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Abstract

This paper is concerned with the quantitative homogenization of the steady Stokes

equations with the Dirichlet condition in a periodically perforated domain. Using a

compactness method, we establish the large-scale interior C1,α and Lipschitz estimates

for the velocity as well as the corresponding estimates for the pressure. These estimates,

when combined with the classical regularity estimates for the Stokes equations, yield

the uniform Lipschitz estimates. As a consequence, we also obtain the uniform W k,p

estimates for 1 < p < ∞.
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1 Introduction

In this paper we continue the study of the quantitative homogenization of the steady Stokes
equations for an incompressible viscous fluid,

{
−ε2µ∆uε +∇pε = f,

div(uε) = 0,
(1.1)

with a no-slip (Dirichlet) boundary condition on solid pores, in a periodically perforated
domain in R

d, d ≥ 2. In (1.1), µ > 0 is the viscosity constant, and we have normalized the
velocity vector by a factor ε2, where ε > 0 is the period. It is well known that as ε → 0,
the effective equations for (1.1) are given by a Darcy law [22, 26, 1, 18, 2, 20, 4]. In [24] we
established the sharp O(

√
ε) convergence rate in a bounded domain by constructing some

boundary correctors. In this paper we will investigate the large-scale regularity problem for
solutions (uε, pε).

To describe the porous domain, we let Y = (0, 1)d be an open unit cube and Ys (solid
part) an open subset of Y with Lipschitz boundary. Throughout the paper we assume that
dist(∂Y, ∂Ys) > 0 and that Yf = Y \ Ys (the fluid part) is connected. Let

ω =
⋃

z∈Zd

(Yf + z) (1.2)
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be the periodic repetition of Yf . For R > 0, let

QR = (−R,R)d and Qε
R = QR ∩ εω. (1.3)

The following are the main results of the paper.

Theorem 1.1. Let (uε, pε) ∈ H1(Qε
R;R

d)× L2(Qε
R) be a weak solution of





−ε2µ∆uε +∇pε = f in Qε
R,

div(uε) = 0 in Qε
R,

uε = 0 on QR ∩ ∂(εω),
(1.4)

where 0 < ε < R/2 and f ∈ Cα(QR;R
d) for some α ∈ (0, 1). Then

ε

(
 

Qr

|∇uε|2
)1/2

+

(
 

Qr

|uε|2
)1/2

≤ C

{(
 

QR

|uε|2
)1/2

+Rα‖f‖C0,α(QR)

}
(1.5)

for any ε ≤ r < R/2, where C depends only on d, µ, α, and Ys.

In (1.5) (and thereafter) we have extended uε to QR by zero. In the next theorem,
W (y) = (W i

j (y)) is a 1-periodic d × d matrix-valued function, defined by the cell problem
(2.1).

Theorem 1.2. Let (uε, pε) be the same as in Theorem 1.1. Then

inf
E∈Rd

(
 

Qr

|ε∇uε − µ−1∇W (x/ε)E|2
)1/2

+ inf
E∈Rd

(
 

Qr

|uε − µ−1W (x/ε)E|2
)1/2

≤ C
( r
R

)β
{(

 

QR

|uε|2
)1/2

+Rα‖f‖C0,α(QR)

} (1.6)

for any 0 < ε ≤ r < R/2, where 0 < β < α and C depends only on d, µ, α, β, and Ys.

Theorems 1.1 and 1.2 give the large-scale interior Lipschitz and C1,α estimates for the
Stokes equations (1.1) in a periodically perforated domain. We also obtain the corresponding
large-scale estimates for the pressure pε. See Section 6. We remark that the large-scale esti-
mates for (uε, pε) hold under the assumption that Ys is an open set with Lipschitz boundary.
If the boundary of Ys is smooth, we may combine the classical regularity estimates for the
Stokes equations (with ε = 1) in Y \ Ys with these large-scale estimates to obtain regularity
estimates that are uniform in ε > 0. In particular, this yields

ε‖∇uε‖L∞(QR/2) + ‖uε‖L∞(QR/2) ≤ C

{(
 

QR

|uε|2
)1/2

+Rα‖f‖C0,α(QR)

}
(1.7)

for 0 < ε ≤ 1 and R > 0, where C depends only on d, µ, α, and Ys. See Remark 5.7.
Our approach to Theorems 1.1 and 1.2 is based on a compactness method, originated

in the study of regularity problems for nonlinear PDEs and minimal surfaces. The method
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was introduced in a seminal work [8] by M. Avellaneda and F. Lin to the study of the
quantitative homogenization theory (see [17] for the use of the compactness method for the
Stokes equations with periodic coefficients in a fixed domain). Let {(uεj , pεj)} be a sequence
of solutions of (1.4) with R = 4 and ε = εj → 0. Assume that {uεj} is bounded in L2(Q4;R

d).
To apply the compactness method to the Stokes equations in perforated domains with the
Dirichlet condition, the key is to extract a subsequence, still denoted by {(uεj , pεj)}, such
that Pεj → p0 in L2(Q1), where Pε is a suitable extension of pε defined by (2.7), and that

uεj − µ−1W (x/εj)(f −∇p0) → 0 in L2(Q1;R
d). (1.8)

While the strong convergence Pεj in L2 may be proved as in the classical work [26, 1, 18, 2,
20, 4] on Darcy’s law, the strong convergence for uε in (1.8) was only known previously in the
case when the sequence {uεj} has the same Dirichlet data on a fixed boundary [2, 4]. One of
the main technical contributions of this work is establishing the compactness property (1.8)
for a sequence of solutions with a uniform L2 bound for uε. This is done by first proving a
boundary layer estimate,

(
ˆ

Q1+δ\Q1−δ

|ε∇uε|2 dx
)1/2

≤ Cδσ
{
‖uε‖L2(Q4) + ‖f‖L∞(Q4)

}
(1.9)

for ε ≤ δ < 1/2, where C and σ > 0 depend only on d, µ, and Ys. The proof of (1.9) uses
the self-improving property of the (weak) reverse Hölder inequalities as well as an energy
estimate in [24] and the nontangential-maximal-function estimates in [11] for the Stokes
equations in a bounded (unperforated) Lipschitz domain. With (1.9) at our disposal, (1.8)
is proved by applying the two-scale convergence method.

The large-scale regularity estimates in the homogenization theory have been studied
extensively in recent years. Besides the compactness method, there is another approach
that is based on the convergence rate and is effective in both the periodic and non-periodic
settings for second-order elliptic systems with oscillating coefficients (see [7, 12, 16, 6, 23]
for references). In a recent work [24] the present author was able to establish the sharp
convergence rate for the Stokes equations (1.1) in a periodically perforated domain Ωε.
However, since the results are proved by energy estimates, the bounds for solutions uε and
their divergences cannot be separated. As a result, the error bound in [24] requires a strong
condition for the normal component of uε on the fixed boundary ∂Ω, which is difficult to
handle in the approximation scheme.

For second-order elliptic equations and systems in perforated domains, the large-scale
regularity estimates may be found in [27, 30, 29, 28, 21, 5, 25, 10], where the Neumann type
conditions are imposed on the boundaries of the solid obstacles. In this case, the effective
equations are of the same type and the effective solutions share the same boundary data
as uε on the fixed boundary. To the best of the author’s knowledge, the paper [19] by N.
Masmoudi seems to be the only one that treats the Stokes equations with the Dirichlet
condition on the boundaries of solid pores. In particular, the uniform W k,p estimates for the
Stokes equations (1.1) in εω with smooth boundary were stated in [19, Theorems 4.1 and
4.2] without proof (no proof has appeared since). As a consequence of Theorem 1.1, we are
able to provide a proof for the uniform W k,p estimates.
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Theorem 1.3. Assume that ∂Ys is of C1,α for some 0 < α < 1. Let F ∈ Lq(Rd;Rd) and

f ∈ Lq(Rd,Rd×d) for some 1 < q < ∞. Then there exist a unique uε ∈ W 1,q
0 (εω;Rd) such

that 



−ε2µ∆uε +∇pε = F + ε div(f) in εω,

div(uε) = 0 in εω,

uε = 0 on ∂(εω),

(1.10)

for some pε ∈ Lq
loc
(εω). Moreover,

ε‖∇uε‖Lq(εω) + ‖uε‖Lq(εω) + ε−1‖∇pε‖W−1,q(εω) ≤ C
{
‖F‖Lq(εω) + ‖f‖Lq(εω)

}
, (1.11)

where C depends only on d, µ, q, and Ys.

Theorem 1.4. Assume that ∂Ys is of Ck,α for some k ≥ 2 and 0 < α < 1. Let F ∈
W k−2,q(Rd;Rd) for some 1 < q < ∞. Then there exists a unique uε ∈ W k,q

0 (εω;Rd) such

that 



−ε2µ∆uε +∇pε = F in εω,

div(uε) = 0 in εω,

uε = 0 on ∂(εω),

(1.12)

for some pε ∈ Lq
loc
(εω). Moreover,

k∑

`=0

ε`‖∇`uε‖Lq(εω) +
k∑

`=1

ε`−2‖∇`pε‖W−1,q(εω) ≤ C
k−2∑

`=0

ε`‖∇`F‖Lq(εω), (1.13)

where C depends only on d, µ, q, k, and Ys.

