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ABSTRACT

This paper proposes an approach for the estimation of a time-varying Hurst exponent to allow accurate identification of multifractional
Brownian motion (MFBM). The contribution provides a prescription for how to deal with the MFBM measurement data to solve regression
and classification problems. Theoretical studies are supplemented with computer simulations and real-world examples. Those prove that the
procedure proposed in this paper outperforms the best-in-class algorithm.
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Time-changing fractional dynamics are identified in signals mea-
sured in systems of various nature, e.g., biological, technical,
financial, etc. One of the models used to describe this phe-
nomenon is the multifractional Brownian motion (MFBM), con-
sidered a generalization of the classical fractional Brownian
motion (FBM). The MFBM is characterized by a time-dependent
Hurst exponent [H(#)], in contrast to the FBM where H is
constant. In this article, an artificial intelligence-based method
dedicated to the estimation of time-varying H(f) from exper-
imental data has been introduced. The algorithm uses a deep
convolutional neural network (CNN) with an encoder-decoder
architecture, the autocovariance function (ACVF), and the
Euclidean distance matrix of the considered process. We demon-
strate how the procedure can be applied when noisy and only
a limited amount of measurement information is available for
estimation. Simulation studies with different time-changing H(f)
show that the proposed algorithm enables estimation of the Hurst
coefficient with improved accuracy in relation to Coeurjolly’s
method, currently perceived as the best in class. We propose
a discriminating procedure that can be used for the classifi-
cation of trajectories for cases with constant and time-varying
fractional dynamics, especially important for context labeling

of experimental data. The simulation study is supplemented
by experimental studies of signals recorded in a hydrogel sys-
tem. Although the proposed methodology is demonstrated for
the MFBM, the designed and validated approach is of universal
meaning and can be applied for systems of any nature where the
time-changing fractional dynamics govern a temporal evolution.

. INTRODUCTION

Complexity identified in measured signals reflects the com-
plex interrelations (structural and functional) valid for observed
systems."” This property does not depend on the scale and nature
of the system; i.e., one can observe complex behavior in geolog-
ical, meteorological, financial, biological, and engineering objects
perceived in a macro-world context, e.g., Refs. *-. Nevertheless,
the complex patterns are also visible when we characterize the
micro-to-nano world, e.g., plasma processes, genomics, and mate-
rials science.””'" Fractional calculus is one of the mathematical
approaches used to model this class of systems and processes,
but applications in measurement science and engineering benefit
from simple and efficient procedures for the depiction of the rules
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and properties governing complexity. Fractional Brownian motion
(FBM) with Hurst exponent H is a stochastic process that can
entail long-ranged temporal correlations'*""> and has been broadly
employed across multiple disciplines.'®'” It has been established
experimentally and defined theoretically to depict complex inter-
relations and system dynamics.'®"” Typically, the estimation of the
constant H on a given scale or within a multiscale view is performed
to reveal and label the system state, e.g., healthy vs asthmatic."*
However, real systems often evolve in time such that the Hurst index
is not constant along the whole time series. For example, persis-
tent or anti-persistent processes, where the state changes with time,
have been observed in systems as diverse as the motion of pro-
teins in living cells,”"** nanoscale particles in the cytoplasm,”>** and
the degradation of Li-ion batteries.”” It has been shown that the
index H can change with time, and thus, a more advanced descrip-
tion [with a reconstructed variation in H(f)] should be applied.
An example of such a process is the generalization of FBM and
the multifractional Brownian motion (MFBM),”** as a theoreti-
cal model, which is valid for the description of real-world systems
of any nature and across various scales. A mathematical conse-
quence of relaxing the stationarity constraint in the MFBM model
lies in the ability to control the local irregularity at the output, which
is valid for physical systems. Thus, the MFBM process provides a
useful description for a host of continuous and non-stationary nat-
ural signals, exhibiting physical complexity encoded in observed
systems and, in turn, broadening the field of its application. One
can imagine a pointwise irregularity evoked by erosion phenom-
ena in pricing, mountain rock, glacier degradation, etc.”’~** Some of
these components cannot be directly measured, and they need to
be reconstructed from experimental data; e.g., a projection of the
relation between cell’s configuration and performance in a wire-
less communication network needs to assume, among other things,
time-varying environmental changes, which profile the output of a
technical system operating in a given geographical location.” Fur-
thermore, a challenge in signal processing is to reliably estimate a
varying H(t) as the fingerprint of the dynamics when the system
is corrupted by a noisy environment using a limited amount of a
prioriinformation. In this article, a prescription for solving this chal-
lenge is provided for the MFBM, considered the classical model with
time-changing fractional dynamics. In contrast to FBM, the MFBM
assumes a time-dependent Hurst exponent. In the literature, one
can find various algorithms for the estimation of a time-dependent
Hurst exponent.”*¢-"!

We develop an approach based on artificial intelligence (AI)
that is verified with numerical simulations and a real-world sys-
tem: signals recorded in a microscale experiment with polystyrene
nanobeads placed in an agarose hydrogel. The proposed tech-
nique utilizes deep convolutional neural networks (CNNs) with
encoder—-decoder architecture.”~** The presented results, i.e., the
method of time-varying H(f) estimation, and qualitative and quan-
titative observations performed for a theoretical and real-world case
can be translated to the real-world system/process of any nature
and scale where the fractional dynamics can be explained by the
time-changing Hurst exponent.

The application of the AI and machine learning (ML) tech-

ARTICLE scitation.org/journal/cha

complex problems; still, the open challenge for an AI/ML domain
is concluded with a short a priori knowledge available.”” Used in
the article, the artificial neural networks (ANNs) exhibit additional
advantages; e.g., when trained, a one-step conclusion is realized in
the ANN for a given input data, which is of significant meaning
for real-time applications, where an iterative scheme of the adaptive
procedures can be ineffective; this is the case for a parameter esti-
mation of the time-dependent processes (e.g., MFBM). On the other
hand, the challenge is a relatively high expectation of the ANN as
regards the amount of data used during training. This triggers fun-
damental and applied studies in the range of ANN, measurement
procedures, and signal processing focused on the development of
the methods and tools valid for reliable characterization of complex
systems and signals with a limited amount of corrupted data.”** The
problem identified in the paper and the prescription developed for
solving it bring contributions both in a range of the studied pro-
cess (MFBM) and tools (ANN applied to modeling of the fractional
dynamics with a limited amount of input data). A recent signal pro-
cessing literature indicates this research area as very promising, also
in the area of fractional dynamics systems.”’~>*

The other contribution introduced in the paper is a discrim-
inating procedure that can be applied to sort out the trajectories
into two classes: classical fractional dynamics systems (the case with
a constant Hurst index) and time-dependent fractional dynamics
(the case with a time-dependent Hurst exponent). As provided, in
the paper, the methodology for intelligent labeling of noisy data
with a short history opens new opportunities for signal processing,
e.g., toward real-time algorithms for annotation of time series data,
where the stated existence of the FBM and MFBM components can
indicate time slots with various modes of system operation. This
method enables a further practical use of the contribution, e.g., to
automatize the monitoring of physiological systems (telemedicine),
identification of normal and critical events among the meteorologi-
cal data, and in industrial applications of IoT (Industry 4.0).

