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Abstract

In this paper we continue the study of critical sets of solutions u. of second-order
elliptic equations in divergence form with rapidly oscillating and periodic coefficients.
In [18], by controling the ”"turning” of approximate tangent planes, we show that the
(d — 2)-dimensional Hausdorff measures of the critical sets are bounded uniformly with
respect to the period e, provided that doubling indices for solutions are bounded. In
this paper we use a different approach, based on the reduction of the doubling indices
of u., to study the two-dimensional case. The proof relies on the fact that the critical
set of a homogeneous harmonic polynomial of degree two or higher in dimension two
contains only one point.
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1 Introduction

In this paper we continue the study of critical points of solutions of elliptic equations in
homogenization. More precisely, we consider a family of second-order elliptic operators in
divergence form,

L. = —div(A(z/2)V), (1.1)

where 0 < ¢ <1 and A(y) = (a;;(y)) is a d X d matrix-valued function in R¢. Throughout
the paper, unless indicated otherwise, we shall assume that

e (ellipticity) there exists some A € (0, 1] such that
MEP < (Ay)g, ) and  [(A(y)e, )l < ATHell¢]  for any y,6,C €RY (1.2)

e (periodicity) A is periodic with respect to some lattice I' of R,

Aly+2) = A(y) for any y € R* and z € T; (1.3)
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e (smoothness) there exists some M > 0 such that

|A(z) — A(y)| < M|z —y| for any z,y € R%. (1.4)

We will use the notation,

E,={zeR?: 2((A+ (A7) z,z) < r?} (1.5)

-~

for r > 0, where A denotes the homogenized matrix for A. If A+ (A)T = 2I, then E, =
B(0,r).

Let x(y) = (x;(y)) denote the first-order corrector for £.. We will also assume that the
periodic matrix I + Vy is nonsingular and that

det(I+Vx) > u (1.6)
for some p > 0. Let u. be a non-constant weak solution of £.(u.) = 0 in Ey and
Clu.) = {z: |Vu(z)| =0}, (1.7)

the critical set of u.. Suppose that u.(0) = 0 and

][ u? < 4N][ u? (1.8)
E2 El

for some N > 1. Under the conditions (1.2), (1.3), (1.4) and (1.6), it is proved in [18] by the
present authors that

[{z : dist(z,C(u:) N Eyjp) < r}| < C(N)r? (1.9)
for 0 < r < 1, and consequently,
HT*{x € Eypp: |Vue(z)] =0} < C(N), (1.10)

where C'(N) depends at most on d, A\, I, M, p, and N. This is the first result on geometric
measure estimates, that are uniform in € > 0, for critical sets of solutions of L. (u.) = 0. We
mention that in [17], the following uniform bound of the nodal sets,

HTHa € Bijp: u(z) =0} < C(N), (1.11)

was established by the present authors, under the conditions (1.2), (1.3) and (1.4). Classical
results in the study of nodal, singular, and critical sets for solutions and eigenfunctions
of elliptic operators may be found in [10, 15, 16, 11, 13, 12, 14]. We refer the reader to
9, 21, 5, 19, 20] and their references for more recent work in this area. Since the bounding
constants C'(NN) depend on the smoothness of coefficients, the quantitative results for £ in
the references mentioned above do not extend to the operator L..

The proof of (1.9) in [18] is based on an estimate of "turning” for the projection of a
non-constant solution u. onto the subspace of spherical harmonic order ¢, when the doubling
index for u. on a sphere 0B(0,7) is trapped between ¢ — § and ¢ + §, for r between 1 and a
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minimal radius r* > Cye. In this paper we provide a different and much simpler proof for
the two-dimensional case. Our approach is based on the reduction of the doubling index and
relies on the fact that the critical set of a homogeneous harmonic polynomial of degree 2 or
higher in dimension two contains only one point. We note that the condition (1.6) holds in
the case d = 2 if A is periodic and Hélder continuous.

The following is the main result of the paper.