We remark that as a consequence of the large-scale C1,α estimates in Theorem 1.2, we
obtain a Liouville property for weak solutions of (1.12) in εω with uε ∈ W 1,2

loc (εω;R
d) and F

being constant. See Theorem 6.4. This property is used in the proof of the uniqueness in
Theorems 1.3 and 1.4.

The paper is organized as follows. In Section 2 we collect some basic facts and estimates
that will be used in later sections. In Section 3 we prove the crucial estimate (1.9), which is
used in the proof of a compactness result, given in Section 4. The proofs of Theorems 1.1
and 1.2 are given in Section 5, while the corresponding large-scale estimates for the pressure
are established in Section 6. Finally, Theorems 1.3 and 1.4 are proved in Section 7.

Acknowledgement. The author thanks the referees for valuable comments and suggestions.

2 Preliminaries

Let Y = (0, 1)d and Ys (solid part) be an open subset of Y with Lipschitz boundary. Through-
out the paper we assume that dist(∂Y, ∂Ys) > 0 and that (the fluid part) Yf = Y \ Ys is
connected.

Let ω is given by (1.2). Note that the unbounded domain ω is connected, 1-periodic,
and ∂ω is locally Lipschitz. Also, observe that dist(Zd, ∂ω) > 0. For 1 ≤ j ≤ d, let
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(Wj(y), πj(y)) = (W 1
j (y), . . . ,W

d
j (y), πj(y)) ∈ H1

loc(ω;R
d)×L2

loc(ω) be the 1-periodic solution
of the cell problem, 




−∆Wj +∇πj = ej in Y \ Ys,
div(Wj) = 0 in Y \ Ys,

Wj = 0 on ∂Ys,

(2.1)

with
´

Y \Ys
πj dy = 0, where ej = (0, . . . , 1, . . . , 0) with 1 in the jth place. Define

Ki
j =

ˆ

Y

W i
j (y) dy, (2.2)

where we have extendedWj to R
d by zero. The d×dmatrixK = (Ki

j), called the permeability
matrix, is symmetric and positive definite. This follows readily from the observation

Ki
j =

ˆ

Y

∇W `
j · ∇W `

i dy (2.3)

(the index ` is summed from 1 to d).
Recall that QR = (−R,R)d and Qε

R = QR ∩ εω.

Lemma 2.1. Let u ∈ W 1,q(Qε
R) for some R ∈ εN and 1 ≤ q < ∞. Assume u = 0 on

QR ∩ ∂(εω). Then
‖u‖Lq(Qε

R) ≤ Cε‖∇u‖Lq(Qε
R), (2.4)

where C depends only on d, q, and Ys.

Proof. By dilation we may assume ε = 1. The result then follows by covering Q1
R with unit

cubes and applying Poincaré’s inequality on each cube.

Suppose {
−ε2µ∆uε +∇pε = f

div(uε) = 0
in Qε

R,

with uε = 0 in QR ∩ ∂(εω). Let

v(x) = uε(rx), q(x) = r−1pε(rx), and g(x) = f(rx),

then {
−(ε/r)2µ∆v +∇q = g

div(v) = 0
in Q

ε/r
R/r,

with v = 0 in QR/r∩∂((ε/r)ω). This rescaling property will be used frequently in the paper.

Lemma 2.2. Let (uε, pε) be a weak solution of (1.1) in Qε
R with uε = 0 in QR ∩ ∂(εω),

where 0 < ε ≤ 1 and R ∈ εN. Then

∥∥∥pε −
 

Qε
R

pε

∥∥∥
L2(Qε

R)
≤ CR

{
ε‖∇uε‖L2(Qε

R) + ‖f‖L2(Qε
R)

}
, (2.5)

where C depends only on d, µ, and Ys.
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Proof. By rescaling we may assume R = 1. Without loss of generality we may also assume
that

´

Qε
1

pε dx = 0. Choose vε ∈ H1
0 (Q

ε
1;R

d) such that

div(vε) = pε in Qε
1,

and
‖vε‖L2(Qε

1
) + ε‖∇vε‖L2(Qε

1
) ≤ C‖pε‖L2(Qε

1
), (2.6)

where C depends only on d, µ, and Ys. We refer the reader to [9, pp.146-148] for the existence
of such vε with the estimate (2.6) in a periodically perforated domain. By using vε as a test
function, we see that

ε2µ

ˆ

Qε
1

∇uε · ∇vε dx−
ˆ

Qε
1

|pε|2 dx =

ˆ

Qε
1

f · vε dx.

Hence, by the Cauchy inequality,
ˆ

Qε
1

|pε|2 dx ≤ ε2µ‖∇uε‖L2(Qε
1
)‖∇vε‖L2(Qε

1
) + ‖f‖L2(Qε

1
)‖vε‖L2(Qε

1
)

≤ C‖pε‖L2(Qε
1
)

{
ε‖∇uε‖L2(Qε

1
) + ‖f‖L2(Qε

1
)

}
,

which yields (2.5).

Remark 2.3. Let (uε, pε) be a weak solution of (1.1) in Qε
R. We extend uε to QR by zero

and denote the extension still by uε. For the pressure pε, we use Pε to denote its extension
defined by

Pε(x) =





pε(x) if x ∈ Qε
R,

 

ε(Yf+zk)

pε if x ∈ ε(Ys + zk) and ε(Y + zk) ⊂ QR for some zk ∈ Z
d.

(2.7)

See [26, 18, 4]. Note that if ε(Y + zk) ⊂ QR for some zk ∈ Z
d, then

 

ε(Y+zk)

Pε =

 

ε(Yf+zk)

pε.

It follows that if R ∈ εN,
 

QR

Pε =

 

Qε
R

pε. (2.8)

The next lemma provides a Caccioppoli type inequality for (1.1) in perforated domains.

Lemma 2.4. Let (uε, pε) be a weak solution of (1.1) in Qε
R+ε with uε = 0 on QR+ε ∩ ∂(εω),

where 0 < ε ≤ 1 and R ∈ εN. Then

ε2
ˆ

Qε
R

|∇uε|2 dx+R−2

ˆ

Qε
R

|pε −
 

Qε
R

pε|2 dx ≤ C

ˆ

Qε
R+ε

|uε|2 dx+ C

ˆ

Qε
R+ε

|f |2 dx, (2.9)

where C depends only on d, µ, and Ys.
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Proof. In view of (2.5), it suffices to bound the first term in the left-hand side of (2.9). By
rescaling we may assume ε = 1. Now suppose that

−µ∆u+∇p = f and div(u) = 0

in QR+1 ∩ ω, and u = 0 in QR+1 ∩ ∂ω for some R ∈ N. Since dist(∂Y, ∂Ys) > 0, we may
choose δ ∈ (0, 1/2) so small that

Ỹf := (1 + δ)Y \ Ys ⊂ ω.

It follows from the standard Caccioppoli inequality for the Stokes equations [15] that

ˆ

Yf+z

|∇u|2 dx ≤ C

ˆ

Ỹf+z

|u|2 dx+ C

ˆ

Ỹf+z

|f |2 dx,

where z ∈ Z
d and Y + z ⊂ QR. By summing the inequality above over z we obtain (2.9)

with ε = 1.

Remark 2.5. Let (uε, pε) be a weak solution of (1.1) in Qε
2R with uε = 0 on Qε

2R ∩ ∂(εω),
where 0 < ε ≤ 1 and R ≥ 2ε. Then

ε2
ˆ

Qε
R

|∇uε|2 dx+R−2

ˆ

Qε
R

|pε −
 

Qε
R

pε|2 dx ≤ C

ˆ

Qε
2R

|uε|2 dx+ C

ˆ

Qε
2R

|f |2 dx. (2.10)

To see this, we choose k ∈ N such that R ≤ kε ≤ R + ε. The left-hand side of (2.10) is
bounded by

ε2
ˆ

Qε
kε

|∇uε|2 dx+ CR−2

ˆ

Qε
kε

|pε −
 

Qε
kε

pε|2 dx,

which is bounded by the right-hand side of (2.10), using (2.9) and the fact R ≥ 2ε.

3 Reverse Hölder inequalities

Let Q(x, r) = x+ (−r, r)d = x+Qr and Q
ε(x, r) = Q(x, r) ∩ εω. Define

gε(x) =

(
 

Q(x,ε)

(ε|∇uε|+ |uε|)2
)1/2

. (3.1)

The goal of this section is to establish the following.

