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Abstract

We develop a new real-variable method for weighted LP estimates. The method is applied
to the study of weighted W2 estimates in Lipschitz domains for weak solutions of second-
order elliptic systems in divergence form with bounded measurable coefficients. It produces a
necessary and sufficient condition, which depends on the weight function, for the weighted W12
estimate to hold in a fixed Lipschitz domain with a given weight. Using this condition, for
elliptic systems in Lipschitz domains with rapidly oscillating, periodic and VMO coefficients,
we reduce the problem of weighted estimates to the case of constant coefficients.

Keywords: weighted estimate; Lipschitz domain; homogenization.

MR (2020) Subject Classification: 35B27; 35J57; 42B37.

1 Introduction

In this paper we are interested in weighted L? estimates for the Dirichlet problem,

{—div(A(m/e)Vua) =div(f)  inQ, (1.1)
u. =0 on 052,

where € > 0 and 2 is a bounded Lipschitz domain in R?. Throughout we assume that the matrix
(tensor) A(y) = (af‘jﬁ(y)), with 1 < 4,7 < dand 1 < a,8 < m, is real-valued and satisfies the
ellipticity condition,

plP < af Ere]  and [ Alle < p (12)

(the summation convention is used), for a.e. y € R? and all £ = (&) € R™*? where p > 0. We
also assume that A is 1-periodic; i.e.,

Ay +2) = A(y) for y € R and z € Z¢. (1.3)

By the energy estimate, ||Vue||p2(q) < ILL_1||f||L2(Q). It was shown in [21, 22] that if A is continuous
(or in VMO(R?)) and Q is a bounded C' domain, then

IVuellzr @) < Collfllzr (e (1.4)

for 1 < p < oo, where C), depends on d, m, p, A and Q (see [5, 6] for the case ¢ = 1). In fact,
given an exponent p > 2, an elliptic matrix A and a bounded Lipschitz domain €2, a necessary
and sufficient condition for the W estimate ||[Vu| zr() < Cpllflzr(q) for the Dirichlet problem
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(1.6) was found by the present author in [18]. This condition is given in terms of a (weak) reverse
Holder inequality for local solutions of div(AVu) = 0. Consequently, for the scalar case m = 1, it
was proved in [21] that if A € VMO(R?) and is symmetric and § is Lipschitz, then (1.4) holds for
(3/2) =y <p<3+~ifd>3, and for (4/3) —y <p <4+~ if d =2, where v > 0 depends on (2.
The ranges of p’s are known to be sharp for Lipschitz domains, even in the case of the Laplacian
[14]. For m > 2, partial results may be found in [13]. Also see related work in [12] for the Neumann
problem.
In this paper we investigate the weighted L? estimate,

/]VuEIdexSCw/medx (1.5)
Q Q

for solutions of (1.1). Using results in [18, 22], it is not hard to see that if A is in VMO(RY) and
Q) is a bounded C! domain, then the inequality (1.5) holds if either w or w™! is an A; weight.
Furthermore, the methods developed in [8] may be used to show that (1.5) holds for any As weight
w if A is in VMO and € is of C'. We point out that the weighted L? estimate is closely related to
the WP estimate (1.4). In particular, for a given A and a fixed Q, if (1.5) holds for all w in the A;
class, then (1.4) holds for all 2 < p < oo, by a general extrapolation result of Rubio de Francia (see
e.g. [9]). In view of this close connection, we shall not be interested in conditions for which the
weighted estimate (1.5) holds for all weights in the A; class. In fact, such conditions may be found
in [18, 4]. Rather, in this paper, we shall address the question: Given an A; weight w, an elliptic
matriz A, and a bounded Lipschitz domain €, find a necessary and sufficient condition, which may
depend on w, 2 and A, for the weighted norm inequality (1.5).
The following two theorems are the main results of the paper.

Theorem 1.1. Let w be an Ay weight in R and Q a bounded Lipschitz domain. Let A be a matriz
satisfying the ellipticity condition (1.2). The following are equivalent.

1. For any f € L*(Q), the weak solution in H}(Y) of the Dirichlet problem,
—div(AVu) =div(f) inQ and u=0 on 0L, (1.6)

satisfies the estimate,

/Q|vu\2wdxgcl/ﬂyf\2wdx. (1.7)

2. Let B = B(xo,r), where either 4B C Q, or zp € 0Q and 0 < r < ¢pdiam(Q2). Let u €
HY(4B N Q) be a weak solution of div(AVu) = 0 in 4B N Q with u = 0 on 4B N IQ (in the
case xg € 0NY). Then

][ |Vul> wdz < CQ][ |Vu|2dx][ w. (1.8)
BN 2BNQ B

Theorem 1.2. Let w be an Ay weight and € a bounded Lipschitz domain. Let A be a matrix
satisfying (1.2), (1.3) and A € VMO(R?). Suppose that the inequality (1.7) holds for weak solutions
in HY(Q) of —div(AVu) = div(f) in Q, where f € L>®(2) and the constant matriz A is either the
homogenized matriz of A or obtained from A by averaging over a ball. Then the weighted inequality
(1.5) holds, uniformly in € > 0, for any weak solution of (1.1).



For any fixed A; weight w, any fixed Lipschitz domain €2, and any given elliptic matrix A,
Theorem 1.1 gives a necessary and sufficient condition for the weighted norm inequality (1.7). To
the author’s best knowledge, this condition (1.8), which depends on the weight w, is new even
for the Laplacian. Theorem 1.2 reduces the weighted estimate for the elliptic operator £, =
—div(A(z/e)V) with rapidly oscillating coefficients to the same estimate for elliptic operators with
constant coefficients. By combining these two theorems we see that, to establish the weighted L?
estimate (1.5) for the operator L., it suffices to verify the condition (1.8) for local solutions of
div(AVu) = 0, where A is either the homogenized matrix of A or obtained from A by averaging
over a ball.

One of our motivations for studying (1.5) lies in a special case,

w = wy(z) = [dist(x, 0Q)]°. (1.9)

Note that w, € A;(R?) if —1 < o < 0 and Q is Lipschitz. The weighted inequality (1.5) for
this special case arises in the study of the quantitative homogenization theory and provides useful
estimates for boundary layers [16] as well as control of solutions at infinite for unbounded domains
[24]. As a corollary of Theorem 1.2, we obtain the following.

Theorem 1.3. Let Q be a bounded Lipschitz domain in R%. Suppose that A satisfies conditions
(1.2)-(1.3) and that A € VMO(RY). In the case m > 2 we also assume that A* = A, i.e., a%ﬁ = afﬁ.
Let u. be a weak solution of (1.1). Then for any —1 < o < 1,

/|Vu5|2[dist(x,aﬂ)]adx§ cg/ |fI?[dist(z, 09)]7 dz, (1.10)
Q Q

where Cy, depends only on d, m, A, o and the Lipschitz character of §2.

Remark 1.4. Consider the scalar case m = 1. It follows from [18, 21] that if A is in VMO(R?)
and € is Lipschitz, then (1.5) holds for w = (©)?, where @ € A;(R?) and |o| < 1+~ for d > 3, and
lo| < % +~ for d = 2, where v > 0 depends on 2. The ranges of ¢ are sharp for Lipschitz domains.
This result would only yield (1.10) for |o| < + 4+ if d > 3, and for |o| < § 4+ if d = 2. Thus, even
though the weighted inequality (1.5) may not be true for all weights in the A; class, the inequality
(1.10) still holds in Lipschitz domains for the full range of possible ¢’s. We also note that without
any smoothness and periodicity conditions on A, (1.10) holds for |o| < k, where £ > 0 depends on
d, m, p and the Lipschitz character of €). See Theorem 7.2.

