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Abstract

This paper is concerned with Darcy’s law for an incompressible viscous fluid flowing in a
porous medium. We establish the sharp O(y/¢) convergence rate in a periodically perforated and
bounded domain in R for d > 2, where ¢ represents the size of solid obstacles. This is achieved
by constructing two boundary layer correctors to control the boundary layers created by the
incompressibility condition and the discrepancy of boundary values between the solution and
the leading term in its asymptotic expansion. One of the correctors deals with the tangential
boundary data, while the other handles the normal boundary data.
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1 Introduction

This paper is concerned with Darcy’s law for an incompressible viscous fluid in a porous medium.
More precisely, we consider the Dirichlet problem for the steady Stokes equations,

_52/~LAU5 +Vp.=f in €2,
div(us) =0 in Q, (1.1)
u: =0 on 0€),

where p > 0 is the viscosity constant, 0 < & < 1, and 2. is a periodically perforated and bounded
domain in R?, d > 2. In (1.1) we have normalized the velocity vector by a factor €2, where ¢ is the
period. To describe the porous domain Q, we let Y = [0, 1]d be a closed unit cube and Y; (solid
part) an open subset of Y with Lipschitz boundary. Throughout the paper we shall assume that
dist(9Y, 0Y;) > 0 and that Yy =Y \ Y; (the fluid part) is connected. Let © be a bounded domain
in R¢ with Lipschitz boundary. For 0 < e < 1, define

Q. =\ Je (Vo + ), (1.2)
k

where z;, € Z% and the union is taken over those k’s for which (Y + 2;) C €.

For f € L*(Q;RY), let (ue,p-) € HE(Q:;RY) x L2(Q.) be the weak solution of (1.1) with
fﬂs pe dx = 0. We extend u. to the whole domain 2 by zero and still denote the extension by wu..
Let P. be the extension of p. to 2, defined by (2.6). It has been known since late 1970’s that as
e — 0, ue — ug weakly in L2(Q;RY) and P. — pg strongly in L2(f2), where (ug,po) is given by a
Darcy law,

up = p~ 'K (f — Vpo) in €2,
div(up) =0 in €, (1.3)
up-n =20 on 0,

*Supported in part by NSF grant DMS-1856235 and by Simons Fellowship.



with [, podz = 0. In (1.3) the permeability matrix K = (K;) is a d x d positive definite and
symmetric matrix defined by (2.3), and n denotes the outward unit normal to 9. Furthermore, it
was observed in [3] by G. Allaire that as ¢ — 0,

ue — Wz /e)(f — Vpo) = 0 strongly in L?(€; RY), (1.4)

where W(y) = (W;(y)) is an 1-periodic d x d matrix defined by the cell problem (2.2) and
fy W(y)dy = K. For an excellent exposition on Darcy’s law and closely related topics, we re-
fer the reader to [4] by G. Allaire and A. Mikeli¢.

The purpose of this paper is to study the convergence rates for u. — u~*W(x/e)(f — Vpo) and
P. —pp in L?(2). The following is the main result of the paper. The O(y/2) rate in (1.5) is sharp.

Theorem 1.1. Let Q be a bounded C>® domain in R?, d > 2 for some a > 0. Also assume that
Y; is an open subset of Y = [0,1]¢ with CY* boundary. Let (ue,p:) € HE(Qe;RY) x L2(€) be a
weak solution of (1.1), where f € CHYY2(Q;RY) and st pedx = 0. Then
e — ='W (m/e)(f = Vpo)llz2() + 1P — poll 2o
+ [eVue — p ' VW (z/e)(f = Vo)l 2y < CVE I fllorrz gy,

where C' depends only on d, p, 2, and Y.

(1.5)

The first rigorous proof of Darcy’s law by homogenization was given by L. Tartar in an appendix
of [23], using an energy method. We refer the reader to [4] for references on earlier work on the
formal derivation of Darcy’s law, using two-scale asymptotic expansions. In [2, 3], the strong
convergence of (ue, P.) in L?(§)) was established by the method of two-scale convergence. Also see
related work in [15, 20, 8, 17, 18, 19, 16].

Regarding the rate of convergence for (uc, P:) in L?(Q2), to the best of the author’s knowledge,
the only previous result for a bounded domain with the Dirichlet condition was obtained by E.
Marusié-Paloka and A. Mikeli¢ in [17], where a rate O(c!/®) was established for the case d = 2. See
[8] for an earlier result for a unbounded domain ©Q = (0,L) x R;. We remark that for Laplace’s
equation and systems of linear elasticity, quantitative error estimates have been established in
[14, 11, 22, 10, 9]. As pointed out in [17], the simple cut-off argument, which seems to work well
for standard elliptic equations and systems, does not yield any convergence rate for the Stokes
equations because of the incompressibility condition. In [17], using a stream function from [24], a
boundary layer corrector was constructed in the case d = 2 to control the boundary layer near 0f2
created by the incompressibility condition. We mention that [17] also treated the case of nonlinear
stationary Navier-Stokes equations.

We now describe our approach to the problem of convergence rates and error estimates, which
is based on energy estimates. Let

u(z,x/e) = p 'W(z/e)(f(z) — Vpo(z)). (1.6)

To address the discrepancy of boundary values between u. and u(x,z/e) as well as the incom-
pressibility condition, we introduce two boundary layer correctors (¥y,q;) and (¥,,q,). Let
00, = 0Q UT.. The tangential boundary layer corrector (U, ¢q;) is a weak solution of

—2uAY, + Vg =0 %n Q., )
div(¥y) =0 in €,
with boundary data ¥; = 0 on I';, and
U, = —u(z,x/e) + [u(z,z/e) - njn  on 0. (1.8)



Note that ¥, - n = 0 on 0. By the divergence theorem and the Cauchy inequality, this gives,
IVl 2.y < IVl L2g0) [Pell 22(00)- (1.9)

We use a localized Rellich estimate in a Lipschitz domain to show that
I9lz2(00) < C {1 Vian¥illaqon) + &2V Wl 120 } (1.10)

where Vi, ¥; denotes the tangential gradient of ¥, on the boundary 92. The desired O(1/¢) bound
for e[| VWy[|12(q,) follows from (1.9) and (1.10). See Section 4 for details.

