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Abstract

We develop a new real-variable method for weighted Lp estimates. The method is applied
to the study of weighted W 1,2 estimates in Lipschitz domains for weak solutions of second-
order elliptic systems in divergence form with bounded measurable coefficients. It produces a
necessary and sufficient condition, which depends on the weight function, for the weighted W 1,2

estimate to hold in a fixed Lipschitz domain with a given weight. Using this condition, for
elliptic systems in Lipschitz domains with rapidly oscillating, periodic and VMO coefficients,
we reduce the problem of weighted estimates to the case of constant coefficients.
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1 Introduction

In this paper we are interested in weighted L2 estimates for the Dirichlet problem,

{
−div

(
A(x/ε)∇uε

)
= div(f) in Ω,

uε = 0 on ∂Ω,
(1.1)

where ε > 0 and Ω is a bounded Lipschitz domain in R
d. Throughout we assume that the matrix

(tensor) A(y) =
(
aαβij (y)

)
, with 1 ≤ i, j ≤ d and 1 ≤ α, β ≤ m, is real-valued and satisfies the

ellipticity condition,
µ|ξ|2 ≤ aαβij (y)ξαi ξ

β
j and ‖A‖∞ ≤ µ−1, (1.2)

(the summation convention is used), for a.e. y ∈ R
d and all ξ = (ξαi ) ∈ R

m×d, where µ > 0. We
also assume that A is 1-periodic; i.e.,

A(y + z) = A(y) for y ∈ R
d and z ∈ Z

d. (1.3)

By the energy estimate, ‖∇uε‖L2(Ω) ≤ µ−1‖f‖L2(Ω). It was shown in [21, 22] that if A is continuous

(or in VMO(Rd)) and Ω is a bounded C1 domain, then

‖∇uε‖Lp(Ω) ≤ Cp ‖f‖Lp(Ω) (1.4)

for 1 < p < ∞, where Cp depends on d, m, p, A and Ω (see [5, 6] for the case ε = 1). In fact,
given an exponent p > 2, an elliptic matrix A and a bounded Lipschitz domain Ω, a necessary
and sufficient condition for the W 1,p estimate ‖∇u‖Lp(Ω) ≤ Cp‖f‖Lp(Ω) for the Dirichlet problem
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(1.6) was found by the present author in [18]. This condition is given in terms of a (weak) reverse
Hölder inequality for local solutions of div(A∇u) = 0. Consequently, for the scalar case m = 1, it
was proved in [21] that if A ∈ VMO(Rd) and is symmetric and Ω is Lipschitz, then (1.4) holds for
(3/2)− γ < p < 3 + γ if d ≥ 3, and for (4/3)− γ < p < 4 + γ if d = 2, where γ > 0 depends on Ω.
The ranges of p’s are known to be sharp for Lipschitz domains, even in the case of the Laplacian
[14]. For m ≥ 2, partial results may be found in [13]. Also see related work in [12] for the Neumann
problem.

In this paper we investigate the weighted L2 estimate,

ˆ

Ω
|∇uε|

2 ω dx ≤ Cω

ˆ

Ω
|f |2 ω dx (1.5)

for solutions of (1.1). Using results in [18, 22], it is not hard to see that if A is in VMO(Rd) and
Ω is a bounded C1 domain, then the inequality (1.5) holds if either ω or ω−1 is an A1 weight.
Furthermore, the methods developed in [8] may be used to show that (1.5) holds for any A2 weight
ω if A is in VMO and Ω is of C1. We point out that the weighted L2 estimate is closely related to
the W 1,p estimate (1.4). In particular, for a given A and a fixed Ω, if (1.5) holds for all ω in the A1

class, then (1.4) holds for all 2 < p <∞, by a general extrapolation result of Rubio de Francia (see
e.g. [9]). In view of this close connection, we shall not be interested in conditions for which the
weighted estimate (1.5) holds for all weights in the A1 class. In fact, such conditions may be found
in [18, 4]. Rather, in this paper, we shall address the question: Given an A1 weight ω, an elliptic
matrix A, and a bounded Lipschitz domain Ω, find a necessary and sufficient condition, which may
depend on ω, Ω and A, for the weighted norm inequality (1.5).

The following two theorems are the main results of the paper.

Theorem 1.1. Let ω be an A1 weight in R
d and Ω a bounded Lipschitz domain. Let A be a matrix

satisfying the ellipticity condition (1.2). The following are equivalent.

1. For any f ∈ L∞(Ω), the weak solution in H1
0 (Ω) of the Dirichlet problem,

− div
(
A∇u) = div(f) in Ω and u = 0 on ∂Ω, (1.6)

satisfies the estimate,
ˆ

Ω
|∇u|2ω dx ≤ C1

ˆ

Ω
|f |2ω dx. (1.7)

2. Let B = B(x0, r), where either 4B ⊂ Ω, or x0 ∈ ∂Ω and 0 < r < c0 diam(Ω). Let u ∈
H1(4B ∩ Ω) be a weak solution of div(A∇u) = 0 in 4B ∩ Ω with u = 0 on 4B ∩ ∂Ω (in the
case x0 ∈ ∂Ω). Then

 

B∩Ω
|∇u|2 ω dx ≤ C2

 

2B∩Ω
|∇u|2 dx

 

B
ω. (1.8)

Theorem 1.2. Let ω be an A1 weight and Ω a bounded Lipschitz domain. Let A be a matrix
satisfying (1.2), (1.3) and A ∈ VMO(Rd). Suppose that the inequality (1.7) holds for weak solutions
in H1

0 (Ω) of −div(A∇u) = div(f) in Ω, where f ∈ L∞(Ω) and the constant matrix A is either the
homogenized matrix of A or obtained from A by averaging over a ball. Then the weighted inequality
(1.5) holds, uniformly in ε > 0, for any weak solution of (1.1).
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For any fixed A1 weight ω, any fixed Lipschitz domain Ω, and any given elliptic matrix A,
Theorem 1.1 gives a necessary and sufficient condition for the weighted norm inequality (1.7). To
the author’s best knowledge, this condition (1.8), which depends on the weight ω, is new even
for the Laplacian. Theorem 1.2 reduces the weighted estimate for the elliptic operator Lε =
−div(A(x/ε)∇) with rapidly oscillating coefficients to the same estimate for elliptic operators with
constant coefficients. By combining these two theorems we see that, to establish the weighted L2

estimate (1.5) for the operator Lε, it suffices to verify the condition (1.8) for local solutions of
div(A∇u) = 0, where A is either the homogenized matrix of A or obtained from A by averaging
over a ball.

One of our motivations for studying (1.5) lies in a special case,

ω = ωσ(x) = [dist(x, ∂Ω)]σ. (1.9)

Note that ωσ ∈ A1(R
d) if −1 < σ ≤ 0 and Ω is Lipschitz. The weighted inequality (1.5) for

this special case arises in the study of the quantitative homogenization theory and provides useful
estimates for boundary layers [16] as well as control of solutions at infinite for unbounded domains
[24]. As a corollary of Theorem 1.2, we obtain the following.

Theorem 1.3. Let Ω be a bounded Lipschitz domain in R
d. Suppose that A satisfies conditions

(1.2)-(1.3) and that A ∈ VMO(Rd). In the case m ≥ 2 we also assume that A∗ = A, i.e., aαβij = aβαji .
Let uε be a weak solution of (1.1). Then for any −1 < σ < 1,

ˆ

Ω
|∇uε|

2
[
dist(x, ∂Ω)

]σ
dx ≤ Cσ

ˆ

Ω
|f |2

[
dist(x, ∂Ω)

]σ
dx, (1.10)

where Cσ depends only on d, m, A, σ and the Lipschitz character of Ω.

Remark 1.4. Consider the scalar case m = 1. It follows from [18, 21] that if A is in VMO(Rd)
and Ω is Lipschitz, then (1.5) holds for ω = (ω̃)σ, where ω̃ ∈ A1(R

d) and |σ| < 1
3 + γ for d ≥ 3, and

|σ| < 1
2 + γ for d = 2, where γ > 0 depends on Ω. The ranges of σ are sharp for Lipschitz domains.

This result would only yield (1.10) for |σ| < 1
3 + γ if d ≥ 3, and for |σ| < 1

2 + γ if d = 2. Thus, even
though the weighted inequality (1.5) may not be true for all weights in the A1 class, the inequality
(1.10) still holds in Lipschitz domains for the full range of possible σ’s. We also note that without
any smoothness and periodicity conditions on A, (1.10) holds for |σ| < κ, where κ > 0 depends on
d, m, µ and the Lipschitz character of Ω. See Theorem 7.2.

Our approach to Theorems 1.1 and 1.2 is based on a new real-variable method for establishing
weighted L2 estimates. In [18, 19, 20] we developed a real-variable method for establishing Lp

estimates (also see related work in [3]). The method, which is originated in [7] (also see [25, 6]),
is particularly effective in the non-smooth settings, where the Lp estimates are expected only for
p in some limited ranges. The basic idea is that to prove the Lp estimate for a function F , where
p > 2, for each small ball B, one decomposes F into two parts, FB and RB, both depending on
B. For FB, one establishes an L2 estimate with a small parameter η for the term involving F . For
RB one proves an Lq estimate for some q > p . We point out that the proof is based on a good-λ
inequality. As such, there is a direct extension of this method to the weighted setting, which has
been exploited in [18, 4]. The main novelty of this paper is that instead of requiring an Lq estimate
with q > p for the function RB, we require RB to satisfy a weighted estimate in Lp1 for some
p1 > 2. See Theorems 2.1 and 4.1. As a result, instead of conditions for weighted estimates for a
whole class of weights, our conditions for weighted estimates are for each individual weight ω. In
particular, we remark that the result in Theorem 1.3 does not seem to be accessible by the methods
used in [18, 4]. We expect this insight to be useful in other related problems.
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The paper is organized as follows. In Section 2 we present a general real-variable method,
described above, for weighted Lp estimates, where 0 < p < ∞. See Theorem 2.1. In Section 3 we
apply the real-variable method in Section 2 to sublinear operators in R

d, including linear operators
of Calderón-Zygmund type. In Section 4 we use a boundary version of Theorem 2.1 for a Lipschitz
domain to prove Theorem 1.1. Sections 5 and 6 contain the proof of Theorem 1.2. We point out that
the small parameter η in Theorems 2.1 and 4.1 is particularly useful for perturbation arguments.
For local estimates (ε = 1), as in the study of W 1,p estimates, a perturbation argument reduces the
case of VMO coefficients to the case of constant coefficients. See Section 5. For large-scale estimates
in homogenization, a similar perturbation with the use of the parameter η as well as convergence
rates allows us to reduce the problem to the same estimates for the homogenized operator. See
Section 6. Finally, Theorem 1.3 is proved in Section 7. We remark that the periodic structure of
A is not essential for Theorems 1.2 and 1.3, as long as |∇χ| ∈ Lq

loc uniformly for any q > 2, where
χ denotes the corrector.

