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Abstract

®

CrossMark

In this work, we present an experimental validation of a new contact resonance atomic force
microscopy model developed for sensors with long, massive tips. A derivation of a new
technique and graphical method for the identification of the unknown system parameters is
presented. The technique and contact resonance model are experimentally validated. The
agreement between our contact resonance experimental measurements and values obtained from
nanoindentation show a minimal error of 1.4%-4.5% and demonstrate the validity of the new
contact resonance model and system parameter identification technique.
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(Some figures may appear in colour only in the online journal)

1. Introduction

Contact resonance (CR) atomic force microscopy (AFM)
utilizes the freely vibrating and in-contact resonance
frequencies of the microcantilever sensor coupled with a
sample of interest, to measure mechanical properties of the
sample [1, 2]. CR measurements are performed in the linear,
net-repulsive regime of the sensor-sample interaction, which
allows for accurate nanoscale measurements. Traditionally in
CR, a narrow, rectangular, cantilevered microbeam is utilized
to measure the experimental eigenfrequencies. Then, the
Euler-Bernoulli (E-B) beam equations are used to describe
the relationship between the experimental eigenfrequencies
and the sample’s stiffness, which is then related to mechanical
properties by means of contact mechanics.

In recent years, scientists have used AFM sensors
equipped with nano-needles [3—10] and quartz tuning fork
sensors [11-16]to probe biological samples in their natural
physiological liquid environment, while the sensor’s body
remains out of the liquid and is therefore not affected by
hydrodynamic forces (Trolling Mode). The colloidal probe is
another form of large, massive-tip sensor, widely used by the
AFM community [17-24] to probe samples that might be
damaged from an ultra-sharp tip. The ability to probe the
nanomechanical properties of biological samples is essential
for using the AFM in medical diagnostics and healthcare

0957-4484,/23/365712+16$33.00 Printed in the UK

[25-27]. With CR-AFM’s capability to measure accurate
nanomechanical properties, and the AFM’s capability to
probe biological samples using non-traditional sensors, a
suitable CR model is required for the analysis of CR
measurements performed using sensors with long, mas-
sive tips.

Recently, Jaquez-Moreno et al [28] developed a new CR
model which includes the effect from tip length, mass, and
rotational inertia, along with the sample’s normal and lateral
stiffness, hereinafter referred to as the Long-Massive-Tip
Model (LMTM). This new model allows CR to be performed
using non-traditional sensor tips such as colloidal probes,
nano-needles, and quartz tuning forks, which all include tips
with significant geometry. Modeling these novel geometries
with simple traditional CR models will lead to significant
error. Jaquez-Moreno et al [28] also presented a scheme for
the determination of the system parameters that relies on a
combination of transverse and torsional free eigenfrequencies,
along with measurements of the sensor’s dimensions.
Scientists are continuously developing advanced AFM
sensors for accurate measurements in challenging environ-
ments, hence, improved CR models and techniques are
required to accommodate advanced new sensors and
environmental effects.

In this work, we perform an experimental validation of
the new CR model proposed in [28] in order to estimate the

© 2023 I0P Publishing Ltd
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degree to which the model is accurate, and to identify possible
limitations of the model. Since the proposed new model
includes inertial effects from the added mass and rotational
inertia, which affect both the in-contact and freely vibrating
measurements, the experimental measurements cannot be
related to the corresponding eigenvalues by using the well-
known clamped-free beam eigenvalues, as performed in
traditional CR. Therefore, we propose new techniques for the
solution, analysis, and accurate estimation of the system
parameters, i.e. the added mass, rotational inertia, and general
sensor properties, by utilizing multiple freely vibrating
transverse eigenmodes. We propose a solution scheme which
includes a direct solution to the system of nonlinear
equations, and a graphical technique to examine the solution
domain and possible multiplicity of the solution. Two
examples are presented from our experimental setup and a
third example problem illustrates the necessity for a graphical
technique due to the possible existence of solution
multiplicity.

Following the new techniques for the determination of
system parameters based on freely vibrating eigenmodes, in-
contact spectra are used from two sensors having added mass
and rotational inertia. Additionally, in-contact spectra from a
traditional AFM sensor are also used. The CR spectra are
analyzed using a simple CR model along with the LMTM,
and a comparison to nanoindentation data is presented for all
CR results from the 3 different sensors and models. We
include a discussion on the lower and upper bounds of the
analytical eigenfrequencies of the system, and present in-
contact experimental measurements of the Ist eigenmode
with a frequency higher than the freely vibrating 2nd
eigenmode. To the best of our knowledge, this is the first
time in-contact spectra are measured at a higher frequency
than the immediately subsequent out-of-contact eigenmode.
Such behavior contradicts with conventional CR models, that
predict an upper bound for the in-contact eigenfrequency that
is lower than the immediately subsequent eigenmode free
frequency, nevertheless, such behavior is well-described by
the LMTM.

2. Theory

In CR-AFM, the freely vibrating cantilever sensor eigen-
frequencies (out of contact), along with the in contact ones,
are measured experimentally. E-B beam models are used to
describe the microsensor-sample vibrational system with
different types of boundary conditions. The boundary
conditions on one side of the beam are clamped, while the
boundary conditions on the contact side are chosen to
accommodate different effects. The most widely used CR
model includes a single normal spring located near the beam
end, hereinafter referred to as the Single Spring Model (SSM)
[2]. Traditionally, the sensors used to perform CR are
equipped with basic AFM tips, usually around 10-15 pm in
length. If one wishes to include the effect of the tip length,
then a lateral spring may also be included, which together
create a moment about the point of tip connection with the

beam. Researchers have also been able to measure the
samples’s visco-elastic properties by including a normal and
lateral damper element in parallel with the aforementioned
springs [29]. The effect of the tilt angle between the
microsensor and the sample is also included in some
references (for example [29, 30]). The effect from tilt angle
can only be estimated with the AFM manufacturer’s nominal
design specifications, which does not take into consideration
the inherent tilt of the sample which may change in every
setup.