The rest of the paper is organized as follows: In Sec. II, we
review the most important properties of the FBM and MFBM. In
Sec. 111, we introduce the estimation algorithm with the description
of the proposed model’s architecture alongside its training method-
ology and the random dataset construction. Next, in Sec. IV, we
check the effectiveness of the proposed technique for the MFBM
time-varying output with different Hurst exponent functions. The
efficiency of the ANN-based technique is compared with the results
of the approach proposed in Ref. 39. In this section, we also propose
a step-by-step procedure for discriminating the cases with constant
and time-dependent fractional dynamics, characterized by the Hurst
index. In Sec. V, we perform the analysis for the experimental data.
Section VI summarizes the paper.

Il. FRACTIONAL AND MULTIFRACTIONAL BROWNIAN
MOTION

Fractional Brownian motion can be considered an extension of
classical Brownian motion.'*"> FBM {Xy(¢),t > 0} with the Hurst
exponent (also called the Hurst index) H € (0,1) is a zero-mean
Gaussian process that fulfills the following Langevin equation:'*>**
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In the above equation, {ny(t), t > 0} is the discrete fractional Gaus-
sian noise (FGN), which is a zero-mean Gaussian process with the
following autocovariance function (ACVEF):

E [na@nr®)] =D ((t+ D> + (¢t — D —2£7), t>0. (2)

The parameter D > 0 is the so-called diffusion coefficient. It is
worth highlighting that the FGN is a stationary process. The pro-
cess could also be defined using fractional integration””"">* with the
Riemann-Liouville fractional derivative,”® which is a special case of
the Dzherbashian-Nersesian fractional operator.”

The ACVF of FBM is given by

E[Xp)Xu@)] =D (T + 7 — [t =), ,s>0.  (3)

For H > 1/2, the FGN is a positively correlated process and exhibits
long-range dependence (long-memory or persistence).'” In this case,
the FBM is considered a super-diffusive process. For H < 1/2, the
FGN is a negatively correlated process, and it exhibits short-range
dependence (medium dependence or anti-persistence). In this case,
FBM is a sub-diffusive process. For H = 1/2, the FBM reduces to the
standard Brownian motion (BM) {X 1 (1), t > 0}.

The multifractional Brownian motion {Xp« (¢), t > 0} is one
of the extensions of the classical FBM defined above. The MFBM
is a zero-mean Gaussian process with the following ACVF for
t,S 2 O:lhﬁh‘

E [ X ()X (9)]
= D(H(t), H(s)) (#1070 4 HOHIO _ | _ gHOAHO) ()

where D(, -) is the function given by

_ 02 /T(2x+ DT (2y + 1) sin(x) sin(rry)

D(x.y) = 2T (x +y + 1) sin (1 52) ?

In the above equations, o > 0 is a constant, I'(-) is a Gamma
function, and H(-) : [0,00) — [a, b] C (0, 1) is a Holder function.
Similar to the classical FBM, the function H(-) is also called
the Hurst exponent. For interesting properties of MFBM, see, for
instance, Ref. 37.
In this paper, we consider the following Hurst exponent H(-)
defined for t € [0, T] (T > 0 is a time horizon)

e Case 1—constant Hurst exponent:
H(t) = H; (6)
e Case 2—linear Hurst exponent:
H(t) = at + ay; (7)

e Case 3—logistic Hurst exponent:

by
H(t) = b, + ; (8)
O e b (2= b))
e Case 4—periodic Hurst exponent:
t
H(t) = ¢; sin (cz?) + cs. 9)
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As it was mentioned, case 1 corresponds to the classical FBM. Case
2 corresponds to a process that switches steadily from sub- to super-
diffusive regimes (or vice versa). In case 3, we have a similar situ-
ation; however, the change takes place more rapidly, which can be
used to model a fast transition in the mode of motion.””*’ The Hurst
exponent considered in case 3 approximates the regime switch-
ing Hurst exponent. More precisely, with b, = H, b, = H; — H,,
by = Te (0, T), we have

B b3>0 | Hy, t<

H(t) = H + 1+exp{H—2balzl%—T)} ~ H, t>T. (10)
Specifically, the corresponding process approximates a process that
switches at time T from a FBM with Hurst exponent H = H; to a
FBM with H = H,. A particular case is when H; < 0.5 < H,. Thisis
the situation where the process for times ¢ < T exhibits sub-diffusive
behavior, while for t > T, it is a super-diffusive one. Case 4 corre-
sponds to the situation where the regime changes are gradual and
repetitive.

11l. ESTIMATION ALGORITHM

The estimation of the Hurst exponent H(f) for the MFBM
based on a single trajectory is a complex problem. The main ratio-
nale behind this statement is that we want to estimate {H(t)}tT=1
vector of length T given a sample trajectory of length T { Xy ()},
Thus, to estimate the value of the Hurst exponent for a given time
t, one can rely solely on a considered trajectory at point ¢ and its
surroundings. Depending on how locally ergodic the process is, we
can use a smaller or bigger window size to estimate H(t). Regarding
the limited amount of a priori information of the process proper-
ties encoded in the input data and the unclear rules governing the
selection of the window size for analysis, the problem is solved in
the paper with the use of a deep learning methodology based on
convolutional deep neural networks.

To enrich the input information about the process, M = 4 dif-
ferent distance measures have been applied to the raw signal during
the preprocessing phase, namely,

(a) {log(1 + |x; — xj|)}1j»
(b) {log(1 + (x; — xj)z)},-j,
(c) flog(1 + |xix;[)};

(d) {log(1 + (xix))")},

where i,j € {1,2,...,T}.