Our approach to Theorems 1.1 and 1.2 is based on a new real-variable method for establishing
weighted L? estimates. In [18, 19, 20] we developed a real-variable method for establishing LP
estimates (also see related work in [3]). The method, which is originated in [7] (also see [25, 6]),
is particularly effective in the non-smooth settings, where the LP estimates are expected only for
p in some limited ranges. The basic idea is that to prove the LP estimate for a function F', where
p > 2, for each small ball B, one decomposes F' into two parts, Fp and Rp, both depending on
B. For Fpg, one establishes an L? estimate with a small parameter 7 for the term involving F. For
Rp one proves an L? estimate for some ¢ > p . We point out that the proof is based on a good-A
inequality. As such, there is a direct extension of this method to the weighted setting, which has
been exploited in [18, 4]. The main novelty of this paper is that instead of requiring an L? estimate
with ¢ > p for the function Rp, we require Rp to satisfy a weighted estimate in LP! for some
p1 > 2. See Theorems 2.1 and 4.1. As a result, instead of conditions for weighted estimates for a
whole class of weights, our conditions for weighted estimates are for each individual weight w. In
particular, we remark that the result in Theorem 1.3 does not seem to be accessible by the methods
used in [18, 4]. We expect this insight to be useful in other related problems.



The paper is organized as follows. In Section 2 we present a general real-variable method,
described above, for weighted LP estimates, where 0 < p < co. See Theorem 2.1. In Section 3 we
apply the real-variable method in Section 2 to sublinear operators in R?, including linear operators
of Calderén-Zygmund type. In Section 4 we use a boundary version of Theorem 2.1 for a Lipschitz
domain to prove Theorem 1.1. Sections 5 and 6 contain the proof of Theorem 1.2. We point out that
the small parameter 1 in Theorems 2.1 and 4.1 is particularly useful for perturbation arguments.
For local estimates (¢ = 1), as in the study of WP estimates, a perturbation argument reduces the
case of VMO coeflicients to the case of constant coefficients. See Section 5. For large-scale estimates
in homogenization, a similar perturbation with the use of the parameter n as well as convergence
rates allows us to reduce the problem to the same estimates for the homogenized operator. See
Section 6. Finally, Theorem 1.3 is proved in Section 7. We remark that the periodic structure of
A is not essential for Theorems 1.2 and 1.3, as long as |Vx| € L{  uniformly for any ¢ > 2, where
x denotes the corrector.

We will use C' and ¢ to denote constants that may depend on d, m, u, and the Lipschitz character
of Q. If a constant also depends on other parameters, it will be stated explicitly. We use fE u to
denote the average of u, with respect to the Lebesgue measure, over the set E; i.e.

fo=m)
U = — Uu.
E \E| JE
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2 A real-variable method for weighted estimates

We begin with a brief review of A, weights and refer the reader to [9] for a detailed presentation.
For 1 < p < oo, a nonnegative function w € Li _ (R%) is called an A, weight, denoted by w € A,(R?),
if there exists a constant C,, > 1 such that

p—1
][ w - <][ w_Pil) < C, for any ball B C R% (2.1)
B B

In the case p = 1, the condition (2.1) is replaced by
][ w < Cyinfw  for any ball B C R4, (2.2)
B

We will refer to the smallest C,, for which (2.1) (or (2.2) for p = 1) holds as the A, constant of w.
It follows by Holder’s inequality that A,(R?) C A,(R?) if p < ¢. It is also known that if w € A,4(R9)
for some ¢ > 1, then w € A,(R?) for some p < ¢ (p depends on w). A function w is called an Au,
weight if it is an A, weight for some p > 1. An A, weight satisfies the doubling condition,

w(2B) < Cw(B) for any ball B ¢ R?, (2.3)

where we have used the notation w(E) = [ pw- Moreover, if w is an A weight, then there exist

€ (0,1) and C > 0 such that

w(E) <!E !>”

<co(=) (2.4)
w(B) | B

where £ C B is measurable and B is a ball, and that

<]é w1+‘7>1i0 < C]éw. (2.5)
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Using the doubling condition, it is not hard to see that balls B in (2.1), (2.2), (2.3), (2.4) and (2.5)
may be replaced by cubes Q.
The goal of this section is to prove the following theorem.

Theorem 2.1. Let 0 < pyp < p < p1 <00 and w be an Ay, weight in RY. Let F € LP(4By) and

[ € LP(4By), where By is a ball in R?. Suppose that for each ball B C 2By with |B| < ¢1|Bo|, there
exist two functions Fp and Rp, defined on 2B, such that |F| < |Fg|+ |Rg| on 2B, and that

1/po 1/po 1/po
(f |FB\p°) <N swp (][ |frp0> +77<][ |F\p°) , (2.6)
2B 4ByDB’'DB B’ 100B
1/p1 1/po 1/po 1/p;1
(f 1rapras ) sm{(f ) e s (1) }(f o)L e
2B 100B 4ByDB’'DB B’ B

where N1, No > 1,0 < c; <1, andn > 0. Then there exists ng > 0, depending only on d, pg, p1,

p, 1, Na, and the Ay, constant of w, with the property that if 0 < n < o, then

1/p 1/p 1/po 1/p
p C p C Po )
(f, frraac) "< (f,, i) "o, 1) S (f ) e

where C' depends only on d, po, p1, p, c1, N1, No, and the A constant of w.

P/Po

For the most part, the argument for Theorem 2.1 is parallel to that for Theorem 3.1 in [18]. It
starts with a Calderén-Zgymund decomposition given in the next lemma.

Lemma 2.2. Let Q be a cube in R%. Suppose that E C Q is open and |E| < 27 Q|. Then there
exists a sequence {Qy} of disjoint dyadic subcubes of Q such that,

1. Qr C E;
2. the dyadic parent of Qi in Q is not contained in F;
3. |E\ UpQk| = 0.
Proof. See e.g. [23, p.75]. O

For f € LL _(R%) and a ball B C R?, define

loc

Mp(f)(z) ZSup{]{B/Lﬂ: r € B’ and B’cB} (2.9)

for x € B.

Lemma 2.3. Let w be an Ay weight. Then
C
wlzeB: Mp(f)(@) > A} < A/ (e da (2.10)
B
for any A\ > 0, where C' depends only on d and C,, in (2.2). If 1 <p < 0o and w € A,(R?), then

/ |M3(f)|pwdx§0/ |f|Pw dx, (2.11)
B B

where C' depends at most on d, p and Cy, in (2.1).



Proof. Observe that Mp(f) < M(fxp) on B, where M is the Hardy-Littlewood maximal operator
in R, As a result, (2.10) and (2.11) follow from the standard weighted norm inequalities for the
operator M with A, weights. See e.g. [9]. O

Proof of Theorem 2.1. Let Qg be a cube such that 2Qy C 2By and |Qo| =~ |By|. We shall show

that
1/p 1/p 1/po 1/p
(o) <o (fm) el ) ()" o

The inequality (2.8) follows from (2.12) by a simple covering argument.
For ¢t > 0, let
E(t) = {x € Qo: Myp,(|F|”°)(x) > t}. (2.13)
We claim that if 0 < 1 < ng and 79 > 0 is sufficiently small, then it is possible to choose three
constants 6, € (0,1) and Cpy > 0, such that

W(B(O7/P)) < (8/2)w(E(t) + w{z € Qo : Map,(|f7°)(x) >~} (2.14)
for all t > ty, where

to = 00][ |F|Po. (2.15)
4Bg

Moreover, the constants 19, 8 and Cy depend at most on d, pg, p1, p, ¢1, N2, and the A constant
of w. The constant ~ also depends on Nj.

Assume (2.14) for a moment. Then

P/Po

T 21 _
/ tro " w(E(07P/PE)) dt

to

T, T,
< ‘9/ tm_lw(E(t))dt+/ tro wlz € Qo Map, (|fIP°) > 4t} dt

2 to to

for any T' > ty3. By a change of variables we obtain

6 PoT » T ,
9/ ) tpo_lw(E(t))dth/ tho ' w(E(t))dt + C (M4BO(|f|P0))p/”°wda:.
0

TPotg to Qo

It follows that

0 9_%7’ 2 9_%250 2 _q /
- /_,, tro w(BE(t))dt < / tro " w(E()dt+C [ (Map,(|fIP)"wdaz.
2 6 Poty 2 0 Qo

This leads to

0 PoT P 9‘%t0 2 _q 0 PoT »
/ o w(E(t))dt:/ o w(E(t))dt—i—/ T w(B) dt
0 0 0720 ¢,
P

< Ot w(Qo) + C /Q (Mas, (1F17°)"™w de.