The post-processing of CR-AFM measurements requires
the use of a characteristic equation formed from the solution
of the E-B free vibration problem with the corresponding
boundary conditions. The characteristic equation includes the
system parameters and is written in terms of the countably
infinite eigenvalues of the system (,L, where n is the nth
wave number of the system. The dispersion relation between
the eigenvalues and the natural frequencies of the beam is

given by [31]:
(BuL)? | EI
- = 1
I or \ pAL*’ m

where E is the Young’s modulus of the cantilever, I is the
second area moment of inertia, p is the mass density, A is the
cross-sectional dimension, and L is the beam length.

If the effects of the tip mass and rotational inertia are
neglected, as in traditional CR, the experimentally measured
eigenfrequencies can be converted to the eigenvalues using
the dispersion relation given in equation (1). The character-
istic equation of the system, in the case that the cantilever
tip is out of contact (‘free case’), reduces to the
well-known form of a clamped-free cantilever beam:
cos(B,L) - cosh(8,L) + 1 = 0. By taking the ratio of
equation (1) for the in-contact and out-of-contact eigenfre-
quencies, and using the eigenvalues of the clamped-free
vibrating cantilever, we are able to directly find the in-contact
eigenvalues without prior knowledge of E, I, p, A and L. This

ratio leads to:
B.L = oL /]% @

where %L are the roots of the clamped-free cantilever beam
equation, f,, is the in-contact experimental natural frequency,
and f9 is the out-of-contact corresponding experimental
natural frequency. If the tip’s mass and rotational inertia
cannot be neglected, the out-of-contact eigenvalues are
unknown and they are a function of the tip’s added mass
and rotational inertia. For such cases, we propose rewriting
equation (1) in the following form: f, = (3,L)/C, thus we
may define:

BuL = f, - C, 3)

where C = 27 %lﬁ. Rabe et al [2] considered the effect of a

mass located at the cantilever end on the vibration of the
system, with the use of beam dimensions and mechanical
properties, to calculate a system constant, similar to our
defined €. Muraoka [32] modified a commercial sensor by
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adding a tungsten particle to the beam end. Muraoka used the
spectra before and after the attachment to estimate the missing
data encapsulated in C. Recently, Jaquez-Moreno et al [28]
also used the beam dimensions and mechanical properties in
their numerical work, to relate the experimental eigenfre-
quencies to the corresponding eigenvalues. The approach
taken by Muraoka cannot be performed when a commercial
sensor is purchased with a large, massive tip and the spectra
can only be measured with the massive tip. Calculating C, or
any of the system parameters, based on its definition is prone
to error as discrepancies between calculated and measured
values were previously published [33, 34], likely due to
deviation between the experimental results and the theoretical
models. The approaches described in the referenced literature
rely on a priori knowledge of the sensor’s dimensions, or, of
the un-tipped system, and for both cases such information
might not be available or may be misleading.

A new technique is presented next for the solution,
analysis, and estimation of the unknown system parameters,
relying solely on the sensor’s free transverse eigenfrequen-
cies, as in traditional CR practice. This proposed technique
can be used with any characteristic equation and dispersion
relation and does not rely on any prior measurements of the
un-tipped system (if one exists), or of the sensor’s
dimensions. The development of the new technique is
presented here for the model presented in [28].

2.1. System parameters solution, analysis, and estimation
technique

Considering the characteristic equation introduced by Jaquez-
Moreno et al [28] while the cantilever is out of contact, the
characteristic equation is a function of three parameters: the

eigenvalue (L, the nondimensional tip mass A = p’:‘L, and

. . . . . ~ I
the nondimensional rotational inertia [, = ﬁ (m, and I, are
DAL

the tip’s mass and rotational inertia respectively):

[(—2AL(BL)® + 2(BL)*) cos(BL) + 6(BL)
sin(BL)(—1(BL)° /3 — A(BL)*/3)] cosh(SL)
+6(BL)(—L(BL)°/3 + A(BL)*/3) sinh(BL)cos(BL)
+2A0(BL)® + 2(BLY* = 0.

4

Inserting equation (3) into the characteristic equation given
in equation (4), and using three experimental freely vibrating
bending eigenfrequencies, we may solve the resulting system of
nonlinear equations numerically for the three unknowns: C, A,
and [, hereinafter, denoted as the 3-Mode approach. Once C is
found, we may use it in equation (3) along with the
experimental in-contact natural frequencies, to calculate the
eigenvalues and continue with common CR post-processing
methods. For the cases in which the characteristic equation does
simplify to the clamped-free case, equation (3) will produce the
same results as equation (2).

The solution to the system of 3 nonlinear equations
described above may lead to several solutions. While
searching for a physically meaningful solution, i.e. positive

system parameters in proximity to nominal values, the use of
a graphical or visual representation of the system may be
beneficial for better understanding of the solution domain.
The system of equations is formed from the characteristic
equation, which is a transcendental equation in (GL. The
countably infinite zeros of the equation correspond to the
infinite eigenvalues of the system. A 3D plot of the system is
not practical for analysis as the surfaces created to represent
the characteristic equation, spanned by values of A and I, are
discontinuous due to the nature of the hyperbolic functions
forming the characteristic equation. A different approach, to
address this issue, for graphical representation is presented in
the next section.

