

A Real-time Machine Learning-based GPS Spoofing

Solution for Location-dependent UAV Applications

M. Nayfeh(1), J. Price(1), M. Alkhatib(1), K. Al Shamaileh(1), N. Kaabouch(2), and V. Devabhaktuni(3)

(1) Electrical and Computer Engineering Department, Purdue University Northwest, Hammond 46323, IN, USA
(2) School of Electrical Engineering and Computer Science, University of North Dakota, Grand Forks 58202, ND, USA

(3) Electrical and Computer Engineering Department, The University of Maine, Orono 04469, ME, USA

E-mail: kalshama@pnw.edu

Abstract—In this paper, a three-class machine learning (ML)

model is implemented on an unmanned aerial vehicle (UAV) with a

Raspberry Pi processor for classifying two global positioning system

(GPS) spoofing attacks (i.e., static, dynamic) in real-time. First,

several models are developed and tested utilizing a dataset collected

in a previous work. This dataset conveys GPS-specific features,

including location information. Models evaluations are carried out

using the detection rate, F-score, false alarm rate, and misdetection

rate, which all showed an acceptable performance. Then, the

optimum model is loaded to the processor and tested for real-time

detection and classification. Location-dependent applications, such

as fixed-route public transportations are expected to benefit from

the methodology presented herein as the longitude, latitude, and

altitude features are characterized in the developed model.

Index Terms— Global positioning system (GPS), machine learning

(ML), spoofing classification, unmanned aerial vehicles (UAVs).

I. INTRODUCTION

HE contributions of unmanned arial vehicles (UAVs)

have exponentially increased in many applications, such

as infrastructure inspection, traffic surveillance, landslide

monitoring, 3D modeling of historic sites, urban planning,

disaster management, communications for hard-to-reach areas,

modern agriculture, transportation, and mailing delivery [1–3].

These critical applications leverage the grave importance of

maintaining the cybersecurity and trustworthiness of UAVs

against threats that may lead to irreversible consequences.

A wide range of cyberattacks endangers the UAVs integrity by

targeting different components, such as the onboard sensors and

modules [4]. One instrumental yet vulnerable component is the

global positioning system (GPS) receiver, which uses

unencrypted communications to obtain the UAV location. Due to

this unencrypted nature, attacks including GPS spoofing can be

launched to falsify positioning awareness, resulting in damaging

private properties, public infrastructure, or compromising both the

payload and technology [5–10]. Thus, different spoofing detection

solutions were studied, such as autocorrelating received signals,

exploiting spatial processing, comparing GPS data with that from

other measurement units (e.g., inertia unit), using vision-based

methods, and featuring artificial intelligence [11–19]. Although

such solutions were successfully validated, they require hardware

modifications or expensive computations, and face practical

limitations, especially those developed in simulated environments.

In a previous work, multiple scenarios were established and

demonstrated for two UAV-tailored spoofing attack types:

static and dynamic [20]. These scenarios allowed for collecting

a dataset comprising several GPS features and developing

machine learning (ML) models for detecting and classifying

GPS spoofing. The developed models were trained, validated,

and tested and their performance was evaluated. The work

presented herein differs from [20] in the following aspects:

1. Several ML classifiers are trained and tested with a

subset of the features collected in [20]. These features

are readily available, in real-time, without modifying

the existing messaging protocol that facilitates the

communications between the onboard GPS receiver,

flight controller, and the processor (i.e., Raspberry Pi).

2. A spoofing detection and classification solution is

hosted in the aforementioned processor via a routine

that characterizes the optimum resulting ML classifier

and is validated with received GPS data in real-time.

The remaining of this article is organized as follows: Section

II details the development and evaluation of different ML

models for detecting and classifying GPS spoofing. Section III

elaborates on implementing the optimum model, enabling the

UAV to classify, in real-time, two types of spoofing attacks.

Finally, conclusion and future work are provided in Section IV.