The normal boundary layer corrector (¥, q,) is defined as the solution of the Stokes equations
(1.7) in Q., with the boundary conditions ¥,, = 0 on I';, and

U, = —[u(z,z/e) -n—7]n ondQ, (1.11)
where

_ ]gg u(z, z/e) - n do.

Thanks to (1.3), we may write

, . 9
u(z,z/e)-n=p tn [(Wi(x/e) — K} (fj — 8—p0> on 0N} (1.12)
Zj
(the repeated indices are summed from 1 to d). Furthermore, there exists a 1-periodic tensor (¢} ;)
such that

i i i 0
by = —¢f and  Wily) - Kj = 5 -d4;(y). (1.13)
It follows from (1.12) and (1.13) that

w(z,z/e) -n = e(2p) " <”ia(; - W@i) (¢;j(;p/e)) : (fj - gi‘;) on dQ.  (1.14)
Since nia%; — nga%i is a tangential derivative, the formula (1.14) allows us to use an integration
by parts on 99 (see (5.21)), which generates the needed decay factor e. In order to carry out
this argument, we use an energy estimate to reduce the problem to the L? estimate for the Stokes
equations in €2, whose solutions are then represented by integrals on 0f2, using the Poisson kernels.
See Section 5 for details.

We point out that the C1* condition on Y; in Theorem 1.1 is used to ensure the boundedness
of VW, while the C?® condition on € is used for the C? estimates for the Stokes equations in
Q. The C™'/2 condition on f seems to be more or less optimal for the methods used. An O(/€)
estimate with less regularity on f would be an interesting and challenging problem.

The paper is organized as follows. In Section 2 we introduce some notations and collect several
known results that will be used in later sections. In Section 3 we establish an energy estimate
for the Stokes equations in .. The tangential boundary layer corrector (¥, q;) is constructed in
Section 4, while the normal boundary layer corrector (¥, ¢,) and its estimates are given in Section
5. The proof of Theorem 1.1 is contained in Section 6, where an interior corrector is constructed.
In fact, a more general case is treated in Section 6, where we assume u, = b € H'(9; R%) on 09Q.
See Theorem 6.1. Due to the discrepancy of u. and u(x,z/e) on 92, the O(y/¢) rate in Theorem
1.1 is sharp. See Remark 6.6

Throughout the paper, the repeated indices are summed from 1 to d. We will use C' and ¢
to denote positive constants that depend at most on d, p, €, and Ys. Since the value of p is not
relevant in this study, we will assume g = 1 in the rest of the paper for simplicity.
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2 Preliminaries

Let Y = [0,1]¢ and Y; (solid part) be an open subset of Y with Lipschitz boundary. We assume
that dist(9Y, dYs) > 0 and that (the fluid part) Yy = Y \ Y; is connected. Let

w=J (Y;+2) (2.1)

z€74

be the periodic repetition of Y. It is easy to see that the unbounded domain w is connected,
1-periodic, and that dw is locally Lipschitz.
For 1 < j <d, let (Wj(y),mj(y)) = (W} (y),...,Wiy),m;(y)) € Hy.

J loc(w;Rd> X L2
1-periodic solution of

loc

(w) be the

—AWj + V’iTj =ej in w,
div(W;) =0 in w, (2.2)
W; =0 on Jw,
with fo mjdy = 0, where e; = (0,...,1,...,0) with 1 in the j'* place. We extend W; to R¢ by
zero and define

K} = /Y Wi(y) dy. (2.3)

Using
K;i:/ VW, - VW dy,
Y

it is not hard to show that the d x d constant matrix (K]Z) is symmetric and positive definite.
Thanks to the assumption dist(9Y,dYs) > 0, we have 0Q. = 9Q U T, and dist(09Q, ;) > ce,
where
. =0Nn0Q: C I(ew). (2.4)

For f € L?(Q;RY), let (ue,p:) be a weak solution in HE(Qe; R?) x L2(€.) of the Dirichlet problem,

—e?Au. + Vp, = f in Q.,
div(us) =0 in €., (2.5)
us =0 on 0f2,,

with ng pe dr = 0. We extend u. to € by zero and still denote the extension by u.. Let P- be the
extension of p., defined by

Pe(x) if x € Q,

Ps(x) = (2'6)

][ De if € e(Yy+ 2,) and (Y + z;,) C Q for some z, € Z2
E(Yf+zk)

(see [15]).

Theorem 2.1. Let Q be a bounded Lipschitz domain in R, d > 2. Let pg € HY(Q) be the weak
solution of the Neumann problem,

d i ¢ dpo i .
ox; Kj (fj 8xj> =0 in &,
ap (2.7)
i 0
nin(fj—ax) =0 on 0X),
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with fQ podx = 0, where n = (ny,...,ng) denotes the outward unit normal to Q2. Then, as e — 0,

uE—Wj(x/5)< gio) =0 in L?(Q;RY),
J

P.—py—0 in L*(Q).

(2.8)

As indicated in Introduction, a proof of Theorem 2.1, using the method of two-scale convergence,
may be found in [2, 3]. We do not use the theorem in this paper. However, we will need several
other known results stated below.

Lemma 2.2. Let Q be a bounded Lipschitz domain in R?, d > 2. Assume that T'. # 0. Let
u € HY(Q:) withu =0 onT.. Then

lull 2.y < CellVullp2(q.)- (2.9)

Proof. The case u € Hg(Q.) is more or less well known. See e.g. [5]. The proof for the case
u € HY(Q.) with u. = 0 on T; is the same. We sketch a proof here for the reader’s convenience.
Suppose (Y + z) C Q for some z;, € Z%. Since u = 0 on Ty, it follows by Poincaré’s inequality
that

/ lu? dx < 062/ |Vul|? dz. (2.10)
e(Yp+zk) e(Yp+zk)
Similarly,
/ u|? dz < 052/ |Vu|? d, (2.11)
B(z0,C<)N0% B(z0,C<)N0%
if 2o € 92 and (Y + z) C B(wg, Ce) N for some z € Z?. The estimate (2.9) follows from (2.10)
-(2.11) by a covering argument. O

Lemma 2.3. Let Q be a bounded Lipschitz domain in R?, d > 2. There exists a bounded linear
operator

R.: HY(Q;RY) — HY(Q.,RY), (2.12)
such that
R.(u) = onT: and R.(u)=u on 09,
R.(u) € H, ( RY)ifu e HY(Q;RY), (2.13)
R.(u)=u in Q€ if u=0onT,.,
div(R:(u)) = in Qe if div(u) =0 in Q,
and
e IV R () 20 + 1Rl 20y < CLelVull 2oy + lull 2y - (2.14)
where C' depends only on Q and Ys. Moreover,

Jdiv(Re(w)) | £2(52) < C div(w)] 2(e (2.15)

Proof. The proof is the similar to that of a lemma due to Tartar (in an appendix of [23], also see
Lemma 1.7 in [4]). Let u € H*(Q;R?). For each (Y + z) C Q, where z € Z¢, we define R.(u) on
e(Yy + z) by the Dirichlet problem,

(—e>AR.(u) + Vg = —?Au in e(Yy + 2),
i = div(u _ iv(u) dx ine z
) =)+ ey [ e
Re(u) =0 on d(e(Y; + 2)),
R.(u) = u on d(e(Y + 2)).




