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Abstract

This paper is concerned with the quantitative homogenization of the steady Stokes
equations with the Dirichlet condition in a periodically perforated domain. Using a
compactness method, we establish the large-scale interior C»* and Lipschitz estimates
for the velocity as well as the corresponding estimates for the pressure. These estimates,
when combined with the classical regularity estimates for the Stokes equations, yield
the uniform Lipschitz estimates. As a consequence, we also obtain the uniform W?
estimates for 1 < p < co.
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1 Introduction

In this paper we continue the study of the quantitative homogenization of the steady Stokes
equations for an incompressible viscous fluid,

{—emue +Vp. = f,

div(u.) = 0, (1.1)

with a no-slip (Dirichlet) boundary condition on solid pores, in a periodically perforated
domain in RY, d > 2. In (1.1), g > 0 is the viscosity constant, and we have normalized the
velocity vector by a factor €2, where ¢ > 0 is the period. It is well known that as ¢ — 0,
the effective equations for (1.1) are given by a Darcy law [22, 26, 1, 18, 2, 20, 4]. In [24] we
established the sharp O(/¢) convergence rate in a bounded domain by constructing some
boundary correctors. In this paper we will investigate the large-scale regularity problem for
solutions (u, pe).

To describe the porous domain, we let Y = (0,1)¢ be an open unit cube and Y, (solid
part) an open subset of Y with Lipschitz boundary. Throughout the paper we assume that
dist(9Y, 9Y;) > 0 and that Y; =Y \ Y, (the fluid part) is connected. Let

w = U (Yf + Z) (1'2)
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be the periodic repetition of Y;. For R > 0, let

Qr=(—R,R)* and Q% =QrNew. (1.3)
The following are the main results of the paper.

Theorem 1.1. Let (u.,p.) € H'(Q%;RY) x L?(Q%) be a weak solution of

—52,UAU5 + VPE = f mn Q%,
div(u;) =0 in Q%, (1.4)
ue =0 on Qr N I(sw),

where 0 < e < R/2 and f € C*(Qg;RY) for some a € (0,1). Then

1/2 1/2 1/2
(f wup) o (f ) sc{(f ) +R°‘Hf|!ow<czg>} (15

for any e <r < R/2, where C' depends only on d, u, o, and Y.

In (1.5) (and thereafter) we have extended u. to Qg by zero. In the next theorem,
W(y) = (Wj(y)) is a 1-periodic d x d matrix-valued function, defined by the cell problem
(2.1).

Theorem 1.2. Let (u,p.) be the same as in Theorem 1.1. Then

1/2
inf — W (z/e)E? f EJ?
Jnf, (]{2,« eVu, — VW (x/e) ]) EIQR (7[ lue — p= " Wi(z/e) \)

o ) 1/2
<c(L) (]éRw) B flleneon

forany 0 <e <r < R/2, where 0 < f < a and C depends only on d, p, o, 3, and Ys.

(1.6)

Theorems 1.1 and 1.2 give the large-scale interior Lipschitz and C1* estimates for the
Stokes equations (1.1) in a periodically perforated domain. We also obtain the corresponding
large-scale estimates for the pressure p.. See Section 6. We remark that the large-scale esti-
mates for (u., p.) hold under the assumption that Y is an open set with Lipschitz boundary.
If the boundary of Y} is smooth, we may combine the classical regularity estimates for the
Stokes equations (with e = 1) in Y\ Y; with these large-scale estimates to obtain regularity
estimates that are uniform in € > 0. In particular, this yields

1/2
euwanm(@m)+||uaumm>50{(][ |u5|2) +Ra|rfuoo,a<@m} (L7)
R

for 0 <e <1and R > 0, where C depends only on d, u, o, and Y. See Remark 5.7.
Our approach to Theorems 1.1 and 1.2 is based on a compactness method, originated
in the study of regularity problems for nonlinear PDEs and minimal surfaces. The method
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was introduced in a seminal work [8] by M. Avellaneda and F. Lin to the study of the
quantitative homogenization theory (see [17] for the use of the compactness method for the
Stokes equations with periodic coefficients in a fixed domain). Let {(u.,,p.;)} be a sequence
of solutions of (1.4) with R =4 and e = ¢; — 0. Assume that {u.,} is bounded in L*(Q4; R?).
To apply the compactness method to the Stokes equations in perforated domains with the
Dirichlet condition, the key is to extract a subsequence, still denoted by {(u.,,p.,)}, such
that P., — po in L*(Q1), where P. is a suitable extension of p. defined by (2.7), and that

U, — Wz /e;)(f — Vpo) = 0 in L*(Qq; RY). (1.8)

While the strong convergence F.; in L? may be proved as in the classical work [26, 1, 18, 2,
20, 4] on Darcy’s law, the strong convergence for u. in (1.8) was only known previously in the
case when the sequence {u,,} has the same Dirichlet data on a fixed boundary [2, 4]. One of
the main technical contributions of this work is establishing the compactness property (1.8)
for a sequence of solutions with a uniform L? bound for u.. This is done by first proving a
boundary layer estimate,

1/2
( / \swﬁd:ﬂ) < C5 {lullzian + 100} (19)
Q145\Q1-5

for e <60 < 1/2, where C' and ¢ > 0 depend only on d, p, and Y. The proof of (1.9) uses
the self-improving property of the (weak) reverse Holder inequalities as well as an energy
estimate in [24] and the nontangential-maximal-function estimates in [11] for the Stokes
equations in a bounded (unperforated) Lipschitz domain. With (1.9) at our disposal, (1.8)
is proved by applying the two-scale convergence method.

The large-scale regularity estimates in the homogenization theory have been studied
extensively in recent years. Besides the compactness method, there is another approach
that is based on the convergence rate and is effective in both the periodic and non-periodic
settings for second-order elliptic systems with oscillating coefficients (see [7, 12, 16, 6, 23]
for references). In a recent work [24] the present author was able to establish the sharp
convergence rate for the Stokes equations (1.1) in a periodically perforated domain ..
However, since the results are proved by energy estimates, the bounds for solutions u. and
their divergences cannot be separated. As a result, the error bound in [24] requires a strong
condition for the normal component of u. on the fixed boundary 02, which is difficult to
handle in the approximation scheme.

For second-order elliptic equations and systems in perforated domains, the large-scale
regularity estimates may be found in [27, 30, 29, 28, 21, 5, 25, 10], where the Neumann type
conditions are imposed on the boundaries of the solid obstacles. In this case, the effective
equations are of the same type and the effective solutions share the same boundary data
as u. on the fixed boundary. To the best of the author’s knowledge, the paper [19] by N.
Masmoudi seems to be the only one that treats the Stokes equations with the Dirichlet
condition on the boundaries of solid pores. In particular, the uniform W#? estimates for the
Stokes equations (1.1) in ew with smooth boundary were stated in [19, Theorems 4.1 and
4.2] without proof (no proof has appeared since). As a consequence of Theorem 1.1, we are
able to provide a proof for the uniform W*? estimates.