Theorem 1.1. Let d = 2. Assume that A = A(y) satisfies the conditions (1.2), (1.3) and
(1.4). Let u. € H'(Ey) be a non-constant weak solution of L.(u.) =0 in Ey C R?. Suppose
that u.(0) = 0 and (1.8) holds for some N > 1. Then

(B2 NC(u) < C(N), (112
where C(N) depends at most on X\, I', M, and N.

Throughout the paper we will use C' and ¢ to denote constants that may depend on
d, Ain (1.2), I in (1.3), M in (1.4), and p in (1.6). If a constant also depends on other
parameters, such as the doubling index of a solution, it will be stated explicitly.

2 Homogenization

Let d > 2 and A = A(y) be a d x d matrix satisfying (1.2) and (1.3). The first-order corrector
X = X(y) = (x;(y)) is defined by the cell problem,

0
El(Xj) = ——(aij) in Y,
Dy (2.1)

][ x; =0 and x;is Y-periodic,
Y

for 1 < j < d (the index i is summed from 1 to d), where Y is the fundamental domain for
the lattice I'. The homogenized operator L is given by

Lo = —div(AV), (2.2)
where, for ¢ € R?,
(A€, €) = ][ (AVve, Vve) (2.3)
Y

and ve(y) = (£, y + x(y)). It follows from (2.1) that £1(y; + x;) = 0 in R%. Thus, by De
Giorgi - Nash estimates, x; is Holder continuous. Furthermore, if A is Holder continuous,
i.e., there exist o € (0,1] and M, > 0 such that

|A(x) — A)] < Malz—|*  for any z,y € RY, (2.4
so is V.
Theorem 2.1. Let d = 2. Suppose A satisfies (1.2), (1.3) and (2.4). Then
det(I +Vx)(z) > u (2.5)

for any v € R?, where p > 0 depends only on \, T and (a, M,,).
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Proof. This theorem was more or less proved in [2, 3], although it is not stated explicitly.
Also see related work in [1, 6, 4] and the references therein. We give an outline of the proof
here.

Step 1. Let w; = x; + x;(x) for i = 1,2, and U = (u3,uz). Use the continuity and
boundedness of x; to show that U : R? — R? is onto.

Step 2. Show that U : R? — R? is one-to-one and U~! is continuous. As a result,
U : R? - R? is a homeomorphism. The smoothness condition (2.4) is not needed. See [2]
for details.

Step 3. Let ¢ € R? with |{|] = 1. Consider the function ue = (U,§). Note that
div(A(z)Vue) = 0 in R?. To prove det(I + Vy) > 0, it suffices to show that

|Vue(x)] >0

for any z € R?. To this end, fix yo € R? and ro > 0. Let Q = U~'(B(y,70)). Note
that div(AVue) = 0 in Q, and g = ulsq is unimodal. This implies |Vue(zg)| > 0, where
U(zo) = yo. See [3] for details.

Step 4. Use det(/+Vx) > 0 and a compactness argument to show that det(/+Vx) > u,
where 1 > 0 depends only on A\, " and («, M,,). ]

Remark 2.2. The estimate (2.5) fails if d > 3. See [7, 8] for a counter-example.
By a change of variables we may assume that
A+ (AT =21 (2.6)
See Remark 2.3 in [18]. This ensures that solutions of the homogenized equation Lo(ug) = 0
are harmonic. The following compactness theorem will be used in the next section.

Theorem 2.3. Let u; be a solution of div(A’(x/e;)Vu;) =0 in B(0,ro), where £; — 0 and
A7 satisfies (1.2), (1.3), (2.4) and (2.6). Suppose that {u;} is bounded in L*(B(0,r0)). Then
there exists a subsequence, still denoted by {u;} and a harmonic function uy in B(0,19),
such that u; — ug weakly in L*(B(0,70)) and weakly in H'(B(0,7)) for any 0 < r < ro.
Moreover,
luj = wollLe(B0.ry) = 0,
[Vu; — (I +Vx!(x/g;))Vuol (B0, — 0,
for any 0 < r < 1y, where x? denotes the first-order correctors for the matriz A7.