If x € Q. and x ¢ e(Yy + 2) for any (Y + z) C Q, we let R.(u)(x) = u(x). It is not hard to show
that R.(u) € H'(Q.;R?) satisfies the conditions in (2.13)-(2.15). O

Lemma 2.4. Let Q be a bounded Lipschitz domain in R, d > 2. Suppose that g € L?(92.) and
fﬂe gdx = 0. Then there exists v € H}(Q:;R?) such that div(v.) = g in Qe and

e[[Vvell L2y + lvell 220y < CllgllL2 .y (2.17)
where C' depends only on € and Y.
Proof. See e.g. [5, pp.146-148]. O

We end this section with some observations on the rescaled solutions (W;(z/¢),emj(z/e)) in Q..
It follows from (2.2) by rescaling that

—?A{Wj(z/e)} + V{emj(z/e)} = e; in ew,
div(Wj(z/e)) =0 in cw, (2.18)
Wi(z/e) =0 on J(ew).

We extend both W) and 7; to R? by zero. Clearly,

{div(Wj(x/fs)) =0  inRY (2.19)

Wi(xz/e) =0 on I'; = QN oK.
Note that in the construction of 2., the holes near 9} are not removed. As a result, the first
equation in (2.18) needs to be modified for €2.. In fact, a computation using integration by parts

shows that
—?A{Wj(z/e)} + Vi{emj(z/e)} = ej+0.; in Qe (2.20)

where 0. ; € H71(Q;R?) is given by

(02,5, ¢>H*1(QE)><H§(QE)

-2 {_ /Qm V) v 6/ma( (Yot ))NWj(x/s)n e WU} '
k E(Ys T2k E(XsT2k

The sum in (2.21) is taken over those k’s for which z;, € Z% and (Y + 2;) N9 # 0, and n denotes
the outward unit normal. Under the assumption that 9Y is C1%, it is known that |[VW;| and ;
are bounded in R?. Tt follows that if g € H} (R?) and v € HE(Q;R?), then

loc

(2.21)

(0.5, 90) 10yt ()| £ C / !gwldx+€/ lg¥| do
= HH(02e)x Ho (422) zk: e(Y+2r) A(e(Yatzy))

(1 is extended to R? by zero). Using the inequality

/ lul? do < Cs/ |Vu]2d:v—i—05_1/ lu|? dz,
O(e(Ys+zg)) e(Y+zi) e(Y+zi)

(2.9) and the Cauchy inequality, one may prove that
(02,5 90 100y x i 0)| < CedellVallam.) + 19l 2o HIVY I 2202 (2.22)

for any v € H}(Qe;RY), where X.. = {z € R? : dist(z, 00) < ce}.



3 Energy estimates

In this section we establish the energy estimates for the Dirichlet problem,

—&?Au. +Vp. = f + ediv(F) in Q,

div(us) = g in ., (3.1)
us =0 on Iy, .
Us = h on 01},

where (g, h) satisfies the compatibility condition,

/ﬂgdx:/(mh-nda. (3.2)

Theorem 3.1. Let Q be a bounded domain in R%, d > 2 with Lipschitz boundary. Let (ue,pe) €
H'(Q;RY) x L2(.) be a weak solution of (3.1) with fﬂs pedx = 0. Then

el Vuel 2o,y + lluell 2.y + IPell 2 0.

(3.3)
< C{HfHH(QE) + 1 Fll 2200y + llgllz2ony + 121 2200) + €HhHH1/2(aQ)} ;

for any 0 < e < 1, where C' depends only on § and Ys.

Proof. We divide the proof into several steps.
Step 1. By Lemma 2.4, there exists v, € H&(QE; R%) such that div(ve) = p. in Q. and

ellVvellrz.) + lvellr2(0.) < Clipellr2@.)- (3.4)
By using v. as a test function we see that

Ipell7z 0. < 2 1Vuell L2 I Vvell L2y + 11l 2@ 10l 2oy + el Fll 2o IV vell 22,
< Cllpellrz {elVuell 2.y + 1Lz + I1F 2@ }

where we have used (3.4) for the last inequality. This gives
IPellrz) < C{ellVuell 2. + I1f 20y + 1F |l 20} - (3.5)

Step 2. We consider the case h = 0 on 9. This allows us to use the test function u. € H}(Q; RY)
to obtain

EVuellfa g,y < el 2 llglczin + 12 lluel 2 + €l Fllz o) | Vil 20,

where we have also used the Cauchy inequality. It follows from the inequality [uellr2(0.) <
Ce|Vue| r2(q.) as well as the Cauchy inequality that

EQHVUSH%Q(QS <C {HPEHLQ(QE)HQHL2(Q5) + HFH%%QE) + Hf”%mm} : (3.6)

This, together with (3.5), yields (3.3) by the Cauchy inequality.
Step 3. In the general case, we let (H,q) € H'(Q;RY) x L?(Q2) be a weak solution of

—AH+Vg=0 and div(H)=7v 1inQ,



with boundary data H = h on 02, where

1
v=— h-ndo.
1€ Joo

Let w. = R-.(H), where R. is the operator given by Lemma 2.3. Note that w. =0 on I';, w. = h
on 01},
el Vel 2 (. + [wellz2(e.) < C{ellVH L2() + [1H | 20 } (3.7)

and
[div(we) 2.y < Clyl- (3.8)