2.2. Graphical representation by a minimization technique

In this section, by considering some of the algebraic equations
introduced above, we formulate a set of new equations
identically equal to zero. We evaluate the non-zero side of the
new equations for a range of values assigned to our unknown
system parameters, and seek a combination of system parameter
values that minimizes the equality. These new equations are
used as objective functions, as we seek to minimize, or ‘zero’,
the error by properly selecting the system parameters.
Equation (4) has a countably infinite number of eigenvalue
solutions but can be solved to find a specific eigenvalue (,L for
any given set of A and /. Considering equation (3), we are able
to perform algebraic manipulations that will allow us to create
an objective function which is evaluated numerically for every
set of A and . By evaluating the objective function over a
physically realistic domain of A and [, we may find the
minimum of the objective function in the domain. The
minimum value of the objective function corresponds to a
specific set of A and J, values which are the desired system
parameters values. The objective function is formed from the
first three eigenvalues of equation (4) and the first three experi-
mental free eigenfrequencies. Taking the ratio of equation (3)
for three sets of eigenvalues and experimental free eigen-

: . BL o BsL 5
frequencies leads to: AL \/fj](J =0 and GL A\ 0.
Adding the sets leads to our first objective function:

0 0

BiL

?

Any numerical deviation of the left hand side of equa-
tion (5) from a value of zero is considered an error which we
wish to minimize by selecting a proper set of A and J. The
above set of 3 eigenvalues and experimental frequencies may be
written in 2 additional forms which will lead to different error

values:
BiL — BsL \/ﬁ_\/fjo ~0
B2L \/E ’
L - AN
BaL \/f:o .

(6)

(N
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Figure 1. Sensors used in this work for CR spectra. Images taken using a Scanning Electron Microscope (SEM). (a) HQ-75-Au unmodified
silicon sensor. (b) HQ-75-Au modified silicon sensor. (c) 25Pt300B large tip platinum sensor.

Table 1. Properties measured during AFM experimental setup and using SEM of the HQ-75-Au sensor unmodified (No bead attached) and

modified (With bead attached) sensors.

Remarks

Property As measured
L [pm] 210.8

b [pm] 327
h[pm] 3.0
dyeaa [um] 14.7 and 19.2
fws [kHz] 79.9

[ Z?NB [kHz] 504.3
fyxg [KHZ] 1418.6
fwe [kHz] 50.2
Fywe [kHz] 420.1
FLys [kHz] 1239.3
fws [kHz] 2409.3

Length of sensor

Width of sensor

Thickness of sensor

Diameter of attached bead

Freely vibrating transverse 1st eigenfrequency, No bead attached

Freely vibrating transverse 2nd eigenfrequency, No bead attached
Freely vibrating transverse 3rd eigenfrequency, No bead attached
Freely vibrating transverse 1st eigenfrequency, With bead attached
Freely vibrating transverse 2nd eigenfrequency, With bead attached
Freely vibrating transverse 3rd eigenfrequency, With bead attached
Freely vibrating transverse 4th eigenfrequency, With bead attached

Furthermore, equation (3) can be manipulated algebraically
in many ways to produce an infinite number of objective
functions. Taking the 2nd power of equation (3) and
manipulating similarly leads to:

(BLP? — BL? fy —fy
(BILY? f

=0. ®)

Though this type of manipulation does not contain any
additional information, it increases the error for erroneous
values of A and [, while the correct set of A and /, is not
affected by this type of manipulation. Since our system
involves two system parameters, we choose to visualize the
objective function error using a heatmap, for a range of A
and ] values. The large error values caused by taking
equation (3) to some power helps magnify the minimum
solution. Another set of algebraic manipulation can also lead
to:

(BiL)? " (G2L)* 2(5314)2 -0

£ £ £y

; ©)

which once again can be written in 3 different forms Each
objective function may produce a curve of minimum error
with no unique zero value, unless the exact values of A and
I, are met. The minimum error curves, produced from several
objective functions, all cross at a unique value of A and f,
which is a solution of the system and has a zero value of the
objective functions. Similarly, we can choose to sum the
absolute value of each objective function, which results in a
summation of near zero values at the pixels near the solution,
and very high error values in the remaining domain. This
also leads to a new objective function which converges to a
minimum point with best results.

The presented minimization technique allows the user
not only to find the system parameters, but also to explore
any domain of the system parameters, which might become
vital for the proper distinction between multiple solutions
that may occur. The example problems presented next,
illustrate the use of the 3-Mode approach and the
minimization technique for the estimation of the system
parameters using free eigenfrequency data only, prior to
performing CR. Furthermore, we present an additional
example to illustrate the possibility of system parameter
solution multiplicity.
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Table 2. System parameters as calculated using different approaches for the modified sensor. *Also using densities of the silicon cantilever

and borosilicate beads: ps; = 2330 kg m~>, and pgs = 2200 kg m .

Source of data I A Clsec]

Estimated based on SEM measurements * 0.0031 0.3000 3.8468 x 1073

Three transverse modes, no information before

bead attachment (3-Mode approach) 8.7626 x 10~* 0.5331 3.9247 x 107
flyg = 44023 x 107

Three transverse modes before bead attachment N/A N/A ngB = 43696 x 1073

fing = 43491 x 107

2.8. Example problem 1: modified sensor

An AFM sensor of type HQ-75-Au (Oxford Instruments) is
modified using an added micro borosilicate (BS) glass bead
glued on the top side of the cantilever (opposite to tip side).
The added bead allows us to examine the 3-Mode approach
and the graphical heatmap representation discussed above, for
determining the system parameters. Figure 1(a) shows the
sensor before the modification and figure 1(b) shows a side
view of the modified sensor showing the tip and 2 BS beads
attached. The sensor’s dimensions and free eigenfrequencies
are given in table 1 before the attachment of the bead
(subscript NB) and after (subscript WB).