Distances (a) and (b) resemble the Euclidean distance, while
the last two metrics are in analogy to the covariance. Since the
MEBM can be defined through the covariance matrix (like any
Gaussian process), the empirical covariance matrix can be used to
characterize a given signal. The motivation to use the Euclidean
distance comes from the ACVF’s (4) interpretation, i.e., the higher
H(t), the higher is the variance of the process and thus raises the
probability of increasing the distance between observations. The dis-
tance expressed by the function log(1 + |x|) is used to give more
significance to values closer to zero, while the distance based on
log(1 4+ x?) is used to emphasize more distant and rapid changes.
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The log(-) function is used to achieve resilience to the outliers and
stability of the estimator.

The deep learning model consists of two parts: an encoder and
a decoder.” The transformation is made from a three-dimensional
(T x T x M) input into a one-dimensional vector (T x 1 = T) cor-
responding to the values (H(1), H(2),...,H(T)). Both the encoder
and decoder are based on Inception-ResNet,”" and the whole net-
work resembles U-Net.** The schematic representation of the struc-
ture applied to the model is shown in Fig. 1. Details of each block are
described in Appendix B.

The selection of Inception-ResNet, as an inspiration for both
the encoder and decoder, was motivated by the characteristics of
the inception network.® Specifically, combining both more local
(3 x 3) and wider (7 x 1 and 1 x 7) filters enables to capture a
variety of dependencies. Furthermore, this architecture implements
residual connections, introduced with the ResNet,* which enables

Input
JTXTXD

T/4 x T/4 x 160

5x Inception-ResNet-A

JT/A X T/4 X 160

Reduction-A

T/8 X T/8 x 512

10x Inception-ResNet-B

JT/S x T/8 x 512

Reduction-B

T/16 x T/16 x 1040

5x Inception-ResNet-C

T/16 x T/16 X 1040

Encoder
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building significantly deeper NN trained with a backpropagation
technique® and improves convergence during the training process.

In the paper, the estimation problem consists of mapping a
tensor (T x T x M) onto a vector (T x 1 = T). As the result, the
network (Fig. 1) was also significantly inspired by the U-Net’s
architecture.” However, in the classic implementation, the order
of the tensor does not change. For this reason, the architecture
was modified such that the encoder works on three-dimensional
tensors and the decoder on two-dimensional ones. To extract the
most important (dominant) feature from each column, a reduction
method was applied to the input data where the maximal value over
one of the T axes was taken. It is crucial as if the average is taken,
and then the information related to the whole signal is used. This
stands in contradiction to the locality of the estimates. The network
was trained using randomly generated outputs. In this scenario, each
time a unique realization of the trajectory is provided to the NN

Output

T/4 x 192
T/4 x 96 ”

5x Transpose Inception-ResNet-A

T/4 x 864

Transpose Reduction-A

T/8 x 512
T/8 X 256 ”

10x Transpose Inception-ResNet-B

T/8 X 1296

Transpose Reduction-B

616 X 768

T/16 x 384

T/16 x 384

5x Transpose Inception-ResNet-C

TT/I() X 1040

Decoder

FIG. 1. The architecture of an encoder-decoder structure of NN designed and applied during the experiment.
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TABLE |. Parameterization applied to the H(t) function for the following cases of computer experiments.

Case

Parameters’ sampling method

Case 1—Eq. (6)
Case 2—Eq. (7)
Case 3—Eq. (8)

H ~ %(0.01,0.99)

Hy ~ % (0.01,0.99), H, ~ max(min(Hy + .4(0,0.25),0.99),0.01), a; = 21 g, = H,
Hy ~ % (0.01,0.99), H; ~ max (min (Hy + .4 (0,0.25),0.99),0.01)

b] :Ho, bz :H1 —Ho, bg, S %(10, 250), b4 e %(0.1, 0.9)

Case 4—Eq. (9)
RBM—Appendix A 1
ROU—Appendix A 2

ST—Appendix A 3

H~ %(0.02,0.98), ¢; ~ % (0.01,min (0.99 — H,H)), c; = % (1,200),cs = H

Hy ~ %(0.1,0.9), ¢ ~ % (0.01,0.99)

o~ %(0.1,0.9), 0 ~ % (0.01,0.99), A ~ % (0.1, 100)
Hy ~ % (0.01,0.99), H, ~ %(0.01,0.99), ¥ ~ % (0.1, 10), B ~ % (0.1, 100)

input. The batch consisted of two samples; thus, the input tensor has
the following shape: 2 x T x T x M (as previously stated M = 4).
The T value (corresponding to the number of samples of a trajec-
tory) was randomly selected from T € {256,384, 512}. If it had not
been specified in the other way, the evaluations were based on the
largest T = 512. For a single signal, a random H(t) is selected—one
of the functions presented in Egs. (6)-(9). Moreover, the random
Hurst index was added to the learning set, to reconstruct the possi-
ble random changes of this parameter, which is especially important
during the analysis of experimental data (presented in Sec. V). We
include the cases when H(f) is a stochastic process. Here, three pro-
cesses have been considered, i.e., the reflected Brownian motion
(RBM), the reflected Ornstein-Uhlenbeck (ROU) process, and the
smoothed telegraph process (ST). The corresponding definitions
are presented in Appendix A, and the parameterization for these
processes applied during experimentation is specified in Table I.
Each function has parameters that are selected randomly in the
training set using random variables defined in Table I. Then, based
on a trajectory, M distance matrices are computed and scaled using
the following formula:
X?F;‘edz#, ke(l,...,D}. (11)
# L Lo X

Additionally, normalization is applied to the input data:

T T

N
e = g D0 2 Xk a2

n=1 i=1 j=1

1 N T T 5
o= |FE DL () —u 03
n=1 i=1 j=1
Xscaled _
xrom — Dok THE g Dy, (14)
k o

Parameters ju; and oy are estimated before the training using
N = 1024 randomly generated samples.

Since the values depend only on themselves, the scaling was
applied. This operation enables to control the range of the input
regardless of the type of diffusion or H(). In the study, the first scal-
ing is used to equate the scales of each distance matrix. The input
normalization [illustrated as a block of the network in Fig. 13(a)]

assures the zero mean and unit variance for the input; this normal-
ization accelerates and stabilizes the convergence of the optimiza-
tion algorithms.