II. CLASSIFIERS DEVELOPMENT AND TESTING

In [20], three distinctive scenarios were established to collect

a dataset capturing three cases of a UAV: 1) under no attack, 2)

experiencing a static attack, and 3) experiencing a dynamic

attack. The static attack forces the target to lock on a fake GPS

signal with a location defined by the adversary that is different

from the actual target location. On the other hand, in a dynamic

attack, a GPS signal with moving coordinates along a

predefined path is launched by the adversary to spoof the

target’s flightpath with a fake one, even though it may be

stationary or moving along a different path. The resulting

dataset conveyed twenty-seven GPS-specific signal features for

developing location-dependent and location-independent

spoofing classification schemes. The former scheme contains

location-specific features (e.g., latitude, longitude, altitude);

whereas the latter scheme does not use such features to develop

T

289

978-1-6654-9376-5/23/$31.00 ©2023 IEEE

20
23

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 E

le
ct

ro
 In

fo
rm

at
io

n
Te

ch
no

lo
gy

 (e
IT

) |
 9

78
-1

-6
65

4-
93

76
-5

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I:

10
.1

10
9/

EI
T5

73
21

.2
02

3.
10

18
73

44

Authorized licensed use limited to: UNIVERSITY OF NORTH DAKOTA LIBRARIES. Downloaded on August 04,2023 at 21:14:48 UTC from IEEE Xplore. Restrictions apply.

TABLE I

GPS FEATURES DESCRIPTION

Extracted Feature Short Description Unit

lat Latitude in 1E–7 Degrees

lon Longitude in 1E–7 Degrees

alt Altitude in 1E–3 above sea level Millimeters

hdop Horizontal dilution of precision –

vdop Vertical dilution of precision –

vel GPS ground speed Meters/second

COG Course over ground Radians

satellites Number of satellites used –

the ML classifiers. In this work, the location-dependent scheme

is brought into practice as it does not require modifications to

the messaging protocol (more details are given in Section III).

In other words, the existing protocol forwards the location-

dependent features together with the horizontal/vertical dilution

of precision, velocity, course over ground, and number of seen

satellites to the processor from the GPS receiver through the

flight controller without modifying the protocol in the flight

controller firmware. Table I summarizes the features used to

implement the real-time detection and classification solution. It

is noteworthy to point out that further details about the attack

setups and the overall set of features can be found in [21].

The features in Table I are analyzed for correlation using the

Spearman algorithm, which assumes nonlinearity among features.

The resulting correlation depicted in Fig. 1 suggests weakly

correlated pairs; thus, validating their use for model development

without the need for feature elimination. Also, a standard scaling

is applied such that xijˊ = (xij – μj)/σj, where xijˊ is the scaled ith

sample of the jth feature, and μj and σj are the mean and standard

deviation of the sample values within the jth feature, respectively.

A total of 37,506 samples per feature are used to develop

seven models; particularly, random forest (RF), k-nearest

neighbor (KNN), multi-layer perceptron (MLP), logistic

regression (LR), decision tree (DT), support vector machine

(SVM), and naïve Bayes (NB). Model development entailed

optimizing the associated hyperparameters using random

search; whereas training and testing are carried out following a

10-fold cross-validation process. Training, validating, and

testing the ML models are performed on a PC with 64-bit

Windows 10, AMD® RyzenTM 7 3700X CPU @ 3.6 GHz

processor and 32 GB of DDR4-3600 MHz memory. Table II

shows the optimized parameters for all the models; whereas

Table III presents their evaluation scores, characterized by the

detection rate (DR), Precision, Recall, F-Score (FS), false alarm

rate (FAR), and miss detection rate (MDR). The DR is a

measure of the percentage of correctly classified samples. The

precision measures the classifier performance in classing

negative samples as negatives and positive samples as positives.