We will use C and c to denote constants that may depend on d,m, µ, and the Lipschitz character
of Ω. If a constant also depends on other parameters, it will be stated explicitly. We use

ffl

E u to
denote the average of u, with respect to the Lebesgue measure, over the set E; i.e.

 

E
u =

1

|E|

ˆ

E
u.

Acknowledgement. The author is grateful to the anonymous referee for pointing out a mistake
in the initial submission of the paper and for several helpful comments and suggestions.

2 A real-variable method for weighted estimates

We begin with a brief review of Ap weights and refer the reader to [9] for a detailed presentation.
For 1 < p <∞, a nonnegative function ω ∈ L1

loc(R
d) is called an Ap weight, denoted by ω ∈ Ap(R

d),
if there exists a constant Cω ≥ 1 such that

 

B
ω ·

(
 

B
ω
− 1

p−1

)p−1

≤ Cω for any ball B ⊂ R
d. (2.1)

In the case p = 1, the condition (2.1) is replaced by
 

B
ω ≤ Cω inf

B
ω for any ball B ⊂ R

d. (2.2)

We will refer to the smallest Cω for which (2.1) (or (2.2) for p = 1) holds as the Ap constant of ω.
It follows by Hölder’s inequality that Ap(R

d) ⊂ Aq(R
d) if p < q. It is also known that if ω ∈ Aq(R

d)
for some q > 1, then ω ∈ Ap(R

d) for some p < q (p depends on ω). A function ω is called an A∞

weight if it is an Ap weight for some p ≥ 1. An A∞ weight satisfies the doubling condition,

ω(2B) ≤ C ω(B) for any ball B ⊂ R
d, (2.3)

where we have used the notation ω(E) =
´

E ω. Moreover, if ω is an A∞ weight, then there exist
σ ∈ (0, 1) and C > 0 such that

ω(E)

ω(B)
≤ C

(
|E|

|B|

)σ

, (2.4)

where E ⊂ B is measurable and B is a ball, and that

(
 

B
ω1+σ

) 1
1+σ

≤ C

 

B
ω. (2.5)
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Using the doubling condition, it is not hard to see that balls B in (2.1), (2.2), (2.3), (2.4) and (2.5)
may be replaced by cubes Q.

The goal of this section is to prove the following theorem.

Theorem 2.1. Let 0 < p0 < p < p1 < ∞ and ω be an Ap/p0 weight in R
d. Let F ∈ Lp(4B0) and

f ∈ Lp(4B0), where B0 is a ball in R
d. Suppose that for each ball B ⊂ 2B0 with |B| ≤ c1|B0|, there

exist two functions FB and RB, defined on 2B, such that |F | ≤ |FB|+ |RB| on 2B, and that

(
 

2B
|FB|

p0

)1/p0

≤ N1 sup
4B0⊃B′⊃B

(
 

B′

|f |p0
)1/p0

+ η

(
 

100B
|F |p0

)1/p0

, (2.6)

(
 

2B
|RB|

p1ω dx

)1/p1

≤ N2

{(
 

100B
|F |p0

)1/p0

+ sup
4B0⊃B′⊃B

(
 

B′

|f |p0
)1/p0

}(
 

B
ω

)1/p1

, (2.7)

where N1, N2 > 1, 0 < c1 < 1, and η ≥ 0. Then there exists η0 > 0, depending only on d, p0, p1,
p, c1, N2, and the Ap/p0 constant of ω, with the property that if 0 ≤ η ≤ η0, then

(
 

B0

|F |pω dx

)1/p

≤ C

(
 

4B0

|f |pω

)1/p

+ C

(
 

4B0

|F |p0
)1/p0 ( 

B0

ω

)1/p

, (2.8)

where C depends only on d, p0, p1, p, c1, N1, N2, and the Ap/p0 constant of ω.

For the most part, the argument for Theorem 2.1 is parallel to that for Theorem 3.1 in [18]. It
starts with a Calderón-Zgymund decomposition given in the next lemma.

Lemma 2.2. Let Q be a cube in R
d. Suppose that E ⊂ Q is open and |E| < 2−d|Q|. Then there

exists a sequence {Qk} of disjoint dyadic subcubes of Q such that,

1. Qk ⊂ E;

2. the dyadic parent of Qk in Q is not contained in E;

3. |E \ ∪kQk| = 0.

Proof. See e.g. [23, p.75].

For f ∈ L1
loc(R

d) and a ball B ⊂ R
d, define

MB(f)(x) = sup

{
 

B′

|f | : x ∈ B′ and B′ ⊂ B

}
(2.9)

for x ∈ B.

Lemma 2.3. Let ω be an A1 weight. Then

ω
{
x ∈ B : MB(f)(x) > λ

}
≤
C

λ

ˆ

B
|f |ω dx (2.10)

for any λ > 0, where C depends only on d and Cω in (2.2). If 1 < p <∞ and ω ∈ Ap(R
d), then

ˆ

B
|MB(f)|

pω dx ≤ C

ˆ

B
|f |pω dx, (2.11)

where C depends at most on d, p and Cω in (2.1).
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Proof. Observe that MB(f) ≤ M(fχB) on B, where M is the Hardy-Littlewood maximal operator
in R

d. As a result, (2.10) and (2.11) follow from the standard weighted norm inequalities for the
operator M with Ap weights. See e.g. [9].

Proof of Theorem 2.1. Let Q0 be a cube such that 2Q0 ⊂ 2B0 and |Q0| ≈ |B0|. We shall show
that

(
 

Q0

|F |pω dx

)1/p

≤ C

(
 

4B0

|f |pω

)1/p

+ C

(
 

4B0

|F |p0
)1/p0 ( 

B0

ω

)1/p

. (2.12)

The inequality (2.8) follows from (2.12) by a simple covering argument.
For t > 0, let

E(t) =
{
x ∈ Q0 : M4B0(|F |

p0)(x) > t
}
. (2.13)

We claim that if 0 ≤ η ≤ η0 and η0 > 0 is sufficiently small, then it is possible to choose three
constants θ, γ ∈ (0, 1) and C0 > 0, such that

ω(E(θ−p0/pt)) ≤ (θ/2)ω(E(t)) + ω
{
x ∈ Q0 : M4B0(|f |

p0)(x) > γt
}

(2.14)

for all t ≥ t0, where

t0 = C0

 

4B0

|F |p0 . (2.15)

Moreover, the constants η0, θ and C0 depend at most on d, p0, p1, p, c1, N2, and the Ap/p0 constant
of ω. The constant γ also depends on N1.

Assume (2.14) for a moment. Then

ˆ T

t0

t
p
p0

−1
ω(E(θ−p0/pt)) dt

≤
θ

2

ˆ T

t0

t
p
p0

−1
ω(E(t)) dt+

ˆ T

t0

t
p
p0

−1
ω
{
x ∈ Q0 : M4B0(|f |

p0) > γt
}
dt

for any T > t0. By a change of variables we obtain

θ

ˆ θ
−

p
p0 T

θ
−

p
p0 t0

t
p
p0

−1
ω(E(t)) dt ≤

θ

2

ˆ T

t0

t
p
p0

−1
ω(E(t)) dt+ C

ˆ

Q0

(
M4B0(|f |

p0)
)p/p0ω dx.

It follows that

θ

2

ˆ θ
−

p
p0 T

θ
−

p
p0 t0

t
p
p0

−1
ω(E(t)) dt ≤

θ

2

ˆ θ
−

p
p0 t0

0
t

p
p0

−1
ω(E(t)) dt+ C

ˆ

Q0

(
M4B0(|f |

p0)
)p/p0ω dx.

This leads to

ˆ θ
−

p
p0 T

0
t

p
p0

−1
ω(E(t)) dt =

ˆ θ
−

p
p0 t0

0
t

p
p0

−1
ω(E(t)) dt+

ˆ θ
−

p
p0 T

θ
−

p
p0 t0

t
p
p0

−1
ω(E(t)) dt

≤ Ct
p
p0
0 ω(Q0) + C

ˆ

Q0

(
M4B0(|f |

p0)
)p/p0ω dx.
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By letting T → ∞ we see that
ˆ

Q0

(
M4B0(|F |

p0)
)p/p0ω dx ≤ Ct

p
p0
0 ω(Q0) + C

ˆ

Q0

(M4B0(|f |
p0))p/p0 ω dx

≤ C

(
 

4B0

|F |p0
)p/p0

ω(B0) + C

ˆ

4B0

|f |p ω dx,

(2.16)

where we have used (2.15), the assumption ω ∈ Ap/p0(R
d) and (2.11) with p = p

p0
> 1 for the last

inequality. The inequality (2.12) now follows readily from (2.16).
To see (2.14), we first note that

|E(t)| ≤
Cd

t

ˆ

4B0

|F |p0 dx < θ|Q0|

if t > t0, where t0 is given by (2.15) with

C0 = 2θ−1Cd|4B0|/|Q0|

and θ ∈ (0, 2−d) is a small constant to be determined. Fix t > t0. Since E(t) is open in Q0, by
Lemma 2.2, there exists a sequence {Qk} of non-overlapping maximal dyadic subcubes of Q0 such
that

∪kQk ⊂ E(t) and |E(t) \ ∪kQk| = 0.