Theorem 3.1. Let (uε, pε) ∈ H1(Qε
2R;R

d) × L2(Qε
2R) be a weak solution of (1.1) in Qε

2R

with uε = 0 on Q2R ∩ ∂(εω), where 0 < ε ≤ 1 and R ≥ ε. Let gε be defined by (3.1). Then,

there exist q > 2 and C > 0, depend only on d, µ, and Ys, such that

(
 

QR

|gε|q
)1/q

≤ C

(
 

Q2R

(ε|∇uε|+ |uε|)2
)1/2

+ C

(
 

Q2R

|f |q
)1/q

. (3.2)

We begin with an estimate for the Stokes equations in Qt = (−t, t)d.
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Lemma 3.2. Let (v, τ) ∈ H1(Qt;R
d)× L2(Qt) be a weak solution of the Dirichlet problem,





−∆v +∇τ = 0 in Qt,

div(v) = 0 in Qt,

v = h on ∂Qt,

(3.3)

for some t > 0, where h ∈ H1(∂Qt;R
d) satisfies the compatibility condition

´

∂Qt
h ·n dσ = 0.

Then there exist q0 ∈ (1, 2) and C > 0, depending only on d, such that

(
 

Qt

|v|2
)1/2

≤ C

(
 

∂Qt

|h|q0
)1/q0

, (3.4)

and (
 

Qt

|∇v|2
)1/2

≤ C

(
 

∂Qt

|∇tanh|q0
)1/q0

. (3.5)

Proof. By dilation we may assume t = 1. To prove (3.5), we use the energy estimates to
obtain

‖∇v‖L2(Q1) ≤ C‖h‖H1/2(∂Q1) ≤ C‖h‖W 1,q0 (∂Q1),

where 2(d−1)
d

< q0 < 2, and we have used the Sobolev imbedding on ∂Q1 for the last inequality.
Replacing v be v − E, with E =

ffl

∂Q1
h, we obtain (3.5) by a Poincaré inequality on ∂Q1.

To see (3.4), we use the nontangential-maximal-function estimate,

‖(v)∗‖Lq0 (∂Q1) ≤ C‖h‖Lq0 (∂Q1). (3.6)

The estimate (3.6) was proved in [11] for the Stokes equations in bounded Lipschitz domains
Ω, where |q0 − 2| < σ and σ > 0 depends only on d and the Lipschitz characters of Ω. As

a result, (3.6) holds for some 2(d−1)
d

< q0 < 2, depending only on d. This, together with the
estimate,

‖v‖L2(Q1) ≤ C‖(v)∗‖Lq0 (∂Q1), (3.7)

gives (3.4).
Finally, to see 3.7, we use the observation

|v(x)| ≤ C

ˆ

∂Q1

(v)∗(y)

|x− y|d−1
dσ(y)

for any x ∈ Q1. It follows that
∣∣∣
ˆ

Q1

v(x)g(x) dx
∣∣∣ ≤ C

ˆ

∂Q1

(v)∗(y)G(y) dσ(y),

where

G(y) =

ˆ

Q1

|g(x)|
|x− y|d−1

dx.

Since
‖G‖

Lq′
0 (∂Q1)

≤ C‖G‖H1/2(∂Q1) ≤ C‖G‖H1(Q1) ≤ C‖g‖L2(Q1),

we obtain (3.7) by a duality argument.
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In the proof of the next lemma, we will use the following observation: there exists c0 > 0,
depending only on d and Ys, such that

dist(∂Qt,R
d \ εω) ≥ c0ε if dist(t, εN) ≤ c0ε. (3.8)

The case ε = 1 follows from the assumption that dist(∂Y, ∂Ys) > 0, while the general case
follows by dilation.

Lemma 3.3. Let (uε, pε) ∈ H1(Qε
2R;R

d)×L2(Qε
2R) be a weak solution of (1.1) in Qε

2R with

uε = 0 in Q2R ∩ ∂(εω), where 0 < ε ≤ 1 and R ∈ εN. Then

ε

(
 

QR

|∇uε|2
)1/2

+

(
 

QR

|uε|2
)1/2

≤ Cε

(
 

Q2R

|∇uε|q0
)1/q0

+ C

(
 

Q2R

|uε|q0
)1/q0

+ C

(
 

Q2R

|f |2
)1/2

,

(3.9)

where q0 ∈ (1, 2) is given by Lemma 3.2, and C depends only on d, µ, and Ys.

Proof. By dilation we may assume R = 1 and ε−1 ∈ N. We first observe that by Fubini’s
Theorem, there exists t ∈ [1, 2] such that dist(t, εN) ≤ c0ε and

εq0
ˆ

∂Qt

|∇uε|q0 dσ +

ˆ

∂Qt

|uε|q0 dσ ≤ C0

{
εq0

ˆ

Q2

|∇uε|q0 dx+
ˆ

Q2

|uε|q0 dx
}
, (3.10)

where C0 depends on d and Ys. For otherwise, suppose that for any t ∈ [1, 2] with dist(t, εN) ≤
c0ε,

εq0
ˆ

∂Qt

|∇uε|q0 dσ +

ˆ

∂Qt

|uε|q0 dσ > C0

{
εq0

ˆ

Q2

|∇uε|q0 dx+
ˆ

Q2

|uε|q0 dx
}
.

By integrating the inequality above with respect to t over the set

Eε =
{
t ∈ (1, 2) : dist(t, εN) ≤ c0ε

}
,

and using the observation that |Eε| ≥ c > 0, we obtain

εq0
ˆ

Q2\Q1

|∇uε|q0 dx+
ˆ

Q2\Q1

|uε|q0 dx ≥ C1C0

{
εq0

ˆ

Q2

|∇uε|q0 dx+
ˆ

Q2

|uε|q0 dx
}
,

where C1 depends only on d and c0. This gives a contradiction if we choose C0 = (2C1)
−1.

Next, let (v, τ) be a weak solution of (3.3) in Qt with Dirichlet data h = uε on ∂Qt. Since
dist(∂Qt,R

d \ εω) ≥ c0ε, by the energy estimates for the Stokes equations in periodically
perforated domains in [24, Inequality (3.9)], we deduce that

ε2
ˆ

Qt

|∇uε|2 dx+
ˆ

Qt

|uε|2 dx ≤ C

{
ε2
ˆ

Qt

|∇v|2 dx+
ˆ

Qt

|v|2 dx+
ˆ

Qt

|f |2 dx
}
.
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This, together with (3.4) and (3.10), gives

ε‖∇uε‖L2(Q1) + ‖uε‖L2(Q1) ≤ C
{
ε‖∇v‖L2(Qt) + ‖v‖L2(Qt) + ‖f‖L2(Qt)

}

≤ C
{
ε‖∇tanuε‖Lq0 (∂Qt) + ‖uε‖Lq0 (∂Qt) + ‖f‖L2(Qt)

}

≤ C
{
ε‖∇uε‖Lq0 (Q2) + ‖uε‖Lq0 (Q2) + ‖f‖L2(Q2)

}
,

which completes the proof.

Remark 3.4. Let (uε, pε) be a weak solution of (1.1) inQε(x0, 4R) with uε = 0 inQ(x0, 4R)∩
∂(εω), where x0 ∈ R

d, 0 < ε ≤ 1 and R ≥ 2ε. Then

ε

(
 

Q(x0,R)

|∇uε|2
)1/2

+

(
 

Q(x0,R)

|uε|2
)1/2

≤ Cε

(
 

Q(x0,4R)

|∇uε|q0
)1/q0

+ C

(
 

Q(x0,4R)

|uε|q0
)1/q0

+ C

(
 

Q(x0,4R)

|f |2
)1/2

,

(3.11)

where q0 ∈ (1, 2) is given by Lemma 3.3. Indeed, by (3.9) and translation, (3.11) holds if
x0 ∈ εZd and R ∈ εN. Moreover, in this case, Q(x0, 4R) in the right-hand side is replaced
by Q(x0, 2R). For the general case, we choose y0 ∈ εZd and R1 ∈ εN such that

Q(x0, R) ⊂ Q(y0, R1) and Q(y0, 2R1) ⊂ Q(x0, 4R),

which is possible under the assumption R ≥ 2ε.

Proof of Theorem 3.1. By rescaling we may assume R = 1 and 0 < ε ≤ 1. We also
assume 0 < ε < c, where c > 0 is sufficiently small; the case c ≤ ε ≤ 1 is trivial.

Let q0 ∈ (1, 2) be given by Lemma 3.3. Define

Gε(y) = sup

(
 

Q(z,r)

(
ε|∇uε|+ |uε|

)q0
)1/q0

, (3.12)

where the supremum is taken over all Q(z, r) with the properties that y ∈ Q(z, r), r ≥ 2ε,
and Q(z, r) ⊂ Q2. We will show that

(
 

Q1

|Gε|q
)1/q

≤ C

(
 

Q2

|Gε|2
)1/2

+ C

(
 

Q2

|f |q
)1/q

(3.13)

for some q > 2, depending only on d, µ, and Ys. Note that by the L2/q0 boundedness of the
Hardy-Littlewood maximal operator,

(
 

Q2

|Gε|2
)1/2

≤ C

(
 

Q2

(ε|∇uε|+ |uε|)2
)1/2

.

10



Also, observe that by (3.11),

gε(x) ≤ C

(
 

Q(x,2ε)

(ε|∇uε|+ |uε|)2
)1/2

≤ CGε(x) + C

(
 

Q(x,8ε)

|f |2
)1/2

for x ∈ Q1. It follows that

(
 

Q1

|gε|q
)1/q

≤ C

(
 

Q1

|Gε|q
)1/q

+ C

(
 

Q2

|f |q
)1/q

.