Theorem 1.3. Assume that OY, is of CY® for some 0 < a < 1. Let F € LY(R%RY) and
f € LYRY,R™) for some 1 < q < co. Then there exist a unique u, € Wol’q(gw;]Rd) such
that
—*puAu, + Vp. = F + ediv(f) in cw,
div(u.) =0 in ew, (1.10)
ue =0 on J(ew),

q

be(ew). Moreover,

for some p. € L
5||VUEHL‘1(60J) + ||u8||Lq(ew) + 8_IHVpsHW*M(sw) < C{||F||Lq(ew) + ||fHLq(aw)}7 (1-11)

where C' depends only on d, u, q, and Ys.

Theorem 1.4. Assume that 0Y, is of C** for some k > 2 and 0 < o < 1. Let F €
Wh=24(R%RY) for some 1 < q < oo. Then there exists a unique u. € W (ew;R?Y) such

that
—?uAu. + Vp. = F in cw,

div(us) =0 in ew, (1.12)
u. =0 on 0(ew),
for some p. € L] (sw). Moreover,
k k k—2
SV ey + 3N Bellw ey £ CY IV Fllaney, (113)
=0 =1 =0

where C' depends only on d, u, q, k, and Y.

We remark that as a consequence of the large-scale C%® estimates in Theorem 1.2, we
obtain a Liouville property for weak solutions of (1.12) in ew with u. € I/Vllo’f(&?w; R%) and F
being constant. See Theorem 6.4. This property is used in the proof of the uniqueness in
Theorems 1.3 and 1.4.

The paper is organized as follows. In Section 2 we collect some basic facts and estimates
that will be used in later sections. In Section 3 we prove the crucial estimate (1.9), which is
used in the proof of a compactness result, given in Section 4. The proofs of Theorems 1.1
and 1.2 are given in Section 5, while the corresponding large-scale estimates for the pressure

are established in Section 6. Finally, Theorems 1.3 and 1.4 are proved in Section 7.

Acknowledgement. The author thanks the referees for valuable comments and suggestions.

2 Preliminaries

Let Y = (0,1)? and Y, (solid part) be an open subset of Y with Lipschitz boundary. Through-
out the paper we assume that dist(9Y,dY;) > 0 and that (the fluid part) Y; = YV \ Y; is
connected.

Let w is given by (1.2). Note that the unbounded domain w is connected, 1-periodic,
and Ow is locally Lipschitz. Also, observe that dist(Z¢ dw) > 0. For 1 < j < d, let



(W), 7 () = W} (y), ..., WHy),m;(y)) € Hyp.(w; R x L, (w) be the 1-periodic solution
of the cell problem, o
—AW,; +Vr; =¢; in Y\ Y,

div(W;) =0 in Y\ Y, (2.1)
W; =0 on 0Yj,

with fY\Z mjdy = 0, where e; = (0,...,1,...,0) with 1 in the j™ place. Define

K= [ Wi, (22)
Y

where we have extended W; to R? by zero. The dxd matrix K = (K}), called the permeability
matrix, is symmetric and positive definite. This follows readily from the observation

@:/vwﬂwW@ (2.3)
Y
(the index ¢ is summed from 1 to d).

Recall that Qg = (=R, R)? and Q% = Qr N ew.

Lemma 2.1. Let u € W'(Q%) for some R € eN and 1 < ¢ < oco. Assume u = 0 on
QrNO(ew). Then
[ullLaqs,) < Cel|VullLaqs,), (2.4)

where C' depends only on d, q, and Y.

Proof. By dilation we may assume € = 1. The result then follows by covering Q}, with unit
cubes and applying Poincaré’s inequality on each cube. O

Suppose

{—amue +Vp.=f .
m QR?

div(u.) =0
with u. =0 in Qr N I(ew). Let

U(ZE) = ua(TiL'), q(l‘) = r_lpa(rx), and g(ZL‘) = f(T‘:L‘),
then

in QE/ .

—(e/r)*ulAv+Vq=g
R/r?

div(v) =0
with v = 0 in Qr/r NO((e/r)w). This rescaling property will be used frequently in the paper.

Lemma 2.2. Let (u.,p:) be a weak solution of (1.1) in Q% with u. = 0 in Qr N I(ew),
where 0 < e <1 and R € eN. Then

Pe _7[ Pe
Qr

where C' depends only on d, pu, and Ys.

< CR{el Vs + 12 ) (2.5)

L2(Q%)



Proof. By rescaling we may assume R = 1. Without loss of generality we may also assume
that fQi p. dr = 0. Choose v. € H}(Q5;R?) such that

div(ve) = p.  in QF,
and
[vellz2Qs) + llVvell2(qs) < Cllp:llrz@s), (2.6)

where C' depends only on d, i1, and Y. We refer the reader to [9, pp.146-148] for the existence
of such v, with the estimate (2.6) in a periodically perforated domain. By using v. as a test
function, we see that

|
Q

Hence, by the Cauchy inequality,

Vu, - Vo, dx — |p5|2d9§:/ frvede.
Q5 Q5

£
1

o [pel* dz < & pl[ Ve[| 12(@5) | Vel 2@s) + 1 Il 2o lvell z2an)
1
< Clipellzzon el Vel 2 + I1fllz2as) }-
which yields (2.5). O

Remark 2.3. Let (u.,p.) be a weak solution of (1.1) in Q%. We extend u. to Qg by zero
and denote the extension still by u.. For the pressure p., we use P. to denote its extension

defined by

pe() if x € Q%,

P.(a) = (2.7)

][ De if v € e(Yy + 2) and e(Y + 2,) C Qg for some z, € Z°.
e(Yi+zk)

See [26, 18, 4]. Note that if e(Y + z;) C Qg for some z;, € Z¢, then

][ Pe = ][ De-
e(Y+z) e(Yy+zr)
][ P. = ][ De. (2.8)
R =

The next lemma provides a Caccioppoli type inequality for (1.1) in perforated domains.

It follows that if R € €N,

Lemma 2.4. Let (u.,p:) be a weak solution of (1.1) in Q%,. with u. =0 on Qprye N I(ew),
where 0 < e <1 and R € eN. Then

= [
Q

where C' depends only on d, pu, and Ys.

Vu?de + R / |pe—][ pldz < C / P de + C / fPdr, (29)
R R

e €
R R+e R+e



Proof. In view of (2.5), it suffices to bound the first term in the left-hand side of (2.9). By
rescaling we may assume ¢ = 1. Now suppose that

—puAu+Vp=f and div(u)=0

in Qry1 Nw, and v = 0 in Qg4 N Ow for some R € N. Since dist(0Y,dY;) > 0, we may
choose ¢ € (0,1/2) so small that

if;:: (1+86)Y\Y, Cuw.