The recall measures the ability of the classifier to correctly

predict all positive samples. The FS calculates the harmonic

mean of the precision and recall. The FAR measures the

probability of false detection. Finally, the MDR measures the

probability of not detecting an attack. It is paramount to point

out that the aforementioned evaluation metrics are obtained

with the use of the following equations:

TABLE II

OPTIMIZED HYPERPARAMETERS

Category Classifier Parameter

Ensemble RF Quality of split criterion: Log loss

Max. tree depth: 21

Min. number of samples at a leaf node: 33

Min. number of samples to split a node: 183

Number of trees: 129

Cost-complexity pruning parameter: 9.3E–3

Instance KNN Leaf size: 48

Number of neighbors: 12

Weight function: Distance

Nearest neighbor comp. algorithm: Brute

Distance metric: Euclidean

Power parameter for distance metric: 4

SVM Norm used in penalty: L2

Loss function: Squared Hinge

Dual optimization algorithm: False

Max. number of iterations: 701

Regularization parameter: 9.479

Regularization LR Optimization: Stochastic AVG gradient

Norm used in penalty: None

Regularization parameter: 2.079

Max. number of iterations: 834

Tree DT Quality of split criterion: Log loss

Max. tree depth: 21

Min. number of samples at a leaf node: 33

Min. number of samples to split a node: 183

Node split strategy: Best

Cost-complexity pruning parameter: 9.3E–3

Neural network MLP Optimization: Limited-memory Broyden–

Fletcher–Goldfarb–Shanno

Hidden layers and neurons: 1 and 232

Activation function: Logistic

Max. number of iterations: 866

L2 regularization term strength: 93.7E–3

Early stopping: True

Bayesian Gaussian NB Smoothing stability parameter: 23.96E–3

Detection Rate (DR)
TP TN

TP TN FP FN




  
 (1.a)

 Precision
TP

TP FP



 (1.b)

Recall
TP

TP FN



 (1.c)

2 Precision Recall

F1-score (FS)
Precision Recall

 



 (1.d)

 False Alarm Rate (FAR)
FP

FP TN



 (1.e)

 Misdetection Rate (MDR)
FN

TP FN



 (1.f)

where TP, TN, FP, and FN are the positive samples predicted

as positive (i.e., true positive), negative samples predicted as

negative (i.e., true negative), negative samples predicted as

positive (i.e., false positive), and positive samples predicted as

negative (i.e., false negative), respectively. Table III illustrates

that RF has the optimum performance with a DR of 91.78%,

FAR of 5.50%, and MDR of 9.66%, these scores are associated

with a reasonable prediction time of 43.36 ms. On the other

hand, LR, DT, and SVM have demonstrated the lowest

prediction times among all the developed models at the expense

of either lower DRs and/or higher MDRs.

290

Authorized licensed use limited to: UNIVERSITY OF NORTH DAKOTA LIBRARIES. Downloaded on August 04,2023 at 21:14:48 UTC from IEEE Xplore. Restrictions apply.

TABLE III

ML MODELS EVALUATION SCORES (PT: PREDICTION TIME)

Model DR (%) Precision (%) FS FAR (%) MDR (%) PT (ms)

RF 91.78 92.44 0.91 5.50 9.66 43.36

KNN 85.11 86.33 0.84 9.01 22.96 109.28

MLP 88.70 89.35 0.88 7.42 13.24 22.36

LR 66.06 73.28 0.67 19.02 27.14 0.29

DT 89.26 89.64 0.89 6.64 16.68 0.29

SVM 70.47 79.77 0.72 15.48 24.03 0.29

NB 84.95 86.74 0.84 8.38 23.41 1.37

Fig. 1. Spearman correlation of the features described in Table I.

The resulting optimum model (i.e., RF) is also tested on the

Raspberry Pi processor to compare its training and prediction

times with those achieved with the PC. Such a processor is

equipped with 64-bit ARM Cortex-A72 quad-core CPU @ 1.5

GHz and 1 GB of memory. Table IV shows that the Raspberry

processor has a prediction time of 671.74 ms, which is

significantly higher than its counterpart obtained with the PC.

Nevertheless, the reported times are from predicting the entire

testing dataset, which consists of 9,600 samples. Hence, the

resulting prediction time per sample with the Raspberry Pi is

around 70 µs, facilitating real-time detection and classification.