Using fl(,)WB’ f£WB’ and ffWB along with equation (3) we
can solve equation (4) for IA,, A, and C. Table 2 summarizes
the system parameters obtained by the 3-Mode approach
along with calculating the parameters based on their definition
and calculating C directly using equation (1) and the
corresponding eigenvalues of the clamped-free characteristic
equation before the attachment of the beads. The differences
in the value of the system parameters are due to the variation
between the base assumption of the theoretical model
described in equation (4) from the actual setup, and the
ability of the theoretical model to capture all real-life physics.
Thus, the model uses a point mass and a point rotational
inertia located at the distal end of the beam, to encapsulate the
effect from a real world massive tip located near the beam
end, leading to the discrepancies reported in table 2. The
adhesive used to attach the beads is an additional mass
component not included in the estimates and might also have
some effect on the bending stiffness of the cantilever probe.

Once the system parameters are found, we may use
equation (4) along with equation (3) to calculate any higher
free eigenfrequency of the cantilever and compare to the
experimental measurements. For this example, the difference
from the calculated 4th eigenfrequency and the measured one
is about ~1.7% which indicates that the suggested model [28]
describes the experimental system well.

Along with the 3-Mode approach discussed above, we
use the graphical minimization technique for the determina-
tion of A and . In the development of the Objective
Functions (OF), we take the ratio of two dispersion relations,
canceling out € and reducing the dimensionality of the
problem. The remaining system parameters A and /, are
nondimensional parameters. Once A and J are found based

on the combination that lead to a minimum error, the
corresponding nondimensional eigenvalues are related to the
dimensional eigenfrequency using C having dimensions of
time. For a specific domain of interest for A and I, shown in
figure 2, we divide the domain into a discrete number of
subdivisions and calculate the error based on the A and ], at
every point. The minimum error from each OF may grow
rapidly just a few pixels away, and is also sensitive to the
number of divisions used. In the error heatmaps presented in
this manuscript, we use a high number of divisions which
leads to a minimum error located at a point that is hard to
distinguish. Since we are using the minimum curve and not a
minimum point, we focus on the curve rather than the
minimum value. The minimum curves obtained by the 3
different OFs used in this example are plotted on top of each
other in figure 2(d), and their crossing leads to the same
solution obtained using the 3-Mode approach. Any 2
minimum curves can be used to find the crossing solution,
nonetheless, we use 3 different objective function minimum
curves, that are very distinct from one another, to better
highlight the solution procedure. By increasing the number of
divisions per a fixed range of A and J,, we minimize the error
by better estimating the system parameters. In this example,
the A and ] solution corresponding to the minimum error
show a convergence to a unique solution, as seen in figure 3.

2.4. Example problem 2: sensor with large tip

In this example, we use the 3-Mode approach to calculate the
system parameters of an AFM sensor of type 25Pt300B
(Rocky Mountain Nanotechnology), hereinafter referred to as
RMN sensor. The RMN sensor is a unique solid platinum (Pt)
probe, normally used for electrical measurements, which
includes a very large cone shape tip, with a size comparable to
the length of the cantilever beam. A side view of the RMN
sensor is given in figure 1(c) and general dimensions and free
frequencies are given in table 3.

Once again, after the system parameters are determined, we
use equation (4) along with equation (3) to calculate the 4th
eigenfrequency of the system, and compare it with the experi-
mental measurement. In this example, a ~ 21.3% difference is
reported, which we assume is related to tip’s flexibility. If the
tip’s flexibility effects were included in the LMTM, an addi-
tional decrease would have been expected in the eigenvalues.
With the model used in this work to process experimental
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Iy

(c)oFs

Figure 2. Heatmap graphical solution for 3 different types of objective functions error shown in (a), (b), and (c), and the crossing solution
resulting from the minimum error curve shown in (d) for the modified sensor. The objective functions (OF) used are described in appendix.
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The RMN sensor has a significantly large tip, with mass
comparable to the mass of the sensor, as seen in table 4.
Nonetheless, under the effect of gravity, the static deflection
and the resulting curvature are negligible. In cases where
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Table 3. Properties measured during AFM experimental setup and
using SEM of the 25Pt300B RMN sensor.

Table 4. System parameters as calculated using 3-Mode approach for
the RMN sensor.

As

Property measured Remarks

L [pm] 300.5 Length of sensor

b [pm] 110.6 Width of sensor

h [pm] 5.5 Thickness of sensor

L, [pm] 113.0 Length of tip

f10 [kHz] 11.8 Freely vibrating transverse 1st
eigenfrequency

f20 [kHz] 71.3 Freely vibrating transverse 2nd
eigenfrequency

2 [kHz] 187.4 Freely vibrating transverse 3rd

eigenfrequency

f40 [kHz] 363.5 Freely vibrating transverse 4th
eigenfrequency

large curvature is introduced, the vibration problem is altered
significantly [35, 36].

2.5. Example problem 3: solution multiplicity

In this example we demonstrate how a certain set of 3
eigenfrequencies may lead to multiple solutions of the
system parameters. We examine the A and ] solution
domain and use the resulting system parameters solutions to
calculate the 4th eigenfrequency to distinguish between the
solutions. Table 5 summarizes the input system parameters,
the resulting first 4 eigenfrequencies, the additional solution
which satisfies the system using the first 3 eigenfrequencies
and its resulting 4th eigenfrequency denoted f, f. A graphical
representation for the solutions multiplicity is given in
figure 4(d).

Note that the multiple solutions share the same first 3
resonant frequencies, but they do not share the same eigenvalues
or eigenmodes. A and J, are nondimensional parameters and a
specific set of them will lead to certain eigenvalues. C is a
dimensional parameter with units of time, relating the non-
dimensional eigenvalues to the dimensional eigenfrequencies.

The minimum curves in the heatmap representation of
the 3 different objective functions given in figures 4(a)—(c)
cross in two different solution points, as given in table 5 and
shown in figure 4(d).

Once again, by increasing the number of divisions per a
fixed range of A and , we minimize the error by better
estimating the system parameters. In this example, where our
domain includes two solutions, the A and IA, solutions
corresponding to the minimum error, show a convergence
to two different solutions, as seen in figure 5.