Thus, u. — we € H&(QE;Rd), and
—e2A(u, — we) + Vpe = [+ ediv(F) + e2Aw, in Q..
Hence, by Step 2, we obtain
el|V(ue — we)ll2(a.) + llue — well 20y + el 2(0.)
< C{IIflz20) + I1F 200y + el Vel 2.y + 9l z2n) + 11}
where we have used (3.8). It follows from (3.7) that
ellVuel 2.y + lluell 2.y + IPell 22000
< C{lIf 20y + I1F 200y + gl 20 + V] + el VE | z20) + 1 H | 220 }-
Step 4. To estimate ||VH||12(q) and ||H | 12(q), we let
H=H —~d ' (z — z),
where zg € € is fixed. Note that
~AH+Vq=0 and div(H)=0 inQ.
By the energy estimates,
IVH| z20) < CllH] 17200y < Cllhll 1200,
and by the nontangential-maximal-function estimates for the Stokes equations in [6],
1H || z2() < CllH | 22000 < ClIb]| 12 (00)-

It follows that
ellVH| 2y + | Hll L2y < Clellhll iz o0y + 1Rl L2 00 } -
This, together with (3.9), completes the proof. ]

Remark 3.2. If we replace the right-hand side f 4 ¢ div(F’) of the first equation in (3.1) by some
0. € H71(Q.;R?) that satisfies the condition

(o= ) -1y x a1 (00)] < ENIVY 120,

for any ¢ € H}(Q:;RY) and some N = N(o.) > 0, then the same argument as in the proof of
Theorem 3.1 gives

ellVuell 2.y + llucll 2.y + Pl z2(00) < C{N + [l9llz2(.) + 1Pl 22(a0) + €||hHH1/2(aQ)} (3.10)

for any 0 < € < 1, where C depends only on ©Q and Y;. Note that if 0. = f + ediv(F), then
N = C{lIfllz@.) + IFll 2. }-



4 Correctors for tangential boundary data
Consider the Dirichlet problem,

—&2Au. +Vp. =0 in Q.,
div(us) =0 in Q,

4.1
u: =0 on I, (4.1)
us = h on 0f2,
with boundary data h satisfying the condition
h-n=0 on 0. (4.2)

The goal of this section is to prove the following.

Theorem 4.1. Let Q be a bounded Lipschitz domain in R?, d > 2. Let (u,p.) be a weak solution
in H'(Qe; RY) x L2(Q) of (4.1) with Jo, pedx =0, where h € HY (09 RY) satisfies (4.2). Then

el| Vel 20,y + luellr2.) + IPell 2.y < CVe {lIhll 1200y + €l Vianhll r200) } » (4.3)
where Vianh denotes the tangential gradient of h on 0).

Let
= {(«/,zq) € Rd |2’ <r and ¥(2) < zq < 100d(M + 1)r},

= {(a' )eRY: || < r},
where ¢ : R! — R is a Lipschitz function such that 1(0) = 0 and ||V1)||eo < M.
Lemma 4.2. Let (v,q) be a weak solution in H'(D,;R%) x L*(D,) of the Dirichlet problem,

—Av+Vqg=0 mn Dy,
div(v) =0 in Dy, (4.5)
v=yg on 0D,

where 0 < r < 0o and g € H'(0D,;RY) satisfies the condition faDT g-ndo=0. Then

/ |Vo|? do < C/ |Vianv|? do, (4.6)
dD, 0Dy

where C' depends only on d and M.

Proof. By dilation we may assume r = 1, in which case the Rellich estimate (4.6) was proved in [6,
Theorem 4.15]. O

Lemma 4.3. Let (v,q) be a weak solution of (4.5) with r = 2. Then

|Vol?do < C | |Viang|*do +C |Vo|? de, (4.7)
n I Dy

where C depends only on d and M.



Proof. 1t follows from (4.6) that for 1 < r < 2,

(Vol?do < C/ |Vol?do < C/ |Vianv|? do.
0Dy 9D,

I
Hence,
Vol do < 0/ Viang|? do + c/ |Vo|? do.
I Ip) D>NOD;-
By integrating the inequality above in 7 over the interval (1,2), we obtain (4.7). O

Proof of Theorem 4.1. We start with the observation,

0
52/ |Vue|? dz = 2 te

o0 871

- ug do,
where we have used (4.1) and (4.2). It follows by the Cauchy inequality that
@ [ 1Vl do < 21Vl oo 1Ml 2y (4.9
We will show that
2 2 c 2
|Vue|*do < C |Vianh|* do + — |Vue|* de, (4.9)
on o0 € Yee

where Y. = {z € Q: dist(z,00) < ce} C Q. Assume (4.9) for a moment. Then
Vel 2200y < ClVianhllr2a0) + Ce™ 2| Vel 20,
This, together with (4.8) and the Cauchy inequality, gives

(Ve Fa .y < C2Nh L2 o0y | Vianhll 2 00y + C2I|hl| 1200 | Ve | 220,
< C2||h| 200 | Vianhll L2(00) + Cellhll7200) + (1/2)€2\|VU6H%2(96)7

which yields the estimate for e[| Vuc|[12(q,) in (4.3). The estimate for [[uc| 2.y follows by (2.9),
while the bound for ||pc||z2(q.) follows from (3.5).
It remains to prove (4.9). To this end, we shall prove in a few lines below that

C
/ |Vu|? do < C/ |Vianh|? do + / |Vue|? da (4.10)
B(z0,c0e)NON B(zg,c18)NON € JB(zo,c16)NQ

for any zp € 9, where 0 < ¢y < ¢; are sufficiently small. The desired estimate (4.9) follows from
(4.10) by covering 092 with a finite number of balls { B(xy, coe)} centered on 9.