It follows from the standard Caccioppoli inequality for the Stokes equations [15] that

/ |Vul?dr < C’/ |u\2d:L’+C’/ |f|? dz,
Yi+z Yi+z Yi+z

where z € Z4 and Y + z C Q. By summing the inequality above over z we obtain (2.9)
with e = 1. n

Remark 2.5. Let (u.,p.) be a weak solution of (1.1) in Q55 with u. = 0 on Q55 N I(ew),
where 0 < ¢ <1 and R > 2¢. Then

/ \Vu|? dz + R™2 / ][ p5|2dx§C’/ |u€|2dx+C’/ \f?dz.  (2.10)
E E ER € I3

2R 2R

To see this, we choose k € N such that R < ke < R+ . The left-hand side of (2.10) is

bounded by
52/ |Vu€|2dx+CR_2/ ][ pe|? dz,
QF. ke ke

which is bounded by the right-hand side of (2.10), using (2.9) and the fact R > 2e.

3 Reverse Holder inequalities

Let Q(z,r) =2+ (—r,r)¢ =2+ Q, and Q°(x,7) = Q(x,r) Necw. Define

g.(1) = (]g R |u5|>2) " (3.1)

The goal of this section is to establish the following.

Theorem 3.1. Let (u.,p.) € HY(Q5p;RY) x L?(Q5,) be a weak solution of (1.1) in Q5p
with ue = 0 on Qo N O(cw), where 0 < e <1 and R > ¢. Let g. be defined by (3.1). Then,
there exist ¢ > 2 and C > 0, depend only on d, u, and Yy, such that

(£, 1a1) e (f, tcrvul+ rm?)m o (f ) T e

We begin with an estimate for the Stokes equations in Q; = (—t,t)%.
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Lemma 3.2. Let (v,7) € H'(Qy;RY) x L*(Qy) be a weak solution of the Dirichlet problem,

—Av+ V7T =0 mn Q,
div(v) =0 in Q, (3.3)
v=nh on 0Qy,

for some t > 0, where h € H(0Q; RY) satisfies the compatibility condition fBQt h-ndo = 0.
Then there ezist gy € (1,2) and C' > 0, depending only on d, such that

() <o, )"
o) <c(f i) (3.5)
, e

Proof. By dilation we may assume ¢t = 1. To prove (3.5), we use the energy estimates to
obtain

and

Vo2 < Clibllmrzeg,) < Clikllwiooa),

where @ < qo < 2, and we have used the Sobolev imbedding on 0Q); for the last inequality.
Replacing v be v — E, with £ = fan h, we obtain (3.5) by a Poincaré inequality on Q).

To see (3.4), we use the nontangential-maximal-function estimate,

[(v)*[| Lo 0@1) < CllAllL00q,)- (3.6)

The estimate (3.6) was proved in [11] for the Stokes equations in bounded Lipschitz domains
), where |go — 2| < 0 and ¢ > 0 depends only on d and the Lipschitz characters of Q. As

a result, (3.6) holds for some @ < qo < 2, depending only on d. This, together with the
estimate,

[0ll22@1) < Cll(0) [0 961): (3.7)
gives (3.4).

Finally, to see 3.7, we use the observation

o(a)] < C / . %ddy)

for any = € Q1. It follows that

’/1“@)9(5”) d"f‘ = C/an(v)*(y)G(y) do(y),

where 02|
g(x
Gly) = / @l g,
o |z —yl*!
Since
1G] Lo 00y < ClGlm2000) < ClIGN @) < Cllgllzz @)
we obtain (3.7) by a duality argument. O



In the proof of the next lemma, we will use the following observation: there exists ¢y > 0,
depending only on d and Y, such that

dist(0Q,, R\ ew) > coe  if dist(t,eN) < cge. (3.8)

The case ¢ = 1 follows from the assumption that dist(9Y,0Y;) > 0, while the general case
follows by dilation.

Lemma 3.3. Let (u.,p.) € H'(Q55;R?) x L?(Q55) be a weak solution of (1.1) in Q5p with
ue =0 in Qap N O(ew), where 0 < e <1 and R € eN. Then

1/2 1/2
a(][ ]Vu5|2> +<][ |u5|2>
Qr Qr
1/q0 1/q0 1/2
SC’&(][ |Vu€|q°> +c(][ |u5|q°) +c(][ yf|2) |
Q2r Q2R Q2r

where qo € (1,2) is given by Lemma 3.2, and C' depends only on d, u, and Ys.

Proof. By dilation we may assume R = 1 and ¢! € N. We first observe that by Fubini’s
Theorem, there exists ¢ € [1,2] such that dist(t,eN) < ¢pe and

g / V| do —I—/ lus|? do < Cy {qu |Vue|® dx + |ue | da:} : (3.10)
Q¢ Q¢ Q2

Q2

where Cy depends on d and Y;. For otherwise, suppose that for any ¢ € [1, 2] with dist(¢,eN) <
Co€,

el / |Vu.|?* do + / |us|™ do > Cy {aqo |Vue|® dx + | | dx} :
0Q¢ 0Q¢ Q2 Q2

By integrating the inequality above with respect to t over the set
E. = {t e (1,2) : dist(t,eN) < coe},

and using the observation that |E.| > ¢ > 0, we obtain

€q°/ | V| da:—l—/ lus|® dx > C1Cy {5q0 |Vu|?* dx + |ue|® dx},
Q2\CQ1 Q2\Q1 Q2

Q2

where C depends only on d and ¢y. This gives a contradiction if we choose Cy = (207)71.

Next, let (v, 7) be a weak solution of (3.3) in ¢); with Dirichlet data h = u. on 0Q). Since
dist(0Q;, RY \ ew) > cpe, by the energy estimates for the Stokes equations in periodically
perforated domains in [24, Inequality (3.9)], we deduce that

e [ |VulPdr+ | |ulf*dx < C{ez/ Vo[ d:v—i—/ lolPde+ | |f? da:}.
Q1 Qt Q¢ Q¢ Q¢



This, together with (3.4) and (3.10), gives

eIVl a(@n) + lellzz@n) < CLelVollzan + Iollza@n + 1fllz200 }
< C{elVianticllimoqn + lellzmoan + 1/ 2@ }
< C{ell Vel + el zcn + 1 Fll2en -

which completes the proof. O

Remark 3.4. Let (u., p.) be a weak solution of (1.1) in Q°(xg, 4R) with u. = 01in Q(x,4R)N
d(ew), where o € R4, 0 < ¢ <1 and R > 2e. Then

1/2 1/2
€ (][ ]Vu€\2> + (7[ \u5|2>
Q(zo0,R) Q(zo0,R)
1/q0 1/q90 1/2
coe(fwum) ae(f que) Tae(f o pr)
Q(z0,4R) Q(z0,4R) Q(z0,4R)

where gy € (1,2) is given by Lemma 3.3. Indeed, by (3.9) and translation, (3.11) holds if
1o € ¢Z% and R € eN. Moreover, in this case, Q(z¢,4R) in the right-hand side is replaced
by Q(z0,2R). For the general case, we choose y € €Z? and R; € ¢N such that

Q(xlb R) - Q(y07 Rl) and Q(y07 2R1) - Q(x074R)’

(3.11)

which is possible under the assumption R > 2¢.