The training duration was set to 40 epochs, each consisting
of 4048 batches. Several methods to monitor and tune the learn-
ing process were applied. First, the learning rate scheduler was used,
which contains a warm-up phase. The following recurrent function
for learning rate profiling was implemented:

1076, epoch = 0;
Ir(epoch) = {6 - Ir(epoch — 1), epoch € {1,2,3};  (15)
0.975 - Ir(epoch — 1), epoch > 4.

On top of that, a learning rate reduction in the plateau (after 3
epochs of stagnation by a factor of 0.3) and early stopping® (after 7
epochs) conditions were added to mitigate jumping around an opti-
mum and to stop the computations when no further improvement
is observed, respectively. Both use the validation error to make an
informed choice whenever the learning rate needs to be reduced or
the training stopped. The Adam optimizer was used to fit the model
to the data during training (while the batch size caused by hardware
limitations is small, we increased parameter B; = 0.99).””! The
mean squared error (MSE) function was used as the loss function
during optimization.

IV. COMPUTER VALIDATION OF THE PROPOSED
ALGORITHM

In this section, we present the effectiveness of the method-
ology presented in Sec. III and propose a visual test to discrimi-
nate if the real data correspond to the MFBM with a constant or
time-dependent Hurst exponent.

The effectiveness of the proposed estimation algorithm is eval-
uated using 500 simulated signals of length T'= 512 for cases 1-4
discussed in Sec. II. A time-varying MFBM output is simulated
with the use of the algorithm based on the Cholesky decomposi-
tion for Gaussian processes.”””* For the validation, we use MFBM
with the parameters presented in Table I1. The estimation results are
presented in Fig. 2. With the light red lines, we present the 95% con-
fidence intervals (calculated based on the obtained estimated Hurst
exponent), while with the dark red line, we present the median of
H(t). The blue line corresponds to the theoretical value of the Hurst
exponent.
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TABLE Il. Parameters’ values used for each considered case of H(f) function in the

computer validation.

Case Parameters
1(a) H=0.2
1(b) H=0.8
2 a, = O'fo’og'z,az =0.2
3(a) by =0.2,b,=0.6,b3=15,b,=0.5
3(b) bl == 02, bz - 06, b3 = 250, h4 = 05
4 = 03, = 10, 3= 0.5

One can observe that the proposed algorithm estimates H(t)
correctly (with wider confidence intervals for small and large times).
Both examples—constant functions [Cases 1(a) and 1(b)]—are esti-
mated accurately. The confidence intervals are narrow, and the
estimated functions are very close to the theoretical ones. For the
linear function (Case 2), one can observe a significant increase of
uncertainty at the boundary. This behavior is in line with intuition as
there is less evidence that this function continues to be linear outside
the boundary. By interpreting the confidence intervals, the model
prefers a constant solution at the boundaries. In the following exam-
ples, one can observe that the more volatile H(f), the more unstable
the estimator FI(£). This can be observed by comparing the twin
examples—Cases 3(a) and 3(b). With smoother H(t) [Case 3(a)], the
quantile lines of FI(f) are also smoother and less variable compared
to Case 3(b), where one can observe sudden jumps and distortions of
the estimates. In the situation when H(f) is periodic (represented by
Case 4), the estimator underestimates and favors the solution closer
to a constant, i.e., the mean value.

ARTICLE scitation.org/journal/cha

We have compared the obtained results using the proposed
algorithm with the technique considering the classical method for
estimation of the Hurst exponent for MFBM presented in Ref. 39.
This method is based on the observation that the convolved trajec-
tory (with a specific wavelet filter) produces a linear relation with
the dilatation rate of the filter. In this relation, the slope is propor-
tional to H(f) at a given time ¢, and it can be extracted using basic
transformations. However, it cannot be done for all ¢ € {0, ..., T}
because the filter (wavelet) length amplified by the dilatation lim-
its the number of beginning times ¢ for which the estimate can be
evaluated. We have made the comparison using two lengths of sig-
nals: T = 256 and T = 2560, with the examples proposed in Ref. 39
[with proposed optimal parameters for each of the H(#) functions].
One can observe (see Fig. 3 and the summary statistics in Table I1I)
that for T = 256, the proposed estimation algorithm outperforms
the classical technique. First of all, the proposed method allows one
to estimate H(t) for all values of the time points t € {1,2,...,T}.
This is crucial, especially for small trajectories, because, with such
a limitation, we can lose information about a large percentage of a
trajectory as the estimate does not exist. The algorithm presented in
Ref. 39 (with proposed optimal parameters) is unable to estimate the

first 39 values of {H(t)}tT= 1> effectively producing a vector {H(z‘)}tr= 10

The comparative studies indicate that the variance of the esti-
mator presented in Ref. 39 is higher than the variance of the
introduced estimator. For the case presented in Ref. 39, namely,
for T = 2560, the considered methods coincide with the intro-
duced algorithm having a slightly lower variance. However, it has
bias issues on the boundaries. This is mainly caused by the fact
that the model was not trained on such long trajectories, and it
has learned an estimator H(#) for which V,_oH(t) = H(0) A H' ()
= 0 and V.. rH(t) = H(T) A H'(t) = 0. Despite this, in general, the

1.0 1.0 1.0
— A N e e .
0.8 — H 0.8 — 0.8
""""""""""""""""""""""""" v
_ 06 06 __ 06
= = S
T, T o4 T 04
vy -t 02 — H® 02
----------------------------------- . — H(t)
0.0 0.0 0.0
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
t t t
(a) (b) (c)
1.0 1.0 1.0
— A e .
08 0.8 0.8
06 =] 06 0.6
= £ S
=04 == = 0.4 = 0.4
>
N o
0.2 —_ 0.2 0.2
0.0 0.0 0.0
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
t t t

FIG. 2. Quantile lines ofﬁ(t) for each considered case overlied on true H(t). The dark red lines represent the median and the lighter are 95% confidence intervals. We used
500 Monte Carlo simulations of the trajectories of the length T = 512.