As a result, the estimate (3.2) follows from (3.13).
Finally, to prove (3.13), we use the well-known self-improving property of (weak) reverse

Hölder inequalities [14]. Consequently, it suffices to show that

(
 

Q(x,t)

|Gε|2
)1/2

≤ C

(
 

Q(x,8t)

|Gε|q0
)1/q0

+ C

(
 

Q(x,8t)

|f |2
)1/2

(3.14)

for any x ∈ Q1 and 0 < t < c. We divide the proof of (3.14) into two cases.
Case 1. Suppose 0 < t < 4ε. Observe that in this case, Gε(y) ∼ Gε(z) for any y, z ∈

Q(x, t); i.e., there exist c0 > 0 and c1 > 0, depending only on d and Ys, such that

c0Gε(y) ≤ Gε(z) ≤ c2Gε(y) for y, z ∈ Q(x, t).

This implies that (
 

Q(x,t)

|Gε|2
)1/2

≤ C

(
 

Q(x,8t)

|Gε|q0
)1/q0

.

Case 2. Suppose 4ε ≤ t < c. For y ∈ Q(x, t), write

Gε(y) = max
(
G(1)

ε (y), G(2)
ε (y)

)
,

where G
(1)
ε is defined as in (3.12), but with the supremum being taken over all Qε(z, r) with

the properties that y ∈ Q(z, r), r ≥ 2ε, and Q(z, r) ⊂ Q(x, 2t). By the L2/q0 boundedness
of the Hardy-Littlewood maximal operator, we have

(
 

Q(x,t)

|G(1)
ε |2

)1/2

≤ C

(
 

Q(x,2t)

(ε|∇uε|+ |uε|)2
)1/2

≤ C

(
 

Q(x,8t)

(ε|∇uε|+ |uε|)q0
)1/q0

+ C

(
 

Q(x,8t)

|f |2
)1/2

≤ C

(
 

Q(x,8t)

|Gε|q0
)1/q0

+ C

(
 

Q(x,8t)

|f |2
)1/2

,

where we have used (3.11) for the second inequality. Since

G(2)
ε (y) ∼ G(2)

ε (z) for y, z ∈ Q(x, t),
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we have (
 

Q(x,t)

|G(2)
ε |2

)1/2

≤ C

(
 

Q(x,t)

|G(2)
ε |q0

)1/q0

≤ C

(
 

Q(x,t)

|Gε|q0
)1/q0

.

As a result, we have proved (3.14) for Case 2. This completes the proof.

Corollary 3.5. Let (uε, pε) ∈ H1(Qε
3;R

d) × L2(Qε
3) be a weak solution of (1.1) in Qε

3 with

uε = 0 on Q3 ∩ ∂(εω), where 0 < ε ≤ 1. Then

(
ˆ

Q1+δ\Q1−δ

(ε|∇uε|+ |uε|)2 dx
)1/2

≤ Cδσ

{(
ˆ

Q3

(ε|∇uε|+ |uε|)2 dx
)1/2

+ ‖f‖L∞(Q3)

}
,

(3.15)

for any δ ∈ (ε, 1], where C and σ > 0 depend only on d, µ, and Ys.

Proof. We may assume δ ≤ 1/4; for otherwise the estimate is trivial. By Fubini’s Theorem,

(
ˆ

Q1+δ\Q1−δ

(ε|∇uε|+ |uε|)2 dx
)1/2

≤ C

(
ˆ

Q1+δ\Q1−δ

|gε|2 dx
)1/2

,

where gε is defined by (3.1) and we have used the assumption δ > ε. By Hölder’s inequality,
the right-hand side of the inequality above is bounded by

Cδσ

(
ˆ

Q3/2

|gε|q dx
)1/q

,

where q > 2 is given by Theorem 3.1 and σ = 1
2
− 1

q
> 0. The estimate (3.15) now follows

readily from (3.2).

4 Compactness

The goal of this section is to establish the compactness in the following theorem. The
condition ε−1

j ∈ N ensures that ∂(εjω) ∩ ∂Q` = ∅ for ` = 1, 2, 3, 4.

Theorem 4.1. Let {(uεj , pεj)} be a sequence of weak solutions of





−ε2jµ∆uεj +∇pεj = fεj in Q
εj
4 ,

div(uεj) = 0 in Q
εj
4 ,

uεj = 0 on Q4 ∩ ∂(εjω),
(4.1)
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where ε−1
j ∈ N and εj → 0. Assume that

 

Q4

|uεj |2 ≤ 1 and ‖fεj‖Cα(Q4) ≤ 1 (4.2)

for some α ∈ (0, 1). Then there exists a subsequence, still denoted by {(uεj , pεj)}, and

f ∈ Cα(Q4;R
d), p0 ∈ H1(Q2), such that fεj → f uniformly in Q4,

Pεj −
 

Q2

Pεj → p0 in L2(Q2), (4.3)

uεj − µ−1W (x/εj)(f −∇p0) → 0 in L2(Q1;R
d), (4.4)

and

εj∇uεj − µ−1∇W (x/εj)(f −∇p0) → 0 in L2(Q1;R
d×d), (4.5)

where Pεj denotes the extension of pεj defined by (2.7).

Proof. We divide the proof of Theorem 4.1 into several steps.

Step 1. By subtracting a constant we may assume
´

Q
εj
2

pεj dx = 0. It follows from Cacciop-

poli’s inequality (2.10) and (4.2) that

εj‖∇uεj‖L2(Q2) + ‖Pεj −
 

Q2

Pεj‖L2(Q2) ≤ C. (4.6)

Thus, by passing to a subsequence, we may assume that





Pεj −
 

Q2

Pεj → p0 weakly in L2(Q2),

uεj two-scale converges to u0(x, ξ),

εj∇uεj two-scale converges to ∇ξu0(x, ξ),

(4.7)

for some p0 ∈ L2(Q2) and u0 ∈ L2(Q2;H
1
per(Y ;Rd)). Moreover, since uεj = 0 in Q2 \ (εjω)

and div(uεj) = 0 in Qε
2, the limit u0 satisfies





u0(x, ξ) = 0 in Q2 × Ys,

divξu0(x, ξ) = 0 in Q2 × Y,

divx

ˆ

Y

u0(x, ξ) dξ = 0 in Q2.

(4.8)

We refer the reader to [3] for an introduction to the two-scale convergence and its applications
to homogenization. Clearly, by passing to a subsequence, we may also assume that fεj → f
uniformly in Q4 for some f ∈ Cα(Q4;R

d) with ‖f‖Cα(Q4) ≤ 1.

Step 2. We show that

Pεj −
 

Q2

Pεj → p0 in L2(Q2). (4.9)
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The proof is the same as in the case with boundary value uε = 0 on ∂Q2. See e.g. [4].
We sketch a proof here for the reader’s convenience. The key is to show that for any
ψ ∈ H1

0 (Q2;R
d),

| < ∇Pεj , ψ >H−1(Q2)×H1
0
(Q2) |

≤ C
{
εj‖∇uεj‖L2(Q

εj
2
)
+ ‖f‖

L2(Q
εj
2
)

}{
εj‖∇ψ‖L2(Q2) + ‖ψ‖L2(Q2)

}
.

(4.10)

To see (4.10), let Rεj : H
1
0 (Q2;R

d) → H1
0 (Q

εj
2 ;R

d) be the restriction operator defined in [4,
Lemma 1.7]. Then

| < ∇Pεj , ψ >H−1(Q2)×H1
0
(Q2) |

= | < ∇pεj , Rεj(ψ) >H−1(Q
εj
2
)×H1

0
(Q

εj
2
)
|

= | < ε2jµ∆uεj + fεj , Rεj(ψ) >H−1(Q
εj
2
)×H1

0
(Q

εj
2
)
|

≤ ε2jµ‖∇uεj‖L2(Q
εj
2
)
‖∇Rεj(ψ)‖L2(Q

εj
2
)
‖+ ‖fεj‖L2(Q

εj
2
)
‖Rεj(ψ)‖L2(Q

εj
2
)

≤ C
{
εj‖∇uεj‖L2(Q

εj
2
)
+ ‖fεj‖L2(Q

εj
2
)

}{
εj‖∇ψ‖L2(Q2) + ‖ψ‖L2(Q2)

}
.

The estimate (4.10) implies (4.9). For otherwise, since

‖Pεj −
 

Q2

Pε − p0‖L2(Q2) ≤ C‖∇Pεj −∇p0‖H−1(Q2),

it follows that ∇Pεj does not converge to ∇p0 in H−1(Q2;R
d). Hence, there exists a sequence

{ψj} ⊂ H1
0 (Q2;R

d) such that ‖ψj‖H1
0
(Q2) = 1 and

| < ∇Pε′j
−∇p0, ψj >H−1(Q2)×H1

0
(Q2) | ≥ c0 > 0

for a subsequence {ε′j}. By passing to a subsequence we may assume ψj → ψ0 weakly in
H1

0 (Q2;R
d) and thus strongly in L2(Q2;R

d). Since

< ∇Pεj −∇p0, ψ0 >H−1(Q2)×H1
0
(Q2)→ 0,

we see that
| < ∇Pε′j

, ψj − ψ0 >H−1(Q2)×H1
0
(Q2) | ≥ c0/2

if j is sufficiently large. This leads to a contradiction if we take ψ = ψj − ψ0 in (4.10).