In order to distinguish between multiple solutions, we
suggest the following steps:

1. Estimate A, f, and € based on the nominal dimensions,
or SEM measurements, if available.

2. Use the 3-Mode approach with multiple initial conditions
in a physically realistic range to solve for the system
parameters. Suggested bounds: zero lower bound and
approximately 4-5 times the nominal /estimated value for

Source of data A A Clsec]

Estimated based on SEM 0.0060 0.3939 1.2583 x 1074
measurements®

Three transverse modes 0.0240 0.6868 1.4830 x 107*

(3-Mode approach)

" Also using pp, = 21450 kg/m> and Ep, = 171 GPa.

upper bound, depending on the expected accuracy of the
dimensions.

3. If multiple solutions do not exist, use the resulting system
parameters.

4. If multiple solutions do exist, use the resulting system
parameters to calculate the predicted 4th eigenfrequency
of the system from all the solutions found, and compare
to the experimental 4th eigenfrequency. Use the solution
with the minimal error from mode 4. If an experimental
4th eigenfrequency was not measured, use the solution
with the minimal error from the nominal/estimated
system parameters.

3. Experimental validation

In this section we describe the AFM experiment performed
for the validation of the new CR model introduced by Jaquez-
Moreno et al [28]. System parameters were obtained in the
example problems given in 2.3 and 2.4 for the modified
sensor and the RMN sensor. Once the system parameters are
known, standard CR methodology is used to calculate the
sample’s nondimensional stiffness. Additional CR spectrosc-
opy is performed using the unmodified traditional sensor and
all CR results are compared with additional nano-indentation
sample measurements.

3.1. Experimental setup

CR spectroscopy is performed using an MFP-3D AFM
(Asylum Research, Santa Barbara, CA). The CR spectra were
acquired using three different setups. In the first setup, we use
an unmodified sensor of type HQ-75-Au (Oxford Instru-
ments) which is a standard silicon (Si) AFM probe (see
figure 1(a)). In the second setup, we use the same HQ-75-Au
sensor after modifying it by adding two glass spheres (see
figure 1(b)). In the third setup, we use the RMN sensor
descibed in section 2.4 (see figure 1(c)). The CR
measurements are performed on two different synthetic glass
samples, each placed on a transducer, hereinafter referred to
as S; and S,. In each of the discussed setups, multiple set
point forces were applied, with the applied static deflections
given in table 7. An example of the spectra measured on the
two samples using the RMN sensor is provided in figure 6.
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Figure 4. Heatmap graphical solution for 3 different types of objective functions error shown in (a), (b), and (c), and the multiple crossing

solutions resulting from the minimum error curve shown in (d).

4. Results and discussion

4.1. Contact-resonance post processing

For the post processing of the CR spectra, obtained using the
modified sensor and the RMN sensor, we first convert the
experimental in-contact eigenfrequencies to the corresponding
eigenvalues by using equation (3). In the next step, the charac-
teristic equation, provided in equation (10) for reference, is used:
[(—2ALBL + 2 + (6AL

+61)a)(BL)* — 18£%a?¢)cos(SL)

+6(BL)sin(BL)(— (BL)* /3 + ¢l (L)

—A(BLY*/3 + a)]cosh(BL)

+6(BL)(—£(BL)/3 + ¢pla(BL)

+A(BLY*/3 — a)sinh(BL)cos(BL) + 2AL(BL)

+(2 + (=6AL% — 6I)a)(BL)* + 182a%¢ = 0. (10)

After finding the system parameters, A and J, and the in-
contact eigenvalues, the characteristic equation is a function
of 3 more parameters: « the nondimensional sample stiffness,
which is our primary interest and can be related to the

sample’s stiffness and indentation modulus by means of
contact mechanics [39], £ = % the tip length to beam length

ratio, and ¢ = %/ the lateral sample stiffness and the normal
sample stiffness ratio. Further investigation of the character-
istic equation reveals that the latter two appear in the form £%¢
throughout the equation. Consequently, we solve for a
combined constant ¢*¢. Since we have two unknown
parameters, we require information from two different
eigenfrequencies, measured at the same applied load. A
graphical representation of the domain spanned by £*¢ and «
will give a graphical curve crossing solution known as the
‘mode-crossing’ technique [40] (see figure 7(b)). For the
unmodified sensor, we use the SSM for post processing using
two in-contact eigenfrequencies for the determination of o the
nondimensional sample stiffness, and v = % the nondimen-
sional tip location. A ‘mode-crossing’ layout for the
unmodified sensor is presented in figure 7(a).

Once we have obtained the nondimensional sample
stiffness for each applied load on both samples for all 3
sensors, we may use the reference approach that allows us to
relate the CR results to the ratio between the reduced modulus
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Figure 6. Examples of experimental data taken using the RMN sensor. (a), (c), and (e): spectra of the 1st, 2nd, and 3rd eigenfrequencies out

of contact (free). (b), (d), (f): corresponding CR spectra (i

n-contact) for d = 495.9 [nm] on S; (solid blue line) and S, (dashed red line). M1,

M2, and M3 are the 1st, 2nd, and 3rd eigenmodes correspondingly. Note that the CR eigenfrequencies shown in (b) for the 1st eigenmode are
higher than the free 2nd eigenfrequency shown in (c). Furthermore, the 1st eigenfrequency CR spectrum does not capture the difference

between the samples stiffness as this eigenmode reaches a nonsensitive region [37], unlike the 2nd and 3rd eigenmodes which show a clear
difference between the samples. When an eigenmode reaches a nonsensitive region, measurements taken at different applied loads will lead

to very similar values of the contact resonance frequency
sample properties.