Chaos 32, 083148 (2022); doi: 10.1063/5.0093836
Published under an exclusive license by AIP Publishing

32, 083148-6

£2:€0:61 £20Z Isnbny 80



Chaos

1.00 —- JF Coeurjolly's method T
—— Proposed method ————
075 = H(t)
[l RO TPTEL
£ 050 T
025 e
0.00
0 50 100 150 200 250
t
(@)
1.00 —-:. JF Coeurjolly's method ‘:":‘_"l.
—— Proposed method
0.75 e H(t)
= ot
g 050
0.25
0.00

0 500 1000 1500 2000 2500
t

(©)

ARTICLE scitation.org/journal/cha
1.00 = JF Coeurjolly's method
—— Proposed method
0.75 === H(t)
=
F 050
0.25
0.00
0 50 100 150 200 250
t
1.00 —-. JF Coeurjolly's method
—— Proposed method
0.75 e H(t)
=
£ 050
0.25
0.00

0 500 1000 1500 2000 2500

(d)

FIG. 3. Comparison of the results obtained using the introduced algorithm and the technique proposed inRef. 39. The quantile lines of ﬁ(t) are drawn to depict the estimators’
characteristics for cases considered inRef. 39. The middle line depicts the estimators’ median, while the surrounding lines correspond to 95% confidence intervals.

proposed estimator characterizes the lower error (see Table IIT with
summary statistics); thus, one can conclude that the algorithm pre-
sented in this paper is more effective overall, especially, for shorter
trajectories.

It is worth highlighting that the algorithm proposed in this
paper is superior with respect to the algorithm described in Ref. 39
because it does not need to find optimal hyperparameters. The
model is equipped with optimal filters and aggregates the informa-
tion with an optimal window size, whereas in the method proposed
in Ref. 39, it is needed to specify appropriate wavelets, with an
optimal aggregation window, where choice has a tremendous effect
on the estimate. Choosing a too wide window can lower the vari-
ance of the estimator; however, it will increase the bias toward a
constant solution. With a too narrow window, the estimator can
capture rapid changes in the process’s characteristics; yet, because
of the increased variance, it might be random and this could lead

TABLE lIl. Error summary metrics for tested methods and cases presented in Fig. 3.
We indicate as Method A the proposed method and as Method B Coeurjolly’s method.

Case T Method MAE RMSE
Linear case 256 A 0.0566 0.0732
B 0.0971 0.1237

2560 A 0.0380 0.0485

B 0.0560 0.0710

Logistic case 256 A 0.0629 0.0800
B 0.1052 0.1293

2560 A 0.0340 0.0443

B 0.0549 0.0691

to incorrect conclusions. This is difficult, especially because, as it is
shown in Ref. 39, the optimal hyperparameters are different for cases
with the linear and logistic H(f). This yields that there is a need to
know what type of H(f) function the process is governed by before
the estimation algorithm starts. Using neural networks, we opt for an
optimal solution without the need for guessing the optimal param-
eter and knowing what type of function H(f) is considered. It is
because we train the model with several types of functions and
because the convolutional neural networks’ feature is that they have
shared filters” weights. This guarantees for the method to perform
well even if a function does not strictly belong to the family of
functions the model was trained on. For this reason, the proposed
solution will perform better not only for functions originating from
training set (see comparison for exemplary functions, with parame-
terization presented in Table II, shown in Fig. 4 supplemented with
summary statistics presented in Table I'V) but also for any piecewise-
defined function. Furthermore, because we can approximate any
function by a piecewise linear function, thus, this method is uni-
versal and versatile. We demonstrate it on the example shown in
Fig. 5 in which a similar simulation approach is used as in Fig. 3
but with a trajectory length T'= 512 and a more complex H(f) func-
tion—the piecewise constant and the sinusoidal function. One can
observe that the method proposed in this paper indeed captures the
temporal rapid changes of H(t) even though such a function is not
in the set of training functions—only its components. Furthermore,
from the comparison with the algorithm proposed in Ref. 39, the
new method allows one to discover a much more convoluted H(),
whereas the other one smooths out this region causing the temporal
periodic behavior to be impossible to educe. This performance dif-
ference is even more emphasized in Table V, where the error metrics
for Coeurjolly’s method™ are almost three times larger.
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FIG. 4. Comparison of the results obtained using the introduced algorithm and the technique proposed in Ref. 39. The quantile lines of P(t) are drawn to depict the estimators’
characteristics for cases whose error metrics are summarized in Table V. The middle line depicts the estimators’ median, while the surrounding lines correspond to 95%
confidence intervals. To compute those, we performed 500 Monte Carlo simulations with trajectories of the length T = 512.

A. Discriminating algorithm between cases with a can be used to discriminate the mentioned cases. The discriminating
constant and time-varying Hurst exponent algorithm proceeds as follows:

As it was shown in the above analysis, even if the analyzed
data correspond to the MFBM with a constant Hurst exponent (i.e.,
FBM), the estimated H(t) is not constant. Furthermore, it varies
around the true value of the Hurst exponent, which comes from
the fact that the calculated H(¢) from the data is only an estima-
tor that, from a mathematical point of view, is a random variable.
Hence, there is a need to discriminate the cases when the non-
constant FI(f) corresponds to the MFBM with the Hurst exponent
being a time-varying deterministic function and FBM [H(¢) is con-

o For a real signal of length T, estimate the Hurst exponent F, (£),
t=1,2,..., T using the proposed estimation algorithm;

o Calculate the mean of the obtained values Hy(£) along t. This
value we denote as H.;

e Simulate M FBM time-invariant outputs with the Hurst expo-
nent Hy,; of the length T;

e For each simulated signal, estimate the Hurst exponent using
the proposed estimation algorithm. As a consequence, we obtain

stant]. Consequently, in this part, we propose a simple visual test that M values of H(?);
1.0 =+ JF Coeurjolly's method
TABLE IV. Error summary metrics for the cases from Sec. || with parameters defined ol —_ Proposedmethod
in Table II. 0.8
Case Method MAE RMSE -0
I
1(a) Proposed method 0.0277 0.0350 0.4
Coeurjolly’s method 0.0460 0.0578
1(b) Proposed method 0.0331 0.0420 02
Coeurjolly’s method 0.0681 0.0855 00
2 Proposed method 0.0429 0.0551 '
Coeurjolly’s method 0.0621 0.0793 0 100 200 300 400 500
3(a) Proposed method 0.0465 0.0594 t
Coeurjolly’s method 0.0684 0.0872 ) ) ) ) )
3(b) Proposed method 0.0436 0.0576 FIG. 5. Comparison of the results obtained using the |r/1\troduced algorithm and
Coeuriolly’s method 0'2 679 0' 4248 the technique proposed inRef. 39. The quantile lines of H(t) are drawn to depict
oLy ’ ’ the estimators’ characteristics when H(t) is a piecewise constant and sinusoidal
4 Propgsed)method 0.0693 0.0889 function. The middle line depicts the estimators’ median, while the surrounding
Coeurjolly’s method 0.1231 0.1475 lines correspond to 95% confidence intervals. Case with T = 512.
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TABLE V. Error summary metrics for example from Fig. 5.