Step 3. We show that

u0(x, ξ) = µ−1W (ξ)(f −∇p0) in Q2. (4.11)

By using the Stokes equations in Qε
2 and the two-scale convergence of εj∇uεj , we have

µ

ˆ

Q2×Y

∇ξu0(x, ξ) · ∇ξψ(x, ξ) dxdξ =

ˆ

Q2×Y

f(x)ψ(x, ξ) dxdξ (4.12)
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for any ψ = ψ(x, ξ) ∈ L2(Q2;H
1
per(Y ;Rd)) satisfying the conditions,





divξψ(x, ξ) = 0 in Q2 × Y,

ψ(x, ξ) = 0 in Q2 × Ys,

divx

ˆ

Y

ψ(x, ξ) dξ = 0 for x ∈ Q2,

n ·
ˆ

Y

ψ(x, ξ) dξ = 0 for x ∈ ∂Q2,

(4.13)

where n denotes the outward unit normal to ∂Q2. See [4, p.48-89]. Let p∗ ∈ H1(Q2) be a
weak solution of the Neumann problem,





div(K(f −∇p∗)) = 0 in Q2,

µn ·K(f −∇p∗) = n ·
 

Y

u0(x, ξ) dξ on ∂Q2,
(4.14)

and
v0(x, ξ) = µ−1W (ξ)(f −∇p∗) in Q2. (4.15)

It is not hard to show that (4.12) also holds if u0(x, ξ) is replaced by v0(x, ξ). Thus,
ˆ

Q2×Y

∇ξ(u0(x, ξ)− v0(x, ξ)) · ∇ξψ(x, ξ) dxdξ = 0

for any ψ = ψ(x, ξ) ∈ L2(Q2;H
1
per(Y ;Rd)) satisfying (4.13). By taking ψ = u0 − v0, we see

that u0 − v0 depends only on x. Since u0(x, ξ) − v0(x, ξ) = 0 for ξ ∈ Ys, we conclude that
u0(x, ξ) = v0(x, ξ) in Q2 × Y .

It remains to show that ∇p∗ = ∇p0 in Q2. To this end, we note that by using the Stokes
equations in Qε

2, (4.9) and the two-scale convergence of εj∇uεj ,

µ

ˆ

Q2×Y

∇ξu0(x, ξ) · ∇ξψ(x, ξ) dxdξ −
ˆ

Q2×Y

p0(x) divxψ(x, ξ) dxdξ

=

ˆ

Q2×Y

f(x)ψ(x, ξ) dxdξ,

(4.16)

if ψ ∈ C∞
0 (Q2;H

1
per(Y )) satisfies divξψ(x, ξ) = 0 in Q2 × Y and ψ(x, ξ) = 0 in Q2 × Ys. By

taking ψ = ϕ(x)W`(ξ) in (4.16), where 1 ≤ ` ≤ d and ϕ ∈ C∞
0 (Q2), we obtain

Kj
`

ˆ

Q2

(
f j − ∂p∗

∂xj

)
ϕdx−Kj

`

ˆ

Q2

p0(x)
∂ϕ

∂xj
dx = Kj

`

ˆ

Q2

f jϕdx,

where we also used the fact u0(x, ξ) = µ−1W (ξ)(f −∇p∗). It follows that

Kj
`

ˆ

Q2

ϕ
∂

∂xj

(
p∗ − p0) dx = 0

for 1 ≤ ` ≤ d. Since K = (Kj
` ) is invertible and ϕ ∈ C∞

0 (Q2) is arbitrary, we deduce that
∇(p∗ − p0) = 0 in Q2.

15



Step 4. We show that

εj∇uεj − µ−1∇W (x/εj)(f −∇p0) → 0 in L2(Q1;R
d×d). (4.17)

Let
Ij = ‖µεj∇uεj −∇W (x/εj)(f −∇p0)‖2L2(Q1)

. (4.18)

Observe that

Ij = ε2jµ
2

ˆ

Q1

|∇uεj |2 dx− 2µ

ˆ

Q1

εj∇uεj · ∇W (x/εj)(f −∇p0) dx

+

ˆ

Q1

|∇W (x/εj)(f −∇p0)|2 dx

= I1j + I2j + I3j .

Since ε∇uεj two-scale converges to ∇ξu0(x, ξ) = µ−1∇W (ξ)(f −∇p0) in Q2, we see that

I2j + I3j →−
ˆ

Q1×Y

|∇W (ξ)(f −∇p0)|2 dxdξ

= −
ˆ

Q1

K(f −∇p0) · (f −∇p0) dx

= −µ
ˆ

Q1

u · (f −∇p0) dx,

where u = µ−1K(f −∇p0). To handle I1j , we fix δ ∈ (0, 1/8) and choose a cut-off function
ϕ = ϕδ ∈ C∞

0 (Q1) such that 0 ≤ ϕ ≤ 1, ϕ(x) = 0 if dist(x, ∂Q1) ≤ δ/2, ϕ(x) = 1 if x ∈ Q1

and dist(x, ∂Q1) ≥ δ, and |ϕ| ≤ Cδ−1. Note that

I1j = µ2ε2j

ˆ

Qε
1

|∇uεj |2ϕdx+ µ2ε2j

ˆ

Qε
1

|∇uεj |2(1− ϕ) dx

= µ

ˆ

Qε
1

(uεj · fεj)ϕdx+ µ

ˆ

Qε
1

(uεj · ∇ϕ)(Pεj −
 

Q2

Pεj) dx

− µ2ε2j

ˆ

Qε
1

uεj(∇uεj)(∇ϕ) dx+ µ2ε2j

ˆ

Qε
1

|∇uεj |2(1− ϕ) dx,

where we have used the Stokes equations in Qε
1 and integration by parts. By the strong

convergence of fεj and Pεj −
ffl

Q2
Pεj and weak convergence of uεj in L2(Q2), it follows that

lim sup
j→∞

∣∣∣I1j − µ

ˆ

Q1

(u · f)ϕdx− µ

ˆ

Q1

(u · ∇ϕ)p0 dx
∣∣∣

≤ C sup
j

ˆ

Qε
1
\Q1−δ

ε2j |∇uεj |2 dx

≤ Cδ2σ,

where we have used (3.15) for the last inequality. Since
ˆ

Q1

(u · f)ϕdx+
ˆ

Q1

(u · ∇ϕ)p0 dx =

ˆ

Q1

(u · (f −∇p0))ϕdx,
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we have proved that

lim sup
j→∞

|Ij| ≤ lim sup
j→∞

∣∣∣I1j − µ

ˆ

Q1

u · (f −∇p0) dx
∣∣∣

≤ Cδ2σ + µ

ˆ

Q1

|u||f −∇p0|(1− ϕ) dx

≤ Cδ2σ + µ

ˆ

Q1\Q1−δ

|u||f −∇p0| dx,

where C does not depend on δ. By letting δ → 0, we conclude Ij → 0, as j → ∞.

Step 5. We show that

uεj − µ−1W (x/εj)(f −∇p0) → 0 in L2(Q1;R
d). (4.19)

Since f ∈ Cα(Q4;R
d) and div(K(f −∇p0)) = 0 in Q2, it follows that ∇p0 ∈ Cα(Q1;R

d).
As a result, we may choose a sequence {Fj} ⊂ C1(Q1;R

d) such that

‖Fj − (f −∇p0)‖L∞(Q1) → 0 as j → ∞,

and ‖∇Fj‖L∞(Q1) ≤ Cεα−1
j . Note that

‖uεj − µ−1W (x/εj)(f −∇p0)‖L2(Q1)

≤ ‖uεj − µ−1W (x/εj)Fj‖L2(Q1) + ‖µ−1W (x/εj)(Fj − (f −∇p0))‖L2(Q1)

≤ Cεj‖∇(uεj − µ−1W (x/εj)Fj)‖L2(Q1) + ‖µ−1W (x/εj)(Fj − (f −∇p0))‖L2(Q1)

≤ C‖εj∇uεj − µ−1∇W (x/εj)Fj‖L2(Q1) + Cεj‖W (x/εj)∇Fj‖L2(Q1)

+ ‖µ−1W (x/εj)(Fj − (f −∇p0))‖L2(Q1)

≤ C‖εj∇uεj − µ−1∇W (x/εj)(f −∇p0)‖L2(Q1) + C‖∇W (x/εj)(Fj − (f −∇p0))‖L2(Q1)

+ Cεj‖W (x/εj)∇Fj‖L2(Q1) + C‖W (x/εj)(Fj − (f −∇p0))‖L2(Q1)

≤ C‖εj∇uεj − µ−1∇W (x/εj)(f −∇p0)‖L2(Q1)

+ C‖Fj − (f −∇p0)‖L∞(Q1) + Cεj‖∇Fj‖L∞(Q1),

where we have used the Poincaré inequality (2.4) for the second inequality. As a result,
(4.19) follows from (4.17). This completes the proof of Theorem 4.1.