Proof. See Theorem 2.7 and Remark 2.8 in [18]. O

3 Doubling indices and critical sets

Let d > 2. As in [18], we introduce a doubling index for a continuous function u on a ball
B(zo,7), defined by

f@B(xo,r) (u — u(xo))?

N*(u, xg,7) = log , 3.1
(o o-m) ! faB(:vo,r/2)(U’ — u(z))? (3:1)

assuming ||u — u(xo)|| 2208w, 7 0 for 0 < ¢ < r. Define
M(\T, M) = {A — A(y) : A satisfies (1.2), (1.3), (1.4), and (2.6)}. (3.2)
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Theorem 3.1. Let L > 2 and §y € (0,1/2]. Assume that A € M(X\, T, M). There exists
g0 = go(L,8) > 0 such that if 0 < e < gor and u. € H*(B(xq,7)) is a non-constant solution
of div(A(z/e)Vu.) = 0 in B(xg,r) for some r > 0 and vy € R?, with the properties that,

N*(ug,zo,7) < L+1 and N*(ue,x0,7/2) <+ dp, (3.3)
where { € N and 1 < { < L, then
N*(ug, g, r/4) < €+ . (3.4)
If, in addition, 27¢ < gor for some integer J > 0, then
N*(ug, 20,7/2)) <L +6g  forj=2,...,J+2. (3.5)
Proof. This is proved in [18, Theorem 3.1]. O

Theorem 3.2. Let L > 2 and 6, € (0,1/2]. Assume that A € M(N, T, M). There exists
g1 = e1(L,81) > 0 such that if 0 < ¢ < eyr, u. € H'(B(zo,7)), div(A(x/e)Vu.) = 0 in
B(xg,7) for some xg € R? and r > 0,

N*(uz,zo,7) < L+1  and N*(ue,xo,7/2) <l — 0y, (3.6)

where £ € N and 1 < { < L, then

N*(ug, 29, 617/(8€)) < £ — 1+ 0y. (3.7)

Proof. This is proved in [18, Theorem 3.4]. O
Define

AT, M, ) = {A — A(y) : A satisfies (1.2), (1.3), (1.4), (1.6) and (2.6)}. (3.8)

Theorem 3.3. Let L > 2 and A € A\, T, M, ). There exists g = €o(L) > 0 such that if
u. € HY(B(0,1)) is a non-constant solution of L.(u:) = 0 in B(0,1) for some 0 < & < &y,
N*(u.,0,1) < L, and

N*(u.,0,1/2) < 3/2, (3.9)

then |Vu.(0)] # 0.
Proof. This is proved in [18, Theorem 3.5]. O
Fix L >1,¢>0,r >0, and 29 € R%. Define
F(L,e,r,xg) = {u € H'(B(z,2r)) : u is not constant, u(zg) = 0,
div(A(x/e)Vu) = 0 in B(xo,2r) for some A € A\, T, M, u), (3.10)

and N*(u,z,r) < 2L, N*(u,z,7/2) < L for all z € B(xo,r/2)},
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and

E(L,e,r) =
d—2 B 4 3.11
sup {H (C(u) 2_2 (z0,7/4)) :u € F(Lye,rxg) for some xy € Rd} , (3:11)
r
where C(u) denotes the critical set of u,
C(u) = {z: |Vu(z)| =0}.
Since u € F(L,¢e,r, xo) implies u(- + zo) € F(L,e,r,0), it follows that
d—2 B 4
E(L,e,r) = sup {H (C(UZCEL (0,r/4)) : ue F(Le,r, O)} : (3.12)
By a simple covering argument, it is not hard to see that if 0 < r; < r5/2, then
2
E(L,e,r) < C (?) E(L,e,m), (3.13)
1
where C' depends only on d.
Lemma 3.4. For any 6 > 0,
E(L,e,r) =&E(L, 0,07 r). (3.14)

Proof. This follows from the observation that if v € F(L,e,r,0) and v(x) = u(fz), then
veF(LO e 071r 0) and

HY2(C(u) N B(0,7/4)) = 0 2H2(C(v) N B(0,671r/4)).