By choosing θ small, we may assume that |Qk| ≤ c1|Q0|. We shall show that if 0 ≤ η ≤ η0 and
η0 > 0 is sufficiently small, then one may choose θ, γ ∈ (0, 2−d) such that

ω(E(θ
−

p0
p t) ∩Qk) ≤ (θ/2)ω(Qk), (2.17)

whenever
Qk ∩

{
x ∈ Q0 : M4B0(|f |

p0)(x) ≤ γt
}
6= ∅. (2.18)

It is not hard to see that this yields (2.14).
Finally, to prove (2.17), we use the observation that for any x ∈ Qk,

M4B0(|F |
p0)(x) ≤ max (M2Bk

(|F |p0)(x), Cdt) , (2.19)

where Bk is the smallest ball containing Qk and Cd depends only on d. To see (2.19), one uses the

property (ii) in Lemma 2.2. It follows that if θ
−

p0
p > Cd,

ω(E(θ
−

p0
p t) ∩Qk) ≤ ω

{
x ∈ Qk : M2Bk

(|F |p0)(x) > θ
−

p0
p t
}

≤ ω

{
x ∈ Qk : M2Bk

(|FBk
|p0)(x) >

θ
−

p0
p t

2p0+1

}

+ ω

{
x ∈ Qk : M2Bk

(|RBk
|p0)(x) >

θ
−

p0
p t

2p0+1

}

= I1 + I2.

To bound I1, we let

Ek =

{
x ∈ Qk : M2Bk

(|FBk
|p0)(x) >

θ
−

p0
p t

2p0+1

}
.
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By using (2.10) with ω = 1, the assumption (2.6) and (2.18), we see that

|Ek| ≤
Cθ

p0
p |Qk|

t

 

2Bk

|FBk
|p0 dx

≤ Cθ
p0
p (Np0

1 γ + ηp0)|Qk|,

where C depends only on d and p0. It follows from (2.4) that

ω(Ek)

ω(Qk)
≤ C

(
|Ek|

|Qk|

)σ

≤ Cθ
σp0
p Np0σ

1 γσ + Cηp0σθ
σp0
p ,

where σ ∈ (0, 1) and C > 0 depend only on d, p0 and the Ap/p0 constant of ω. Hence,

I1 ≤
{
Cθ

σp0
p Np0σ

1 γσ + Cηp0σθ
σp0
p

}
ω(Qk). (2.20)

To estimate I2, we use (2.11) with p = p1
p0
> 1 and the assumption (2.7) to obtain

I2 ≤ C

(
θ

p0
p

t

) p1
p0
 

2Bk

|RBk
|p1 ω dx |Qk|

≤ C

(
θ

p0
p

t

) p1
p0

Np1
2

(
tp1/p0 + γp1/p0tp1/p0

)
ω(Qk)

≤ Cθ
p1
p Np1

2 ω(Qk),

where C depends only on d, p0, p1 and the Ap/p0 constant of ω. This, together with (2.20), gives

ω(E(θ
−

p0
p t) ∩Qk) ≤

(
Cθ

σp0
p Np0σ

1 γσ + Cηp0σθ
p0σ
p + Cθ

p1
p Np1

2

)
ω(Qk), (2.21)

where C > 0 and σ > 0 depend at most on d, p0, p1, p and the Ap/p0 constant Cω in (2.1). To

conclude the proof, we choose θ ∈ (0, 2−d) so small that

Cθ
p1
p Np1

2 < (1/6)θ.

This is possible since p1 > p. With θ chosen, we choose γ > 0 so small that

Cθ
σp0
p Np0σ

1 γσ ≤ (1/6)θ.

Finally, we choose η0 > 0 so that

Cηp0σ0 θ
p0σ
p ≤ (1/6)θ.

It follows that if 0 ≤ η ≤ η0, then (2.17) holds. We note that the small positive constants θ and
η0 depend at most on d, c1, p0, p1, p, N2 and the Ap/p0 constant for the weight ω, and that γ also
depends on N1. This completes the proof.

Remark 2.4. Let ε > 0. Define

Mε(f)(x) = sup

{
 

B′

|f | : x ∈ B′ = B(y, r) and r ≥ ε,

}
, (2.22)
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and for x ∈ B,

Mε
B(f)(x) = sup

{
 

B′

|f | : x ∈ B′ = B(y, r) ⊂ B and r ≥ ε

}
. (2.23)

Suppose that diam(B0) ≥ 100ε. If the conditions (2.6) and (2.7) are only satisfied by balls B with
radius r ≥ ε, then

(
 

B0

{
Mε

3B0
(|F |p0)

} p
p0 ω

)1/p

≤ C

(
 

4B0

|f |pω

)1/p

+ C

(
 

4B0

|F |p0
)1/p0 ( 

B0

ω

)1/p

,

(2.24)

where C is independent of ε. This inequality will be used for large-scale estimates in homogenization
in Section 6. We mention that in the case of Lp estimates, a similar observation was made in [1].

To see (2.24), we consider the function

Fε(x) =

(
 

B(x,ε)
|F |p0

)1/p0

. (2.25)

Let B = B(z, r) be a ball such that B ⊂ 2B0 and |B| ≤ c1|B0|. If r ≥ 2ε, we let

(Fε)B(x) =

(
 

B(x,ε)
|FB|

p0

)1/p0

and (Rε)B(x) =

(
 

B(x,ε)
|RB|

p0

)1/p0

.

Then Fε ≤ (Fε)B + (Rε)B on 1.5B,

(
 

1.5B
|(Fε)B|

p0

)1/p

≤ C

(
 

2B
|FB|

p0

)1/p0

≤ CN1 sup
4B0⊃B′⊃B

(
 

B′

|f |p0
)1/p0

+ Cη

(
 

200B
|Fε|

p0

)1/p0

,

(2.26)

and by (2.11),

(
 

1.5B
|(Rε)B|

p1ω dx

)1/p1

≤ C

(
 

2B
|RB|

p1ω dx

)1/p1

≤ CN2

{(
 

200B
|Fε|

p0

)1/p0

+ sup
4B0⊃B′⊃B

(
 

B′

|f |p0
)p0
}(

 

B
ω

)1/p1

.

(2.27)

In the case r < 2ε, we simply let (Fε)B = 0 and (Rε)B = Fε. It is not hard to see that

(
 

1.5B
|(Rε)B|

p1ω dx

)1/p1

≤ C

(
 

B(z,ε+1.5r)
|F |p0

)1/p0 ( 

B
ω

)1/p1

≤ C

(
 

200B
|Fε|

p0

)1/p0 ( 

B
ω

)1/p1

.
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As a result, it follows from the proof of Theorem 2.1 that

(
 

B0

(M3B0(|Fε|
p0))p/p0 ω dx

)1/p

≤ C

(
 

3B0

|f |pω dx

)1/p

+ C

(
 

3B0

|Fε|
p0

)1/p0 ( 

B0

ω

)1/p

.

This yields (2.24), as (
 

3B0

|Fε|
p0

)1/p0

≤ C

(
 

4B0

|F |p0
)1/p0

and Mε
3B0

(|F |p0) ≤ CM3B0(|Fε|
p0).

3 Weighted L
p estimates in R

d

In this section we use Theorem 2.1 to establish weighted norm inequalities for operators in R
d. An

operator T is called sublinear if there exists a constant K ≥ 1 such that

|T (f + g)| ≤ K
{
|T (f)|+ |T (g)|

}
. (3.1)

We use L∞
c (Rd) to denote the space of bounded measurable functions with compact support in R

d.
The following theorem may be regarded as the weighted version of Theorem 3.1 in [18]. We

emphasize that the condition (3.2) and hence the conclusion (3.3) are for an individual weight.

Theorem 3.1. Let T be a sublinear operator in R
d. Let 0 < p0 < p < p1 < ∞ and ω be an Ap/p0

weight. Suppose that

1. T is bounded on Lp0(Rd) with ‖T‖Lp0→Lp0 ≤ C0;

2. for any ball B ⊂ R
d and any g ∈ L∞

c (Rd) with supp(g) ⊂ R
d \ 4B, one has

(
 

B
|T (g)|p1ω

)1/p1

≤ N

{(
 

3B
|T (g)|p0

)1/p0

+ sup
B′⊃B

(
 

B′

|g|p0
)1/p0

}(
 

B
ω

)1/p1

. (3.2)

Then for any f ∈ L∞
c (Rd),

ˆ

Rd

|T (f)|pω dx ≤ C

ˆ

Rd

|f |pω dx, (3.3)

where C depends only on d, K, p0, p1, p, C0, N , and the Ap/p0 constant of ω.

Proof. Let f ∈ L∞
c (Rd). Fix B0 = B(0, R), where R > 1 is so large that supp(f) ⊂ B(0, R/4). We

apply Theorem 2.1 with f and F = T (f). For each ball B ⊂ 2B0 with |B| ≤ cd|B0|, we define

FB = KT (fϕB) and RB = KT (f(1− ϕB)),

where ϕB ∈ C∞
0 (9B) satisfies 0 ≤ ϕ ≤ 1 and ϕB = 1 on 8B. Note that by (3.1), |F | ≤ |FB|+ |RB|

on R
d, and that (

 

2B
|FB|

p0

)1/p0

= K

(
1

|2B|

ˆ

Rd

|T (fϕB)|
p0 dx

)1/p0

≤ C

(
 

9B
|f |p0

)1/p0

,
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where we have used the boundedness of T on Lp0(Rd) for the last inequality. Next, since f(1−ϕB) =
0 in 8B, it follows from the assumption (3.2) that

(
 

2B
|RB|

p1ω

)1/p1

≤ C

{(
 

6B
|RB|

p0

)1/p0

+ sup
4B0⊃B′⊃B

(
 

B′

|f |p0
)1/p0

}(
 

2B
ω

)1/p1

≤ C

{(
 

6B
|F |p0

)1/p0

+ sup
4B0⊃B′⊃B

(
 

B′

|f |p0
)1/p0

}(
 

B
ω

)1/p1

,

where we have used the fact |RB| ≤ K(|F |+ |FB|) and the boundedness of T on Lp0(Rd). Thus we
have verified the conditions in Theorem 2.1 with η = 0, which yields

(
 

B0

|T (f)|pω

)1/p

≤ C

(
 

4B0

|f |pω

)1/p

+ C

(
 

4B0

|T (f)|p0
)1/p0 ( 

B0

ω

)1/p

.