Proof of Theorem 3.1. By rescaling we may assume R = 1 and 0 < ¢ < 1. We also
assume 0 < € < ¢, where ¢ > 0 is sufficiently small; the case ¢ < e <1 is trivial.
Let qo € (1,2) be given by Lemma 3.3. Define

1/q0
G.(y) = sup (f (V| + |u€|)q°) | (3.12)
Q(z,r)

where the supremum is taken over all Q(z,r) with the properties that y € Q(z,7), r > 2¢,
and Q(z,7) C Q3. We will show that

(7[ |G6|C’) Moo (f |G€|2)1/2 e (7{2 |f|q) v (3.13)

for some ¢ > 2, depending only on d, i, and Y,. Note that by the L?% boundedness of the
Hardy-Littlewood maximal operator,

(722 |G5|2)1/2 <C (]22(€|VU8| + |u£|)2)1/2_
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Also, observe that by (3.11),

1/2
g() < C (f (6| V| + |ua|>2)
Q(z,2¢)

1/2
<ce+o(f i)
Q(z,8¢)
for x € Q. It follows that

(o) <o (fror) se(fm)

As a result, the estimate (3.2) follows from (3.13).
Finally, to prove (3.13), we use the well-known self-improving property of (weak) reverse
Holder inequalities [14]. Consequently, it suffices to show that

1/2 1/q0 1/2
(f |GE|2) <c (][ |Ga|q0) e (f |f|2) (3.14)
Q(z,t) Q(x,8t) Q(z,8t)

for any z € @1 and 0 < t < ¢. We divide the proof of (3.14) into two cases.
Case 1. Suppose 0 < t < 4e. Observe that in this case, G.(y) ~ G.(z) for any y, z €
Q(x,t); i.e., there exist ¢y > 0 and ¢; > 0, depending only on d and Yj, such that

Co G5<y) S GE(Z> S C2 Gs(y) for Y,z € Q(IL’,t).

1/2 1/qo
(][ \G8|2) gC(][ \Gg|q°) )
Q(zt) Q(z,8t)

Case 2. Suppose 4e <t < c. For y € Q(x,t), write
Ge(y) = max (G(y), GP(y)) ,

This implies that

where GV is defined as in (3.12), but with the supremum being taken over all Q%(z, r) with
the properties that y € Q(z,7), r > 2¢, and Q(z,7) C Q(z,2t). By the L*% boundedness
of the Hardy-Littlewood maximal operator, we have

1/2 1/2
(f !G§”|2> sc(][ <e|wg\+\ug\>2)
Q(z,t) Q(x,2t)
1/q0 1/2

c(f <e|wg|+|u5|>q0) +c(][ |f|2>

Q(:E,Bt) Q((E,St)

1/qo0 1/2

0<][ |Gg|q0) +c(f |f|2) |

Q(z,8t) Q(z,8t)

where we have used (3.11) for the second inequality. Since

IN

IN

GéQ)(y) ~ Gg)(z) for y,z € Q(x,1),

11



we have

1/2 1/q0
(f |G§2>|2) sc(f |G9>|q0)
Q(z,t) Q(z,t)
1/qo
SC(f |G6|q°) .
Q(z,t)

As a result, we have proved (3.14) for Case 2. This completes the proof. ]

Corollary 3.5. Let (u.,p.) € HY(Q5;RY) x L*(Q5) be a weak solution of (1.1) in Q5 with
us =0 on Q3N I(ew), where 0 < e < 1. Then

1/2
/ (6| Ve + Jue])? d
Q1+5\Q1—-s
1/2
sc&f{( / <e|wg|+|ug|>2dx) +||f||Loo<Q3>}7

for any § € (¢,1], where C and o > 0 depend only on d, p, and Ys.

(3.15)

Proof. We may assume 0 < 1/4; for otherwise the estimate is trivial. By Fubini’s Theorem,

1/2 1/2
/ e[V + [u)2dz | <cC / o]
Q1+5\Q1—s Q14+5\Q1—s

where ¢, is defined by (3.1) and we have used the assumption § > ¢. By Hélder’s inequality,
the right-hand side of the inequality above is bounded by

1/q
s / gel7de |
Qs/2

where ¢ > 2 is given by Theorem 3.1 and o = % — % > 0. The estimate (3.15) now follows
readily from (3.2). O

4 Compactness

The goal of this section is to establish the compactness in the following theorem. The
condition 5;1 € N ensures that d(g;w) N9Q, =0 for ¢ =1,2,3,4.

Theorem 4.1. Let {(uc,,p.;)} be a sequence of weak solutions of

—eSulu, + Vp, = [ in Q7
div(u,) =0  inQ7, (4.1)
Ug; = 0 on Q4 N a(gjw)a

12



where 6]-_1 € N and e; — 0. Assume that
|u€j|2 <1 and ||f5j||0a(Q4) <1 (42)
Q4

for some o € (0,1). Then there ewists a subsequence, still denoted by {(uc,,p.,)}, and
feC*(QuRY), po € HY(Q2), such that f., — f uniformly in Qu,

P, - ][ P, —po in L*(Q2), (4.3)
Q2
U, — 1 W(m/e;)(f — Vo) = 0 in L*(Q1; RY), (4.4)
and
e;Vu., — n 'VW(z/e;)(f — Vpo) = 0 in L*(Qr; R™), (4.5)

where P.; denotes the extension of p., defined by (2.7).

Proof. We divide the proof of Theorem 4.1 into several steps.

Step 1. By subtracting a constant we may assume | Qi Pe; dx = 0. It follows from Cacciop-
2
poli’s inequality (2.10) and (4.2) that

31V liran + 1P, = Polliray < C. (16)

Q2

Thus, by passing to a subsequence, we may assume that

P _][ P., = po weakly in L*(Qs),
2

4.7
u; two-scale converges to uo(z,§), (47)

e;Vue, two-scale converges to Veug(x,§),

for some py € L*(Q2) and ug € L*(Q2; H),.(Y;RY)). Moreover, since u., = 0 in Q3 \ (g;w)
and div(ue,) = 0 in @3, the limit u satisfies

Ug(m,f) =0 in QQ XY;?
diveug(z,£) =0 in Qy X Y,

(4.8)
divx/yuo(x,f) dé =0 in Q.

We refer the reader to [3] for an introduction to the two-scale convergence and its applications
to homogenization. Clearly, by passing to a subsequence, we may also assume that f., — f
uniformly in Q4 for some f € C*(Qq;RY) with || f|lce(gs) < 1.

Step 2. We show that
P, —][ P, —po in L*(Qo). (4.9)
Q2

13



The proof is the same as in the case with boundary value u. = 0 on 0Qs. See e.g. [4].
We sketch a proof here for the reader’s convenience. The key is to show that for any

¢ S H&(Q%Rd)a
| < VP, 0 > 5100 HL(Q2) |

(4.10)
< {1V gy + Il F{ i1 V0@ + 1 lz2(@n -

To see (4.10), let R., : Hj(Q2;R?) — H{(Q3;R?) be the restriction operator defined in [4,
Lemma 1.7]. Then

| < VP, ¥ > 5100 xHLQy) |

=| < Vp.,, R, (¥) ZH-1(QF )< HA(QY) |

= | < U, + fops Rey(8) > 4109 e |

< &5l Ve, | agio IV Rey () 2 i | + sl ooy 1By () 2
< C{ngquj”H(Q;j) + ||f5j||L2(Q;j)}{Ej”vw”LQ(QQ) + ||¢||L2(Q2)}.