By letting T' — oo we see that

/Q (M4BO(’F|pO))p/P0w dx < Cté’T’w(Qo) + C/Q (M4BO(\f|p°))p/p°wdx
0 0

p/Po
<c <][ yF|po> w(Bo) +c/ P wd,
4B, 4B,
where we have used (2.15), the assumption w € A

/o (R%) and (2.11) with p = £ > 1 for the last
inequality. The inequality (2.12) now follows readily from (2.16).
To see (2.14), we first note that

(2.16)

C
Q1< S 1P ds <0l
0

if t > to, where ¢ is given by (2.15) with
Co = 2071 Cy4/4Bo|/|Qo|

and 6 € (0,279) is a small constant to be determined. Fix ¢ > to. Since E(t) is open in Qo, by
Lemma 2.2, there exists a sequence {Qj} of non-overlapping maximal dyadic subcubes of () such
that

U@k C E(t) and  [E(t) \ UpQx| = 0.

By choosing 6 small, we may assume that |Qx| < ¢1|Qo|. We shall show that if 0 < n < ny and
no > 0 is sufficiently small, then one may choose 6,7 € (0,2~%) such that

W(EO77 1) N Qk) < (0/2)w(Qy), (2.17)

whenever
Qi {z € Qo Mup, (1) () < 4t} #0. (2.18)

It is not hard to see that this yields (2.14).
Finally, to prove (2.17), we use the observation that for any = € Qy,

Mg, ([F[?)(x) < max (Map, ([F[")(z), Cat) (2.19)

where By, is the smallest ball containing @y, and Cy depends only on d. To see (2.19), one uses the
pi

property (ii) in Lemma 2.2. It follows that if =7 > Cy,
_Po _Po
W(BO 7 NQk) <w {x € Qu: Map, (|FI™)(2) >0 t}
po Hip?ot
Sw € Qk: Mop, (|F5,[7)(2) > oy
_ro
. Mo, (|Rp, " bt
tw € Qr: Map (|IBp,[")(2) > Sy
=1+ I>.

To bound I, we let

_Po
»t
E, = {aj € Qr: Mo, (|Fp,[")(x) > mﬂ} '
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By using (2.10) with w = 1, the assumption (2.6) and (2.18), we see that

2!
Cor
|Ek| < p|Qk’|][ ‘FBk|p0 dx
13 2B,

20 Arp
< CO» (Nyy +n™)|Qxl,

where C' depends only on d and pg. It follows from (2.4) that

w(Ex) |Ex\°
w(Qk) =¢ <|Qk|>

< OO NPT 4 O

where o € (0,1) and C' > 0 depend only on d, py and the A

p/po constant of w. Hence,

I < {0957’?” NP7A7 1 Oppoog } w(Q). (2.20)

To estimate I, we use (2.11) with p = I > 1 and the assumption (2.7) to obtain

P Pl
o B
nc("D)" o irsredial
13 2B,
Po  P1

< C<0:> %Nén <tp1/po + 7101/17075291/1)0) w(Qp)
Py
< CO» NS'w(Qp),

where C' depends only on d, po, p1 and the A,  constant of w. This, together with (2.20), gives

Po
P

W(E(O 7 )N Qy) < (O NP797 + Cno70™s” 4+ CO» NE) w(Qu), (2.21)

where C' > 0 and o > 0 depend at most on d, pg, p1, p and the A

p/po constant Gy, in (2.1). To

conclude the proof, we choose 6 € (0,27%) so small that
P11
Co» NJ' < (1/6)0.
This is possible since p; > p. With 0 chosen, we choose v > 0 so small that
CO™P NP747 < (1/6)0.

Finally, we choose 19 > 0 so that
POC
CPo?0™r < (1/6)0.

It follows that if 0 < 7 < np, then (2.17) holds. We note that the small positive constants 6 and
no depend at most on d, c1, po, p1, p, N2 and the A,  constant for the weight w, and that v also
depends on Nj. This completes the proof. O

Remark 2.4. Let € > 0. Define
ME(f)(x) = sup {][ |fl: € B'= B(y,r) and r > ¢, } ) (2.22)
BI
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and for x € B,

MG(f)(x) :sup{]i/m: r€ B =B(y,r) C Band r 25}. (2.23)

Suppose that diam(By) > 100e. If the conditions (2.6) and (2.7) are only satisfied by balls B with

radius 7 > ¢, then
1/p
(f, Mimarmyhe)

1/p 1/po 1/p
= ¢ <f430 ‘f|pw> e (]iBo |F|p0> (][BO w) ?

where C'is independent of . This inequality will be used for large-scale estimates in homogenization
in Section 6. We mention that in the case of LP estimates, a similar observation was made in [1].
To see (2.24), we consider the function

1/po
F.(z)= (]i(%e) |F|p0> . (2.25)

Let B = B(z,r) be a ball such that B C 2By and |B| < ¢1|Bpl|. If r > 2¢, we let

1/po 1/po
<F€>B<x>=(]@w) rFB|p°) and <RE>B<x>:<]iW)|RB\p°> .

Then F, < (F.)p + (R:)p on 1.5B,

1/p 1/po
(f |<FE>B|P0) sc(f FBrm)
1.5B 2B
1/po 1/po
<CNi sup (f |f|p0> +0n<f |F€|p°) |
4BoDB'DB B’ 200B

1/p1
< )B|Ptw dx)
L. 5B

1/p1
<C <][ |Rp|P'w da:) (2.27)

1/po Do 1/p1
< CN, (7[ yFé.ypo) +  sup (][ \f\po) (][ w) .
200B 4ByDB’'DB B

In the case r < 2¢, we simply let (F7)p =0 and (R.)p = F.. It is not hard to see that

1/p1 1/po 1/p1
<][ |(RE)B‘P1wda;> <C (][ |F|po> <][ w)
1.5B B(z,e+1.5r) B
1/po 1/p1
§C<][ Fg|p°> <][ w> .
200B B

9

(2.24)

(2.26)

and by (2.11),



As a result, it follows from the proof of Theorem 2.1 that

1/p 1/p 1/po 1/p
(f o) <e(f, s () (1)
By 3Bo 3Bo Bo

This yields (2.24), as
1/po 1/po
()" <o (f, o)
3By 4By

and M3p ([F[P°) < CMsp,(|F:|P).

3 Weighted L? estimates in R?

In this section we use Theorem 2.1 to establish weighted norm inequalities for operators in R%. An
operator T is called sublinear if there exists a constant K > 1 such that

T(f + 9)l < K{T ()l +T(9)l}. (3.1)

We use L°(R%) to denote the space of bounded measurable functions with compact support in R?.
The following theorem may be regarded as the weighted version of Theorem 3.1 in [18]. We
emphasize that the condition (3.2) and hence the conclusion (3.3) are for an individual weight.

Theorem 3.1. Let T be a sublinear operator in R%. Let 0 < pg < p < p1 < oo and w be an Ap /o
weight. Suppose that

1. T is bounded on LPo(R?) with || T pro—rro < Co;

2. for any ball B C RY and any g € LX(R?) with supp(g) € R?\ 4B, one has

<7{9 IT(g)\plw)l/m <N { (]éB T(g)lp°>l/p0 + s <][ \g|po)1/p°} (7{9 w) )

Then for any f € L?(Rd),
T(Pede<C [ |fPuds, (3.3)
Rd R4

where C' depends only on d, K, po, p1, p, Co, N, and the Ay,  constant of w.