Remark 4.2. It follows from the proof of Theorem 4.1 that

uεj → u := µ−1K(f −∇p0) weakly in L2(Q2;R
d). (4.20)

Since div(uεj) = 0 in Q2, we obtain

div(K(f −∇p0)) = 0 in Q2. (4.21)
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5 Large-scale estimates for the velocity

In this section we give the proof of Theorems 1.1 and 1.2.

Lemma 5.1. Let 0 < β < α < 1. There exist θ ∈ (0, 1/4) and ε0 ∈ (0, 1/4), depending only

on d, α, β, µ, and Ys, such that θ−1 ∈ 4N, ε−1
0 ∈ 4N, and

inf
E∈Rd

(
 

Qθ

|uε − µ−1W (x/ε)E|2
)1/2

≤ θβ max

{(
 

Q1

|uε|2
)1/2

, ‖f‖C0,α(Q1)

}
, (5.1)

whenever 0 < ε < ε0, ε
−1 ∈ 4N, and (uε, pε) ∈ H1(Qε

1;R
d) × L2(Q1) is a weak solution of

the Stokes equations (1.1) in Qε
1, uε = 0 in Q1 ∩ ∂(εω), and f ∈ Cα(Q1;R

d) with f(0) = 0.

Proof. The lemma is proved by contradiction. We begin by choosing θ ∈ (0, 1/4) such that
θ−1 ∈ 4N and C0θ

α ≤ (1/2)θβ, where C0 is the constant in (5.6), which depends only on d,
µ, and Ys. This is possible since β < α.

Suppose that no ε0 with the desired properties exists for this θ. Then there exist a
sequence of weak solutions (uεj , pεj) of the Stokes equations,

{
−ε2jµ∆uεj +∇pεj = fεj ,

div(uεj) = 0,

in Q
εj
1 with uεj = 0 on Q1 ∩ ∂(εjω) such that ε−1

j ∈ 4N, εj → 0,

max

{(
 

Q1

|uεj |2
)1/2

, ‖f‖C0,α(Q1)

}
≤ 1, (5.2)

and

inf
E∈Rd

(
 

Qθ

|uεj − µ−1W (x/εj)E|2
)1/2

> θβ. (5.3)

By subtracting a constant we may assume
´

Q
εj
1/2
pεj dx = 0. It follows that

 

Q1/2

Pεj =

 

Q
εj
1/2

pεj = 0.

In view of Theorem 4.1, by passing to a subsequence, we may assume that fεj → f uniformly
in Q1 for some f ∈ Cα(Q1;R

d),

Pεj → p0 in L2(Q1/2), (5.4)

and
uεj − µ−1W (x/εj)(f −∇p0) → 0 in L2(Q1/4;R

d), (5.5)
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for some p0 ∈ H1(Q1/2). Note that

(
 

Qθ

|uεj − µ−1W (x/εj)E|2
)1/2

≤
(
 

Qθ

|uεj − µ−1W (x/εj)(f −∇p0)|2
)1/2

+ µ−1

(
 

Qθ

|W (x/εj)(f −∇p0 − E)|2
)1/2

≤
(
 

Qθ

|uεj − µ−1W (x/εj)(f −∇p0)|2
)1/2

+ C‖f −∇p0 − E‖L∞(Qθ)

≤
(
 

Qθ

|uεj − µ−1W (x/εj)(f −∇p0)|2
)1/2

+ Cθα
{
‖f‖C0,α(Q1/4) + ‖∇p0‖C0,α(Q1/4)

}
,

where we have let E = ∇p0(0) and used the assumption f(0) = 0. By letting j → ∞ and
using (5.3) and (5.5), we obtain

θβ ≤ Cθα
{
‖f‖C0,α(Q1/4) + ‖∇p0‖C0,α(Q1/4)

}

≤ Cθα
{
‖f‖C0,α(Q1) + ‖p0‖L2(Q1/2)

}
,

where, for the last step, we have used the interior C1,α estimates for the elliptic equation
div(K(f −∇p0)) = 0 in Q1/2 (see Remark 4.2).

Finally, by the Caccioppoli inequality (2.10),

‖pεj‖L2(Q
εj
1/2

)
≤ C.

This, together with (5.4), yields ‖p0‖L2(Q1/2) ≤ C. Hence,

θβ ≤ C0θ
α, (5.6)

where C0 > 0 depends only on d, µ, and Ys. This is a contradiction with the choice of θ.

Remark 5.2. Note that if vε = Wj(x/ε) and qε = ε−1πj(x/ε)− xj, then

{
−ε2∆vε +∇qε = 0,

div(vε) = 0,

in R
d \ εω and vε = 0 on ∂ω. This allows us to replace uε in (5.1) by uε − µ−1W (x/ε)E0 for

any E0 ∈ R
d. It follows that (5.1) in Lemma 5.1 may be replaced by

inf
E∈Rd

(
 

Qθ

|uε − µ−1W (x/ε)E|2
)1/2

≤ θβ max

{
inf

E∈Rd

(
 

Q1

|uε − µ−1W (x/ε)E|2
)1/2

, ‖f‖C0,α(Q1)

}
.

(5.7)
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Lemma 5.3. Let 0 < β < α < 1. Let θ, ε0 ∈ (0, 1/4) be given by Lemma 5.1. Then

inf
E∈Rd

(
 

Q
θk

|uε − µ−1W (x/ε)E|2
)1/2

≤ θkβ max

{(
 

Q1

|uε|2
)1/2

, ‖f‖C0,α(Q1)

}
, (5.8)

whenever 0 < ε < θk−1ε0, ε
−1 ∈ 4N, and (uε, pε) ∈ H1(Qε

1;R
d)×L2(Q1) is a weak solution of

the Stokes equations (1.1) in Qε
1, uε = 0 in Q1 ∩ ∂(εω), and f ∈ Cα(Q1;R

d) with f(0) = 0.

Proof. The lemma is proved by induction. The case k = 1 is given by (5.7).
Suppose the estimate (5.8) holds for some k ≥ 1. Let (uε, pε) ∈ H1(Qε

1;R
d)×L2(Q1) be a

weak solution of the Stokes equations (1.1) in Qε
1, uε = 0 in Q1 ∩ ∂(εω), and f ∈ Cα(Q1;R

d)
with f(0) = 0. Assume that 0 < ε < θkε0 and ε−1 ∈ 4N. Consider

v(x) = uε(θ
kx) and q(x) = θ−kpε(θ

kx).

Then {
−(εθ−k)2µ∆v +∇q = g,

div(v) = 0,

in Qθ−kε
1 , and v = 0 on Q1∩∂(εθ−kω), where g(x) = f(θkx). Since θ−kε < ε0, it follows from

(5.7)that

inf
E∈Rd

(
 

Q
θk+1

|uε − µ−1W (x/ε)E|2
)1/2

= inf
E∈Rd

(
 

Qθ

|v − µ−1W (x/(εθ−k))E|2
)1/2

≤ θmax

{
inf

E∈Rd

(
 

Q1

|v − µ−1W (x/(εθ−k))E|2
)1/2

, ‖g‖C0,α(Q1)

}

= θmax



 inf

E∈Rd

(
 

Q
θk

|uε − µ−1W (x/ε)E|2
)1/2

, θkα‖f‖C0,α(Q
θk

)





≤ θ(k+1)β max

{
inf

E∈Rd

(
 

Q1

|uε − µ−1W (x/ε)E|2
)1/2

, ‖f‖C0,α(Q1)

}
,

where we have used the induction assumption for the last inequality. This completes the
induction argument.

The next theorem gives the large-scale C0,α estimates for the Stokes equations in perfo-
rated domains.

Theorem 5.4. Let (uε, pε) be a weak solution of the Stokes equations in Qε
R with uε = 0 on

QR ∩ ∂(εω), where 0 < ε < R and f ∈ Cα(QR;R
d) for some 0 < α < 1. Then

inf
E∈Rd

(
 

Qr

|uε − µ−1W (x/ε)E|2
)1/2

≤ C
( r
R

)β
{(

 

QR

|uε|2
)1/2

+Rα‖f‖C0,α(QR)

}
,

(5.9)

for any ε ≤ r < R, where 0 < β < α and C depends only on d, µ, α, β, and Ys.
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Proof. Note that (5.9) is trivial if cR < r < R. Also, observe that

−µε2∆uε +∇(pε − f(0) · x) = f − f(0).

We may assume f(0) = 0. As a result, by Lemma 5.3, (5.9) holds for ε ≤ r < R = 1, if
ε−1 ∈ 4N. By considering the solution (uε(tx), t

−1pε(tx)), where 1/2 < t < 1, we deduce
that

inf
E∈Rd

(
 

Qr

|uε − µ−1W (x/ε)E|2
)1/2

≤ Crβ

{(
 

Qt

|uε|2
)1/2

+ ‖f‖C0,α(Qt)

}
,

(5.10)

if ε < r < t and tε−1 ∈ 4N. It follows that (5.9) holds for ε ≤ r < R = 1, without the
condition ε−1 ∈ 4N. By dilation this implies that (5.9) holds for any ε ≤ r < R.