The estimate (4.10) implies (4.9). For otherwise, since

3 —f P pollizom < CIIV P, — Viollu-som:

Q2

it follows that V P., does not converge to Vpg in H ~“1(Q4; RY). Hence, there exists a sequence
{v;} C Hy(Q2;R?) such that || 1o, = 1 and

| < VP = Vpo, ¥ >m-1Quyxmi(@s) | = ¢0 >0

for a subsequence {€}. By passing to a subsequence we may assume 1; — 1o weakly in
Hy(Q2;R?) and thus strongly in L*(Qy; R). Since

< Vst - VpOa wO >H_1(Qz)><H(%(QQ)—> O’

we see that
| < VP, — Yo >p-1(Qu)xmi(@s) | = Co/2

if j is sufficiently large. This leads to a contradiction if we take ¢ = 1); — 1y in (4.10).
Step 3. We show that

uo(x, &) = p W(E(f —Vpo) in Q. (4.11)

By using the Stokes equations in @5 and the two-scale convergence of €;Vu,,, we have

M/Q y Veuo(z, ) - Vep(z, §) dedé = flx)(x, &) dedE (4.12)

Q2xY
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for any ¢ = 1(z,€) € L*(Q2; H),,(Y;RY)) satisfying the conditions,

(divey(z,€) =0 in Qy XY,
w(‘r7€>:0 in Q2XY;7

dwﬁ/¢¢a9d§=0 for z € Qo, (4.13)
Y

n-/w(x,f)dﬁzo for x € 0Q)1,
L Y

where n denotes the outward unit normal to Q5. See [4, p.48-89]. Let p. € H'(Q3) be a
weak solution of the Neumann problem,

div(K(f — Vp.)) =0 in @2,
(4.14)
,un-K(f—Vp*):n-][uo(x,f)d{ on 00y,
Y
and
vo(@,§) = p= W(E(f — Vp.)  in Q. (4.15)

It is not hard to show that (4.12) also holds if ug(x, &) is replaced by vg(z, ). Thus,
[ Vel =€) - V(e € dodg =
XY

for any ¢ = () € L*(Qq; H,,,(Y;R?)) satisfying (4.13). By taking ¢ = ug — vo, we see
that ug — vg depends only on z. Since ug(x,§&) — vo(x,&) = 0 for £ € Y, we conclude that

up(z, &) = vo(x,£) in Qg X Y.
It remains to show that Vp, = Vpg in Q). To this end, we note that by using the Stokes
equations in @5, (4.9) and the two-scale convergence of £;Vu,,,

" / Veuo(r, &) - Veb(a, €) dade — [ pola) divath(e, €) dude
Q2XY QQXY (416)
_ / F(@)(e, €) dade,
Qa2xY

if ¢ € C5°(Qq; Hy,, (Y)) satisfies diveth(z,&) = 0in Q; x Y and 9(z,£) = 0in Q; X Y;. By
taking ¢ = (x)Wy(&) in (4.16), where 1 < ¢ < d and ¢ € C§°(Q2), we obtain
Oy

4  op. . . ,
Kg/ (fj—axj)goda:—Kg/ po(x)a—xjdx:Kg g flodx,

where we also used the fact ug(z,&) = ='W (E)(f — Vp.). It follows that
Kj/ soi(p —po)dz =0
"o, "0z

for 1 < ¢ < d. Since K = (KJ) is invertible and ¢ € C3°(Qy) is arbitrary, we deduce that
V(p« —po) = 0in Q.
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Step 4. We show that
ejVue, — i 'VW(z/e;)(f — Vpo) = 0 in L*(Qq; R, (4.17)
Let
Ij = ||pe;Vue, = VW (/) (f = Vo)l i2(q,)- (4.18)
Observe that

L =ep® [ |Vug, | do — 2,u/ e;Vue, - VW (x/e;)(f — Vo) dz
Q1 1

+ [ IVW(x/e))(f = Vpo)|? da
Q1
=L +I+ 1.

Since eVu,, two-scale converges to Veug(x, &) = p~'VIW(E)(f — Vpo) in Q2, we see that

I+ 17— — oy [VW(E)(f = Vipo)[* dzd§

= - o K(f = Vpo) - (f — Vpo) dz

= —u/ u-(f - Vpo)dr,
1

where @ = p 'K (f — V). To handle I}, we fix § € (0,1/8) and choose a cut-off function

© = ps € C5°(Q1) such that 0 < ¢ < 1, p(x) = 0 if dist(z,0Q1) < §/2, p(z) =1 if z €

and dist(z,0Q1) > 4, and |p| < C§~!. Note that

IN =23 | |Vu, Pode+ pPes | [Vug,|P(1— ) da

Q5 Q1
Q1

(ue, -faj)godas+u/
—uQeﬁ/
Q

Q5 2
where we have used the Stokes equations in ()] and integration by parts. By the strong
convergence of f., and P., — fQ2 P., and weak convergence of u., in L*(Qs), it follows that

e, (Vue,) (V) dz + u25§ Vu, 1?(1 — ) dz,
Q1

£
1

lim sup [} —u/ (ﬂ-f)godx—u/ (E'VSO)POCZQC’
j—>OO 1 1
< C’sup/ €§|Vu€j]2 dx
J JQI\Qi-s
< C6™,

where we have used (3.15) for the last inequality. Since
| @ nedr+ [ @ Vomde= [ @ (- Vm)pds,
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we have proved that

I}—u/ u-(f—Vpo)dx

limsup |/;| < lim sup

Jj—o0 Jj—00 1
<O +p | [ullf = Vipol(1 = ) da
Q1
< 062”+u/ [ul|f — Vpo| du,
Q1\Q1-5

where C' does not depend on 6. By letting 6 — 0, we conclude I; — 0, as j — oo.
Step 5. We show that

U, — Wz /e;)(f — Vpo) = 0 in L*(Qq; RY). (4.19)

Since f € C%(Q4;R?) and div(K(f — Vpg)) = 0 in Qy, it follows that Vpy € C*(Qq; RY).
As a result, we may choose a sequence {F;} C C'(Qy;R?) such that

1E = (f = Vpo)lle@y = 0 as j — oo,
and ||V Fj| L=, < Ca?_l. Note that
Jue; — = W (z/e;)(f = Vo)l 22
< lue, = W (2 /25) Fjll r2qu) + 0™ W (a/25) (Fy = (f = Vo))l z2(@u)
< Ogj|V(ue; — p= Wz /ej)Fi)ll 2o + Il Ww/e5) (Fy — (f = Vo))llz2an)
< CllejVue, — = 'VW (z/5) Fjll 120 + CgjlW (2/25) VEjll 1204
+ ™ W (x/e5)(Ey — (f = Vpo))llr2(an)
< Clle;Vue, — p™ ' VW (x/ej)(f = Vpo)llLziu + CIIVW (2 /) (F; = (f = Vo))l z2(on)
+ O |[Wix/e;)VEjl 2Qu) + ClIW (x/e;)(F) — (f — Vpo))llL2(@u)
< Clle;Vue, — p 'VW(z/e;)(f = Vpo)ll 2@
+ ClIF; = (f = Vo)l (@) + C&lIVEjl Le(qu)s

where we have used the Poincaré inequality (2.4) for the second inequality. As a result,
(4.19) follows from (4.17). This completes the proof of Theorem 4.1. O

Remark 4.2. It follows from the proof of Theorem 4.1 that
u., > u:=p "K(f —Vpy) weakly in L*(Qq; R?). (4.20)
Since div(ue,) = 0 in @2, we obtain

div(K(f — Vpo)) =0  in Qs (4.21)
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5 Large-scale estimates for the velocity

In this section we give the proof of Theorems 1.1 and 1.2.