III. IMPLEMENTATION AND EVALUATION

In this section, the RF model developed in Section II is

implemented on an open-source Clover drone from COEX,

which is equipped with a Pixracer flight controller that uses

PX4 autopilot and a u-blox M8 GPS receiver [22–24]. The RF

model is loaded to the onboard processor, which is interfaced

with the flight controller via a USB connection. The micro air

vehicle link (MAVLink) messaging protocol is used to live

stream the data collected by the GPS receiver module through

the flight controller to the processor. In particular, the

GPS_RAW_INT message is utilized to stream the eight features

detailed in Table I. Fig. 2 shows the configuration of the

hardware tools and their functions in validating the real-time

classification procedure, which can be summarized as follows:

TABLE IV

PC AND RASPBERRY COMPARISON (TT: TRAINING TIME, PT: PREDICTION TIME)

Device TT (ms) PT (ms)

PC 1515 43

Raspberry Pi 18602 671

1. The values of μj and σj for each feature are stored in the

classification model (hosted at the processor) to scale the

received live samples. Such values are obtained from the

training dataset as detailed in Section II.

2. The MAVLink GPS_RAW_INT messages are streamed to a

preprocessing routine for the extraction of features. Here,

feature samples are scaled with μj and σj and are fed to the

hosted RF classification model.

3. The predicted class is appended to an array to calculate live

accuracy rates. Classes 0, 1, and 2 are assigned for no attack,

static attack, and dynamic attack, respectively. Such

accuracies are calculated as follows:

No. of correctly predicted samples
Accuracy (%)

Total No. of predicted samples


(2)

4. The actual attack, its classification, and the live accuracy

are printed and saved for further processing.

GPS receiver Flight controller Raspberry Pi

Execute .py routine

 Load trained model
 Stream GPS_RAW_INT
 Predict spoofing in real-time
 Calculate accuracy with (2)
 Print prediction and accuracy
 Write prediction to text file

Hardware

Function

Process GPS features

 Create Mavlink messages
 Send messages to Raspb-Pi

JST

USB

Capture GPS signal

 Compute GPS features
 Forward features to flight

controller

Fig. 2. The hardware devices and their functions in detecting and classifying

the GPS spoofing attacks.

Algorithm: Real-Time GPS Spoofing Classification

Define Class_Actual = 0, 1, or 2

1: Procedure: Real_Time_GPS_Spoofing_Classification

2: Load the values of μj and σj for each feature

3: Load trained MLmodel

4: File = open(Output_File.txt)

5: Start live-streaming GPS_features

6: Standardize the features using μj and σj

7: Prediction = MLmodel.predict(GPS_Features)

8: Class.append(Prediction)

9: DR = DetectionRate(Class_Actual, Class)

10: Loop: for each Prediction do

11: print Prediction to console window

12: print DR to console window

13: File.write(Prediction, DR, Class_Actual)

14: end for

15: end Procedure

Fig. 3. Pseudocode of the GPS spoofing classification procedure.

291

Authorized licensed use limited to: UNIVERSITY OF NORTH DAKOTA LIBRARIES. Downloaded on August 04,2023 at 21:14:48 UTC from IEEE Xplore. Restrictions apply.

 Prediction ACC(%) Actual class
1: 0 1.00 0
2: 0 1.00 0
3: 0 1.00 0
4: 0 1.00 0
5: 0 1.00 0
6: 0 1.00 0
7: 0 1.00 0
8: 0 1.00 0
9: 0 1.00 0
10: 0 1.00 0

 Prediction ACC(%) Actual class
1: 1 1.00 1
2: 1 1.00 1
3: 1 1.00 1
4: 1 1.00 1
5: 2 0.80 1
6: 1 0.83 1
7: 1 0.86 1
8: 1 0.88 1
9: 1 0.89 1
10: 1 0.90 1

 Prediction ACC(%) Actual class
1: 2 1.00 2
2: 2 1.00 2
3: 2 1.00 2
4: 2 1.00 2
5: 2 1.00 2
6: 2 1.00 2
7: 2 1.00 2
8: 2 1.00 2
9: 2 1.00 2
10: 2 1.00 2

(a) (b) (c)

Fig. 4. Model output file in the case of exposing it to live data samples of (a) clean (i.e., no attack), (b) static attack, and (c) dynamic attack.

Fig. 5. Confusion matrix of the real-time classification test.