Proof. Let f € LX(RY). Fix By = B(0, R), where R > 1 is so large that supp(f) C B(0, R/4). We
apply Theorem 2.1 with f and F' = T'(f). For each ball B C 2By with |B| < ¢4|By|, we define

Fp=KT(fep) and Rp=KT(f(1-¢B)),

where ¢p € C§°(9B) satisfies 0 < ¢ <1 and ¢p = 1 on 8B. Note that by (3.1), |F| < |Fg|+ |Rp|

on R%, and that
1/po 1 1/po
Foaral) =K (o [ T do
2B |2B| R4

1/po
C Po
<o(f 1)
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where we have used the boundedness of T on LP?(R9) for the last inequality. Next, since f(1—¢p) =
0 in 8B, it follows from the assumption (3.2) that

1/p1 1/po 1/po 1/p1
(][ ’RB\pluJ) SC{<][ \RB’pO) + sup (][ ’f\po) }(][ W)
2B 6B 4ByOB'DB 2B
1/po 1/po 1/p1
sc{(f ) s (1) }(][w) |
6B 4ByDB'DB B

where we have used the fact |Rg| < K(|F|+|Fp|) and the boundedness of T' on LP°(R%). Thus we
have verified the conditions in Theorem 2.1 with = 0, which yields

(7{90 \T(f)\pW) " <C (iBO |fypw> v +C (75:30 T(f)ym)l/po (]io w>1/p.

[ rpuds < [ (Pude CBIEITO e f, (3.4)
0

Hence,

Finally, we note that the condition w € 4, , (R 4) implies w € Ay(R?) for some 1 < ¢ < p%. It
follows that 1
—q
][ w < C|By|? ! </ wq11> < C,|Boli™t,
Bo BO
where C,, depends on w. Therefore, by letting R — oo in (3.4), we obtain (3.3). O

Remark 3.2. Let T be a bounded linear operator on LP0 (Rd) for some 1 < py < co. Suppose that
T(f)(x) = 9 K(z,y)f(y)dy
for x ¢ supp(f), where K (x,y) satisfies the condition

Clh|”

|K(z+h,y) — K(z, )|_W (3.5)

for any z,y,h € R? with |h| < (1/2)|x — y|, where ¢ € (0,1]. The condition (3.5) is one of the two
conditions for the well-known Calderén-Zgymund kernels. Let g € L°(R?) with supp(g) C R?\ 4B.

Then
7)) < £ T@I+C sup £ ol
B'D>B

which shows that (3.2) holds for any 1 < pg < p1 < oco. Thus, by Theorem 3.1, T" is bounded on
LP(R?, wdz) for any pg < p < oo and w € Apjpo (R ),

Consider the elliptic system
—div(AVu) = div(f) in RY (3.6)

where A = (a%ﬁ (z)) satisfies the ellipticity condition (1.2). Given f € L°(R?), there exists
u € HL_(RY) that satisfies (3.6) and |Vu| € L?*(R%). Moreover, the solution u is unique up to
a constant and [|Vul|p2gay < C|f|p2re). The next theorem gives a sufficient (and necessary)
condition for the weighted L? inequality,

/Rd |Vu|?wdz < C/Rd | f)2w de. (3.7)

11



Theorem 3.3. Let A be a matriz satisfying (1.2). Let w be an Ay weight. Suppose that for any

ball B C RY,
][ |Vul?w < N][ |Vu|? ][ w, (3.8)
B 2B B

whenever u € H'(4B) is a weak solution of div(AVu) = 0 in 4B. Then, for any f € L2 (RY), weak
solutions of (3.6) with |Vu| € L?(RY) satisfy the estimate (3.7), where C depends only on d, m, p,
N and the Ay constant of w.

Proof. For f € L*(R%), let T(f) = Vu, where u is a weak solution of (3.6) with |Vu| € L2(R9).
To prove (3.7), we shall apply Theorem 3.1 with p = 2. First, by the Meyers estimates, there
exists 1 < pg < 2, depending only on d, m and pu, such that 7' is bounded on LP° (]Rd). Next, let
g € L®(R?) with supp(g) € R\ 4B and v = T(g). Then div(AVv) = 0 in 4B. By the reverse

Holder estimates,
1/2
<][ |Vv|2> <c Vo,
B (3/2)B’

where B’ is a ball with 2B’ C 4B. This, together with the condition (3.8), gives

1/2 1/2
( ](Vv)w1/2|2> gc][ |W|.<][ w)
B’ 3B’ !

<c f (Vo))
3B/

where we have used the A; condition (2.2) for the last inequality. By the self-improving property
of the reverse Holder inequality for the function |(Vuv)w!/?|, there exists p; > 2, depending only on
d, m, u, N and the A; constant of w, such that

1/P1 1/2
(f |(Vv)w1/2]p1> <c (7[ ](Vv)w1/2|2>
B (5/4)B
1/2 12
<c (7[ yw?) . <][ w> ,
(5/2)B B

where we have used the condition (3.8) for the last inequality. Using the A; condition (2.2) again,

we obtain
1/p1 1/p1
(7[ |Vv|p1w) < C'][ Vol - (7[ w) . (3.9)
B 3B B

As a result, we have proved that T satisfies the conditions in Theorem 3.1, from which (3.7)
follows. O

Remark 3.4. The condition (3.8) in Theorem 3.3 is also necessary. We will provide a proof for
the case of bounded Lipschitz domains in the next section. The same argument works equally well
for the case of R

4 Boundary weighted estimates

In this section we present a boundary version of Theorem 2.1 for a Lipschitz domain and give the
proof of Theorem 1.1.
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Theorem 4.1. Let 0 < pg <p < p1 <0 and w be an A, weight. Let 2 be a bounded Lipschitz
domain and By = B(xg,19) where zg € 0Q and 0 < ro < ¢odiam(R2). Let F € LP(4By N ) and
f € LP(4By N Q). Suppose that for each ball B = B(yo,r) with the properties that |B| < cird and
either yo € 2By N 0Q or 4B C 2By N, there exist two functions Fp and Rp, defined on 2B N ),
such that |F| < |Fg|+ |Rg| on 2BNQ, and

1/po 1/po 1/po
(f \FBrpo) <N sup (f \frpo) +77<][ \F\po) , (4.1)
2BNN 4ByDOB'DB BN 8BNS
1/p1 1/po 1/po 1/p1
(f \RBrplw) <N (f rFrpo) © swp (f \f\m) (f w) |
2BNO 8BNN 4ByDB'DB B'NQ B

(4.2)

where N1,No > 1, 0 < c; < 1, and n > 0. Then there exists ng > 0, depending only on d, po,
p1, b, 1, Na, the A, constant of w and the Lipschitz character of ), with the property that if
0 <n<no, then

1/p 1/p 1/po 1/p
(f m%) sc(f \f\pw) +c(f rF\po) (f w) L (43
BonQ 4BoNQ 4BoN< Bo

where C' depends only on d, po, p1, p, c1, N1, N2, the Ay, constant of w and the Lipschitz
character of Q).

Proof. We shall apply Theorem 2.1 to the functions

F=Fxupra and f= fxaBna,

with By = B(xg,70). Let B be a ball such that 2B C 2By with |B| < ¢1|By|. We need to construct
two functions Fz and Rp, which satisfy |F| < Fp + Rp on 2B and the conditions (2.6) and (2.7).