(f,), leading to incorrect nondimensional sample stiffness () values and incorrect
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Figure 7. Nondimensional contact stiffness « as a function of +y for the unmodified sensor processed using the SSM in (a) and as a function of
¢ for the RMN sensor processed using the LMTM in (b). Results are shown for the 2nd eigenfrequency (solid blue line) and the 3rd

eigenfrequency (dashed red line) for both cases, with >, = 1059.1 [kHz] and f; = 1838.1 [kHz] for (a) and f> = 184.8 [kHz] and f5 = 290.4
[kHz] for (b) (see table 7), both taken on S,. For (b), recall that the « solution is a 2nd order polynomial, thus we have two possible solutions:
the 2nd eigenfrequency is plotted using the positive square root solution of « and the 3rd eigenfrequency is plotted using the negative square
root solution. The intersection point of the curves in each case, or the ‘mode-crossing’ location, indicates the solution values for o and 7, or «

and £2¢.

Table 5. Example problem (solution multiplicity) eigenfrequencies calculated with system parameters: A = 0.642, [, = 0.0088 and

C = 1.4 x 10~*[sec] and equation (4) and equation (3). 2nd solution satisfying the first 3 eigenfrequencies: A = 0.7746, f, = 0.0123 and
C = 13021 x 10 *[sec]. Note that the two solutions share the same first 3 eigenfrequencies, but do not share the same eigenvalues, as C, the
parameter relating the eigenvalues to the dimensional eigenfrequencies, is different for each solution. Therefore, the different solutions will

not share the eigenmodes, but only the eigenfrequencies.

Property As measured or calculated Remarks

flo [kHz] 13.1 Freely vibrating transverse 1st eigenfrequency
20 [kHz] 97.6 Freely vibrating transverse 2nd eigenfrequency

f30 [kHz] 236.6 Freely vibrating transverse 3rd eigenfrequency
f [kHz] 485.6 Freely vibrating transverse 4th eigenfrequency

ff [kHz] 510.9 Freely vibrating transverse 4th eigenfrequency,

calculated using the 2nd solution

of the two samples [41, 42]:

( )m
where the reduced modulus E* is a combination of the

sample’s and tip’s indentation moduli such that

e =1 and m=3/2 represent a flat
E Msz\mp]e

punch and spherical indenter respectively, as the two limiting
cases [39]. In order to conclude our experimental work, we
compare the data analysis using the LMTM and the SSM for
the modified sensor and the RMN sensor, with the un-
modified sensor analyzed using the SSM, along with

)
(152 )

for the 3 set point forces described in table 7, from each of the
sensors/models discussed above, is plotted in figure 8 and
summarizes our experimental validation. The data for the
unmodified sensor analyzed using the SSM, as in common
contact resonance practice, shows best results for a flat punch

*

%
E‘s2

a5 (11

OLS2

nanoindentation data. The mean value of the « ratio (ﬁ

10

using ‘mode-crossing’ results from both eigenmodes pairs
n=1,2 (M12) and n = 2,3 (M23). The data for the modified
sensor does not result in any value when analyzed using the
SSM for M12, i.e. no ‘mode-crossing’ is found, nonetheless,
fair results are obtained for the M23 data with a flat punch
assumption. When analyzing the modified sensor using the
LMTM, results align very well with the unmodified sensor
analyzed using the SSM for both eigenmode pairs, assuming a
flat punch (recall the modified sensor holds the same tip as the
unmodified sensor, thus both performing well with the same
tip shape is a good correlation). For the data collected using
the RMN sensor, when analyzed using the SSM, no results
are found. When analyzed using the LMTM, good results are
obtained using the M23 and assuming a spherical indenter.
Figure 6(b) shows the lack of sensitivity for the first
eigenfrequency in contact, which can explain the M12 error.
Furthermore, the flexibility of the RMN sensor tip can affect
the estimation of the system parameters (see section 2.4), and
the estimation of the sample stiffness for the sensitive M23
data, as the LMTM assumes a rigid tip. The expected value,
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Figure 8. Experimental CR results analyzed using the SSM for all 3 sensors and also analyzed using the LMTM for the modified and RMN
sensors. Each bar is the mean value of (@) obtained from CR results with m = 1 for a flat punch and m = 3/2 for a spherical indenter,

as2

from all set point forces on both samples. The standard deviation for all cases presented here is smaller than 0.0064. Cases where no
prediction was made by the SSM are denoted by ‘N/A’ and an absolute error of 100%.

plotted in black dashed line, represents the value
By My Mt My 0.90 obtained from the nanoindenta-
ES, Msy  Ms;+ My, ’

tion along with the tip’s bulk indentation moduli as a
benchmark (data provided in table 6). The difference in the

—3 values obtained for the silicon and platinum tips is smaller

S:

thzan 0.01. Other CR models that include an end mass,
presented by: Rabe et al [2] and Muraoka [32], have not
outperformed the results obtained by the LMTM, showing
less than 5% error for the sensitive eigenmode pair
n=273 (M23).

In order to theoretically estimate the relative error of
using the SSM for data that was obtained using long, massive
tips, we consider the simple case of a colloidal probe. By
varying the radius of the colloidal particle, we can

Table 6. Indentation modulus values for silicon and platinum tips
and the two samples.