Fig. 3 depicts a pseudo code for the real-time classification

procedure, which is tested with live data presenting classes 0,

1, and 2. The attacks are prepared using the open-source library

GPS-SDR-SIM and launched with an Ettus B210 software

defined radio [25, 26]. Static spoofing is created by specifying

the fake coordinates, which are fed to GPS-SDR-SIM along

with the ephemeris data file that conveys precise information

about the satellites orbits. Then, GPS-SDR-SIM generates the

attack file, which consists of the bit stream of the spoofing signal.

This generated file is loaded into GNURadio, which is the

companion software for the B210 that is used to launch the attack.

On the other hand, dynamic spoofing is created by generating a

user motion file using SatGen3 [27]. This file contains the

moving coordinates of the spoofed flightpath along with the

altitudes and velocities. This motion file is used in GPS-SDR-

SIM in conjunction with the ephemeris data to generate the attack

file, which is then launched via the radio. Elaborations on both

attacks with greater details can be found in [20, 21].

Sample output files of the classification model are shown in Fig.

4. Each class is executed individually for a length of 100 samples.

With these samples, the model yielded a DR of 98.67%. Also, this

live real-time testing achieved an excellent overall FAR of 1.00%

and MDR of 2.00% as depicted from the confusion matrix shown

in Fig. 5. The values of such metrics will be in proximity to those

reported in Table III as more samples are fed to the model.

IV. CONCLUSION

A real-time ML model for classifying static and dynamic

GPS spoofing attacks is implemented on an open-source UAV

with an onboard Raspberry Pi processor. The training data is

obtained from a previous work. Only the features that do not

impose modifications on the messaging protocol are used to

develop the model. These features include the 3D coordinates;

therefore, this study is best suited for fixed route applications.

The resulting model is evaluated and tested, and the associated

DR, FS, FAR, and MDR are 91.78%, 0.91, 5.50%, and 9.66%,

respectively. The open-source nature of the hardware and

software used herein justify the adoption of the proposed model

in a wide variety of readily available UAVs. Future work entails

exploring GPS spoofing attack mitigation techniques.

ACKNOWLEDGMENT

This research is funded by the National Science Foundation,

Secure and Trustworthy Cyberspace under Award no. 2006662.

REFERENCES

[1] G. Albeaino, M. Gheisari, and B. Franz, “A systematic review of

unmanned aerial vehicle application areas and technologies in the AEC

domain,” Journal of Information Technology in Construction, vol. 24,
pp.381, 2019.

[2] C. Norasma, M. Fadzilah, N. Roslin, Z. Zanariah, Z. Tarmidi, and F.

Candra, “Unmanned aerial vehicle applications in agriculture,” IOP
Conf. Ser.: Mater. Sci. Eng., vol. 506, 2019.

[3] N. Mohamed, J. Al-Jaroodi, I. Jawhar, A. Idries, F. Mohammed,

“Unmanned aerial vehicles applications in future smart cities,”
Technological Forecasting and Social Change, vol. 153, 2020.

[4] A. Rugo, C. Ardagna, N. El Ioini, “A security review in the UAVNet

era: Threats, countermeasures, and gap analysis,” ACM Computing
Surveys, vol. 55, no. 21, pp. 1-35, 2023.

[5] Electromagnetic Interference Behind Darling Harbour Drone Crash.

[Online]. Available:
https://australianaviation.com.au/2022/06/electromagnetic-

interference-behind-darling-harbour-drone-crash/

[6] SkyJack Software Finds and Hijacks Drones. [Online]. Available:
https://www.pcmag.com/news/skyjack-software-finds-and-hijacks-

drones

[7] HK$1 million in damage caused by GPS jamming that caused 46 drones
to plummet during Hong Kong show. [Online]. Available:

https://www.scmp.com/news/hong-kong/law-and-

crime/article/2170669/hk13-million-damage-caused-gps-jamming-
caused-46-drones

[8] Drone Crash Due To GPS Interference in U.K. Raises Safety Questions.