We consider three cases: (1) 4BNQ = 0; (2) 4B C ©; and (3) 4B NI # (). In the first case we
simply define Fg and Rp to be zero. In the second case we let Fg = Iy and Rg = Rp. To treat
the third case, we assume B = B(z,7) and yo € 4B N 0. Let B= B(yo,4r),

Fp = Fgxapono and  Rp = RzXapyno-

Since 2B C 2B and 2B C 12B , it is not hard to verify the conditions in Theorem 2.1. As a result,
the inequality 4.3) follows from (2.8). O

Remark 4.2. Let 0 < £ < rp. Suppose that conditions (4.1) and (4.2) hold only for balls B with
radius r > ¢. Then

» \ /P
(f (M (FPxamn)} o)
BonQ

1/p 1/po 1/p
so(f e we(f )T (fe)
4BoNQ 4BoN$ By

where the operator M3y is defined by (2.23) and C is independent of . See Remark 2.4

(4.4)

The rest of this section is devoted to the proof of Theorem 1.1. We begin by giving a condition
equivalent to (2) in Theorem 1.1.
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Lemma 4.3. Let w be an A1 weight and € a bounded Lipschitz domain. Let A a matriz satisfying
(1.2). The following reverse Holder condition is equivalent to (2) in Theorem 1.1: There exist p > 2
and Cg > 0 such that

1/p
<][ |(Vu)wl/2!p> < Cg][ (Va)w' /], (4.5)
B(zo,r)NQ B(z0,2r)NQ

where u and B(xg,r) are the same as in Theorem 1.1.

Proof. We first note that (1.8) follows readily from (4.5) by using Holder’s inequality. To see that
(1.8) implies (4.5), we consider the case o € 0. The interior case B(xo,4r) C € may be handled
similarly. Let B’ = B(yo,t) be a ball such that yo € B(zo,7) N and 0 < t < ¢r. Then

1/2 1/2 1/2
(][ |(Vu)w1/2|2> §C<][ |Vu|2> (7[ w)
B'NQ 8B'N /
1/2
cofon(f.)
9B'NN B’

<c ][ (Va)w'?),
9B'NQ

where we have used (2.2) for the last inequality, and C' depends only on d, m, u, Cy , the Ay
constant of w and the Lipschitz character of 2. This is a reverse Holder inequality for the function
|(Vu)w'/2|. By the self-improving property of such inequalities, there exist p > 2 and C3 > 0,
depending at most on d, m, u, Ca, the A; constant of w and the Lipschitz character of §2, such that
(4.5) holds. O

Lemma 4.4. Condition (2) implies Condition (1) in Theorem 1.1.

Proof. Let u € H () be a weak solution of (1.6) with f € L>°(Q). To show (1.7), we fix g € 95,
0 < rg = ¢pdiam(£2), and apply Theorem 4.1 with p = 2, f and F = |Vu|. Let B = B(yo, ) be a
ball with the properties that |B| < cird and either yo € B(zq,2r0) N OQ or 4B C B(xg, 2rg) N .
Let v € HZ(Q) be the weak solution of —div(AVv) = div(f¢) in Q, where ¢ € C§°(5B) is a cut-off
function such that 0 < ¢ <1 and ¢ =1 on 4B. Let

Fp=1|Vv| and Rp=|V(u—v)|.

By the Meyers estimate, there exists 1 < py < 2, depending only on d, m, p and the Lipschitz
character of €2, such that

Vol ro ) < Cllefllro) < CllfllLro(sBn0)s (4.6)

which yields (4.1) with n = 0. To see (4.2), we observe that div(AV(u —v)) = 0 in 4B N Q and
u—v =0 on 0. It follows from Lemma 4.3 that

(£ (Tl 00 e fo i ot

o) " ()"
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where p; > 2 and we have used (2.5) for the last inequality. Using the fact w € A;, we see that

atror) " s (o) * ()"
po po p1

Aaarm) " ) H (L)
1/po 1/po 1/p1

<) ) ()

where we have used (4.6) for the last inequality. Thus, by Theorem 4.1, we obtain

/ \Vul|?wdz < C/ | f|Pw dx +/ \Vu|2da;][ w
B(xQ,TQ)ﬂQ B(Io,47’0)ﬂﬂ Q B(xQ,TQ)

<c [ |ffwds
Q

IN

IN

where we have used the energy estimate and (2.2) for the last inequality. A similar argument shows
that if B(xo,4r9) C Q, where 19 = ¢p diam(£2), then

/ \Vul|?w dz < C/ |f|Pw de.
B(xo,’r‘o) Q

By a simple covering argument we obtain (1.7), where C; depends only on d, m, u, Cs, the A;
constant of w and the Lipschitz character of €. O

We are now in a position to give the proof of Theorem 1.1.

Proof of Theorem 1.1. In view of Lemma 4.4, it remains to show that Condition (1) implies
Condition (2). Suppose d > 3. Let A* denote the adjoint of A and w be an A; weight. It follows by
a duality argument from (1.7) that weak solutions in H} () of —div(A*Vv) = div(g) in Q satisfy

dx dx
/ v ¥ <o / g2 % (4.7)
Q w Q w

where g € L>°(Q2). This, together with the weighted Sobolev inequality,

l/q 1/2
( / |vrqd”§> sc( / |Vv|2d””) , (4.8)
Q w2 Q w

where v € H}(Q) and ¢ = %, yields

dx 1/q dx 1/2
(reis) e (o)
Q w?2 Q w

We remark that the inequality (4.8) holds for any A, weight with p =2 — 2 (see [17] and earlier
work in [10]) . It follows by duality that weak solutions in H}(Q) of —div(AVu) = F in Q satisfy

1/2 P 1/‘1/
(/ |Vu]2wdx> <C (/ |F|9w? dx) , (4.9)
Q Q
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where F € L>®(Q2) and ¢ = %. Thus, by linearity, if u € H}(f2) is a weak solution of
—div(AVu) =div(f) + F in Q, (4.10)

where F, f € L>(Q), then

1/2 1/2 o /4
</ |Vul|?w dm) <C (/ | f]Pw da:) +C </ |FlTw? da:) . (4.11)
Q Q Q

Let f, F € L?(Q) such that the right-hand side of (4.11) is finite. By a density argument one may
show that (4.11) continues to hold for the weak solution u in HE(Q) of (4.10).
In the case d = 2 we replace the inequality (4.8) by

1/q 1/2
/ W) <ol </ ywﬁdﬂ”) (4.12)
B(zo,r)NQ w2 Q w

for v € C}(Q) and z¢ € Q, which holds for any 2 < ¢ < oo and w € A;(R?) (see [17] and earlier
work [10]). It follows by duality that if supp(F) C B(xg, ), the weak solution of —div(AVu) = F
in Q with v = 0 on 0f) satisfies

1/2 ) o 1/q
</ |Vu’w d:v) <ortv / |F|7w? dz . (4.13)
Q B(zo,r)NQ

As a result, the estimate (4.11) is replaced by

1/2 1/2 ) o 1/q
(/ |Vu|*w da;) <C </ |f)?w dx) +orTY (/ |FlTw? da:) . (4.14)
Q Q B(zo,r)NQ

Finally, to prove (1.8), we let u € H'(4BN ) be a weak solution of —div(AVu) = 0in 4BNQ,
with ©w = 0 on 4B N 09, where B = B(zo,7), 0 < r < ¢gdiam(Q2), and either zg € 02 or 4B C Q.
For 1 <s<t<2 let p € Ci°(tB) be a cut-off function such that 0 < ¢ <1, » =1 on sB, and
|Vl < C((t — s)r)~t. Note that

—div(AV((u — k)g)) = —div(A(V)(u — k) — AV - Vo,

where k € R. It follows from (4.11) that if d > 3,

1/2
(/ \Vu|?w dx)
sBNQ
¢ 2 12 2d  _d_ o
< — lu — k|“wdx + |Vu|#+2wd+z dx
(t—s)r tBNQ tBNQ

a+2

C 2d  _d_ 2d
<— (/ |Vu|d+2 wa+z dw) ,
(t—s)r \Jinno

where we have let k = ft g and used the weighted Sobolev inequality (see [10, 17]),

1/2 2d d oF
</ lu — k|w dx) <C </ |Vu|d+2wd+? d:z) (4.15)
tBNQ tBNQ
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for w € A1(RY). As a result, we obtain

1/2 C oy \ 57
(Va2 < (V)2 83 (4.16)
sBNQ t—s \JiBno
for 1 < s <t < 2. By a convexity argument this implies that
1/2
<][ |(Vu)w1/2|2> < c][ |(Vu)w'/?]. (4.17)
BNQ 2BNQ