Method MAE RMSE
Proposed method 0.0584 0.0771
Coeurjolly’s method 0.1492 0.1860

e Foreacht=1,2,...,T, calculate the empirical quantiles on the
level /2 and 1 — /2 and construct the empirical confidence
interval for the Hurst exponent on the level 1 — «. For a given ¢,
we denote it as [Qu2 (1), Q-2 (H)];

e Foreacht=1,2,..., T check if F,(¢) falls into the constructed
confidence interval. If for minimum 100(1 — «)% of the ¢ val-
ues it is satisfied that Hy(¢) € [Qu/2(D), Qa2 ()], then we can
suspect that the signal corresponds to the FBM. Otherwise, we
cannot assume the constant Hurst exponent and assume the
signal corresponds to the MFBM with time-varying H().

The discrimination between constant and time-varying Hurst
exponents can be performed based on the plot (visual inspec-
tion), where we demonstrate the functions Hy(f) and the con-
structed empirical confidence intervals [Qy/(f), Qi—q/2(f)] along
t=1,2,...,T or on the basis of the percentage of time points
for which the estimated Hurst exponent falls into the constructed
confidence intervals.

To demonstrate the effectiveness of the proposed discriminat-
ing algorithm, first, we analyze the MFBM time-varying output with
the linear Hurst exponent corresponding to Case 2, see Eq. (7), and
the same parameters used in the simulation study (listed in Table IT).
Here, we consider the signals of length T'= 512. For the simulated
signal, we perform the steps mentioned above, and in Fig. 6(a), we
show the estimated Hurst exponent and the constructed confidence
interval (and the median) for « = 0.05. We assume M = 1000 as the
number of FBM time-invariant outputs used to construct the confi-
dence intervals and the median. As one can see, the estimated Hurst
exponent does not fall into the constructed confidence interval for
most of the ¢ values (81%) and the hypothesis of the constant H(?) is
rejected.

Percentage: 81%

0.8 —— H(®)
— A

0.7 ... Confidence Interval
—— Median

0.5

A(t)

0.4
0.3

0.2

(@)
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As a second example, we analyze the FBM time-invariant out-
put with the Hurst index equal to the mean of H(f) used in the linear
case described above with the value equal to H = 0.5. In Fig. 6(b),
we demonstrate the visual test described above for @ = 0.05 and
M = 1000. This result indicates that the hypothesis of the constant
Hurst exponent cannot be rejected. The percentage of time points
for which the estimated H,(¢) falls into the constructed confidence
interval is equal to 100%. In this plot, one can also observe that the
median obtained from Monte Carlo simulations is not very close
to the constant H(f) = H = 0.5 from which the process was simu-
lated. The reason for that is the time average taken from the series of
estimators {H(f)} resulted in a value only close to the median. This
behavior is strictly connected to ergodic theory and the fact that the
following limit limy_, % Z:T: . H(t) does not converge to H as fast
as limy o ﬁ Zf‘il H.(H) ~EH(t) due to the inter-dependencies
in {H(t)} as all of the estimates {PAI(t)}tT= | use common trajectory,

\M
whereas {H;(t)},_, are evaluated using M independent trajectories.

V. EXPERIMENTAL DATA ANALYSIS

To evaluate the performance of the proposed algorithm on
experimental data, we analyze the trajectories of polystyrene beads
of 50 nm in diameter in an agarose hydrogel. The experimental
system has been previously described.'® A 1.5% agarose gel was pre-
pared from agarose powder by dissolving it in phosphate-buffered
saline. The polystyrene beads were first heated to 60°C in 0.5%
Tween 20 and introduced into the agarose solution that was main-
tained at the same temperature and mixed for 15 min. Then, it was
transferred to a hot cover-slip where it slowly cooled until it reached
room temperature. The beads were imaged in an inverted micro-
scope with a 40 x objective at 71 frames/s. Tracking of the individual
beads was performed in LABVIEW using a cross-correlation-based
algorithm.”* A total of 40 trajectories, consisting of 512 data points
each, were analyzed here.

It was previously established that the motion of microspheres
in agarose hydrogels displays mean squared displacement, power
spectral density,'® and an empirical anomaly measure’” consistent

Percentage: 0%

'lvl
— H(t)
0.45 o
e —— F(E)
_.r.‘.:‘f"* | -.-=. Confidence Interval
0.40 r ~—— Median
0 100 200 300 400 500

t

(b)

FIG. 6. The visual test for validating if an estimate corresponds to a constant case. The confidence intervals correspond to an average of l:l(t). The percentage on top of

the figures represents the percentage of the Hb being out of CI. Case T = 512.
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FIG. 7. Sample trajectories of experimental data. (a) Three exemplary trajectories for which we cannot reject the FBM hypothesis with significance level « = 0.05. (b) Three
exemplary trajectories for which we reject the FBM hypothesis with significance level o« = 0.05.

with those of FBM. However, the hypothesis that the Hurst expo-
nent is constant in time has never been rigorously tested. Thus, the
MFBM testing algorithm provides a good tool for the validation or
rejection of FBM.

Representative trajectories are shown in Fig. 7. To demonstrate
how the proposed estimation procedure and the discriminating

algorithm described in Sec. IV A can be applied to real data, we
demonstrate the estimated H(t) and the constructed confidence
intervals calculated for the trajectories of FBM with the Hurst expo-
nent equal to the mean of H( (Fig. 8), similar to what was described
in the discriminating algorithm. In the upper panels, we demon-
strate the results for the trajectories presented in Fig. 7, for which