Lemma 5.1. Let 0 < B < a < 1. There ezist 0 € (0,1/4) and ey € (0,1/4), depending only
ond, o, B, i, and Ys, such that 0= € 4N, g;' € 4N, and

1/2 1/2
inf (][ e — ,u‘IW(x/s)E|2> < 0° max { (][ ]u5]2> | Hf|yco,a(Ql>} 6
EcRd Qo Q1

whenever 0 < & < gy, e+ € 4N, and (u.,p.) € H'(Q5;R?) x L*(Q,) is a weak solution of
the Stokes equations (1.1) in Q5, u. = 0 in Q; N I(ew), and f € C*(Q;RY) with £(0) = 0.

Proof. The lemma is proved by contradiction. We begin by choosing 6 € (0,1/4) such that
6=' € 4N and Cyf* < (1/2)6°, where Cy is the constant in (5.6), which depends only on d,
1, and Y. This is possible since § < a.

Suppose that no ey with the desired properties exists for this . Then there exist a
sequence of weak solutions (u.,,p.,) of the Stokes equations,

—E?[I,Auaj + Vpaj = f&j)
div(ue,) =0,

in Qy with ue; = 0 on Q1 N I(g;w) such that &t;l € 4N, g; — 0,

1/2
max { (]{2 |u5j|2) , ||f||COvO‘(Q1)} S 17 (52)

1/2
inf <][ yusj_ﬂ—lw(x/ej)mz) - 0. (5.3)
Qo

EcRd

and

By subtracting a constant we may assume |, Qi Pe; dr = 0. It follows that
1/2

Q12 Q7

1/2

In view of Theorem 4.1, by passing to a subsequence, we may assume that f., — f uniformly
in Q; for some f € C%(Q;RY),

P., —po in L2(Q1/2)7 (5.4)

and
U, — W Wiz /e;)(f — Vipo) = 0 in L*(Qq/4;R?), (5.5)
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for some py € H'(Q1/2). Note that

(]é - WG/ P "

< (]g e, W /) - Vi)l H e ( WG/~ Vi - B)P)

1/2

1/2
< (]g e, — 1 W (e e))(f — VP0)|2) Ol = Voo — Ellian
]

1/2
< ( g e, — W (z/25)(f - Vpo)|2) + CH“{IIchova(Qm) + ||Vpo||c°va(c21/4>}y
6

where we have let E = Vpy(0) and used the assumption f(0) = 0. By letting j — oo and
using (5.3) and (5.5), we obtain

0 < C6°{ || fllone @y + [V mollconiaun }

< 00 { | flleoian + IPollz2(y o)

where, for the last step, we have used the interior C'1® estimates for the elliptic equation
div(K(f — Vpo)) = 0in Q1/2 (see Remark 4.2).
Finally, by the Caccioppoli inequality (2.10),
||p8j ||L2(Qij/2) S C.
This, together with (5.4), yields ||po[|r2(q,,,) < C. Hence,
0° < Cob, (5.6)
where Cy > 0 depends only on d, u, and Y. This is a contradiction with the choice of 8. [J

Remark 5.2. Note that if v. = W;(z/¢e) and ¢. = e 'mj(x/e) — ;, then

—£?Av, + Vg =0,
div(v.) =0,

in R\ ew and v, = 0 on dw. This allows us to replace u. in (5.1) by u. — u=*W(x/e) Ey for
any Ey € R Tt follows that (5.1) in Lemma 5.1 may be replaced by

1/2
. —1 2
ot (f o= W(x/e>E|)
1/2
2
<o m{f (f 1= wiarerr) 7||f||co,a<Ql>}-
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Lemma 5.3. Let 0 < S <a < 1. Let 0,59 € (0,1/4) be given by Lemma 5.1. Then

inf <][ |ue — ulVV(x/g)E]Q) < kP max{ \us HfHCO,a(QI)} . (5.8)
E€R4 ok

whenever 0 < ¢ < 0% ley, 7! € AN, and (u., p.) € H( i,Rd x L*(Q1) is a weak solution of
the Stokes equations (1.1) in Q5, ue =0 in Q1 N 8(&0) and f € C*(Q1;R?) with f(0) =

Proof. The lemma is proved by induction. The case k =1 is given by (5.7).

Suppose the estimate (5.8) holds for some k > 1. Let (u.,p.) € H'(Q5;R?) x L*(Q;) be a
weak solution of the Stokes equations (1.1) in Q5, u. = 0 in Q; NI(ew), and f € C*(Qq;RY)
with f(0) = 0. Assume that 0 < ¢ < %¢y and e~! € 4N. Consider

v(r) = u.(0*r) and q(z) = 0 Fp.(6Fz).
Then
div(v) = 0,

in Q"¢ and v = 0 on Q,NI(ed *w), where g(z) = f(#%z). Since §*¢ < &, it follows from
(5.7)that

1/2 1/
nf (]é s ulW(:v/é)E!2> - it (f oWt

1/2
semax{mf( o= WG ()BT ,ngoo,a@l)}
Q1

{—(59_k)2ﬂAU +Vg=y,

EcRd

EcRd

1/2
(k+1)8 i 2
<0 max {Elggd (][ |ue — = W(x/e)E| ) ) HfHCO,a(QI)} ;

where we have used the induction assumption for the last inequality. This completes the
induction argument. O

1/2
— max inf (f \ue—wmx/e)m?) 04 fllconiay
ok

The next theorem gives the large-scale C%* estimates for the Stokes equations in perfo-
rated domains.

Theorem 5.4. Let (u.,p.) be a weak solution of the Stokes equations in Q% with u. =0 on
QrNA(ew), where 0 < e < R and f € C*(Qgr;R?) for some 0 < o < 1. Then

1/2
inf . E|?
nf, (][ e = W (o) EP)
B 1/2 X
<c (%) {(]éw) R \|fuco,a<QR>},

for any e <r < R, where 0 < 8 < a and C' depends only on d, i, o, B, and Y.
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Proof. Note that (5.9) is trivial if cR < r < R. Also, observe that

—pe?Au, + V(p. — f(0)-z) = f — f(0).