Hence,
ˆ

B0

|T (f)|pω dx ≤ C

ˆ

Rd

|f |pω dx+ C|B0|
1− p

p0 ‖T (f)‖p
Lp0 (Rd)

 

B0

ω. (3.4)

Finally, we note that the condition ω ∈ Ap/p0(R
d) implies ω ∈ Aq(R

d) for some 1 < q < p
p0
. It

follows that
 

B0

ω ≤ C|B0|
q−1

(
ˆ

B0

ω
− 1

q−1

)1−q

≤ Cω|B0|
q−1,

where Cω depends on ω. Therefore, by letting R→ ∞ in (3.4), we obtain (3.3).

Remark 3.2. Let T be a bounded linear operator on Lp0(Rd) for some 1 ≤ p0 <∞. Suppose that

T (f)(x) =

ˆ

Rd

K(x, y)f(y) dy

for x /∈ supp(f), where K(x, y) satisfies the condition

|K(x+ h, y)−K(x, y)| ≤
C|h|σ

|x− y|d+σ
(3.5)

for any x, y, h ∈ R
d with |h| < (1/2)|x− y|, where σ ∈ (0, 1]. The condition (3.5) is one of the two

conditions for the well-known Calderón-Zgymund kernels. Let g ∈ L∞
c (Rd) with supp(g) ⊂ R

d\4B.
Then

‖T (g)‖L∞(B) ≤

 

B
|T (g)|+ C sup

B′⊃B

 

B′

|g|,

which shows that (3.2) holds for any 1 ≤ p0 < p1 < ∞. Thus, by Theorem 3.1, T is bounded on
Lp(Rd, ωdx) for any p0 < p <∞ and ω ∈ Ap/p0(R

d).

Consider the elliptic system

− div(A∇u) = div(f) in R
d, (3.6)

where A = (aαβij (x)) satisfies the ellipticity condition (1.2). Given f ∈ L∞
c (Rd), there exists

u ∈ H1
loc(R

d) that satisfies (3.6) and |∇u| ∈ L2(Rd). Moreover, the solution u is unique up to
a constant and ‖∇u‖L2(Rd) ≤ C‖f‖L2(Rd). The next theorem gives a sufficient (and necessary)

condition for the weighted L2 inequality,
ˆ

Rd

|∇u|2ω dx ≤ C

ˆ

Rd

|f |2ω dx. (3.7)
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Theorem 3.3. Let A be a matrix satisfying (1.2). Let ω be an A1 weight. Suppose that for any
ball B ⊂ R

d,
 

B
|∇u|2ω ≤ N

 

2B
|∇u|2 ·

 

B
ω, (3.8)

whenever u ∈ H1(4B) is a weak solution of div(A∇u) = 0 in 4B. Then, for any f ∈ L∞
c (Rd), weak

solutions of (3.6) with |∇u| ∈ L2(Rd) satisfy the estimate (3.7), where C depends only on d, m, µ,
N and the A1 constant of ω.

Proof. For f ∈ L∞
c (Rd), let T (f) = ∇u, where u is a weak solution of (3.6) with |∇u| ∈ L2(Rd).

To prove (3.7), we shall apply Theorem 3.1 with p = 2. First, by the Meyers estimates, there
exists 1 < p0 < 2, depending only on d, m and µ, such that T is bounded on Lp0(Rd). Next, let
g ∈ L∞

c (Rd) with supp(g) ⊂ R
d \ 4B and v = T (g). Then div(A∇v) = 0 in 4B. By the reverse

Hölder estimates, (
 

B′

|∇v|2
)1/2

≤ C

 

(3/2)B′

|∇v|,

where B′ is a ball with 2B′ ⊂ 4B. This, together with the condition (3.8), gives

(
 

B′

|(∇v)ω1/2|2
)1/2

≤ C

 

3B′

|∇v| ·

(
 

B′

ω

)1/2

≤ C

 

3B′

|(∇v)ω1/2|,

where we have used the A1 condition (2.2) for the last inequality. By the self-improving property
of the reverse Hölder inequality for the function |(∇v)ω1/2|, there exists p1 > 2, depending only on
d, m, µ, N and the A1 constant of ω, such that

(
 

B
|(∇v)ω1/2|p1

)1/p1

≤ C

(
 

(5/4)B
|(∇v)ω1/2|2

)1/2

≤ C

(
 

(5/2)B
|∇v|2

)1/2

·

(
 

B
ω

)1/2

,

where we have used the condition (3.8) for the last inequality. Using the A1 condition (2.2) again,
we obtain (

 

B
|∇v|p1ω

)1/p1

≤ C

 

3B
|∇v| ·

(
 

B
ω

)1/p1

. (3.9)

As a result, we have proved that T satisfies the conditions in Theorem 3.1, from which (3.7)
follows.

Remark 3.4. The condition (3.8) in Theorem 3.3 is also necessary. We will provide a proof for
the case of bounded Lipschitz domains in the next section. The same argument works equally well
for the case of Rd.

4 Boundary weighted estimates

In this section we present a boundary version of Theorem 2.1 for a Lipschitz domain and give the
proof of Theorem 1.1.
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Theorem 4.1. Let 0 < p0 < p < p1 <∞ and ω be an Ap/p0 weight. Let Ω be a bounded Lipschitz
domain and B0 = B(x0, r0) where x0 ∈ ∂Ω and 0 < r0 < c0 diam(Ω). Let F ∈ Lp(4B0 ∩ Ω) and
f ∈ Lp(4B0 ∩ Ω). Suppose that for each ball B = B(y0, r) with the properties that |B| ≤ c1r

d
0 and

either y0 ∈ 2B0 ∩ ∂Ω or 4B ⊂ 2B0 ∩ Ω, there exist two functions FB and RB, defined on 2B ∩ Ω,
such that |F | ≤ |FB|+ |RB| on 2B ∩ Ω, and

(
 

2B∩Ω
|FB|

p0

)1/p0

≤ N1 sup
4B0⊃B′⊃B

(
 

B′∩Ω
|f |p0

)1/p0

+ η

(
 

8B∩Ω
|F |p0

)1/p0

, (4.1)

(
 

2B∩Ω
|RB|

p1ω

)1/p1

≤ N2

{(
 

8B∩Ω
|F |p0

)1/p0

+ sup
4B0⊃B′⊃B

(
 

B′∩Ω
|f |p0

)1/p0
}(

 

B
ω

)1/p1

,

(4.2)

where N1, N2 > 1, 0 < c1 < 1, and η ≥ 0. Then there exists η0 > 0, depending only on d, p0,
p1, p, c1, N2, the Ap/p0 constant of ω and the Lipschitz character of Ω, with the property that if
0 ≤ η ≤ η0, then

(
 

B0∩Ω
|F |pω

)1/p

≤ C

(
 

4B0∩Ω
|f |pω

)1/p

+ C

(
 

4B0∩Ω
|F |p0

)1/p0 ( 

B0

ω

)1/p

, (4.3)

where C depends only on d, p0, p1, p, c1, N1, N2, the Ap/p0 constant of ω and the Lipschitz
character of Ω.

Proof. We shall apply Theorem 2.1 to the functions

F̃ = Fχ4B0∩Ω and f̃ = fχ4B0∩Ω,

with B0 = B(x0, r0). Let B be a ball such that 2B ⊂ 2B0 with |B| ≤ c̃1|B0|. We need to construct
two functions F̃B and R̃B, which satisfy |F̃ | ≤ F̃B + R̃B on 2B and the conditions (2.6) and (2.7).

We consider three cases: (1) 4B ∩Ω = ∅; (2) 4B ⊂ Ω; and (3) 4B ∩ ∂Ω 6= ∅. In the first case we
simply define FB and RB to be zero. In the second case we let F̃B = FB and R̃B = RB. To treat
the third case, we assume B = B(z, r) and y0 ∈ 4B ∩ ∂Ω. Let B̃ = B(y0, 4r),

F̃B = F
B̃
χ4B0∩Ω and R̃B = R

B̃
χ4B0∩Ω.

Since 2B ⊂ 2B̃ and 2B̃ ⊂ 12B, it is not hard to verify the conditions in Theorem 2.1. As a result,
the inequality 4.3) follows from (2.8).

Remark 4.2. Let 0 < ε < r0. Suppose that conditions (4.1) and (4.2) hold only for balls B with
radius r ≥ ε. Then

(
 

B0∩Ω

{
Mε

3B0
(|F |p0χ4B0∩Ω)

} p
p0 ω

)1/p

≤ C

(
 

4B0∩Ω
|f |pω

)1/p

+ C

(
 

4B0∩Ω
|F |p0

)1/p0 ( 

B0

ω

)1/p

,

(4.4)

where the operator Mε
3B0

is defined by (2.23) and C is independent of ε. See Remark 2.4

The rest of this section is devoted to the proof of Theorem 1.1. We begin by giving a condition
equivalent to (2) in Theorem 1.1.
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Lemma 4.3. Let ω be an A1 weight and Ω a bounded Lipschitz domain. Let A a matrix satisfying
(1.2). The following reverse Hölder condition is equivalent to (2) in Theorem 1.1: There exist p > 2
and C3 > 0 such that

(
 

B(x0,r)∩Ω
|(∇u)ω1/2|p

)1/p

≤ C3

 

B(x0,2r)∩Ω
|(∇u)ω1/2|, (4.5)

where u and B(x0, r) are the same as in Theorem 1.1.