The inequality (1.8) follows from (4.17) by the Cauchy inequality.
In the case d = 2 we use (4.14) in the place of (4.11) , and

1/2 -2 P 1/q
</ lu — k2w dx) <Cr ¢ (/ Vu|?w=2 dl‘) (4.18)
tBNQ2 tBNQ

in the place of (4.15), where 1 < ¢’ < 2. This gives

1/2 C , 1/q’
(f |(Vu)w1/2]2> < (f (Var)w/?|9 ) (4.19)
sBNQ t =5 \JiBno
for any 1 < ¢’ < 2, which leads to (4.17), as in the case d > 3. O

5 Weighted L? estimates at the small scale

In this section we give the proof of Theorem 1.2 for the case € = 1. The periodicity condition (1.3)
is not needed. Recall that a function h € L (R?) is said to belong to VMO(R?) if p(r;h) — 0 as
r — 0, where

p(r;h) = sup ][ ‘h —][ h‘. (5.1)
z€RY J B(w,t) B(z,t)

0<t<r

Theorem 5.1. Let w be an A1 weight and 0 a bounded Lipschitz domain with diam(Q2) < 1. Let A
be a matriz satisfying (1.2) and A € VMO(R?). Suppose that Condition (1) in Theorem 1.1 holds
for all constant matrices A obtained from A by averaging it over a ball. Then the condition holds
for the matriz A.

Proof. By Theorem 1.1 it suffices to prove Condition (2). Let By = B(xg,70) be a ball with x¢ € Q
and 0 < rg < cg. Let u € H'(4By N Q) be a weak solution of div(AVu) = 0 in 4By N Q with u = 0
on 4By N 9. We will prove the inequality (1.8).

We consider the case o € 02 and use Theorem 4.1 with F' = |[Vu| and f =0 on 4By N Q. Let
B = B(yo,r) be a ball such that |B| < ¢1|Byp| and either yo € 2By N0 or 4B C 2By N ). Again,
we consider the case yp € 2By N 0N (the interior case is similar). To construct Fp and Rp, we let
v € HY(3B N Q) be the weak solution of

div(AVv) =0 in3BNQ and v=u ond(3BNKQ),

where

A= ]iB A. (5.2)
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Clearly, the constant matrix A satisfies the condition (1.2). Define
Fp=|V(u—v)| and Rp=|Vu|.
Note that w —v =0 on (3B N ) and
—div(AV(u —v)) = div((A — A)Vu) in 3BNQ.

By the Myers estimates, there exist 1 < pg < 2, and C' > 0, depending only on d, m, u and the
Lipschitz character of €2, such that

][ |V (u—0)P0dr < C][ |A — AP |VulP dx
3BNQ 3BNQ

2—po PO
— 20 2
<C (][ |A— A[2Po> (f ]Vu|2> ,
3B 3BNQ

where we have used Holder’s inequality for the last inequality. It follows that

1/po 1/po
(f |FB|p°) < Ch(eo) (][ \Fpﬂ) , (5.3)
2BN 41BN

2—pg

2pg 2p(
plco) = sup ][ ‘A —][ Al . (5.4)
r€R? B(z,t) B(w,t)

0<t<co

where

By the John-Nirenberg inequality, we see that p(cy) — 0 as ¢g — 0. This implies that the function
Fp satisfies the condition (4.1) in Theorem 4.1 if ¢y > 0 is sufficiently small.

Finally, we note that by the assumption, Condition (2) in Theorem 1.1 holds for the matrix A
given by (5.2). In view of Lemma 4.3, there exist p; > 2 and C3 > 0 such that

1/P1
(]im r<w>w1/2\m) <af (v, (5.5)

from which the condition (4.2) in Theorem 4.1 follows readily. Hence, by Theorem 4.1, we obtain

1/2 1/2 1/2
<][ |Vu]2w) <C (][ |Vu|2> (][ w> ,
BoNQ 4BoNQ Bo

which is equivalent to (1.8) by s simple covering argument. ]

Remark 5.2. Theorem 5.1 continues to hold if diam(€2) > 1. However, in this case, the constants
C will depend on diam(2).

Remark 5.3. Let Q be a bounded C'' domain. Then Condition (2) in Theorem 1.1 holds for any
Ay weight w and for any matrix A satisfying (1.2) and A € VMO(R?). Indeed, let B = B(xo,r),
where xzp € 002 and 0 < r < ¢gdiam(Q2). Suppose that div(AVu) = 0 in 4BNQ and v = 0 on

4B N 0. Then
1/p 1/2
(][ rwp) <c, (][ w?)
BNQ 2BNQ

for any p > 2. By using Hoélder’s inequality and (2.5) we obtain (1.8). Consequently, by Theorem
1.1, the weighted inequality (1.5) holds if Q is C!, w € A;(R%) and A € VMO(RY) satisfies (1.2).
This result is not new and was already proved in [18].
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6 Large-scale weighted estimates in homogenization

In this section we give the proof of Theorem 1.2. We begin by introducing some notations as well
as some approximation results from the homogenization theory. We should point out that Lemmas
6.1, 6.2, 6.3 and 6.4 below are not new. They have become more or less standard in the quantitative
homogenization theory (see e.g. [11, 23, 2]). Throughout this section, unless otherwise indicated,
we assume A is a matrix satisfying the ellipticity conditions (1.2) and the periodicity condition
(1.3). Let x(y) = (X?’B(y)) € HL _(RY) denote the correctors for the operator,

L. = —div(A(z/e)V). (6.1)

B _ (ﬁ 28 mp

More precisely, for each 1 < j < dand 1 < g < m, X5 =0GX X ) is the unique solution

of the following problem:
— div(AVy)) = div(AVP/) in R,
Xf is 1 -periodic, (6.2)

/ xf(y) dy = 0.
Y

n (6.2) we have used notation Y = [0,1)¢ and P]’B = y;(0,...,1,...,0) with 1 in the Bt place.
The homogenized operator is given by £y = —div(AV), where A = (@; a? ) and

et = f [t e o ()]

where the repeated indices are summed. Let

0 ()°) —a;’. (6.3)

B8 _ ﬁ
b% a +azk a 2]

Note that 9
afs _ af
/Ybij dy=0 and 8% (bl] ) 0.
There exist 1-periodic functions qﬁ € Hlo (RY) such that [, gbgg dy =

aff af
b’ij (¢k’t_] ) and stl] ¢ikj ) (64)

where 1 <i,j,k <dand 1 < a,5 < m. The functions ¢ = ((i)z‘g) are called flux or dual correctors.
Let ue € H'(Q) be a weak solution of the Dirichlet problem,

div(A(z/e)Vue) =0 inQ and w.=g¢g on 0. (6.5)
Let ug be the solution of the homogenized problem,
div(AVue) =0 inQ and wup=g on O (6.6)
Consider
we = ue — up — ex(z/e)(1:Vuo), (6.7)

where 7. € C5°(Q) is a cut-off function such that 0 < n. <1, |Vn.| < C/e, n-(x) = 0if dist(x, 00Q) <
de, ne(x) =1 if z € Q and dist(z, 02) > be. Let

S = {z € Q: dist(z,09) < t}, (6.8)

where 0 < ¢t < diam(£2).
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Lemma 6.1. Suppose A satisfies (1.2) and (1.3). Also assume that A € VMO(R?) if m > 2 and
d > 3. Let Q be a bounded Lipschitz domain with 1 < diam(Q) < 10. Let w. be given by (6.7).
Then for any 0 < e < 1,

[Vwe |l 2y < C{HVUOHL?(&—,E) + el V2uol L2 ym,,, }, (6.9)

where C' depends only on d, m, u, the function p in (5.1) (if m > 2 and d > 3), and the Lipschitz
character of €.