Property Value Remarks

Ms, [GPa] 37.0£0.8 Sample 1 indentation modulus

Ms, [GPa] 420+1.0 Sample 2 indentation modulus

Ms; [GPa] 165.0 [38] Tip’s indentation modulus, Si (100)
Mp, [GPa] 201.7 [28] Tip’s indentation modulus, Pt

simultaneously vary the tip length, the added tip mass, and
the added tip rotational inertia. We use the LMTM, to
produce CR frequencies for different colloidal particle radius,
while also varying the sample stiffness. Then, we use the
SSM along with the frequencies produced by the LMTM to

11



Nanotechnology 34 (2023) 365712

N Zimron-Politi and R C Tung

(a) Single Spring Model (SSM)

(b) Long Massive Tip Model (LMTM)

12
C-F EV#4 C-P EV#3
10 A
94 /
8 4
- C-F EV#3 C-P EV#2)
~ i
= 6 /
5 .
4_C-F EV#2 C-P EV#1]
3 4
m— |\ode 1 // == = Mode 1
21 Mode 2 - P === Mode 2 -
1_C'FEV#1 m— Mode 3 o = = Mode 3
m— |\ode 4 == = Mode 4
103 10! 10! 10° 10° 108 10 10! 10° 10°
o o

Figure 9. The first 4 eigenvalues (EV) as a function of the nondimensional sample stiffness o, using the SSM ((a) solid lines) and the LMTM
((b) dashed lines), with y = 1 for the SSM, and A = 0.6868, I = 0.0240, and £’2¢ = 0.0857 for the LMTM. The EV boundaries are presented
in (a) and (b) with horizontal black lines for the clamped-free first 4 EV (C-F EV: 1.8751, 4.6941, 7.8548, 10.9955) dashed line, the clamped-
pinned first 3 EV (C-P EV: 3.9266, 7.0686, 10.2102) dash-dotted line, and the clamped-clamped first 3 EV (C-C EV: 4.7300, 7.8532,
10.9956) dotted line. In (b), light blue background color represents the range of eigenvalues resulting in a dual « solution.

predict the assigned sample stiffness using the mode crossing
approach. We find that for A > 0.04 the SSM will either not
provide any solution (i.e. no ‘mode-crossing’), or will result
in large error. Note that in this work we use experimental
cases where A > 0.04.

4.2. Eigenvalue boundaries

In CR experiments, performed using a typical optical lever-
based AFM system, the spectra are measured without
specific knowledge of which eigenmode is contributing.
The experimentalist would use upper and lower bounds of
analytical eigenmodes to associate a resonance peak with the
corresponding eigenmode. Traditionally, the lower and
upper bounds are formed from the clamped-free and
clamped-pinned boundary conditions for the E-B free
response, and their corresponding eigenvalues. For the
SSM, as the tip location (represented by the normal spring
location along the beam) moves away from the beam end
towards the clamped end, within the realistic tip location
value of 0.9 <~vy< 1, the eigenvalue upper boundary
increases but will not go higher than the clamped-clamped
eigenvalue boundary. The clamped-clamped nth eigenvalue
is approaching the n + 1 clamped-free eigenvalue, with the
increase in n. The inclusion of a lateral spring in the CR
model will increase the clamped-clamped upper bound of the
nth eigenvalue to a value higher than the clamped-free n + 1
eigenvalue as was shown theoretically by Rabe [43]. The
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increase in the in-contact eigenvalue over the clamped-free
eigenvalue of the following eigenmode, results in a unique
phenomenon where an eigenfrequency, corresponding to an
eigenvalue, may be associated with two different o values,
as shown by Jaquez-Moreno et al [28]. This is also
emphasized in the characteristic equation which can be
brought into a form of a 2nd order polynomial in « (for CR
models that include a lateral spring), thus having two
positive real « solutions in some regions, each relating to a
different eigenfrequency (see examples for CR models with
lateral spring in [28, 39, 43]).

In order to distinguish between the two « solutions, a
distinction between the the two eigenmodes is necessary.
Considering the LMTM, we know that the effect from the
lateral spring may increase the upper bound of the
eigenvalues. With the inclusion of the added mass and
rotational inertia of the tip, located at the beam end, we also
have a decrease in the lower bound relating to the clamped-
free boundary condition. This combination of reduced lower
bound, due to the added mass, and increased upper bound,
due to the lateral spring, paves the way for a case where the
nth eigenfrequency in contact is at a higher frequency than the
n+1 freely vibrating sensor. An experimental example of
such a case is shown in figure 6 (b) and (c). This example of
spectrum could be mistaken for a low a value corresponding
to the 2nd eigenmode rather than a high « value
corresponding to the Ist eigenmode. In order to avoid the
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Table 7. CR experimental results performed with 3 different sensors, using the f, and f; flexural modes versus the cantilever static deflection, d. Also showing the values of the nondimensional tip
location + for the unmodified sensor, and l’qu for the other two sensors, which should be constant values. The value of the nondimensional contact stiffness «, increases with the increase in the
static deflection.

Unmodified sensor Modified sensor RMN sensor

d [nm] Sample f,[kHz] f; [kHz] v « d [nm] Sample f, [kHz] f; [kHz] [’ng « d [nm] Sample f, [kHz] f; [kHz] l’ng «

21.1 S, 1039.1 17827 0976 150.7 26.7 M 761.8 1269.1  0.000689 186.7 297.6 S, 179.6 282.7 0.0873 141.3
253 S, 1039.3 1797.1  0.978 154.1 32.1 S, 766.6 1270.3  0.000718 189.4  396.7 S 181.2 284.3 0.0853 146.7
29.5 S, 1041.2 1801.8 0978 1559 37.4 S, 768.8 1271.1  0.000744 190.6  495.9 S, 181.9 285.1 0.0847 149.0
21.1 S, 1056.1 1828.1 0977 168.2 26.7 S, 797.3 1275.0  0.000752 207.2 297.6 S, 182.7 287.0 0.0849 151.3
253 S, 1058.1 1834.8 0977 170.7 32.1 S, 800.1 1275.6  0.000762 208.9  396.7 S, 184.0 288.4 0.0837 155.5
29.5 S, 1059.1 1838.1 0977 172.0 374 S, 802.5 1276.1  0.000769 210.3 4959 S, 184.8 290.4 0.0842 157.6
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(a) Single Spring Model (SSM)

(b) Long Massive Tip Model (LMTM)
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Figure 10. The sensitivity for the first 4 eigenvalues (EV) as a function of the nondimensional sample stiffness «, using the SSM ((a) solid
lines) and the LMTM ((b) dashed lines), with v = 1 for the SSM, and A = 0.6868, I, = 0.0240, and €2¢> = 0.0857 for the LMTM. In (b), the
modal sensitivity does not decrease monotonically with a due to a secondary increase in the sensitivity.

aforementioned situation, we propose taking the following
steps:

1. Use multiple set point forces during the CR experiment
with both a minimal applied load and a high applied load
(while minimizing sample and tip damage).