Proof of Theorem 1.2. The estimate for the second term in the right-hand side of (1.6)
is contained in Theorem 5.4. For the first term, we apply the Caccioppli inequality (2.10) to
uε − µ−1W (x/ε)E and pε − (επ(x/ε)− x) · E.

The remaining of this section is devoted to the proof of Theorem 1.1.

Lemma 5.5. Let 0 < β < α < 1 and θ, ε0 ∈ (0, 1/4) be given by Lemma 5.1. Let 0 <
ε < θk−1ε0, ε

−1 ∈ 4N. Suppose (uε, pε) ∈ H1(Qε
1;R

d) × L2(Q1) is a weak solution of the

Stokes equations (1.1) in Qε
1, uε = 0 in Q1 ∩ ∂(εω), and f ∈ Cα(Q1;R

d) with f(0) = 0. Let

E(k) ∈ R
d be such that

(
 

Q
θk

|uε − µ−1W (x/ε)E(k)|2
)1/2

= inf
E∈Rd

(
 

Q
θk

|uε − µ−1W (x/ε)E|2
)1/2

. (5.11)

Then

|E(k)| ≤ C
{
‖uε‖L2(Q1) + ‖f‖Cα(Q1)

}
, (5.12)

where C depends only on d, µ, and Ys.

Proof. The proof uses the following observation,

|E| ≤ C

(
 

Qr

|µ−1W (x/ε)E|2
)1/2

(5.13)

for any r ≥ ε and E ∈ R
d, where C depends only on d, µ, and Ys. Let 1 ≤ ` ≤ k and
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E(0) = 0. Then

|E(`)− E(`− 1)| ≤ C

(
 

Q
θ`

|µ−1W (x/ε)(E(`)− E(`− 1))|2
)1/2

≤ C

(
 

Q
θ`

|uε − µ−1W (x/ε)E(`)|2
)1/2

+ C

(
 

Q
θ`

|uε − µ−1W (x/ε)E(`− 1)|2
)1/2

≤ C

(
 

Q
θ`

|uε − µ−1W (x/ε)E(`)|2
)1/2

+ C

(
 

Q
θ`−1

|uε − µ−1W (x/ε)E(`− 1)|2
)1/2

≤ Cθ`β
{
‖uε‖L2(Q1) + ‖f‖Cα(Q1)

}
,

where we have used (5.8) for the last inequality. It follows that

|E(k)| ≤
k∑

`=1

|E(`)− E(`− 1)|

≤ C
{
‖uε‖L2(Q1) + ‖f‖Cα(Q1)

}
.

Theorem 5.6. Let (uε, pε) be a weak solution of the Stokes equations in Qε
R with uε = 0 on

QR ∩ ∂(εω), where 0 < ε < R and f ∈ Cα(QR;R
d) for some 0 < α < 1. Then

(
 

Qr

|uε|2
)1/2

≤ C

{(
 

QR

|uε|2
)1/2

+Rα‖f‖C0,α(QR)

}
, (5.14)

for any ε ≤ r < R, where C depends only on d, µ, α, and Ys.

Proof. As in the proof of Theorem 5.4, we may assume f(0) = 0. It follows from Lemmas
5.3 and 5.5 that (5.14) holds for ε ≤ r < R = 1, if ε−1 ∈ 4N. The extra condition ε−1 ∈ 4N
may be eliminated by considering (uε(tx), pε(tx)) for t ∈ (1/2, 1), as in the proof of Theorem
5.4. Finally, the general case ε ≤ r < R <∞ follows by a dilation argument.

Proof of Theorem 1.1. The estimate for the second term in the right-hand side of (1.5) is
contained in Theorem 5.6. For the first term, we apply the Caccioppoli inequality (2.10).

Remark 5.7. The large-scale estimates in Theorems 5.4 and 5.6 hold under the assumption
that Ys is an open subset with Lipschitz boundary. Suppose that Ys is an open set with C1,α

boundary for some α > 0. Using the classical Lipschitz estimates for the Stokes equations
in Ỹf = (1 + δ)Y \ Ys [13, 15] and a rescaling argument, we see that

‖uε‖L∞(ε(Y+z)) + ε‖∇uε‖L∞(ε(Y+z))

≤ C

{(
 

2ε(Y+z)

|uε|2
)1/2

+ ‖f − f(z)‖L∞(2ε(Y+z))

}
,
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for any z ∈ Z
d, where C depends only on d, µ, and Ys. This, together with (5.14), gives

‖uε‖L∞(QR/2) + ε‖∇uε‖L∞(QR/2) ≤ C

{(
 

QR

|uε|2
)1/2

+Rα‖f‖C0,α(QR)

}
, (5.15)

where 0 < ε < R/2 and C depends only on d, µ, α, and Ys.

6 Large-scale estimates for the pressure

Theorem 6.1. Let (uε, pε) be a weak solution of the Stokes equations (1.1) in Qε
R with uε = 0

on QR ∩ ∂(εω), where 0 < ε < R and f ∈ Cα(QR;R
d) for some 0 < α < 1. Then

inf
E∈Rd

γ∈R

1

r

(
 

Qε
r

|pε − γ − x · f(0)− (επ(x/ε)− x) · E|2
)1/2

≤ C
( r
R

)β




(
 

Qε
R

|uε|2
)1/2

+Rα‖f‖C0,α(QR)



 ,

(6.1)

for any ε ≤ r < R/2, where C depends only on d, µ, α, β, and Ys.

Proof. By rescaling we may assume r = 1. We may also assume ε−1 ∈ N. By the Caccioppoli
inequality (2.10),

inf
γ∈R

‖pε − γ‖L2(Qε
1
) ≤ C

{
‖uε‖L2(Q2) + ‖f‖L2(Q2)

}
. (6.2)

By applying the estimate above to the solution

vε = uε − µ−1W (x/ε)E and qε = pε − (επ(x/ε)− x) · E − x · f(0),

we obtain

inf
E∈Rd

γ∈R

(
 

Qε
1

|pε − γ − (επ(x/ε)− x) · E − x · f(0)|2
)1/2

≤ C inf
E∈Rd

(
 

Q2

|uε − µ−1W (x/ε)E|2
)1/2

+ C‖f‖C0,α(Q2)

≤ C

(
1

R

)β
{(

 

QR

|uε|2
)1/2

+Rα‖f‖C0,α(QR)

}
,

where we have used (5.9) for the last step.

Theorem 6.2. Let (uε, pε) be the same as in Theorem 6.1. Then

inf
γ∈Rd

1

r

(
 

Qε
r

|pε − γ − x · f(0)|2
)1/2

≤ C

{(
 

QR

|uε|2
)1/2

+Rα‖f‖C0,α(QR)

}
, (6.3)

for any ε ≤ r < R/2, where C depends only on d, µ, α, and Ys.
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Proof. As in the proof of Theorem 6.1, we may assume that r = 1 and ε−1 ∈ N. It follows
from (6.2) that

inf
γ∈R

‖pε − γ − x · f(0)‖2(Qε
1
) ≤ C

{
‖uε‖L2(Q1) + ‖f‖C0,α(Q2)

}
.

The desired estimate now follows readily from (5.14).

Remark 6.3. Let (uε, pε) be the same as in Theorem 6.1. It follows from (6.3) that

1

r

(
 

Qε
r

|pε −
 

Qε
r

pε|2
)1/2

≤ C

{(
 

QR

|uε|2
)1/2

+ ‖f‖L∞(QR) +Rα‖f‖C0,α(QR)

}
, (6.4)

for ε ≤ r < R/2. This implies that

∣∣∣
 

Qε
2r

pε −
 

Qε
r

pε

∣∣∣ ≤ Cr

{(
 

QR

|uε|2
)1/2

+ ‖f‖L∞(QR) +Rα‖f‖C0,α(QR)

}
(6.5)

for ε ≤ r < R/4. It follows that

∣∣∣
 

Qε
ε

pε −
 

Qε
R/2

pε

∣∣∣ ≤ CR

{(
 

QR

|uε|2
)1/2

+ ‖f‖L∞(QR) +Rα‖f‖C0,α(QR)

}
. (6.6)

Suppose that Ys is an open subset of Y with C1,α boundary. By the classical local estimates
for the Stokes equations in (1 + δ)Y \ Ys [13, 15] and a rescaling argument,

‖pε −
 

ε(Yf+z)

pε‖L∞(ε(Yf+z)) ≤ Cε





(
 

2ε(Yf+z)

|uε|2
)1/2

+ ‖f‖L∞(2ε(Yf+z))



 .

This, together with (6.6)

‖pε −
 

Qε
R/2

pε‖L∞(Qε
R/2

) ≤ CR

{(
 

QR

|uε|2
)1/2

+ ‖f‖L∞(QR) +Rα‖f‖C0,α(QR)

}
, (6.7)

where 0 < ε < R/4 and C depends only on d, µ, α, and Ys.

We end this section by establishing a Liouville property for the Stokes equations in ω.