Proof. Note that w. = 0 on 0. Let ¢ = (gbgg) be given by (6.4). A direct computation shows
that

-~

Lo(w.) = div{(Ae A1 - nE)(Vuo)} + ediv{ (6° + x°A%)V (1-(Vug)) } (6.10)

where A® = A(z/¢e), x° = x(x/e) and ¢° = ¢(z/e). See e.g. [16, 23]. In the case m =1 or d = 2,
the correctors y and ¢ are bounded. The proof of the boundedness of y and ¢ in the case m =1
[16, 23] uses the De Giorgi - Nash estimates. They are also bounded if m > 2 and d > 3 under the
assumption A € VMO(R?). As a result, (6.9) follows from (6.10) by the energy estimate. O

Lemma 6.2. Let A and ) be the same as in Lemma 6.1. Then there exists k € (0,1), depending
only on d, m, p and the Lipschitz character of ), such that

IVue = Vug = (Vx)*1e(Vuo) | 2) < Ce™[lgll 1 00), (6.11)

where (Vx)¢ = Vx(z/e) and C depends only on d, p, p, the function p in (5.1) (if m > 2 and
d > 3), and the Lipschitz character of Q.

Proof. Note that
Vwe = Vue = Vug — (Vx)n:(Vuo) — £(x)"V (n:(Vuo))-
In view of Lemma 6.1, it suffices to prove that
Vol r2(ss) + €l Vol r22e) < C®llgll 1 (a0)- (6.12)
To this end, we choose a function G € H'(f2) such that G = g on 99 and

| IV G dist(z, 00 do < ClglBys
Q

where x € (0,1/2) is given by Theorem 7.2. Since —div(AV(ug — G)) = div(AVG) in Q, it follows
from Theorem 7.2 that

| 1Vl isa, 090] 5 do < Cllgf oy (6.13)

This implies that
[Vuollzz(ss.) < C"llgllm a0)-

Also, by the interior estimates for the elliptic systems with constant coefficients,

Vuo(z)|?
Viug|*dx < C |— x
/9\245 [V ol o\, [dist(x, 0Q)]?

< Ce™ g3 o0y

where we have used (6.13) for the last inequality. This, together with (6.13) and (6.9), gives
(6.12). O
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Lemma 6.3. Let A be a matriz satisfying the same conditions as in Lemma 6.1. Let u. € H'(Ba,)
be a weak solution of div(A(z/e)Vue) = 0 in By, wherer > 100e. Then there exists ug € H' (B, 2)

such that div(AVug) = 0 in Bs,. 5 such that

1/2 1/2
][ Vgl <C <][ |Vu5|2> : (6.14)
B3r./2 Bor.

(f 90— u- <vX>€<Vuo>r2)l/2 <c(9)'(f ) |Vu512)1/2, (6.15)

r

where C' depends only on d, m, u, and the function p in (5.1) (if m > 2 and d > 3).

Proof. By rescaling we may assume r = 1. There exists ¢t € (3/2,2) such that

/ |Vu|? do < C/ |Vue|? da.
aBt BQ

This follows readily by using the polar coordinates. Let ug € H*(By) be the solution of div(AVug) =
0 in By with ug = u. — k on 0By, where k = faBt ue. By the energy estimate,

|Vug|? de < C’/ |Vue|? d,
By

By
which yields (6.14) with » = 1. To see (6.15), we apply Lemma 6.2 with Q = B;. Since . = 1 in
By and [jue — k|| g19p,) < Cl|Vue|lr29m,), we obtain (6.15). O

Lemma 6.4. Assume A satisfies the same conditions as in Lemma 6.1. Let Q2 be a bounded
Lipschitz domain. Let u. € H'(By N Q) be a weak solution of div(A(z/e)Vue) = 0 in By, N Q
with ue = 0 on By, NS, where B, = B(xg,r) and xzo € 0. Assume 100e < r < crg, where
ro = diam(Q). Then there exists ug € H' (B, /2 NSY) such that div(AVug) = 0 in Bs, /5N, ug =0

on Bs,. ;o N 0Q, and
1/2 1/
][ Vuwl?) <c <][ \vuﬁ) , (6.16)
B3T/QHQ Ba,N

1/2 o 1/2
(f !VUE—WO—(VX)E(WO)W&F) <c (%) <f Wuaﬁ) . (617)
B,NQ r BarN2

where C' depends only on d, m, u, the function p in (5.1) (if m > 2 and d > 3) and the Lipschitz
character of €.

Proof. The proof is similar to that of Lemma 6.3. By rescaling we may assume r = 1. In the place
of By we use B(zg,t) N Q. We omit the details. O]

Lemma 6.5. Assume A satisfies conditions (1.2)-(1.3) and A € VMO(R?). Let w be an Ay weight
and Q a bounded Lipschitz domain with diam(Q2) = 1. Suppose that Condition (2) in Theorem 1.1
holds in € with weight w for the homogenized operator Ly. Let By = B(xo,19) with the properties
that either 4By C Q or xg € 02 and 0 < rg < ¢g. Then

2
/ {MEBO(!VuE\X4BOmQ)} wdr < C/ Vue|* + w, (6.18)
Bon 4BoNS Bo

where div(A(x/e)Vuz) =0 in 4By N Q and ue =0 on 4By N Q (if xo € 0N).
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Proof. We may also assume 0 < € < ¢g and c¢g is small. The case € > ¢ is trivial. We consider the
case xg € 0f) (the interior case 4By C  is similar). We apply Theorem 4.1 with F' = |Vu,| and
f = 0. Fix a large constant L > 1. Let B = B(yo,r) be a ball with the properties that r > Le,
|B| < ¢1|Bp| and that either yy € 2By N 9N or 4B C 2By N 2. Again, we only consider the case
yo € 2By N 0. Note that div(A(z/e)Vus) = 0in 8BN N and u. = 0 on 8B N IN. Let ug be the
solution of div(AVug) = 0 in 4B N €, constructed in Lemma 6.4. Define

Fp = |Vu: — Vuy — (Vx)°(1:(Vug))| and Rp = |Vuy+ (Vx) (n:(Vugp))|.
It follows from (6.17) that

<]£Bn§z |FB|2> " s¢ (;)K <]€Bm |F‘2> - : (6.19)

By using Holder’s inequality for Fig and the reverse Holder estimate for Vu., we obtain

1/po e\ K 1/po
(f imar) "< G)(f, ) (6.20)
2BNQ r 8BNQ

where 1 < pg < 2 depends only on d, p and the Lipschitz character of €.
To verify the condition for Rp, we note that the VMO condition on A implies that |Vx| € LI(Y)
for any ¢ > 2. Since r > ¢, it follows that

o) <o ([ iw)” < oo
2BNQ Y

for any 2 < ¢ < co. Hence, by Holder’s inequality, for 2 < p; < po,

1/171
(][ |RBw1/2]p1> <C <][ |(Vug)w!/2PL(1 + ](VX)aDm)
2BNQ 2BNQ

1/p2
<C (][ \(vuo)w1/2|m>
2BNQ

< c][ (Vuo)w?|
41BN

1/p1

where py > 2 is the exponent p in (4.5) for the homogenized operator Ly. It follows that

1/p1 1/2 1/2
<][ |RBw1/2‘p1> C (7[ \Vu02> (][ w>
2BNQ 4BNQ B
1/2 1/2
(fat) (42)
68BN B
1/po 1/2
(o) (he)
8BNQ B
Since w € Ay, we obtain

1/p1 1/po 1/p1
(][ |RBw\plw) <c <][ |F|p°) (f w) ,
2BNQ 8BNN B

which gives the condition (4.2) in Theorem 4.1. We now choose L > 1 so large that CL™" < 1y,
where 79 > 0 is given in Theorem 4.1. By Remark 4.2 we obtain (6.18) with Milfgo in the place of
3p,- However, it is not hard to see that M3 < Ld/\/lgfgo. This completes the proof. O

IN

IN

IN
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We are now ready to give the proof of Theorem 1.2.

Proof of Theorem 1.2. By dilation we may assume diam(€2) = 1. We will verify Condition (2) in
Theorem 1.1 for the operator L., assuming that the same condition holds for operators —div(AV)
with constant coefficients, where either A = A or A is obtained from A by averaging over a ball.