Proof. We first note that (1.8) follows readily from (4.5) by using Hölder’s inequality. To see that
(1.8) implies (4.5), we consider the case x0 ∈ ∂Ω. The interior case B(x0, 4r) ⊂ Ω may be handled
similarly. Let B′ = B(y0, t) be a ball such that y0 ∈ B(x0, r) ∩ Ω and 0 < t < cr. Then

(
 

B′∩Ω
|(∇u)ω1/2|2

)1/2

≤ C

(
 

8B′∩Ω
|∇u|2

)1/2( 

B′

ω

)1/2

≤ C

 

9B′∩Ω
|∇u|

(
 

B′

ω

)1/2

≤ C

 

9B′∩Ω
|(∇u)ω1/2|,

where we have used (2.2) for the last inequality, and C depends only on d, m, µ, C2 , the A1

constant of ω and the Lipschitz character of Ω. This is a reverse Hölder inequality for the function
|(∇u)ω1/2|. By the self-improving property of such inequalities, there exist p > 2 and C3 > 0,
depending at most on d, m, µ, C2, the A1 constant of ω and the Lipschitz character of Ω, such that
(4.5) holds.

Lemma 4.4. Condition (2) implies Condition (1) in Theorem 1.1.

Proof. Let u ∈ H1
0 (Ω) be a weak solution of (1.6) with f ∈ L∞(Ω). To show (1.7), we fix x0 ∈ ∂Ω,

0 < r0 = c0 diam(Ω), and apply Theorem 4.1 with p = 2, f and F = |∇u|. Let B = B(y0, r) be a
ball with the properties that |B| ≤ c1r

d
0 and either y0 ∈ B(x0, 2r0) ∩ ∂Ω or 4B ⊂ B(x0, 2r0) ∩ Ω.

Let v ∈ H1
0 (Ω) be the weak solution of −div(A∇v) = div(fϕ) in Ω, where ϕ ∈ C∞

0 (5B) is a cut-off
function such that 0 ≤ ϕ ≤ 1 and ϕ = 1 on 4B. Let

FB = |∇v| and RB = |∇(u− v)|.

By the Meyers estimate, there exists 1 < p0 < 2, depending only on d, m, µ and the Lipschitz
character of Ω, such that

‖∇v‖Lp0 (Ω) ≤ C‖ϕf‖Lp0 (Ω) ≤ C‖f‖Lp0 (5B∩Ω), (4.6)

which yields (4.1) with η = 0. To see (4.2), we observe that div(A∇(u − v)) = 0 in 4B ∩ Ω and
u− v = 0 on ∂Ω. It follows from Lemma 4.3 that

(
 

2B∩Ω
|(∇(u− v))ω1/2)|p1

)1/p1

≤ C

 

4B∩Ω
|(∇(u− v))ω1/2|

≤ C

(
 

4B∩Ω
|∇(u− v)|p0

)1/p0 ( 

B
ω

)1/2

,
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where p1 > 2 and we have used (2.5) for the last inequality. Using the fact ω ∈ A1, we see that

(
 

2B∩Ω
|RB|

p1ω

)1/p1

≤ C

(
 

4B∩Ω
|∇(u− v)|p0

)1/p0 ( 

B
ω

)1/p1

≤ C

{(
 

4B∩Ω
|F |p0

)1/p0

+

(
 

4B∩Ω
|∇v|p0

)1/p0
}(

 

B
ω

)1/p1

≤ C

{(
 

4B∩Ω
|F |p0

)1/p0

+

(
 

5B∩Ω
|f |p0

)1/p0
}(

 

B
ω

)1/p1

,

where we have used (4.6) for the last inequality. Thus, by Theorem 4.1, we obtain

ˆ

B(x0,r0)∩Ω
|∇u|2ω dx ≤ C

ˆ

B(x0,4r0)∩Ω
|f |2ω dx+

ˆ

Ω
|∇u|2 dx

 

B(x0,r0)
ω

≤ C

ˆ

Ω
|f |2ω dx,

where we have used the energy estimate and (2.2) for the last inequality. A similar argument shows
that if B(x0, 4r0) ⊂ Ω, where r0 = c0 diam(Ω), then

ˆ

B(x0,r0)
|∇u|2ω dx ≤ C

ˆ

Ω
|f |2ω dx.

By a simple covering argument we obtain (1.7), where C1 depends only on d, m, µ, C2, the A1

constant of ω and the Lipschitz character of Ω.

We are now in a position to give the proof of Theorem 1.1.

Proof of Theorem 1.1. In view of Lemma 4.4, it remains to show that Condition (1) implies
Condition (2). Suppose d ≥ 3. Let A∗ denote the adjoint of A and ω be an A1 weight. It follows by
a duality argument from (1.7) that weak solutions in H1

0 (Ω) of −div(A∗∇v) = div(g) in Ω satisfy

ˆ

Ω
|∇v|2

dx

ω
≤ C

ˆ

Ω
|g|2

dx

ω
, (4.7)

where g ∈ L∞(Ω). This, together with the weighted Sobolev inequality,

(
ˆ

Ω
|v|q

dx

ω
q
2

)1/q

≤ C

(
ˆ

Ω
|∇v|2

dx

w

)1/2

, (4.8)

where v ∈ H1
0 (Ω) and q =

2d
d−2 , yields

(
ˆ

Ω
|v|q

dx

ω
q
2

)1/q

≤ C

(
ˆ

Ω
|g|2

dx

w

)1/2

.

We remark that the inequality (4.8) holds for any Ap weight with p = 2 − 2
d (see [17] and earlier

work in [10]) . It follows by duality that weak solutions in H1
0 (Ω) of −div(A∇u) = F in Ω satisfy

(
ˆ

Ω
|∇u|2ω dx

)1/2

≤ C

(
ˆ

Ω
|F |q

′

ω
q′

2 dx

)1/q′

, (4.9)
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where F ∈ L∞(Ω) and q′ = 2d
d+2 . Thus, by linearity, if u ∈ H1

0 (Ω) is a weak solution of

− div(A∇u) = div(f) + F in Ω, (4.10)

where F, f ∈ L∞(Ω), then

(
ˆ

Ω
|∇u|2ω dx

)1/2

≤ C

(
ˆ

Ω
|f |2ω dx

)1/2

+ C

(
ˆ

Ω
|F |q

′

ω
q′

2 dx

)1/q′

. (4.11)

Let f, F ∈ L2(Ω) such that the right-hand side of (4.11) is finite. By a density argument one may
show that (4.11) continues to hold for the weak solution u in H1

0 (Ω) of (4.10).
In the case d = 2 we replace the inequality (4.8) by

(
ˆ

B(x0,r)∩Ω
|v|q

dx

ω
q
2

)1/q

≤ Cr
2
q

(
ˆ

Ω
|∇v|2

dx

ω

)1/2

(4.12)

for v ∈ C1
0 (Ω) and x0 ∈ Ω, which holds for any 2 < q < ∞ and ω ∈ A1(R

2) (see [17] and earlier
work [10]). It follows by duality that if supp(F ) ⊂ B(x0, r), the weak solution of −div(A∇u) = F
in Ω with u = 0 on ∂Ω satisfies

(
ˆ

Ω
|∇u|2ω dx

)1/2

≤ Cr
2− 2

q′

(
ˆ

B(x0,r)∩Ω
|F |q

′

ω
q′

2 dx

)1/q′

. (4.13)

As a result, the estimate (4.11) is replaced by

(
ˆ

Ω
|∇u|2ω dx

)1/2

≤ C

(
ˆ

Ω
|f |2ω dx

)1/2

+ Cr
2− 2

q′

(
ˆ

B(x0,r)∩Ω
|F |q

′

ω
q′

2 dx

)1/q′

. (4.14)

Finally, to prove (1.8), we let u ∈ H1(4B ∩Ω) be a weak solution of −div(A∇u) = 0 in 4B ∩Ω,
with u = 0 on 4B ∩ ∂Ω, where B = B(x0, r), 0 < r < c0 diam(Ω), and either x0 ∈ ∂Ω or 4B ⊂ Ω.
For 1 < s < t < 2, let ϕ ∈ C∞

0 (tB) be a cut-off function such that 0 ≤ ϕ ≤ 1, ϕ = 1 on sB, and
|∇ϕ| ≤ C((t− s)r)−1. Note that

−div(A∇((u− k)ϕ)) = −div(A(∇ϕ)(u− k))−A∇u · ∇ϕ,

where k ∈ R. It follows from (4.11) that if d ≥ 3,

(
ˆ

sB∩Ω
|∇u|2ω dx

)1/2

≤
C

(t− s)r

{(
ˆ

tB∩Ω
|u− k|2ω dx

)1/2

+

(
ˆ

tB∩Ω
|∇u|

2d
d+2ω

d
d+2 dx

) d+2
2d

}

≤
C

(t− s)r

(
ˆ

tB∩Ω
|∇u|

2d
d+2ω

d
d+2 dx

) d+2
2d

,

where we have let k =
ffl

tB u and used the weighted Sobolev inequality (see [10, 17]),

(
ˆ

tB∩Ω
|u− k|2ω dx

)1/2

≤ C

(
ˆ

tB∩Ω
|∇u|

2d
d+2ω

d
d+2 dx

) d+2
2d

(4.15)
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for ω ∈ A1(R
d). As a result, we obtain

(
 

sB∩Ω
|(∇u)ω1/2|2

)1/2

≤
C

t− s

(
 

tB∩Ω
|(∇u)ω1/2|

2d
d+2

) d+2
2d

(4.16)

for 1 < s < t < 2. By a convexity argument this implies that

(
 

B∩Ω
|(∇u)ω1/2|2

)1/2

≤ C

 

2B∩Ω
|(∇u)ω1/2|. (4.17)

The inequality (1.8) follows from (4.17) by the Cauchy inequality.
In the case d = 2 we use (4.14) in the place of (4.11) , and

(
ˆ

tB∩Ω
|u− k|2ω dx

)1/2

≤ Cr
1− 2

q′

(
ˆ

tB∩Ω
|∇u|q

′

ω
q′

2 dx

)1/q′

(4.18)

in the place of (4.15), where 1 < q′ < 2. This gives

(
 

sB∩Ω
|(∇u)ω1/2|2

)1/2

≤
C

t− s

(
 

tB∩Ω
|(∇u)ω1/2|q

′

)1/q′

(4.19)

for any 1 < q′ < 2, which leads to (4.17), as in the case d ≥ 3.