Trajectory 1 Percentage: 0.0% Trajectory 2 Percentage: 0.6% Trajectory 3 Percentage: 0.0%
045 — A 0.60 — A 060 — H(®
Confidence Interval Confidence Interval 0.55 Confidence Interval
040 —— Median 055 —— Median - — Median
oniin, 0.50 o :
© 0.45
AN
0.40
0.35
0.30 0.30
0.25 0.25
0 100 200 300 400 500 0 100 200 300 400 500 o 100 200 300 400 500
t t t
Trajectory 1 Percentage: 7.2% Trajectory 2 Percentage: 14.1% Trajectory 3 Percentage: 57.4%
S - 0.70 S
055 — A 0-65 — AW — AWM
Confidence Interval 0.60 Confidence Interval 0.65 Confidence Interval
0.50 —— Median —— Median 0.60 —— Median
0.55
0.55
= 0.50 =
= =050
* 0.45 B
0.45
0.40
0.40
0.35 0.35
030 030
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FIG. 8. The visual test for validating if a given trajectory corresponds to FBM [constant H(t)]. The confidence intervals are constructed by FBM time-invariant outputs with the

Hurst exponent equal to the mean of I:I(t), t=1,2,...,T.Onthe top, we present the percentage of I:l'g (t) out of the confidence intervals. The trajectories in the upper panels
were found with the percentage below the set = 0.05 (the hypothesis of FBM cannot be rejected), and in the bottom panels, we demonstrate the exemplary trajectories

for which the hypothesis of FBM is rejected (the percentage is higher than o« = 0

.05). (a) First exemplary trajectory for which the hypothesis of FBM cannot be rejected.

(b) Second exemplary trajectory for which the hypothesis of FBM cannot be rejected. (c) Third exemplary trajectory for which the hypothesis of FBM cannot be rejected.
(d) First exemplary trajectory for which we reject the hypothesis of FBM. (e) Second exemplary trajectory for which we reject the hypothesis of FBM. (f) Third exemplary

trajectory for which we reject the hypothesis of FBM.
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FIG. 9. The estimated Hurst exponents H(t) with their confidence intervals constructed by simulating 1000 trajectories of the MFBM with I:I(t). (a) First exemplary
trajectory—constant Hurst exponent. (b) Second exemplary trajectory—constant Hurst exponent. (c) Third exemplary trajectory—constant Hurst exponent. (d) First exemplary
trajectory—time-varying Hurst exponent. (e) Second exemplary trajectory—time-varying Hurst exponent. (f) Third exemplary trajectory—time-varying Hurst exponent.

the estimated Hurst exponent falls into the constructed confidence
interval for minimum 100(1 — )% time points (see information on
the top of the plots), while in the bottom panels, we show the results
for selected trajectories for which we have the opposite situation.
In the second case, the hypothesis of FBM cannot be accepted, and
we assume the MFBM with the time-varying Hurst exponent. Addi-
tionally, in Fig. 8, we also demonstrate the median of the estimated
Hurst exponent along time points. In the analysis, we take o = 0.05
and M = 1000. In general, the number of trajectories for which the
hypothesis of FBM cannot be rejected using the introduced dis-
criminating algorithm is equal to 29, while for 11 trajectories, the
hypothesis of FBM with constant H is rejected.

In Fig. 9, for trajectories presented in Fig. 7, we show H(f)
with the confidence intervals constructed using 1000 MFBM time-
varying outputs with the estimated Hurst index. One can clearly see
that the signals simulated with the corresponding models (see con-
fidence bounds) fully reflect the behavior of the estimated Hurst
index, such as rapid changes and the time-varying Hurst index
for the cases demonstrated in the upper panels of Fig. 9. The
cases presented in the upper panels, according to the discrimi-
nating algorithm, correspond to the FBM. Indeed, the estimated
Hurst indexes as well as the confidence bounds obtained from the
simulated signals exhibit small volatility with respect to the cases
demonstrated in the bottom panels. Additionally, it should be high-
lighted that the estimated Hy(f) (corresponding to the analyzed
trajectories) falls into the constricted confidence intervals. From the
above analysis, we can conclude that the tested MFBM models are
appropriate for the examined trajectories.

The current results provide a validation for the FBM model
in 73% of the analyzed trajectories. However, the classical FBM is
rejected in the remaining 27%. The average of Hurst indexes indi-
cates that the trajectories are of the sub-diffusion type, as expected
from previous analyses. The deviations from a constant Hurst index
are usually observed during specific periods at which the trajecto-
ries either become super-diffusive (H > 0.5) or are seen to exhibit a
more marked sub-diffusive behavior. In the former cases, a plausible
explanation is that small transient water flows can cause the beads
to exhibit directed motion such that the motion appears super-
diffusive during these short times. On the other hand, the case of a
reduced Hurst index can be caused by imperfections in the hydrogel
leading to material heterogeneities. In particular, as a particle tra-
verses a denser region within the medium, it would experience more
negative increment autocorrelations and it would transiently appear
as FBM with smaller H.

While the majority of the trajectories are found to be of the
FBM type, validating previous assumptions, the use of the algorithm
for the identification of MFBM in individual trajectories provides
very useful information along two different lines of data analysis.
First, the method can be used to discriminate trajectories that do
not correspond to the simple FBM with constant H. Furthermore,
the evaluation of the deviations from constant H provides a tool for
the characterization and understanding of these anomalous events.
Second, given that a viscoelastic material with homogeneous physi-
cal properties should yield trajectories with constant H, the detection
of MEBM can be used to evaluate the properties and quality of the
material itself. This is, in fact, one of the main goals of microrheology
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experiments, where the motions of embedded particles are analyzed
in order to measure the mechanical properties of the medium on
microscopic scales.”

VI. SUMMARY

The contributions provided in the paper can be listed in several
highlights:

e The problem of identification and characterization of the com-
plex fractional dynamics is discussed and solved for limited
input information and the exemplary model of MFBM [with
time-varying H(t) coefficient, adequate to the temporal mech-
anisms of the fractional system dynamics].

e The Al-based scheme has been designed for constant and
time-dependent H(f) estimation and for the sequential binary
annotation of the measured signal.

e The MAE and the RMSE estimation errors, measured during the
computational experiments for linear, piecewise, and sinusoidal
changes of H(t), did not exceed 6% and 8%, respectively, which
is half that of the reference method.

e The methodological prescription outlined qualitatively and
quantitatively in the paper can be mapped to complex sys-
tems of any nature where the observed output exhibits temporal
fractional dynamics.

e The designed Al-based algorithm can inspire and contribute to
other real-time signal processing schemes operating with short
time series in the presence of noise. This work paves the way for
developments in various services, including, e.g., telemedicine,
HoT/Industry 4.0, smart city, etc.
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APPENDIX A: STOCHASTIC PROCESSES
CORRESPONDING TO THE HURST EXPONENT USED
IN THE LEARNING SET

1. Reflected Brownian motion

Brownian motion {Hgy(f), t> 0} is a stochastic process
defined by the following Langevin equation:”’

dHZAf(t) = V20 (), (A1)

where {1,,(f), t > 0} is the Gaussian white noise process (i.e., pro-
cess of uncorrelated random variables with zero-mean and constant
variance—here, we assume that it is equal to 1) and o > 0. The
ACVF for BM is given by

E [Hpm(H)Hppi(s)] = 20> min{t, s}. (A2)

The reflected Brownian motion is a way of keeping the Brownian
motion within a given domain. In our case, the domain is given by
a (0,1) interval, and the reflection is performed at any given time
when the process exceeds it. In the general case, it can be any given
domain.