[Online]. Available:
https://www.forbes.com/sites/davidhambling/2020/08/10/investigation-

finds-gps-interference-caused-uk-survey-drone-

crash/?sh=57b389bd534a

292

Authorized licensed use limited to: UNIVERSITY OF NORTH DAKOTA LIBRARIES. Downloaded on August 04,2023 at 21:14:48 UTC from IEEE Xplore. Restrictions apply.

[9] Drones crash during light display at lantern festival. [Online]. Available:
https://www.taipeitimes.com/News/taiwan/archives/2020/02/24/20037

31529

[10] D. da Silva, “GPS jamming and spoofing using software defined radio,”

Department Of ISTA, University Institute of Lisbon, 2017.

[11] F. Rothmaier, Y. Chen, S. Lo, and T. Walter, “GNSS spoofing detection

through spatial processing,” Navigation, vol. 68, no. 2, pp. 243–258,
2021.

[12] A. Khan, N. Iqbal, A. Khan, M. Khan, and A. Ahmad, “Detection of

intermediate spoofing attack on global navigation satellite system
receiver through slope based metrics,” The Journal of Navigation, vol.

73, no. 5, pp. 1052–1068, 2020.

[13] S. Wang, J. Wang, C. Su and X. Ma, “Intelligent detection algorithm
against UAVs' GPS spoofing attack,” IEEE 26th International

Conference on Parallel and Distributed Systems (ICPADS), Hong Kong,

China, pp. 382–389, 2020.
[14] D. Akos, “Who's afraid of the spoofer? GPS/GNSS spoofing detection

via automatic gain control (AGC),” Navigation, vol. 59, no. 4, pp. 281–

290, 2012.
[15] Y. Qiao, Y. Zhang and X. Du, “A vision-based GPS-spoofing detection

method for Small UAVs,” 13th International Conference on

Computational Intelligence and Security (CIS), Hong Kong, China, pp.

312–316, 2017.

[16] N. Xue, L. Niu, X. Hong, Z. Li, L. Hoffaeller, and C. Pöpper, “DeepSIM:

GPS spoofing detection on UAVs using satellite imagery matching,”
Annual Computer Security Applications Conference (ACSAC '20), NY,

USA, pp. 304–319, 2020.
[17] P. Jiang, H. Wu, C. Xin, “DeepPOSE: Detecting GPS spoofing attack

via deep recurrent neural network,” Digital Communications and

Networks, 2021.
[18] Y. Dang, C. Benzaïd, T. Taleb, B. Yang and Y. Shen, “Transfer learning

based GPS spoofing detection for cellular-connected UAVs,” 2022

International Wireless Communications and Mobile Computing
(IWCMC), Dubrovnik, Croatia, pp. 629–634, 2022.

[19] S. Semanjski, A. Muls, I. Semanjski, and W. De Wilde, “Use and

validation of supervised machine learning approach for detection of
GNSS signal spoofing,” 2019 International Conference on Localization

and GNSS (ICL-GNSS), Nuremberg, Germany, pp. 1–6, 2019.

[20] M. Nayfeh, Y. Li, K. Al Shamaileh, V. Devabhaktuni, and N. Kaabouch,
“Machine Learning Modeling of GPS Features with Applications to

UAV Location Spoofing Detection and Classification,” Computers &

Security, vol. 126, 2023.
[21] Resources. [Online]. Available:

https://github.com/mnayfeh/gps_spoofing_detection

[22] COEX. [Online]. Available: https://coex.tech/clover.
[23] COEX Pix. [Online]. Available:

https://clover.coex.tech/en/coex_pix.html

[24] UBX-M8030 series. [Online]. Available: https://www.u-
blox.com/en/product/ubx-m8030-series

[25] GPS-SDR-SIM. [Online]. Available: https://github.com/osqzss/gps-sdr-

sim
[26] USRP B210. [Online]. Available: https://www.ettus.com/all-

products/ub210-kit/

[27] SatGen Software. [Online]. Available:
https://www.labsat.co.uk/index.php/en/products/satgen-simulator-

software

293

Authorized licensed use limited to: UNIVERSITY OF NORTH DAKOTA LIBRARIES. Downloaded on August 04,2023 at 21:14:48 UTC from IEEE Xplore. Restrictions apply.