Theorem 3.5. If 0 < r < g,'¢ for some gy > 0, then
E(L,e,r) < C(L,ey), (3.15)
where C(L,ey) depends on €y and L.

Proof. Note that by (3.14),
E(L,e,r) = E(L, 7 e, 1).

Since r~'e > ¢ and A satisfies (1.2) and (1.4), the estimate (3.15) follows readily from [21]
for the operator £; (see [11] for the case d = 2 and [12] for the case of smooth coefficients).
Indeed, the coefficient matrix A(x) = A(z/(r~¢)) satisfies the Lipschitz condition (1.4) with
Mey! in the place of M. Moreover, the conditions N*(u,z,1) < 2L and N*(u,x,1/2) < L
for z € B(0,1/2) implies that

/ |Vul? < C’/ u? < C/ u?,
B(0,1) B(0,1) 8B(0,1)

where C' depends on L. The periodicity condition is not needed. O
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Theorem 3.6. Fiz L > 2 and 6y € (0,1/2]. There exists g > 0, depending on L and dy,
such that if 0 < e <eor, f € N and 2 < ¢ < L, then

5(£—50,€,T) Soog(é—l—f—é(),g,cm”), (316)
where ¢y = 9o/ (8¢) and Cy depends on L and &.

Proof. In view of Lemma 3.4 we may assume r = 1. By the definition of £(¢ — 1 + do, €, o),
it suffices to show that if u € F(¢ — dg, ¢, 1,0), then

N*(u,zg,c0) <l —1+0y and N*(u,zg,c0/2) <Ll — 1+ dy, (3.17)

for any zp € B(0,1/2), provided that 0 < € < &y. By covering B(0,1/4) with a finite number
of balls {B(y;,co/4) : j = 1,2,...,ko}, where kg < C(d)/(co)? and y; € B(0,1/4), this would
imply that u € F(¢ — 14 dg, ¢, co,y;) for 1 < j < k. As a result,

H2(C(u) N B(0,1/4)) < ZH‘H(C(U) N B(y;,co/4))
< kocd2E(0 — 1 + 6, €, o),

from which the estimate (3.16) with » = 1 follows.

To see (3.17), we note that N*(u,zo,1) < 2(¢ — dy) and N*(u,xg,1/2) < £ — &, for any
xog € B(0,1/2). By Theorem 3.2 we have N*(u,xq,cp) < £ — 1+ &y, where ¢y = do/(8¢).
Observe that if € is sufficiently small, we may use Theorem 3.1 to obtain N*(u,zq,2c) <
C(L). Applying Theorem 3.1 again gives N*(u, zg,co/2) < € — 1+ dy. O

Theorem 3.7. There exists eg > 0 such that
E(3/2,e,1) =0 (3.18)
for any 0 < e < gor.

Proof. By Lemma 3.4 we may assume r = 1. Let u € F(3/2,¢,1,0). Then N*(u,z(,1) <3
and N*(u,x,1/2) < 3/2 for any xy € B(0,1/2). By Theorem 3.3 we obtain |Vu(zy)| # 0,
if 0 <& < ep. Thus C(u) N B(0,1/4) = 0 and consequently, £(3/2,¢,1) = 0. O

4 Proof of Theorem 1.1

Throughout this section we assume d = 2 and A satisfies (1.2), (1.3) and (1.4). Note that
by Theorem 2.1, the matrix A satisfies the invertibility condition (1.6).