The process we use for H(t) that differs from the definition (A1)
is that the starting point Hgy(0) = H,.

2. Reflected Ornstein-Uhlenbeck process
The classical Ornstein-Uhlenbeck process {Hoy(t), t > 0} isa
stationary solution of the Langevin equation of the following form:”*

dHoy(t)
dt

= A — Hoy()) + ony (), (A3)

where {1;/,(f), t > 0} is the Gaussian white noise and © € R, 1 > 0
and o > 0 are the parameters of the process. On the other hand,
the OU process can be obtained from a Brownian motion by the
so-called Lamperti transformation.”

When Hpy(0) is constant and i = 0, the ACVF of the consid-
ered process is given by

2
E [Hou(t) Hou(s)] = "7 e, (A4)

The reflected Ornstein-Uhlenbeck process is defined similarly as the
reflected Brownian motion defined in (1). Specifically, at every given
time ¢, when a trajectory exceeds a given threshold, it is reflected.

The parameterization for trajectories’ simulation is that
m = Ho and HOU(O) = H().
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3. Smooth telegraph process

The telegraph process (asymmetric) {Hr(f), t > 0} is defined
as follows:*

Hi(t) = ho(=D" + hy, (A5)

where {N(f), t> 0} is the homogeneous Poisson process® with
the intensity y > 0 and hy, h; are the positive real numbers such
that hy < hy < 1 — hy. The asymmetric telegraph process is a two-
stage process taking the values Hy = h; — hy and H, = h; + hy
with probabilities e* sinh(y t) and e”?* cosh(y ), respectively. The
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smoothed (filtered) asymmetric telegraph process {Hsr(t), t > 0} is
defined through the following stochastic differential equation in the
following form:™

dH.
__5?9:=—5Hga)+ﬂHﬂﬂ’ (46)

where B > 0 is a parameter of the filter and {Hy(f), t > 0} is an
asymmetric telegraph process defined in Eq. (A5).

T/4 41 % 160

1x T/a41x 112
T/4 % T/4 % 160

441 x 144

T/8 % T/8 x 160

T/8 % T/S x 192

T/8 X T/S T/S X T/8 x 160

T/8 X T/8 x 512

(b)

T/a+1 % 192

T/4+1 % 160

T/4 x 512

(d)

FIG. 10. Blocks of type A. (a) Inception-ResNet-A. (b) Inception-ResNet-Reduction-A. (c) Transpose Inception-ResNet-A. (d) Transpose Inception-ResNet-Reduction-A.
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APPENDIX B: DETAILS OF NEURAL NETWORK'’S (e) Fig.
ARCHITECTURE (f) Fig.

Building blocks of the architecture presented in Fig. 1 are (}gl) llilg
described in detail in the following figures: ( (i; Fig

(a) Fig. 13(a)—Stem,

(b) Fig. 10(a)—Block A,

(c) Fig. 10(b)—Reduction Block A,
(d) Fig. 11(a)—Block B,

T/8 x T/8 x 512

T/8 x 256

(j) Fig.
(k) Fig.
(1) Fig.
(m) Fig.
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11(b)—Reduction Block B,
12(a)—Block C,

12(b)—Transpose Block C,
13(c)—Max-Reduce Block,
11(d)—Transpose Reduction Block B,
11(c)—Transpose Block B,
10(d)—Transpose Reduction Block A,
10(c)—Transpose Block A,
13(b)—Transpose Stem.

T/8 X T/8 x 512

T/8 % T/8 x 512

T/8 x T/8 x 512

T/8 x T/8 x 128

T/8 X T/8 x 512

T/8 X T/8 x 128

T/S x T/8 x 128

T/8 X T/8 x 128

T/S X T8 x 256

T/8 x T/8 x 512

T/16 X T/16 x 512

T/8+1x T/8+1x 512

T/8 x T/8 x 512 T8 x T/8 x 512

T/8+1x T/8+1x 512 T/8+1x T/8+1x 512 T/8+1x T/8+1x 112

T/S+1 % T/8+1 % 192 T/S+1 % T/8+1 % 168 T/S+1 % T/8+1x 144

T/16 X T/16 x 192

T/16 X T/16 x 168 T/16 x T/16 x 168

T/8 x T/8 x 512

(a)

T/16 X T/16 X 1040

(b)

T/16 % 768

T/8 x 256

T/16 x 768

T/8 x 128

T/8 % 768

T/16 x 768 T/16 % 168

T/16 x 768

T/16 x 192 T/16 % 168 T/16 x 168

T/8 41 x 192 T/8 41 % 168

T/8 41 % 168

(©

T/8 % 1296

(d)

FIG. 11. Blocks of type B. (a) Inception-ResNet-B. (b) Inception-ResNet-Reduction-B. (c) Transpose Inception-ResNet-B. (d) Transpose Inception-ResNet-Reduction-B.
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T/16 X T/16 X 1040

T/16 % T/16 x 1010 T/16 % T/16 x 192

T/16 X T/16 x 192

T/16 % T/16 x 102

X T/16 x 384

T/I6 % T/16 % 1040 T/16 x 1040

T/16 x 384

X T/16 x 1040

T/4 % 160

TH+1XT+1xD

T/2 % T/2 % 32

T/2 % T/2 % 32

T/2 X T/2 x 64

T/4 % T/4 % 80

T/4 % T/4 % 112

T/4 X T/4 % 160

Output

(@) (b) (©

FIG. 13. Stem blocks and Max-Reduce block. (a) Stem. (b) Transpose Stem.

(c) Max-Reduce.
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T/16 % 384

T/16 x 192

FIG. 12. Blocks of type C. (a) Inception-ResNet-C.
(b) Transpose Inception-ResNet-C.

T/16 x 192
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