5 Weighted L
2 estimates at the small scale

In this section we give the proof of Theorem 1.2 for the case ε = 1. The periodicity condition (1.3)
is not needed. Recall that a function h ∈ L1

loc(R
d) is said to belong to VMO(Rd) if ρ(r;h) → 0 as

r → 0, where

ρ(r;h) = sup
x∈Rd

0<t≤r

 

B(x,t)

∣∣∣h−

 

B(x,t)
h
∣∣∣. (5.1)

Theorem 5.1. Let ω be an A1 weight and Ω a bounded Lipschitz domain with diam(Ω) ≤ 1. Let A
be a matrix satisfying (1.2) and A ∈ VMO(Rd). Suppose that Condition (1) in Theorem 1.1 holds
for all constant matrices A obtained from A by averaging it over a ball. Then the condition holds
for the matrix A.

Proof. By Theorem 1.1 it suffices to prove Condition (2). Let B0 = B(x0, r0) be a ball with x0 ∈ Ω
and 0 < r0 < c0. Let u ∈ H1(4B0 ∩ Ω) be a weak solution of div(A∇u) = 0 in 4B0 ∩ Ω with u = 0
on 4B0 ∩ ∂Ω. We will prove the inequality (1.8).

We consider the case x0 ∈ ∂Ω and use Theorem 4.1 with F = |∇u| and f = 0 on 4B0 ∩ Ω. Let
B = B(y0, r) be a ball such that |B| ≤ c1|B0| and either y0 ∈ 2B0 ∩ ∂Ω or 4B ⊂ 2B0 ∩ Ω. Again,
we consider the case y0 ∈ 2B0 ∩ ∂Ω (the interior case is similar). To construct FB and RB, we let
v ∈ H1(3B ∩ Ω) be the weak solution of

div(A∇v) = 0 in 3B ∩ Ω and v = u on ∂(3B ∩ Ω),

where

A =

 

3B
A. (5.2)
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Clearly, the constant matrix A satisfies the condition (1.2). Define

FB = |∇(u− v)| and RB = |∇v|.

Note that u− v = 0 on ∂(3B ∩ Ω) and

−div(A∇(u− v)) = div((A−A)∇u) in 3B ∩ Ω.

By the Myers estimates, there exist 1 < p0 < 2, and C > 0, depending only on d, m, µ and the
Lipschitz character of Ω, such that

 

3B∩Ω
|∇(u− v)|p0 dx ≤ C

 

3B∩Ω
|A−A|p0 |∇u|p0 dx

≤ C

(
 

3B
|A−A|

2p0
2−p0

) 2−p0
2
(
 

3B∩Ω
|∇u|2

) p0
2

,

where we have used Hölder’s inequality for the last inequality. It follows that

(
 

2B∩Ω
|FB|

p0

)1/p0

≤ Cρ̃(c0)

(
 

4B∩Ω
|F |p0

)1/p0

, (5.3)

where

ρ̃(c0) = sup
x∈Rd

0<t≤c0

(
 

B(x,t)

∣∣∣A−

 

B(x,t)
A
∣∣∣

2p0
2−p0

) 2−p0
2p0

. (5.4)

By the John-Nirenberg inequality, we see that ρ̃(c0) → 0 as c0 → 0. This implies that the function
FB satisfies the condition (4.1) in Theorem 4.1 if c0 > 0 is sufficiently small.

Finally, we note that by the assumption, Condition (2) in Theorem 1.1 holds for the matrix A
given by (5.2). In view of Lemma 4.3, there exist p1 > 2 and C3 > 0 such that

(
 

2B∩Ω
|(∇v)ω1/2|p1

)1/p1

≤ C3

 

4B∩Ω
|(∇v)ω1/2|, (5.5)

from which the condition (4.2) in Theorem 4.1 follows readily. Hence, by Theorem 4.1, we obtain

(
 

B0∩Ω
|∇u|2ω

)1/2

≤ C

(
 

4B0∩Ω
|∇u|2

)1/2( 

B0

ω

)1/2

,

which is equivalent to (1.8) by s simple covering argument.

Remark 5.2. Theorem 5.1 continues to hold if diam(Ω) > 1. However, in this case, the constants
C will depend on diam(Ω).

Remark 5.3. Let Ω be a bounded C1 domain. Then Condition (2) in Theorem 1.1 holds for any
A1 weight ω and for any matrix A satisfying (1.2) and A ∈ VMO(Rd). Indeed, let B = B(x0, r),
where x0 ∈ ∂Ω and 0 < r < c0 diam(Ω). Suppose that div(A∇u) = 0 in 4B ∩ Ω and u = 0 on
4B ∩ ∂Ω. Then (

 

B∩Ω
|∇u|p

)1/p

≤ Cp

(
 

2B∩Ω
|∇u|2

)1/2

for any p > 2. By using Hölder’s inequality and (2.5) we obtain (1.8). Consequently, by Theorem
1.1, the weighted inequality (1.5) holds if Ω is C1, ω ∈ A1(R

d) and A ∈ VMO(Rd) satisfies (1.2).
This result is not new and was already proved in [18].
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6 Large-scale weighted estimates in homogenization

In this section we give the proof of Theorem 1.2. We begin by introducing some notations as well
as some approximation results from the homogenization theory. We should point out that Lemmas
6.1, 6.2, 6.3 and 6.4 below are not new. They have become more or less standard in the quantitative
homogenization theory (see e.g. [11, 23, 2]). Throughout this section, unless otherwise indicated,
we assume A is a matrix satisfying the ellipticity conditions (1.2) and the periodicity condition

(1.3). Let χ(y) = (χαβ
j (y)) ∈ H1

loc(R
d) denote the correctors for the operator,

Lε = −div(A(x/ε)∇). (6.1)

More precisely, for each 1 ≤ j ≤ d and 1 ≤ β ≤ m, χβ
j = (χ1β

j , χ2β
j , . . . , χmβ

j ) is the unique solution
of the following problem:





− div(A∇χβ
j ) = div(A∇P β

j ) in R
d,

χβ
j is 1 -periodic,
ˆ

Y
χβ
j (y) dy = 0.

(6.2)

In (6.2) we have used notation Y = [0, 1)d and P β
j = yj(0, . . . , 1, . . . , 0) with 1 in the βth place.

The homogenized operator is given by L0 = −div(Â∇), where Â = (âαβij ) and

âαβij =

 

Y

[
aαβij + aαγik

∂

∂yk

(
χγβ
j

)]
dy,

where the repeated indices are summed. Let

bαβij = aαβij + aαγik
∂

∂yk

(
χγβ
j

)
− âαβij . (6.3)

Note that
ˆ

Y
bαβij dy = 0 and

∂

∂yi

(
bαβij
)
= 0.

There exist 1-periodic functions φαβkij ∈ H1
loc(R

d) such that
´

Y φ
αβ
kij dy = 0,

bαβij =
∂

∂yk

(
φαβkij

)
and φαβkij = −φαβikj , (6.4)

where 1 ≤ i, j, k ≤ d and 1 ≤ α, β ≤ m. The functions φ = (φαβkij) are called flux or dual correctors.

Let uε ∈ H1(Ω) be a weak solution of the Dirichlet problem,

div(A(x/ε)∇uε) = 0 in Ω and uε = g on ∂Ω. (6.5)

Let u0 be the solution of the homogenized problem,

div(Â∇u0) = 0 in Ω and u0 = g on ∂Ω. (6.6)

Consider
wε = uε − u0 − εχ(x/ε)(ηε∇u0), (6.7)

where ηε ∈ C∞
0 (Ω) is a cut-off function such that 0 ≤ ηε ≤ 1, |∇ηε| ≤ C/ε, ηε(x) = 0 if dist(x, ∂Ω) <

4ε, ηε(x) = 1 if x ∈ Ω and dist(x, ∂Ω) ≥ 5ε. Let

Σt =
{
x ∈ Ω : dist(x, ∂Ω) < t

}
, (6.8)

where 0 < t < diam(Ω).
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Lemma 6.1. Suppose A satisfies (1.2) and (1.3). Also assume that A ∈ VMO(Rd) if m ≥ 2 and
d ≥ 3. Let Ω be a bounded Lipschitz domain with 1 ≤ diam(Ω) ≤ 10. Let wε be given by (6.7).
Then for any 0 < ε < 1,

‖∇wε‖L2(Ω) ≤ C
{
‖∇u0‖L2(Σ5ε) + ε‖∇2u0‖L2(Ω\Σ4ε)

}
, (6.9)

where C depends only on d, m, µ, the function ρ in (5.1) (if m ≥ 2 and d ≥ 3), and the Lipschitz
character of Ω.

Proof. Note that wε = 0 on ∂Ω. Let φ =
(
φαβkij

)
be given by (6.4). A direct computation shows

that
Lε(wε) = div

{
(Aε − Â)(1− ηε)(∇u0)

}
+ εdiv

{(
φε + χεAε

)
∇
(
ηε(∇u0)

)}
, (6.10)

where Aε = A(x/ε), χε = χ(x/ε) and φε = φ(x/ε). See e.g. [16, 23]. In the case m = 1 or d = 2,
the correctors χ and φ are bounded. The proof of the boundedness of χ and φ in the case m = 1
[16, 23] uses the De Giorgi - Nash estimates. They are also bounded if m ≥ 2 and d ≥ 3 under the
assumption A ∈ VMO(Rd). As a result, (6.9) follows from (6.10) by the energy estimate.