Lemma 4.1. Let d = 2 and fix L > 2. There exist £9,0¢ € (0,1/4), depending on L, such
that if 0 < e < egr, L.(uz) =0 in B(xg,r), u. is not constant,

N*(ug, xg,r) < 2(0460), N*(ue,z0,7/2) < L+ 0y, (4.1)
and u. has a critical point in B(xo,3r/4) \ B(xo,7/128), where € N and 2 < { < L, then

N*(ug, g, 7/4) < € — . (4.2)
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Proof. By translation and dilation it suffices to consider the case xg = 0 and r = 1. To

prove (4.2), we argue by contradiction. Suppose there exist sequences {¢;} C R, and

{u;} € H'(B(0,1)) such that e; — 0, div(A(x/e;)Vu;) = 0in B(0, 1) for some A’ satisfying

(1.2), (1.3) and (1.4), u; is not constant, Vu,(y,;) = 0 for some y; € B(0,3/4) \ B(0,1/128),
N*(u3,0,1) < 20+ (1/)), N*(uy,0,1/2) < £+ (1/7),

and that
N*(u;,0,1/4) > ¢ — (1/5).

We may assume that u;(0) = 0 and
][ u? =1
8B(0,1/2)

Since N*(u;,0,1) < 20+ 2, this implies that {u;} is bounded in L*(9B(0,1)). It follows that
{u;} is bounded in L*(B(0,1)). Thus, in view of Theorem 2.3, by passing to a subsequence,
we may assume that u; — uy weakly in L?(B(0,1)) and strongly in L?(B(0,r)) for any
0 < r < 1, where ug is harmonic in B(0,1). Moreover,

[wj — uoll Lo (B(0.3/2) = O, (4.3)

and
IVu; — (I + VX (x/¢;)) Vol L~ (503725 — 0, (4.4)

where ¥’ denotes the first-order correctors for the matrix A7.
Next, by letting j — oo, we obtain u(0) = 0 and

1= ][ ug.
9B(0,1/2)

Hence, uq is not constant. Moreover,
N*(ug,0,1/2) < ¢ and  N™(up,0,1/4) > ¢.
By the monotonicity of N*(ug,0, ) for harmonic functions, we obtain
N*(ug,0,1/2) = N*(up,0,1/4) = ¢.

It follows that ug is a homogeneous harmonic polynomial of degree ¢. Since d = 2, this
implies that |Vug(z)| # 0 for any = # 0. However, since |Vu,;(y;)| = 0 and

det(I + VX’ (y;/e;)) > p > 0,

in view of (4.4), we conclude that |Vug(y;)| — 0 as j — oo. Since 1 > |y;| > (1/128), we
obtain a contradiction. ]

Lemma 4.2. Fix L > 2. There exist £9,00,0 € (0,1/4), depending on L, such that if
€alé‘§r§1,€€Nand2§€§L,

E(l+do,e,7) <max{E(L+ bo,e,7/2),Co€(€ — 1+ bg,e,0r)}, (4.5)

where Cy depends on L.



Proof. By Lemma 3.4 we may assume r = 1. Let u € F({ + do,¢,1,0), where & € (0,1/4)
is given by Lemma 4.1. Consider the cover

{B(z,1/40) : x € C(u) N B(0,1/4)}.
Let {B(y,,1/40) : j =1,2,...,ko} be a Vitali subcover; i.e., y; € C(u) N B(0,1/4),

ko

C(u) N B(0,1/4) C | ) B(y;,1/8),

Jj=1

and B(y;,1/40) N B(y;,1/40) = 0 for i # j. We have two cases: ko = 1 and ko > 2. Note
that 1 < ky < C for some absolute constant Cj.
If kg = 1, then
C(u)N B(0,1/4) € C(u) N B(y1,1/8).
Since u € F({ + do,¢,1,0) and B(y:,1/4) C B(0,1/2), we have u € F({ + do,e,y1,1/2). It
follows that
() N B0, 1/4)) < E(C+50,2,1/2). (46)
Suppose ko > 2. Then u € F(f —dp, €,y;,1/2) for 1 < j < ky. Indeed, let x € B(y;,1/4).
If | —y;] > (1/128), then y; € B(x,1/2) \ B(x,1/128). On the other hand, if |z — y;| <
(1/128) and ¢ # j, then

lyi — x| > |yi — yj| — |y; — |
> (1/20) — (1/128) > (1/128),

and
lyi — x| < |y — y;| + ly; — 2]
< (1/2) + (1/128) < (3/4).