Let By = B(xg,70), where 0 < rg < ¢g and ¢g > 0 is sufficiently small. We assume zy € 0f2
(the interior case 4By C (2 is similar). Suppose that div(A(z/e)Vu:) =0 in 4By N and u. = 0 on
4By N 0. We need to show that

1/2 1/2 1/2
(7[ \Vus|2w> <C <][ |Vu€|2) (][ w> . (6.21)
BonN 4BoN< Bo

We first observe that if € > ¢y, the estimate (6.21) follows directly Theorem 5.1. To see this, we
note that
p(r; A%) = p(r/e; A) < p(1; A) < o0,

where p is given by (5.1). Thus, by Theorems 1.1 and 5.1, (6.21) holds uniformly in £ > ¢o.
Suppose 0 < € < ¢g. It follows from the proof of Theorem 5.1 that if B = B(yp,r), where r = ¢
and either yy € 2By N 02 or 4B C €2, then

2
][ \Vu*wdz < C (][ |Vue| dm) ][ w. (6.22)
BNQ 2BNQ B

/Bmsz |V |*wde < C/ZBHQ {MgBO(\Vua\mBOnQ)}Zw dx, (6.23)

This implies that

where the operator M5 is defined by (2.23). By a simple covering argument we obtain

/ \Vug\Qw dr < C/ {M%BO(\VUa‘XzLBUmQ)}zW dx
BoNQ 2BoNQ

< C/ |Vu£|2][ w,
4BoNQ Bo

where we have used Lemma 6.5 for the last inequality. O

(6.24)

We end this section with a result for C1 domains.

Theorem 6.6. Suppose that A = A(y) satisfies the ellipticity condition (1.2), the periodicity
condition (1.3) and A € VMO(R?). Let Q be a bounded C' domain. Let u. € HE(Q) be a weak
solution of (1.1) with f € L*°(Q). Then for any Ay weight w,

/ V. 2wt do < C/ | f]Pwtt da, (6.25)
Q Q

where C' depends only on d, m, the function p in (5.1), the Ay constant of w, and SQ.

Proof. Let B = B(xg,r) with a ball with the properties that |B| < ¢;|Q2] and either 4B C Q or
xo € 0. Let u. be a weak solution of div(A(z/e)Vu:) =0 in 4B NQ with u. = 0 on 4B N 9N (in
the case zog € 002). It follows from [21, 22] that

1/p 1/2
<][ yvuayp> <c (f |vugy2>
BN 2BNQ
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for any p > 2. By Holder’s inequality and (2.5), this gives the inequality (1.8) for any w € A;(R%).
By Theorem 1.1 we obtain (6.25) for w™!. Since A* satisfies the same conditions as A, the case
w™! follows by duality. O

If Q is a Lipschitz domain, the inequality (6.25) may not be true for all A; weights, as this would
imply the WP estimate IVue|lr) < Cpll fllzr(q) for 1 < p < oo, by a general extrapolation result.

7 Proof of Theorem 1.3

In this section we consider the weight wy(xz) = [dist(z,0)]7, where —1 < ¢ < 1 and Q is a
Lipschitz domain. Recall that w, is an A; weight if —1 < ¢ < 0, and w, € A,(R?) for p > 1 if
—-1l<o<p—1.

Lemma 7.1. Let A be a constant matriz satisfying (1.2) and 2 a bounded Lipschitz domain. Also
assume that A* = A if m > 2. Let u € H}(Q) be a weak solution of —div(AVu) = div(f) in Q,
where f € L>®(Q). Then, for any —1 <o <1,

/ IVl [dist(z, 00)] da < C / |2 [dist(z, O] da, (7.1)
Q Q

where C' depends only on d, m, u, o and the Lipschitz character of ).

Proof. We may assume —1 < o < 0; the case 0 < ¢ < 1 follows by duality. Since w, € A;(R?), by
Theorems 1.1, we only need to check the condition (1.8).

Let B = B(zo,r) be a ball with |B| < ¢1|€2|. The case 4B C  is trivial. To treat the case
xg € 092, we assume that div(AVu) = 0in 4BNQ and u = 0 on 4BNIQY. Without loss of generality,
we may assume that

QN10B = {(2/,zq) € RY: 24 > Y(a')},

where ¢ : R4~ — R is a Lipschitz function with ¢(0) = 0. Let

(V) (2!, (2")) = sup {|Vu(33/,1/)(:1:/) ts): 0<s< r}.

It follows from the nontangential-maximal-function estimates (see e.g. [15, 23]) that

/ y(vu);magc/ Vul? dz.
BNaQ T J2BNQ

We point out that if m > 2, the estimate above requires the condition A* = A. In the scalar case
m = 1, the symmetry condition is not needed, as one may write div(AVu) = (1/2)div((A+A*)Vu)).
Hence,

][ \Vul|?wy do < CT‘H_U_d/ [(Vu)i. > do + Cr ][ |Vu|? de
BNQ BNoQ 2BNQ

< CT‘U][ |Vu|? d
2BNQ

< C][ |Vu|? dx ][ Wes
2BNQ B

which gives (1.8). O
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Proof of Theorem 1.3. By duality we may assume —1 < o < 0. Since w, € A;(R?), in view of
Theorem 1.2, it suffices to establish the weighted estimate (1.7) with w = we for weak solutions in
H}(Q) of dlv(AVu) = div(f) in €2, where the constant matrix A is either A or obtained from A
by averaging over a ball. But this is already done in Lemma 7.1. Indeed, in both case, A satisfies
(1.2). Also, since A is symmetric for m > 2, so is A. O

We end this section with a weighted inequality with the weight w, for any matrix satisfying
(1.2). The inequality was used in the proof of Lemma 6.2.

Theorem 7.2. Let A be a matriz satisfying (1.2) and Q a bounded Lipschitz domain. Let u €
HE(Q) be a weak solution of —div(AVu) = div(f) in Q, where f € L*(Q). Then there exists
k € (0,1/2), depending only on d, m, u and the Lipschitz character of Q, such that for |o| < 2k,
/ Vu?[dist (z, 9Q)]7 dz < C / (2[dist(z, 0Q)]” da, (7.2)
Q Q

where C' > 0 depend only on d, m, u and the Lipschitz character of §2.

Proof. The result is probably well known. We provide a proof here for reader’s convenience. By
duality we may assume o < 0. The proof uses Hardy’s inequality,

/ |ul?[dist(z, 0Q)] 2 dz < C/ |Vul|? de (7.3)
Q Q
for any u € H}(S2), where C depends only on d and the Lipschitz character of . Now, let u € HZ(Q)

be a weak solution of —div(AVu) = div(f) in Q, where f € L?(2). Let v (x) = dist(z, Q) + ¢
where ¢ > 0. Note that |V < 1. Using

/ AV - V(urp?® / f-V(uyp?®
and the Cauchy inequality, we obtain
[ vupids <0 [ ulivurPasc [ (P do
Q Q
< Clof? [ [ur P+ C | 17Pu da.
where C' depends only on p. Since ui)f € H}(2), by Hardy’s inequality (7.3),
[Pz P e < [ Juve Pidist(e,000]  da
Q Q
<C [ V()P da
Q
<C [ (VuPor o+ Clof [ fuPlort P da,
Q Q
where C' depends only on d and the Lipschitz character of 2. Thus, if C|o|* < (1/2),

/\u| |2 da < C/Q]Vu|2¢t2”da:.
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This, together with (7.4), gives

/|vu\2¢t20dx < cya|2/ |Vu|21/1t2”dx—l—0/ |20 de.
Q Q Q

Again, if C|o|? < (1/2), then

/ Va2 de < C / P de.
9] Q

As a result, we have proved that if Clo|? < (1/2), where o < 0 and C depends on d, p and the
Lipschitz character of €2,

/ \Vu|??27 do < 0/ | £|?[dist (2, 09)]* da.
Q Q

By letting ¢ — 07 and using Fatou’s Lemma we obtain (7.2). O
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