Lemma 6.2. Let A and Ω be the same as in Lemma 6.1. Then there exists κ ∈ (0, 1), depending
only on d, m, µ and the Lipschitz character of Ω, such that

‖∇uε −∇u0 − (∇χ)εηε(∇u0)‖L2(Ω) ≤ Cεκ‖g‖H1(∂Ω), (6.11)

where (∇χ)ε = ∇χ(x/ε) and C depends only on d, µ, µ, the function ρ in (5.1) (if m ≥ 2 and
d ≥ 3), and the Lipschitz character of Ω.

Proof. Note that

∇wε = ∇uε −∇u0 − (∇χ)εηε(∇u0)− ε(χ)ε∇(ηε(∇u0)).

In view of Lemma 6.1, it suffices to prove that

‖∇u0‖L2(Σ5ε) + ε‖∇2u0‖L2(Ω\Σ4ε) ≤ Cεκ‖g‖H1(∂Ω). (6.12)

To this end, we choose a function G ∈ H1(Ω) such that G = g on ∂Ω and
ˆ

Ω
|∇G|2[dist(x, ∂Ω)]−2κ dx ≤ C‖g‖2H1(∂Ω),

where κ ∈ (0, 1/2) is given by Theorem 7.2. Since −div(Â∇(u0 −G)) = div(A∇G) in Ω, it follows
from Theorem 7.2 that

ˆ

Ω
|∇u0|

2[dist(x, ∂Ω)]−2κ dx ≤ C‖g‖2H1(∂Ω). (6.13)

This implies that
‖∇u0‖L2(Σ5ε) ≤ Cεκ‖g‖H1(∂Ω).

Also, by the interior estimates for the elliptic systems with constant coefficients,
ˆ

Ω\Σ4ε

|∇2u0|
2 dx ≤ C

ˆ

Ω\Σ3ε

|∇u0(x)|
2

[dist(x, ∂Ω)]2
dx

≤ Cε2κ−2‖g‖2H1(∂Ω),

where we have used (6.13) for the last inequality. This, together with (6.13) and (6.9), gives
(6.12).
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Lemma 6.3. Let A be a matrix satisfying the same conditions as in Lemma 6.1. Let uε ∈ H1(B2r)
be a weak solution of div(A(x/ε)∇uε) = 0 in B2r, where r ≥ 100ε. Then there exists u0 ∈ H1(B3r/2)

such that div(Â∇u0) = 0 in B3r/2 such that

(
 

B3r/2

|∇u0|
2

)1/2

≤ C

(
 

B2r

|∇uε|
2

)1/2

, (6.14)

(
 

Br

|∇uε −∇u0 − (∇χ)ε(∇u0)|
2

)1/2

≤ C
(ε
r

)κ( 

B2r

|∇uε|
2

)1/2

, (6.15)

where C depends only on d, m, µ, and the function ρ in (5.1) (if m ≥ 2 and d ≥ 3).

Proof. By rescaling we may assume r = 1. There exists t ∈ (3/2, 2) such that
ˆ

∂Bt

|∇uε|
2 dσ ≤ C

ˆ

B2

|∇uε|
2 dx.

This follows readily by using the polar coordinates. Let u0 ∈ H1(Bt) be the solution of div(Â∇u0) =
0 in Bt with u0 = uε − k on ∂Bt, where k =

ffl

∂Bt
uε. By the energy estimate,

ˆ

Bt

|∇u0|
2 dx ≤ C

ˆ

Bt

|∇uε|
2 dx,

which yields (6.14) with r = 1. To see (6.15), we apply Lemma 6.2 with Ω = Bt. Since ηε = 1 in
B1 and ‖uε − k‖H1(∂Bt) ≤ C‖∇uε‖L2(∂Bt), we obtain (6.15).

Lemma 6.4. Assume A satisfies the same conditions as in Lemma 6.1. Let Ω be a bounded
Lipschitz domain. Let uε ∈ H1(B4r ∩ Ω) be a weak solution of div(A(x/ε)∇uε) = 0 in B4r ∩ Ω
with uε = 0 on B4r ∩ ∂Ω, where Br = B(x0, r) and x0 ∈ ∂Ω. Assume 100ε < r < cr0, where
r0 = diam(Ω). Then there exists u0 ∈ H1(B3r/2∩Ω) such that div(Â∇u0) = 0 in B3r/2∩Ω, u0 = 0
on B3r/2 ∩ ∂Ω, and

(
 

B3r/2∩Ω
|∇u0|

2

)1/2

≤ C

(
 

B2r∩Ω
|∇uε|

2

)1/2

, (6.16)

(
 

Br∩Ω
|∇uε −∇u0 − (∇χ)ε(∇u0)ηε|

2

)1/2

≤ C
(ε
r

)κ( 

B2r∩Ω
|∇uε|

2

)1/2

, (6.17)

where C depends only on d, m, µ, the function ρ in (5.1) (if m ≥ 2 and d ≥ 3) and the Lipschitz
character of Ω.

Proof. The proof is similar to that of Lemma 6.3. By rescaling we may assume r = 1. In the place
of Bt we use B(x0, t) ∩ Ω. We omit the details.

Lemma 6.5. Assume A satisfies conditions (1.2)-(1.3) and A ∈ VMO(Rd). Let ω be an A1 weight
and Ω a bounded Lipschitz domain with diam(Ω) = 1. Suppose that Condition (2) in Theorem 1.1
holds in Ω with weight ω for the homogenized operator L0. Let B0 = B(x0, r0) with the properties
that either 4B0 ⊂ Ω or x0 ∈ ∂Ω and 0 < r0 < c0. Then

ˆ

B0∩Ω

{
Mε

3B0
(|∇uε|χ4B0∩Ω)

}2
ω dx ≤ C

ˆ

4B0∩Ω
|∇uε|

2

 

B0

ω, (6.18)

where div(A(x/ε)∇uε) = 0 in 4B0 ∩ Ω and uε = 0 on 4B0 ∩ Ω (if x0 ∈ ∂Ω).
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Proof. We may also assume 0 < ε < c0 and c0 is small. The case ε ≥ c0 is trivial. We consider the
case x0 ∈ ∂Ω (the interior case 4B0 ⊂ Ω is similar). We apply Theorem 4.1 with F = |∇uε| and
f = 0. Fix a large constant L > 1. Let B = B(y0, r) be a ball with the properties that r ≥ Lε,
|B| ≤ c1|B0| and that either y0 ∈ 2B0 ∩ ∂Ω or 4B ⊂ 2B0 ∩ Ω. Again, we only consider the case
y0 ∈ 2B0 ∩ ∂Ω. Note that div(A(x/ε)∇uε) = 0 in 8B ∩ Ω and uε = 0 on 8B ∩ ∂Ω. Let u0 be the
solution of div(Â∇u0) = 0 in 4B ∩ Ω, constructed in Lemma 6.4. Define

FB = |∇uε −∇u0 − (∇χ)ε(ηε(∇u0))| and RB = |∇u0 + (∇χ)ε(ηε(∇u0))|.

It follows from (6.17) that

(
 

2B∩Ω
|FB|

2

)1/2

≤ C
(ε
r

)κ( 

6B∩Ω
|F |2

)1/2

. (6.19)

By using Hölder’s inequality for FB and the reverse Hölder estimate for ∇uε, we obtain

(
 

2B∩Ω
|FB|

p0

)1/p0

≤ C
(ε
r

)κ( 

8B∩Ω
|F |p0

)1/p0

, (6.20)

where 1 < p0 < 2 depends only on d, µ and the Lipschitz character of Ω.
To verify the condition for RB, we note that the VMO condition on A implies that |∇χ| ∈ Lq(Y )

for any q > 2. Since r ≥ ε, it follows that

(
 

2B∩Ω
|(∇χ)ε|q

)1/q

≤ C

(
ˆ

Y
|∇χ|q

)1/q

<∞

for any 2 < q <∞. Hence, by Hölder’s inequality, for 2 < p1 < p2,

(
 

2B∩Ω
|RBω

1/2|p1
)1/p1

≤ C

(
 

2B∩Ω
|(∇u0)ω

1/2|p1(1 + |(∇χ)ε|)p1
)1/p1

≤ C

(
 

2B∩Ω
|(∇u0)ω

1/2|p2
)1/p2

≤ C

 

4B∩Ω
|(∇u0)ω

1/2|

where p2 > 2 is the exponent p in (4.5) for the homogenized operator L0. It follows that

(
 

2B∩Ω
|RBω

1/2|p1
)1/p1

≤ C

(
 

4B∩Ω
|∇u0|

2

)1/2( 

B
ω

)1/2

≤ C

(
 

6B∩Ω
|F |2

)1/2( 

B
ω

)1/2

≤ C

(
 

8B∩Ω
|F |p0

)1/p0 ( 

B
ω

)1/2

.

Since ω ∈ A1, we obtain

(
 

2B∩Ω
|RBω|

p1ω

)1/p1

≤ C

(
 

8B∩Ω
|F |p0

)1/p0 ( 

B
ω

)1/p1

,

which gives the condition (4.2) in Theorem 4.1. We now choose L > 1 so large that CL−κ ≤ η0,
where η0 > 0 is given in Theorem 4.1. By Remark 4.2 we obtain (6.18) with MLε

3B0
in the place of

Mε
3B0

. However, it is not hard to see that Mε
3B0

≤ LdMLε
3B0

. This completes the proof.
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We are now ready to give the proof of Theorem 1.2.

Proof of Theorem 1.2. By dilation we may assume diam(Ω) = 1. We will verify Condition (2) in
Theorem 1.1 for the operator Lε, assuming that the same condition holds for operators −div(A∇)
with constant coefficients, where either A = Â or A is obtained from A by averaging over a ball.