Finally, we note that if v(z) = u.(ex) and q(z) = e !p.(ex), then —Av+Vq = 0 and div(v) = 0.
As a result, the estimate (4.10) follows from (4.7) by a translation and rotation of the coordinate
system. We point out that since the constant C' in (4.7) depends only on d and M, the constant C'
in (4.10) depends only on d and the Lipschitz character of 2. In particular, C' does not depend on
E. O

As a corollary of Theorem 4.1, we are able to construct a tangential boundary layer corrector.
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Theorem 4.4. Let Q be bounded domain with C*>® boundary for some o > 0. Also assume that
Yy is OY. Let (Vy,q;) be a weak solution in H'(Qz;RY) x L?(€.) of the Dirichlet problem (4.1)
with er gt dx = 0, where the boundary data h is given by

h=0b—Wj(x/e) (fj - ?) + [— b-n—i—niW;(:U/s)(fj apo)]n (4.11)

xj Ox;j

f e CVY2(Q;RY), b e HY(0Q;RY) satisfies Joqb-ndo =0, and py is the solution of the Neumann

problem,
L= o
apg (4.12)
nzKZ <f] a$]> b-n on 01,
with fQ podx = 0. Then
elVill2y + Vel 2. + llatll z2.) (4.13)

< C\/E{Hf — Vpoll2a0) + 16l 2 (00) + €l Vian(f — Vo)l z2(a0) + €HVtaanL2(an)}
for any 0 <e < 1.

Proof. Note that h-n = 0 on 0f). Also, under the assumption that 9Y; is C1®, we have W; =
W;(y) € C*(w). It follows that

17l 2200y < CLILf = Vol z200) + 110l 12(60) } »

and
| Vianhll£2(00)
< 0{5_1Hf — Vpoll200) + Vian(f — Vo)l z2(00) + [ Vianbll 2 00) + HbHL2(aQ)}-
As a result, the estimate (4.13) follows readily from (4.3). O

5 Correctors for normal boundary data

In this section we consider the Dirichlet problem (4.1), where the boundary data h is given by
h = {n;[W :C/s) KZ —7}n, (5.1)
where g = (g1, 92, ..., 94) € H'(02;R?), and v € R is chosen so that Joqh-ndo=0,ie.,

1

29 o nZ[W;(m/s) - K}]gj do. (5.2)

’y:

The goal of this section is to prove the following.

Theorem 5.1. Let Q be a bounded C>* domain in R¢ for some a > 0. Also assume that 9Y; is
Ch . Let (ue,p:) be a weak solution in H'(Q;RY) x L2(Q.) of (4.1) with st pedx = 0, where h
is given by (5.1). Then

ellVuel 2.y + lluelle@.) + 1Pl 2.y < CVe {llgll200) + VEIViangll 2 o0 } (5.3)

forany 0 <e < 1.
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We will prove a series of lemmas before we give the proof of Theorem 5.1. We begin with an
estimate for ||h| ;1/2(p0)-

Lemma 5.2. Let h be given by (5.1). Then
18l 1200y < Ce*{lgllr2(00) + €l Viangl r2(00) } (5.4)
for any 0 <e < 1.

Proof. Note that

1/2 1/2
1Al 2(00) < CllAI o0 1137 00

< C {72 hllz(o0) + 2 Vianhl 2o |
where we have used the Cauchy inequality. It is easy to see that ||hl[z290) < Cllgllr2(90), and

IVsanhll 2200y < C {e M l9llz200) + | Veangllz200) } »

where we have used the fact W; = W;(y) € C!(w; R?). It follows that

IRl 172060y < Ce™ 7 {llglr2on) + €l Viangl r2o0) }
for any 0 < e < 1. O

Lemma 5.3. There exist 1-periodic functions (]55] € H}OC(Rd), where 1 < 4,7, ¢ <d, such that

6755]‘ ? 2 0 i
By; = Wj (y) — Kj and d%‘j = _¢£j7 (5.5)

where the index i is summed from 1 to d.

Proof. The proof is the same as Lemma 3.1 in [13]. Since

/Y (Wf(y) - Kf) dy =0,

one may solve the periodic boundary value problem,

{Aff:Wfo in Y,

ff is 1-periodic.

Let oft  of
(P R
Y Oy Oy
Then ¢fj = —qbéj. Using )
— W} =0,
Y.
we obtain the first equation in (5.5). O

12



Remark 5.4. Using (5.5), for 1 < j < d, we may write
0
¢ ¢ ‘
nelW(2/2) = Kf) = ene - {ofi@/e)}
- e 0 ‘ 0 ¢
= 5{m g g {oera )

where the skew-symmetric property is used for the last step. It follows from an integration by parts
on 02 that

(5.6)

0
/ ng[Wf(x/s) Ké]qua / gi) (x/¢) { - nia} Ydo(zx). (5.7)
o0 T Ty
This, in particular, implies that
7] < Cel|Viangll 1200, (5.8)
where + is given by (5.2), assuming that (d)fj) are bounded.
Let
¥, ={ze€Q: dist(z,00) < p}. (5.9)

Lemma 5.5. Let T be the operator defined by

T(1)e) = | 19 o).

olr—yl?
Then
/ |T(f)|2dx§05_1/ |f)? do (5.10)
Q\Z. o0
for any 0 < e <1, and
/Q[dist(a;,aﬂ)m:r(f)\?dx < Gy /BQ ]2 do (5.11)

for any & > 1.
Proof. 1t is not hard to see that

/ do(y) C
aq lr —y|? — dist(z,0Q)
for any z € ). By the Cauchy inequality,
c f(y)I?
T 2< :
TP < gm0 e do)

The estimate (5.10) follows by integrating the inequality above and using Fubini’s Theorem. A
similar argument gives 5.11. O

Lemma 5.6. Let (H,q) be a weak solution in H'(Q;RY) x L%(Q) of the Dirichlet problem,

—AH+Vqg=0 in 8,
div(H) =0 in 8, (5.12)
H=h on 051,

where h is given by (5.1). Then

e IV Hllga) + 1 Hll 20y < CVE {llgllz2om) + VE I Viangl o) - (5.13)

forany 0 <e < 1.
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Proof. We first point out that by the standard energy estimates for the Stokes equations,
IVH | z2(0) < C IRl g1/2050)-
In view of (5.4), this gives

e[VH|| 2 < CVe {llgllr200) + € I Viangll L2000 } -

Next, we use the nontangential-maximal-function estimate,

I(CH)* | 22(00) < C'l[hl| L2(00) (5.14)

to bound H on X.. The estimate (5.14) was proved in [6] for a Lipschitz domain €2, where the
nontangential maximal function (H)* is defined by

(H)*(z) =sup {|H(y)| : y € Qand |y — z| < Cp dist(y, Q) } (5.15)
for x € 0. It follows that

1Hll 25y < CeY2[(H)* | 1200) < Ce"2 Rl 12(00)