We may assume f(0) = 0. As a result, by Lemma 5.3, (5.9) holds for ¢ < r < R = 1, if
7! € 4N. By considering the solution (u.(tx),t 'p.(tz)), where 1/2 < t < 1, we deduce

that
1/2
inf (7[ e — W x/E)EP)
EcRd

1/2
scrﬁ{(]é luel2> +||f||co,a<czt>}a

if e <7 < tandte € 4N. Tt follows that (5.9) holds for e < r < R = 1, without the
condition e~! € 4N. By dilation this implies that (5.9) holds for any e <r < R. [

(5.10)

Proof of Theorem 1.2. The estimate for the second term in the right-hand side of (1.6)
is contained in Theorem 5.4. For the first term, we apply the Caccioppli inequality (2.10) to
u. — p~'Wi(z/e)E and p. — (en(x/e) —x) - E. O

The remaining of this section is devoted to the proof of Theorem 1.1.

Lemma 5.5. Let 0 < f < o < 1 and 0,y € (0,1/4) be given by Lemma 5.1. Let 0 <
e < 0 tey, et € 4N. Suppose (u.,p.) € HY(Q5;RY) x L2(Q,) is a weak solution of the
Stokes equations (1.1) in Q5, u. = 0 in Q; N d(cw), and f € C(Q1;R?Y) with f(0) =0. Let
E(k) € RY be such that

1/2 1/2
<][ |u€—u_1W(x/5)E(k)|2) = inf, <][ |u€—/f1W(x/5)E|2) 1)
Qpk €R Qpk

B()| < C{llullzion + Iflew@n }- (5.12)

where C' depends only on d, pu, and Ys.

Then

Proof. The proof uses the following observation,

|E| < C (][ W (x/e) E]Q)I/Q (5.13)

for any r > ¢ and E € R? where C depends only on d, , and Y. Let 1 < ¢ < k and
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E(0) =0. Then

El)— E(l — C

B() - B(t—1)| < (]é
1/2

C e — W (x 0)? C

< (72| T /e>E<>|> T (72
1/2

C e — Wz 0)|? C

< <]é| W /s>E<>|> ¥ (7{2

< Cew{llugllmczl) + IIfIIOQ(Ql)}a

1/2
™ W (z/e)(B(¢) — E(( — 1))I2>

ol

1/2
e — p~ W (x/e) E(C — 1)I2>

0¢ ot

1/2
ue — ='W (x/e) E(C — 1)|2>

9l—1

where we have used (5.8) for the last inequality. It follows that

[B(k)| <) |E(6) — E(—1)

< O el r2¢0y) + 1 fllc= (@) }-
L]

Theorem 5.6. Let (u.,p:) be a weak solution of the Stokes equations in Q5 with u. =0 on
Qr N I(cw), where 0 < e < R and f € C*(Qgr;R?) for some 0 < a < 1. Then

1/2 1/2
(1) sc{(][ oct) +Ra||f||co,a<QR>}7 (5:14)
r Qr

for any e <r < R, where C' depends only on d, i, o, and Y.

Proof. As in the proof of Theorem 5.4, we may assume f(0) = 0. It follows from Lemmas
5.3 and 5.5 that (5.14) holds for e <r < R =1, if 7! € 4N. The extra condition e~! € 4N
may be eliminated by considering (u.(tx), p.(tx)) for t € (1/2,1), as in the proof of Theorem
5.4. Finally, the general case ¢ <r < R < oo follows by a dilation argument. [

Proof of Theorem 1.1. The estimate for the second term in the right-hand side of (1.5) is
contained in Theorem 5.6. For the first term, we apply the Caccioppoli inequality (2.10). O

Remark 5.7. The large-scale estimates in Theorems 5.4 and 5.6 hold under the assumption
that Y, is an open subset with Lipschitz boundary. Suppose that Y; is an open set with O
boundary for some o > 0. Using the classical Lipschitz estimates for the Stokes equations
in Yy = (140)Y \ Y, [13, 15] and a rescaling argument, we see that

[te]| Lo (v 12)) + ENIV U] Lo (v 42))

1/2
sc{(f .t +||f—f<z>uma<y+z»},
2e(Y+z)
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for any z € Z%, where C depends only on d, p, and Y,. This, together with (5.14), gives

1/2
HUEHL‘”(QR/z) + €||VU€HL°°(QR/2) <C { (]é ]u5|2) + Ra”fHCO’a(QR)} ’ (5.15)
R

where 0 < e < R/2 and C depends only on d, p, a, and Y.

6 Large-scale estimates for the pressure

Theorem 6.1. Let (u.,p.) be a weak solution of the Stokes equations (1.1) in Q% withu. =0
on Qr N I(cw), where 0 < e < R and f € C*(Qr;RY) for some 0 < o < 1. Then

1/2
inf ! ( |p5—7—x-f(0)—(67r(x/5)—x)-E|2>

1/2
r\~ o
<0 (%) (fu) + B fllovecn ¢

for any e <r < R/2, where C' depends only on d, u, o, 3, and Ys.

(6.1)

Proof. By rescaling we may assume r = 1. We may also assume e * € N. By the Caccioppoli
inequality (2.10),

;Telﬂg 1P = 2@ < Cllucll2@a) + 1fllz202) }- (6.2)

By applying the estimate above to the solution

ve= e — O W(e/)E  and  q. = p. — (en(v/e) —3) - B — 3+ £(0),

we obtain
1/2

inf ( lpe —v — (em(z/e) — x) ~E—:c~f(0)|2>

EeR Q3

YER

1/2
S CE%?Igd < o, ‘us — M1W(.ZIZ‘/€)E‘2) —+ C“fHCO*Q(QQ)
1\? D\
<o(z) {(f k) + Rl
Qr

where we have used (5.9) for the last step. O

Theorem 6.2. Let (u.,p.) be the same as in Theorem 6.1. Then

1 1/2 1/2
nt, > (== s07) gc{(f o.f) +R“Hfuco,a@m}, 6.3
VERT T Q5 R

for any e <r < R/2, where C depends only on d, i, o, and Y.
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Proof. As in the proof of Theorem 6.1, we may assume that r = 1 and ¢! € N. It follows
from (6.2) that

ilelﬂg 1pe =7 =z f(O)ll2gs) < C{llucllrzquy + I1fllcoa@n) }-

The desired estimate now follows readily from (5.14). [
Remark 6.3. Let (u.,p.) be the same as in Theorem 6.1. It follows from (6.3) that

1 1/2 1/2
H(F - v sc{(]é .t +||f||Lw<QR>+Ra||f||co,a<QR>}, (6.4
3 T R

for ¢ <r < R/2. This implies that

1/2
foo-ofon scr{(]é .t +||f||Loo<QR>+Ra||f||co,a<QR>} (63
2r i R

for e <r < R/4. 1t follows that

1/2
fo-f » scR{(][Q i) +||f||Lm<QR>+Ra||f||co,a<QR>}- (6.6
E F R

R/2
Suppose that Y is an open subset of Y with O boundary. By the classical local estimates
for the Stokes equations in (1 + )Y \ Y; [13, 15] and a rescaling argument,

1/2
lpe — ][ PellLoe(v42)) < Ce (][ ’UEP) + [ £l o @e(vy+2))
e(Yy+z) 2e(Yy+z)

This, together with (6.6)

Ip. —][
Q

where 0 < e < R/4 and C depends only on d, p, a, and Y.

