and the associated 

DR, FS, FAR, and MDR are 91.78%, 0.91, 5.50%, and 9.66%, 

respectively. The open-source nature of the hardware and 

software used herein justify the adoption of the proposed model 

in a wide variety of readily available UAVs. Future work entails 

exploring GPS spoofing attack mitigation techniques. 
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