(5.16)
< Ce*?||gll 12 a0)-

It remains to bound H on Q \ .. To this end, we let (G(z,y),1I(x,y)) denote the matrix
of Green functions for the Stokes equation (5.12) in Q. That is, for each fixed z € Q, G(z,y) =
(G (z,y)) € Hp (Q\ {z};R™?) and I(z,y) = (I'(x,y)) € Lf,(Q\ {z};R?) satisfy

—A,GY (z,y) + irf’(x,y) = 6.0; in Q\ {z},

0y;
9 (G () = 0 in 0\ {2}
8y] ) )
G (z,y) =0 for y € 09,

in the sense of distribution. We also require that
I(z,) € LY(Q;RY)  and / II(z,y)dy = 0.
Q

Under the assumption that € is a bounded C?® domain for some o > 0, solutions of the Stokes
equations (5.12) satisfy the C1! estimate for H and C%! estimate for ¢, up to the boundary. It
follows that

VaGla,y)| + |[V,Glz,y)| < Clz —y'7,
V,G(z,y)| < Cdist(z, 0Q) |z — y| 7%, (5.17)
IVaG (2, )| + [V3G(x,y)| + V2V, Gla,y)| < Cla —y| ™,
and that
(z,y)| < Clz —y'™7,
TI(z,y) — (x, 2)| < dist(x, 0){|x — y|~ + |z — 2|7}, (5.18)
VI, y)| < Cla —y|™,
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for any z,y € Q and x # y, x # z. See e.g. [7, 21]. This allows us to represent the solution H(x)
by

H'(z) = - /m {nk(y)aiG”(%y) — (2, ) ~ W, 2)]n;(y) b () dor(y) (5.19)

for any x € Q, where z € 2 and z # x (due to the compatibility condition for h, the choice of z is
arbitrary). Using (5.6), we may write h = h() + h(?)| where

Rk = E(W ’ - >{¢fj(f”/ 5)9J”k}’

2\" oz, "ow,

B2k — _%qﬁf](x/g) (ngai — nz@i@) (gﬂ%) — YNk,

(2

(5.20)

for 1 < k < d. Let HY(z), H®(z) be given by (5.19), with h being replaced by h(), ()
respectively. Observe that by the divergence theorem,

0 d 0 0
B P - : = 21
/aQ (ng o7, n &w)v wdo /6921 (ng o7, n &w)w do (5.21)

for 1 <i,4 <d. It follows that

[HW ()]

<Ce [ {19,600+ V36 0)| + 1V, )| + Ma.y) = Tz 2) o) oy

SC&/ l9(y)| do(y),
0

Q \l’—y\d

where we have used the estimates in (5.17) and (5.18). In view of Lemma 5.5, we obtain
IHD 2.y < C gl L2000 - (5.22)
Finally, note that
|H® (2)] < Ce||Viangll 1200
+Ce /8 AV )|+ M y) = T )] | (90)] + [Veang )] doy).
where we have used (5.8). Using estimates in (5.17) and (5.18), we may deduce from (5.11) that
IH® | 120y < Ce{|[Viangllz200) + 9]l 200 }
which completes the proof. O

We are now ready to give the proof of Theorem 5.1

Proof of Theorem 5.1. Let (ue, p.) be a weak solution in H'(Q.; R?)x L2(.) of (4.1) with Jo, pede =
0, where h is given by (5.1). Let (H,q) be a solution of (5.12) with boundary data h. It follows
from (3.9) that

eIVuelzzan) + el o) + Ipell 20y < C{elVH Il + 1 Hll2(@) }
< C\/E{HQHB(aQ) + \/gHvtangHL2(8Q)}v

where we have used (5.13) for the last inequality. O
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As a corollary of Theorem 5.1, we construct a normal boundary layer corrector.

Theorem 5.7. Let Q be a bounded C** domain for some o > 0. Also assume that 0Ys is CH.
Let (V,,,qn) be a weak solution of (4.1) with er gn dx = 0, where the boundary data h is given by

i Ipo
h= { —nin(x/a)(fj — 8:1:]> —i—b-n—’y}n, (5.23)
po is defined by (4.12), b is the same as in Theorem 4.4, and v € R is such that faQ h-ndo = 0.
Then

eVl 2. + 1Wallz2.) + llanll 2.

(5.24)
< cVE{IIf = Vol 2oy + VElIVian(f = Vpo)l2(on) }
for any 0 < e < 1. Moreover,
7] < Ce||Vian(f — Vo)l L2 (00)- (5.25)
Proof. Note that by the boundary condition in (4.12),
Ipo
—J_ ¢ KA (- ZEOY
h= { ng [W] (x/e) KJ] (f] 8%) ’y}n on 09.
As a result, the estimate (5.24) follows readily from Theorem 5.1 with g = —(f — Vpy). O

6 Convergence rates

In this section we prove the following theorem, which contains Theorem 1.1.

Theorem 6.1. Let Q be a bounded C*% domain in Rd, d > 2 for some o > 0. Also assume that
Yy is CY. Let (ue,p.) € HY(Qe;RY) x L2(Q:;RY) be a weak solution of the Dirichlet problem,
—&?Au. +Vp. = f mn Q.
div(u:) =0 in Qe,
ue =0 on Iy,
Us =b on 0f,

(6.1)

where f € CYY2(Q;RY) and b € H' (0% RY) satisfies the compatibility condition Joq b-ndo = 0.
Assume that fﬂs psdx =0. Then for 0 <e <1,

|ue = Wi(x/e)(f = Vpo)llr2) + [1P= — pollz2 )
eV — VW (/o) — Too)ll 2oy 62)
< Cﬁ{”f”cl,l/z(sz) + 116 2l gra0) + 110l 22(50) + 5Hvtanb”L2(8Q)}v
where py is defined by (4.12), P- is given by (2.6), and C' depends only on Q and Y.