Let B0 = B(x0, r0), where 0 < r0 < c0 and c0 > 0 is sufficiently small. We assume x0 ∈ ∂Ω
(the interior case 4B0 ⊂ Ω is similar). Suppose that div(A(x/ε)∇uε) = 0 in 4B0 ∩Ω and uε = 0 on
4B0 ∩ ∂Ω. We need to show that

(
 

B0∩Ω
|∇uε|

2ω

)1/2

≤ C

(
 

4B0∩Ω
|∇uε|

2

)1/2( 

B0

ω

)1/2

. (6.21)

We first observe that if ε ≥ c0, the estimate (6.21) follows directly Theorem 5.1. To see this, we
note that

ρ(r;Aε) = ρ(r/ε;A) ≤ ρ(1;A) <∞,

where ρ is given by (5.1). Thus, by Theorems 1.1 and 5.1, (6.21) holds uniformly in ε ≥ c0.
Suppose 0 < ε < c0. It follows from the proof of Theorem 5.1 that if B = B(y0, r), where r = ε

and either y0 ∈ 2B0 ∩ ∂Ω or 4B ⊂ Ω, then

 

B∩Ω
|∇uε|

2ω dx ≤ C

(
 

2B∩Ω
|∇uε| dx

)2  

B
ω. (6.22)

This implies that
ˆ

B∩Ω
|∇uε|

2ω dx ≤ C

ˆ

2B∩Ω

{
Mε

3B0
(|∇uε|χ4B0∩Ω)

}2
ω dx, (6.23)

where the operator Mε
3B0

is defined by (2.23). By a simple covering argument we obtain

ˆ

B0∩Ω
|∇uε|

2ω dx ≤ C

ˆ

2B0∩Ω

{
Mε

3B0
(|∇uε|χ4B0∩Ω)

}2
ω dx

≤ C

ˆ

4B0∩Ω
|∇uε|

2

 

B0

ω,

(6.24)

where we have used Lemma 6.5 for the last inequality.

We end this section with a result for C1 domains.

Theorem 6.6. Suppose that A = A(y) satisfies the ellipticity condition (1.2), the periodicity
condition (1.3) and A ∈ VMO(Rd). Let Ω be a bounded C1 domain. Let uε ∈ H1

0 (Ω) be a weak
solution of (1.1) with f ∈ L∞(Ω). Then for any A1 weight ω,

ˆ

Ω
|∇uε|

2ω±1 dx ≤ C

ˆ

Ω
|f |2ω±1 dx, (6.25)

where C depends only on d, m, the function ρ in (5.1), the A1 constant of ω, and Ω.

Proof. Let B = B(x0, r) with a ball with the properties that |B| ≤ c1|Ω| and either 4B ⊂ Ω or
x0 ∈ ∂Ω. Let uε be a weak solution of div(A(x/ε)∇uε) = 0 in 4B ∩ Ω with uε = 0 on 4B ∩ ∂Ω (in
the case x0 ∈ ∂Ω). It follows from [21, 22] that

(
 

B∩Ω
|∇uε|

p

)1/p

≤ C

(
 

2B∩Ω
|∇uε|

2

)1/2
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for any p > 2. By Hölder’s inequality and (2.5), this gives the inequality (1.8) for any ω ∈ A1(R
d).

By Theorem 1.1 we obtain (6.25) for ω+1. Since A∗ satisfies the same conditions as A, the case
ω−1 follows by duality.

If Ω is a Lipschitz domain, the inequality (6.25) may not be true for all A1 weights, as this would
imply theW 1,p estimate ‖∇uε‖Lp(Ω) ≤ Cp‖f‖Lp(Ω) for 1 < p <∞, by a general extrapolation result.

7 Proof of Theorem 1.3

In this section we consider the weight ωσ(x) = [dist(x, ∂Ω)]σ, where −1 < σ < 1 and Ω is a
Lipschitz domain. Recall that wσ is an A1 weight if −1 < σ ≤ 0, and ωσ ∈ Ap(R

d) for p > 1 if
−1 < σ < p− 1.

Lemma 7.1. Let A be a constant matrix satisfying (1.2) and Ω a bounded Lipschitz domain. Also
assume that A∗ = A if m ≥ 2. Let u ∈ H1

0 (Ω) be a weak solution of −div(A∇u) = div(f) in Ω,
where f ∈ L∞(Ω). Then, for any −1 < σ < 1,

ˆ

Ω
|∇u|2[dist(x, ∂Ω)]σ dx ≤ C

ˆ

Ω
|f |2[dist(x, ∂Ω)]σ dx, (7.1)

where C depends only on d, m, µ, σ and the Lipschitz character of Ω.

Proof. We may assume −1 < σ < 0; the case 0 < σ < 1 follows by duality. Since ωσ ∈ A1(R
d), by

Theorems 1.1, we only need to check the condition (1.8).
Let B = B(x0, r) be a ball with |B| ≤ c1|Ω|. The case 4B ⊂ Ω is trivial. To treat the case

x0 ∈ ∂Ω, we assume that div(A∇u) = 0 in 4B∩Ω and u = 0 on 4B∩∂Ω. Without loss of generality,
we may assume that

Ω ∩ 10B =
{
(x′, xd) ∈ R

d : xd > ψ(x′)
}
,

where ψ : Rd−1 → R is a Lipschitz function with ψ(0) = 0. Let

(∇u)∗r(x
′, ψ(x′)) = sup

{
|∇u(x′, ψ(x′) + s)| : 0 < s < r

}
.

It follows from the nontangential-maximal-function estimates (see e.g. [15, 23]) that

ˆ

B∩∂Ω
|(∇u)∗cr|

2 dσ ≤
C

r

ˆ

2B∩Ω
|∇u|2 dx.

We point out that if m ≥ 2, the estimate above requires the condition A∗ = A. In the scalar case
m = 1, the symmetry condition is not needed, as one may write div(A∇u) = (1/2)div((A+A∗)∇u)).
Hence,

 

B∩Ω
|∇u|2ωσ dx ≤ Cr1+σ−d

ˆ

B∩∂Ω
|(∇u)∗cr|

2 dσ + Crσ
 

2B∩Ω
|∇u|2 dx

≤ Crσ
 

2B∩Ω
|∇u|2 dx

≤ C

 

2B∩Ω
|∇u|2 dx ·

 

B
ωσ,

which gives (1.8).
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Proof of Theorem 1.3. By duality we may assume −1 < σ < 0. Since ωσ ∈ A1(R
d), in view of

Theorem 1.2, it suffices to establish the weighted estimate (1.7) with ω = ωσ for weak solutions in
H1

0 (Ω) of −div(A∇u) = div(f) in Ω, where the constant matrix A is either Â or obtained from A
by averaging over a ball. But this is already done in Lemma 7.1. Indeed, in both case, A satisfies
(1.2). Also, since A is symmetric for m ≥ 2, so is A.

We end this section with a weighted inequality with the weight ωα for any matrix satisfying
(1.2). The inequality was used in the proof of Lemma 6.2.

Theorem 7.2. Let A be a matrix satisfying (1.2) and Ω a bounded Lipschitz domain. Let u ∈
H1

0 (Ω) be a weak solution of −div(A∇u) = div(f) in Ω, where f ∈ L2(Ω). Then there exists
κ ∈ (0, 1/2), depending only on d, m, µ and the Lipschitz character of Ω, such that for |σ| ≤ 2κ,

ˆ

Ω
|∇u|2[dist(x, ∂Ω)]σ dx ≤ C

ˆ

Ω
|f |2[dist(x, ∂Ω)]σ dx, (7.2)

where C > 0 depend only on d, m, µ and the Lipschitz character of Ω.

Proof. The result is probably well known. We provide a proof here for reader’s convenience. By
duality we may assume σ < 0. The proof uses Hardy’s inequality,

ˆ

Ω
|u|2[dist(x, ∂Ω)]−2 dx ≤ C

ˆ

Ω
|∇u|2 dx (7.3)

for any u ∈ H1
0 (Ω), where C depends only on d and the Lipschitz character of Ω. Now, let u ∈ H1

0 (Ω)
be a weak solution of −div(A∇u) = div(f) in Ω, where f ∈ L2(Ω). Let ψt(x) = dist(x, ∂Ω) + t,
where t > 0. Note that |∇ψt| ≤ 1. Using

ˆ

Ω
A∇u · ∇(uψ2σ

t ) dx = −

ˆ

Ω
f · ∇(uψ2σ

t ) dx

and the Cauchy inequality, we obtain

ˆ

Ω
|∇u|2ψ2σ

t dx ≤ C

ˆ

Ω
|u|2|∇ψσ

t |
2 dx+ C

ˆ

Ω
|f |2ψ2σ

t dx

≤ C|σ|2
ˆ

Ω
|u|2|ψσ−1

t |2 dx+ C

ˆ

Ω
|f |2ψ2σ

t dx,

(7.4)

where C depends only on µ. Since uψσ
t ∈ H1

0 (Ω), by Hardy’s inequality (7.3),

ˆ

Ω
|u|2|ψσ−1

t |2 dx ≤

ˆ

Ω
|uψσ

t |
2[dist(x, ∂Ω)]−2 dx

≤ C

ˆ

Ω
|∇(uψσ

t )|
2 dx

≤ C

ˆ

Ω
|∇u|2ψ2σ

t dx+ C|σ|2
ˆ

Ω
|u|2|ψσ−1

t |2 dx,

where C depends only on d and the Lipschitz character of Ω. Thus, if C|σ|2 ≤ (1/2),

ˆ

Ω
|u|2|ψσ−1

t |2 dx ≤ C

ˆ

Ω
|∇u|2ψ2σ

t dx.
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This, together with (7.4), gives

ˆ

Ω
|∇u|2ψ2σ

t dx ≤ C|σ|2
ˆ

Ω
|∇u|2ψ2σ

t dx+ C

ˆ

Ω
|f |2ψ2σ

t dx.

Again, if C|σ|2 ≤ (1/2), then

ˆ

Ω
|∇u|2ψ2σ

t dx ≤ C

ˆ

Ω
|f |2ψ2σ

t dx.

As a result, we have proved that if C|σ|2 ≤ (1/2), where σ < 0 and C depends on d, µ and the
Lipschitz character of Ω,

ˆ

Ω
|∇u|2ψ2σ

t dx ≤ C

ˆ

Ω
|f |2[dist(x, ∂Ω)]2σ dx.

By letting t→ 0+ and using Fatou’s Lemma we obtain (7.2).
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