1/2
Pell (a3, SCR{(]é w) +||f||Loo<QR)+Ra||f||co,a<QR>}, (6.7)
R

5
R/2

We end this section by establishing a Liouville property for the Stokes equations in w.

Theorem 6.4. Let (u,p) € H. (w;R?) x L?

loc ibe(w) be a weak solution of the Stokes equations

—pAu+Vp=f and div(u)=0 in w,

with w = 0 on Ow, where [ is constant. Assume that there exist some C' > 0 and o € (0,1)

such that
1/2
(][ IUI2> <CR° (6.8)
Qr
for any R > 1. Then

w=p 'W(@)E and p=(r(z)—2)-E+z-f(0)+7, (6.9)
for some E € R? and v € R.
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Proof. Choose «,  so that 0 < f < a < 1. We apply the estimate (5.9) with ¢ = 1 to
(u,p) and let R — oo. It follows that for each k € N, v = ='W (z)E(k) in Q) Nw for some
E(k) € R% Since

,u/y udr = g W(z)E(k)dr = KE(k),

and K = (K}) is invertible, we see that E(k) = E(k + 1) for any & € N. This implies that
u=p 'W(z)E in R? for some £ € R% Tt follows that

Vi{p—(r(z)—2)-E—2x-f(0)} =0 inw.
Since w is connected, we conclude that p = (w(z) —z) - E+z - f(0) + v for some vy € R. [

7  Uniform W*? estimates

In this section we give the proof of Theorems 1.3 and 1.4. By rescaling we may assume ¢ = 1.

Proof of Theorem 1.3. Step 1. The case ¢ = 2.
Le V denote the closure of V in Wy (w; R%), where

V={¢eCw;RY): div(y) =0in w}. (7.1)

Using the inequality ||ul/z2w) < Cf|Vul[z2,) for any v € Wy (w), and the Lax-Milgram
Theorem, one may show that for each F' € L?*(R% R?) and f € L*(R%; R9), there exists a
unique u € V such that

,LL/qu~dex—/wF-wdx—/wf~V¢dx (7.2)

for any v € V. Moreover, u satisfies the estimate (1.11) with ¢ = 2 and ¢ = 1, and
—pAu+ Vp = F + div(f) in w for some p € L2 (w).

loc
Step 2. Let (u,p) be the weak solution of (1.10) with ¢ = 1, given by Step 1, where
F € CP(RYRY) and f € C(RYR¥*). We prove the estimate (1.11) for 2 < ¢ < oo by a
real variable method.
Consider the linear operator,
T<F> f) = u,

where F' € L?(R%4GRY), f € L2(R%GR™Y), and u is the solution of (1.10) with e = 1,
given by Step 1. Clearly, ||T'(F, f)|[r2rey < C|[(F, f)|lz2rae)y- We claim that if supp(F),
supp(f) C R?\ Q(xo,4R) for some x5 € R and R > 0, then

1/2
||T<F,f>||mo<@<xo,m>sc(]é |T<F,f>|2) . (7.3

Indeed, since F' = 0 and f = 0 in Q(z0,4R), we have —uAu + Vp = 0 and div(u) = 0 in

Q' (79, 4R), and u = 0 on dw. If 0 < R < 2, by the classical L™ estimates for the Stokes
equations in C'%* domains, we obtain

1/2
max |u| < C (][ |u|2) .
@@, R) Q(x04R)
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If R > 2, in view of (5.15), the inequality above continues to hold. As a result, by [23,
Theorem 4.2.5], we deduce that

|T(F, )l Lagay < Coll(F £l poray

for any ¢ > 2 and F' € C°(R%RY), f € C(RYG R, where C, depends only on d, pu, q,
and Y. This gives the desired estimate for u. To bound Vu, we use the local estimate [13],

/ Vi dz < C / |u|qu+C'/ |F|qu+/ 1|7 da (7.4)
Yitz ?}Jrz ?}«#z 17;+z

for 1 < ¢ < oo, where z € Z% and if; = (1+0)Y \ Y;. It follows from (7.4) by summing over
z € Z% that
IVullza) < C{lull o) + 1F I zae) + 1f | agrey }

< C{HFHLQ(W) + Hf”Lq(Rd)}-
Step 3. Let (u,p) be the weak solution of (1.10), given by Step 1, where F' € C§°(R%; R?)
and f € C5°(R%R?*4). We prove the estimate (1.11) for 1 < ¢ < 2 by a duality argument.

Let (v,7) be the weak solution of (1.10), given by Step 1, with G € C5°(R% R?) in the
place of F' and g € Cg°(R%; R¥*9) in the place of f. Since u,v € V, by (7.2),

/F-vdx—/f-Vvdx:/Vu-Vvdx:/G-udaj—/g-Vudas.

It follows that

(7.5)

’/G-udm —/g : Vudx) < ||F||za@ayllvll Lo ey + I fll La@ay V] Lo may
< C{GIl Lo way + 1911 Lo oy } LI F N Loy + 111 oy } -

By duality we obtain ||Vul|ea) + |1l awa) < C{|F || La@ay + || fll aray} for 1 < g < 2.

Step 4. The existence of solutions u in W, ?(w; RY) with the estimate (1.11) for general
F € LYR4RY) and f € LY(RYRY*Y) follows readily from Steps 2 and 3 by a density
argument. We note that the estimate for Vp in W=19(w;R?) follows from the equation

Vp = pAu+ F +div(f).

Step 5. To establish the uniqueness of solutions in I/VO1 Y(w;RY), we assume that u €
Wy 9(w;RY) is a solution of (1.10) with ¢ = 1 and F = 0, f = 0. By local estimates
for the Stokes equations in Y7 (see e.g. [13]),

1/q
max |u| < C / \u|? dx :
Yf+z ?’f'_,’_z

where 2 € Z¢. Since u € Li(w;R?), it follows that u is bounded in w. In view of Theorem
6.4, we deduce that u = ='W (z)FE for some E € R?. This shows that u is 1-periodic, and
thus v =0 in w. O
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Proof of Theorem 1.4. The uniqueness is contained in Theorem 1.3. To establish the
existence and the estimate (1.13) with € = 1, we use the local estimate [13],

(7.6)

k k—2
Z/ \Viu|?dz < C {/N |u|? da + Z/N IVF|? d
=0 JYrtz Ytz =0 J Yy+z

——

for 1 < ¢ < oo, where z € Z¢. This yields that

k k—2
S IV o) < C’{||u||Lq(w) +3 |\va||Lq(w)}
=0

£=0
k—2

< OV F oo
=0

where we have used (1.11) to bound ||ul|za(.) for the last inequality. The estimate for V*p

in W~14(w; R?) follows by using the equation Vp = pAu + F. O
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