We begin by introducing a corrector for the divergence operator. For 1 < ik < d, let
O W), - XE (W), T2,k (y) € HE (w;RY) x L2 (w) be an 1-periodic solution of

. 9 ‘
_Ang + Tym’ik =0 in w,
j
9 . ‘ ‘
@ka = -Wi+[Y\Y,T'K],  inw, (6.3)
J
ng =0 on Jw.
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Since the compatibility condition,
[ (= wie K=o
Y\Ys

is satisfied, the 1-periodic solutions of (6.3) exist. Moreover, under the assumption that JYj is
C1, the functions ngk and 7y, are bounded. As usual, we extend ng from w to R by zero.
Fix a function ¢ € C§°(B(0,1/8)) with the properties that ¢ > 0 and [, ¢ dz = 1. Let

5.6)(0) = ¥ < pela) = [ wl)enlo—v)dy, (6.4)

where . (z) = e~ %p(z/¢). Define ®.(z) = (Ol (x), ®2(x),...,®%(x)), where

3170)’

®(x) = €ne(w)x?;g(x/€)£;£& (fk ~ Pey (6.5)

po is a solution of the Neumann problem (4.12), and 7. is a cut-off function in C3(Q) such that

0<n<1,7m.=1in Q\ X34, 7. = 0 in Bog., and |Vn.| < Ce~!. The use of the e-smoothing

operator S; in (6.5) allows us to trade excessive powers of ¢ for lowering derivatives of f — Vpy.
The following lemma will be useful to us.

Lemma 6.2. Let S; be defined by (6.4). Then
[ = 1S () 2) < CllYllr2(ss) + CellVY L2540 (6.6)
for0<e< 1.
Proof. Note that
[ = 1S ()2 < (1= ne)Ylln2) + 17=(¥ — Se(¥) 2 (0)-

Clearly, the first term in the right-side hand is bounded by ||¢[[2(s,.)- To bound the second term,
we use

b(z) - S.()(z) = / o)l — ) — ¥(a)) dy

Rd
and

1
bz —y) — P(z) = /O (—y) - Vip(a — ty) dt.

It follows that
[Me(¥ — Se(V)ll 22(0) < /Rd eV =) = V() L2\ 5pa.) Y

<[ ewlldrIVels.
< CellVYl 2@\ 5,

where we have used Minkowski’s inequality. O
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Note that for x € ),

div(®e) = div(xne)(z/e) [UE;USS (fk - gii)} + EXZ;g(ar/e)aij [”56;2438<f’“ . gﬁz)]
]

= [Wite/e) - ]i\YS wi| [ng%se(fk - Sﬁiiﬂ
+ Exiz(x/e)aij {%(;;&(fk - gﬁi)]
Since

~ B

= Wi~ f, Wil (5 5

where we have used the equation in (4.12), it follows that

diV(W(:r/s)(f — Vpo)) = Wf(w/g)ﬁig<fk 3170)
) —

Idiv (@ + W (@/)(f = Vpo) )l 20,0
< CIV(f = Vpo)lz2(zasy + CIVIC = Vp0) = 5:(f = Voo) 2@y (67)
+ Ce|V2S.(f - Vo)l L2\ 540 )-

Let (ue, pe) be a weak solution of (6.1) with fQE pedx = 0. Let

ve:ue—{W(m/e)(f—Vpo)—i—CI)E—i—\Ilt—&—\Iln}, (6.8)

where @, is defined by (6.5), and ¥, ¥,, are given by Theorems 4.4 and 5.7, respectively. Using
(2.20), a direct computation shows that

= 2A{W(w/e)(f = Vpo) | + V{po +em(a/)(f ~ Vpo)}
= f =V (W(a/2)V(f = Vp)) — (VW) (/<) - V(f = Vpo) +em(x/)V(f = Vpo)
+ oe(f — Vpo)

in Q, where o, is given by (2.21). It follows that

— e®Ave + V{p: —po — pt — pn — em(x/e)(f — Vipo) }
= ?Ad. + 2V (W (z/e)V(f — Vpo)) — o=(f — Vpo)
+ (VW) (z/e) - V(f — Vpo) —en(x/e)V(f — Vpo)

in Q.. Also, observe that
div(v.) = —div(<1>€ + W (z/e)(f — vp0)> in Q.

v = 0 on I';, and that
Ve =yn  on 0,
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where 7 is a constant satisfying (5.25). Hence, by Theorem 3.1 as well as Remark 3.2 and the
estimate (2.22) for o,

ellVuellL2any + llvell 2.
< C{elIVee o,y + IV = Vool + 1 = pollzazen) + Idiv(ee) |2,y + 171}
< C{€||V(f = Vpo)llr2@) + IV(f = Vpo)llz2(ss00) + I1f = Vol 22z (6.9)
+ CIIVI(f = Vpo) = S=(f = Vo)l 2\ 0u)
+ el V2S:(f = VDo)l 2@\ 800e) + € Vean(f = Vo)l z200) -
where we have used (6.7) and (5.25). Let
- = pe —Po — ¢t — qn — em(x/2)(f — Vo).
Note that Theorem 3.1 also gives
Io: =, @lliz < LT = Tp0)lizo) + 190 = Tp0)l1xs
+[If = Vpollz2(s..) (6.10)
+ CIIVI(f = Vo) = S=(f = Vo) |l L2\ 500
+ elIV2S-(f = Vp0) | 20\ 800) + € Vran(f = V20) 2200 |-
Lemma 6.3. Let (uc,pe) be a weak solution of (6.1) with [, pedx =0. Then
eV (us = W(a/e)(f = Vo)) llL2(o.) + Ipe = poll2(a.)
< 051/2{51/2Hv(f = Vpo)llzz) + &IV = Vo)l z2esgn) +€ 2N = Vol ras..)
+e V2|VI(f = Vpo) = Se(f = VDo) | 225 (6.11)
+ e 2IV2S(f = Vo)l 2@\ + I = Vool 200
+ 16l 280 + €l Vianbll 22 (00) + Vel Vian (f — Vpo)||L2(aQ)}

forO<e< 1.