Hence, y; € B(x,3/4) \ B(x,1/128) for i # j. In both cases, by Lemma 4.1, we obtain
N*(u,x,1/2) <L+ < 2(0—0p) and N*(u,x,1/4) <l — 0y,

for any x € B(y;,1/4), provided that 0 < ¢ < 9. As a result, u € F({ — do,¢,y;,1/2) for
1 < j < kqy. It follows that

#(C) N B0,1/4) < 3 #(Cw) N By, 1/9))
=1 4.7
§k05(£—50,6,1/2) ( )

< C(](C:(f -1+ (50,8,00/2),

where ¢y = 0p/(8¢) and we have used Theorem 3.6 for the last inequality. By (3.13) we may
replace ¢o/2 in (4.7) by 0 = 60/(32L). O

We are now in a position to give the proof of Theorem 1.1.



Proof of Theorem 1.1. It suffices to consider the case 0 < € < €y, where gy = g¢(N) > 0
is sufficiently small. The case € > ¢ is covered by [11, 21].

Let u. € H'(E;) be a non-constant solution of div(A(z/e)Vu.) = 0 in E, where A
satisfies the conditions (1.2), (1.3) and (1.4). Suppose that u.(0) = 0 and the doubling
condition (1.8) holds for some N > 1. Since d = 2, by Theorem 2.1, the invertibility
condition (1.6) is satisfied. By a change of variables we may assume A + (A)7 = 2I. As a
result, £, = B(0,r) and u. satisfies the condition

f u§g4N][ u?. (4.8)
B(0,2) B(0,1)

By the doubling inequality for u. in [17, Theorem 1.2], this gives

[T = (49)
B(z,r) B(z,r/2)
for any € B(0,3/4) and 0 < r < 1. Hence, for x € B(0,1/2) and 1/2 <r <1,

][ u? < C ][ u?
0B(z,r) B(z,5r/4)

<c f u? <C ][ e,
B(z,r/2) OB(z,r/2)

where C' depends on N. Consequently, N*(u., x,1) < L and N*(u.,z,1/2) < L for any
x € B(0,1/2), where L depends on N. This shows that u. € F(L,¢,1,0) for some integer
L>2.

Let €g, 60,00 € (0,1/4) be given by Lemma 4.2. We assume that gy is so small that
Theorem 3.7 holds. We will show that for any / € Nand 1 < /¢ < L,

E(l+ dg,e,r) < C, (4.10)
where 0 < r < 1 and C' depends on L. This yields
#(C(ue) N B(0,1/4)) < C(N). (4.11)
By a simple covering argument we replace B(0,1/4) in (4.11) by B(0,1/2).
To prove the estimate (4.10), we use an induction argument on ¢. To this end, we first
note that (4.10) holds for ¢ = 1. Indeed, if 0 < & < g¢r,
E(1+do,e,7) <E(3/2,e,1) =0,
by Theorem 3.7. If € > ¢¢r, we may use Theorem 3.5 to obtain
E(1+dg,e,7) < C(L,&0).
Next, suppose (4.10) holds for some ¢ < L. If 0 < ¢ < gor, we use Lemma 4.2 to obtain

E(L+1+0dy,e,r) <max {E(l+ 1+ dy,e,7/2),C}, (4.12)
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where C' depends on L. By Theorem 3.5, the estimate above also holds for € > ¢gr. By an
induction argument on j, this implies that

E(l+1+dg,e,7) <max{E(l+ 14 dg,e,277r),C} (4.13)
for any j > 1. Finally, we choose j so large that 27/r < ;. By Theorem 3.5 we obtain
EWl+ 1+ bg,e,1) < C,

which completes the proof of (4.10).
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