Theorem 6.4. Let (u, p) ∈ H1
loc(ω;R

d)× L2
loc(ω) be a weak solution of the Stokes equations

−µ∆u+∇p = f and div(u) = 0 in ω,

with u = 0 on ∂ω, where f is constant. Assume that there exist some C > 0 and σ ∈ (0, 1)
such that (

 

QR

|u|2
)1/2

≤ CRσ (6.8)

for any R > 1. Then

u = µ−1W (x)E and p = (π(x)− x) · E + x · f(0) + γ, (6.9)

for some E ∈ R
d and γ ∈ R.
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Proof. Choose α, β so that σ < β < α < 1. We apply the estimate (5.9) with ε = 1 to
(u, p) and let R → ∞. It follows that for each k ∈ N, u = µ−1W (x)E(k) in Qk ∩ ω for some
E(k) ∈ R

d. Since

µ

ˆ

Yf

u dx =

ˆ

Yf

W (x)E(k) dx = KE(k),

and K = (Ki
j) is invertible, we see that E(k) = E(k + 1) for any k ∈ N. This implies that

u = µ−1W (x)E in R
d for some E ∈ R

d. It follows that

∇{p− (π(x)− x) · E − x · f(0)} = 0 in ω.

Since ω is connected, we conclude that p = (π(x)− x) ·E + x · f(0) + γ for some γ ∈ R.

7 Uniform W k,p estimates

In this section we give the proof of Theorems 1.3 and 1.4. By rescaling we may assume ε = 1.

Proof of Theorem 1.3. Step 1. The case q = 2.
Le V denote the closure of V in W 1,2

0 (ω;Rd), where

V =
{
ψ ∈ C∞

0 (ω;Rd) : div(ψ) = 0 in ω
}
. (7.1)

Using the inequality ‖u‖L2(ω) ≤ C‖∇u‖L2(ω) for any u ∈ W 1,2
0 (ω), and the Lax-Milgram

Theorem, one may show that for each F ∈ L2(Rd;Rd) and f ∈ L2(Rd;Rd×d), there exists a
unique u ∈ V such that

µ

ˆ

ω

∇u · ∇ψ dx =

ˆ

ω

F · ψ dx−
ˆ

ω

f · ∇ψ dx (7.2)

for any ψ ∈ V . Moreover, u satisfies the estimate (1.11) with q = 2 and ε = 1, and
−µ∆u+∇p = F + div(f) in ω for some p ∈ L2

loc(ω).

Step 2. Let (u, p) be the weak solution of (1.10) with ε = 1, given by Step 1, where
F ∈ C∞

0 (Rd,Rd) and f ∈ C∞
0 (Rd;Rd×d). We prove the estimate (1.11) for 2 < q < ∞ by a

real variable method.
Consider the linear operator,

T (F, f) = u,

where F ∈ L2(Rd;Rd), f ∈ L2(Rd;Rd×d), and u is the solution of (1.10) with ε = 1,
given by Step 1. Clearly, ‖T (F, f)‖L2(Rd) ≤ C‖(F, f)‖L2(Rd). We claim that if supp(F ),
supp(f) ⊂ R

d \Q(x0, 4R) for some x0 ∈ R
d and R > 0, then

‖T (F, f)‖L∞(Q(x0,R)) ≤ C

(
 

Q(x0,4R)

|T (F, f)|2
)1/2

. (7.3)

Indeed, since F = 0 and f = 0 in Q(x0, 4R), we have −µ∆u + ∇p = 0 and div(u) = 0 in
Q1(x0, 4R), and u = 0 on ∂ω. If 0 < R < 2, by the classical L∞ estimates for the Stokes
equations in C1,α domains, we obtain

max
Q(x0,R)

|u| ≤ C

(
 

Q(x0,4R)

|u|2
)1/2

.
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If R > 2, in view of (5.15), the inequality above continues to hold. As a result, by [23,
Theorem 4.2.5], we deduce that

‖T (F, f)‖Lq(Rd) ≤ Cq‖(F, f)‖Lq(Rd)

for any q > 2 and F ∈ C∞
0 (Rd;Rd), f ∈ C∞

0 (Rd;Rd×d), where Cq depends only on d, µ, q,
and Ys. This gives the desired estimate for u. To bound ∇u, we use the local estimate [13],

ˆ

Yf+z

|∇u|q dx ≤ C

{
ˆ

Ỹf+z

|u|q dx+ C

ˆ

Ỹf+z

|F |q dx+
ˆ

Ỹf+z

|f |q dx
}

(7.4)

for 1 < q <∞, where z ∈ Z
d and Ỹf = (1+ δ)Y \ Ys. It follows from (7.4) by summing over

z ∈ Z
d that

‖∇u‖Lq(ω) ≤ C
{
‖u‖Lq(ω) + ‖F‖Lq(Rd) + ‖f‖Lq(Rd)

}

≤ C
{
‖F‖Lq(Rd) + ‖f‖Lq(Rd)

}
.

(7.5)

Step 3. Let (u, p) be the weak solution of (1.10), given by Step 1, where F ∈ C∞
0 (Rd;Rd)

and f ∈ C∞
0 (Rd;Rd×d). We prove the estimate (1.11) for 1 < q < 2 by a duality argument.

Let (v, τ) be the weak solution of (1.10), given by Step 1, with G ∈ C∞
0 (Rd;Rd) in the

place of F and g ∈ C∞
0 (Rd;Rd×d) in the place of f . Since u, v ∈ V , by (7.2),

ˆ

ω

F · v dx−
ˆ

ω

f · ∇v dx =

ˆ

ω

∇u · ∇v dx =

ˆ

ω

G · u dx−
ˆ

ω

g · ∇u dx.

It follows that
∣∣∣
ˆ

ω

G · u dx−
ˆ

ω

g · ∇u dx
∣∣∣ ≤ ‖F‖Lq(Rd)‖v‖Lq′ (Rd) + ‖f‖Lq(Rd)‖∇v‖Lq′ (Rd)

≤ C
{
‖G‖Lq′ (Rd) + ‖g‖Lq′ (Rd)

}{
‖F‖Lq(Rd) + ‖f‖Lq(Rd)

}
.

By duality we obtain ‖∇u‖Lq(Rd) + ‖u‖Lq(Rd) ≤ C{‖F‖Lq(Rd) + ‖f‖Lq(Rd)} for 1 < q < 2.

Step 4. The existence of solutions u in W 1,q
0 (ω;Rd) with the estimate (1.11) for general

F ∈ Lq(Rd;Rd) and f ∈ Lq(Rd;Rd×d) follows readily from Steps 2 and 3 by a density
argument. We note that the estimate for ∇p in W−1,q(ω;Rd) follows from the equation
∇p = µ∆u+ F + div(f).

Step 5. To establish the uniqueness of solutions in W 1,q
0 (ω;Rd), we assume that u ∈

W 1,q
0 (ω;Rd) is a solution of (1.10) with ε = 1 and F = 0, f = 0. By local estimates

for the Stokes equations in Ỹf (see e.g. [13]),

max
Yf+z

|u| ≤ C

(
ˆ

Ỹf+z

|u|q dx
)1/q

,

where z ∈ Z
d. Since u ∈ Lq(ω;Rd), it follows that u is bounded in ω. In view of Theorem

6.4, we deduce that u = µ−1W (x)E for some E ∈ R
d. This shows that u is 1-periodic, and

thus u = 0 in ω.
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Proof of Theorem 1.4. The uniqueness is contained in Theorem 1.3. To establish the
existence and the estimate (1.13) with ε = 1, we use the local estimate [13],

k∑

`=0

ˆ

Yf+z

|∇`u|q dx ≤ C

{
ˆ

Ỹf+z

|u|q dx+
k−2∑

`=0

ˆ

Ỹf+z

|∇`F |q dx
}

(7.6)

for 1 < q <∞, where z ∈ Z
d. This yields that

k∑

`=0

‖∇`u‖Lq(ω) ≤ C
{
‖u‖Lq(ω) +

k−2∑

`=0

‖∇`F‖Lq(ω)

}

≤ C

k−2∑

`=0

‖∇`F‖Lq(ω),

where we have used (1.11) to bound ‖u‖Lq(ω) for the last inequality. The estimate for ∇`p
in W−1,q(ω;Rd) follows by using the equation ∇p = µ∆u+ F .
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[4] G. Allaire and A. Mikelić, One-phase Newtonian flow, Homogenization and porous
media, Interdiscip. Appl. Math., vol. 6, Springer, New York, 1997, pp. 45–76, 259–275.

[5] S. Armstrong and P. Dario, Elliptic regularity and quantitative homogenization on per-

colation clusters, Comm. Pure Appl. Math. 71 (2018), no. 9, 1717–1849.

[6] S. Armstrong, T. Kuusi, and J.-C. Mourrat, Quantitative stochastic homogenization and

large-scale regularity, Grundlehren der Mathematischen Wissenschaften [Fundamental
Principles of Mathematical Sciences], vol. 352, Springer, Cham, 2019.

[7] S. N. Armstrong and C. Smart, Quantitative stochastic homogenization of convex inte-
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