Proof. The estimate (6.11) follows readily from (6.9), (6.10), (4.13), and (5.24). O
To bound the right-hand side of (6.11), we let pg = p(()l) + p(()Q), where pél) and p(()Q) are solutions

of the Neumann problems,

.0 opiN ,
Kjaixl(f‘j_ aivj ) =0 mn Q,

(6.12)
i 817((]1)
ni K (fj — oz, ) =0 on 052,
and @
; 82p0 =0 in Q,
axiﬁxj (6 13)
a2 ’
ni K; g =—-b-n on 0f),
al’j

respectively, with fQ p(()l) dxr = fQ p((]2) dx = 0.
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Lemma 6.4. Let pél) be a solution of (6.12) for some f € CHY2(Q,R?). Then

1
1958 ey + 1V208” () < Clifll iy

(6.14)
IV2Se (Pl (@) + 1V2S=(Vpi)) | e (e, < Ce™1/2 Hchl 2@

and
IVF = SV e@ns + 19206 = S (V20 @5y < C 2 floniny.  (615)

Proof. Since (2 is a bounded C*“ domain, the first inequality in (6.14) follows from the classical C?
estimates, up to the boundary, for second-order elliptic equations with constant coefficients. Next,
note that for z € O\ X,

0
ox;

o—1-d _
SV =t [ F 2 (v/2)VF (@ = ) dy
et [ L) [V — ) - V@) dy

Rd OYi

It follows that
IV2S-(f)ll 2o (@ys) < CEld/ IVeo(y/e)lly|*/? dy 1 llcrr2
B(0,c/4)
< 05_1/2Hf”cl,1/2(§)
By the interior C>1/2 estimates,
938 (@ — ) = V2 )] < Cll 2 { Il oy + 16 ez |
for any z € O\ 3. and |y| < te. As in the case of V2S.(f), this implies that
V2S-(Vpi) (@)] < Ce™ 2|l canramy

for any x € Q\ X.. Finally, to see (6.15), we write

SUVH@) = V@) = [ pula = IV —y) = V@) dy

and proceed as in the previous estimates. ]

Lemma 6.5. Let péQ) be a solution of (6.13). Then

IV 220 +HVp82)IIL2 o) + € Y21 Vpoll 25y < Cllb - nll 200 (6.16)
192581 20y + 19208 | 200y + €~ 1/2uv2p<2>||mg) < O|lb - 0l g1o0, (6.17)
e 12|V — S (V) p2(@nsay < ClIb - 1l i o0, (6.18)

VS (VB 2 (@ymany < Cllb- 111 00, (6.19)

for0<e<1.
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Proof. The estimates (6.16)-(6.19) follow from the nontangential-maximal-function and square-
function estimates for the Neumann problems,

1/2

1782) 200 + (AmemmW£%mMQ <Clb-nlepa.  (6.20)
) 1/2

RN (me%mmw%meﬁ < Cllb- 1l 90, (6.21)

where (u)* denotes the nontangential maximal function of u, defined by (5.15). We remark that the
estimate (6.20) hols if ) is a bounded Lipschitz domain [12], while (6.21) holds for C% domains.
We only give the proof of (6.18); the others follow readily from (6.20)-(6.21). Choose 7. € C}()
such that 7. = 1 in Q\ Ba., 7. = 0 in X, and |V7.| < Ce~!. Then the left-hand side of (6.18) is

bounded by
29— SV ) 2o, (6.22)

Using the same argument as in the proof of (6.6), we may show that (6.22) is bounded by
C€_1/2\|V2p82)”L2(235) + 051/2||V3p(()2)“L2(9\25) < Clb-nllga0),
where we have used (6.21) for the last step. O

We are now in a position to give the proof of Theorem 6.1.

Proof of Theorem 6.1. Using Lemmas 6.4 and 6.5, it is not hard to see that the right-hand side of
(6.11) is bounded by

CVE{ll fllcrarziay + 116l aa) + bl L2@00) + €l Vianbll 200) }-
As a result, we have proved that

e[|V (ue = W(z/e)(f — Vo)) 200y + Ipe — poll 2

(6.23)
< CVE{IIflleraraqay + bl o) + [l 200 + €l Veanbll 2oy |

In view of Lemma 2.2, it remains to show that

12 = poll 2@y < OVE {Ifllonaszqa) + 1o nllinony + 1Bl z2omy + & Veanblizzom | (624

where P. is an extension of p. to €, defined by (2.6). To this end, we define

Po if x € Q,

o ][ Po if 2 € e(Ys + 2;,) and (Y + z;,) C Q for some 2, € Z%, (6.25)
(YerZk)

i.e., we extend po|o. to £ in the same manner as we do p. from Q. to Q. Then,
[P = poll2) < 1P — péllz2) + 16 — pollz2()
= [|pe — pollL2(0.) + 1P — Pollz2(\0.) + [1P6 — PollL2(q.)-
Note that
1P — poll 20, < Clipe — poll 2@
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Using Poincaré’s inequality on each cell e(Yy + z), we may show that

15 — poll 2.y < CellVpollrz) < Ce{ll fllrz@) + 16l 200 } -

As a result, we have proved that

1P = poll 20y < Cllpe — poll 2. + Ce {IIf 12 + 10l 2200) } -
This completes the proof. O

Remark 6.6. Let u(z,z/e) be given by (1.6). Due to the discrepancy of u. and u(x,z/c) on 0%,
the O(y/¢) rate in Theorem 1.1 is sharp. Indeed, by applying the following trace inequality to the
function v = v, = u. — u(x, x/e),

lollzaon) < € {e™ 20l 2.y + ol ot VoI, ) } (6.26)

we obtain

Vellvellzzaa) < C{llvell 2.y + el Vel 2. }
< Ce||Vvel 12,y

where we have used the Cauchy inequality for the first inequality and (2.9) for the second. It follows
that the error estimate
e[Vl 2.y = o0(Ve) ase—0,

cannot hold in general. In fact, if € is smooth and uniformly convex, then

. 2 T . 9
lim o Joel*do = lim (W (x/2)(f ~ Vpo)l* do

(6.27)
—f 1K(f = Vpo)do.
o0

See the proof of Lemma 3.2 in [1]. Also, note that by Theorem 1.1,

IVvell 2.y < Ce 21 fllorsay-

This, together with (6.26), yields

- - 1/2 1/2
lvellzzony < € {2 eellzagan) + (7 lleellan) AN gy -
As a result, it is not possible to have
[vell 2.y = o(VE)  ase =0,

unless f = Vpg in €, in which case, v. = 0 in (..

Finally, to see (6.26), choose a function 8 € C*(RY R?) such that B-n > ¢y > 0 on 99,
supp(3) C {z € R4 : dist(z,09Q) < ce}, and |VB| < Ce~!. It follows by the divergence theorem
that

co/ |v|2da§/ |v|26'nda§/ |v\2div(ﬂ)da:—|—2/\UHVUH,BM:E
o0N o0N Q Q

< e /E o2 dz + Clloll 25, | Voll 2,

where we have used the Cauchy inequality for the last step.
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