. Use the LMTM and equation (3) to plot the
eigenfrequencies as a function of « for the number of
experimental eigenmodes found plus one using either an
estimated €2¢ value, or using a mean value from the
‘mode-crossings’ performed. An example for such a plot
is presented in figure 9.

. Check for possible solution multiplicity if the n + 1 free
frequency is lower than the nth clamped-clamped
frequency (as in figure 9(b) light blue regimes).

. Identify CR experimental eigenfrequency within the
frequency range described above.

. Use the multiple set point loads applied to identify the
shift in the CR eigenfrequencies, which should allow for
a clear distinction between the different eigenmodes.

The eigenvalue sensitivity, %, is an important metric
that can be related to the increase in CR frequency with an
increase in the applied load. The SSM curve presented in
figure 9(a), shows a smooth transition from the lower
clamped-free bound to the upper clamped-pinned bound. In
the LMTM curve presented in figure 9(b), we witness a
relatively smooth transition for the first eigenmode, whereas
for the higher eigenmodes, we witness a change in slope
about halfway between the lower and upper bounds. These
changes in slope correspond to changes in the CR sensitivity
as presented in figure 10.

In common CR practice, ‘mode-crossing’ is traditionally
performed using consecutive eigenmodes, i.e. n=1,2,
n=2,3 and so forth, to estimate the nondimensional sample
stiffness and another system parameter, based on two in-
contact eigenmodes. Using the two eigenmodes with
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maximum sensitivity, will result in optimal CR accuracy
[39]. The CR sensitivity obtained using the LMTM shows
multiple maxima for the 3rd and 4th eigenmode curves. The
multiple maxima are spaced by approximately a decade, and
the maximum value of the 2nd maximum is lower by a
decade. Nevertheless, this phenomenon still contributes to
an overall increase in the sensor’s performance as it extends
the sensitivity range of the contributing eigenmodes. Along
with the multiple maxima observed and the extended
sensitivity range, we also witness a range where maximum
sensitivity for two eigenmodes is not necessarily achieved
with consecutive eigenmodes. In figure 10(b) at
400 < o < 1000, eigenmodes n =2 and n = 4 exhibit higher
sensitivity than eigenmode n=3. With this finding, we
propose using mode pairs with maximum sensitivity for
improved CR accuracy, which are not necessarily con-
secutive modes. The reason for the multiple maxima comes
from the normal and Ilateral springs representing the
sample’s stiffness. When the normal deflection of the beam
reduces to nearly zero due to the increasing normal spring
force, i.e. the normal motion experiences a ‘pinned’
condition, the lateral spring still allows the beam’s end to
rotate, providing the system additional sensitivity to measure
the sample’s stiffness. The beam’s slope at the distal end
increases with increasing mode number, contributing to the
increasing sensitivity seen at higher non-dimensional
stiffness due to the lateral spring [39, 43]. This increase in
sensitivity with mode number at higher non-dimensional
stiffness is seen in figure 10(b).

5. Conclusions

We have experimentally validated a CR model that
incorporates effects from tip length, mass, and rotational
inertia. In order to effectively use the aforementioned model,
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a new technique was developed and demonstrated for the
determination of system parameters via a solution to a
system of nonlinear equations. The solution relies solely on
the sensor’s free vibrating transverse eigenfrequencies, as in
traditional CR practice, with no a priori knowledge of the
sensor’s dimensions or of the un-tipped system. Further-
more, we have developed a graphical representation of the
solution domain allowing users to analyze solution multi-
plicity. The graphical representation is based on minimiza-
tion of objective functions comprised from the E-B beam
solution dispersion relation, solely using data from 3 free
eigenfrequencies. The use of long, massive tips not only
affects the free eigenfrequencies but also the in-contact
spectra. The use of traditional upper and lower bounds of the
system’s eigenvalues are invalid, and experimental spectra
from the 1st eigenfrequency in-contact is demonstrated to be
higher than the free 2nd eigenfrequency. This work opens
new opportunities for the use of advanced sensors,
commercially available for AFM, in contact resonance
mode. Such work may include colloidal sensors probing a
sensitive biological sample, a sensor equipped with a long
needle tip probing a sample in liquid environment while the
sensor’s body remains out of the liquid (Trolling mode), or
the use of Quartz tuning fork which obviates the use of a
laser system for the sensing of the beam deflections and has
piconewton force resolution. We have examined the possible
error of using a simpler model such as the SSM in analyzing
data from sensors with large, massive tips, and conclude that
a A > 0.04 requires the use of the LMTM. Experimental CR
results for the RMN sensor analyzed using the LMTM,
showed an absolute error of 1.4%-4.5% relative to the
nanoindentation experiments, where the SSM failed to
produce any solution.

In the future, we aim to extend the CR model validated
here, that assumes a rigid tip, to include effects from the tip’s
elasticity which will affect both the out-of-contact case along
with the in-contact. Past CR models were developed to
include effects from different system parameters for increased
accuracy of the sample’s stiffness, but have failed to become
common practice due to uncertainty in the multiple system
parameters, as discussed in section 2. We will continue to
research practical techniques that will allow the use of a CR
model that includes multiple system parameters. Future work
on the multiplicity of solutions found by the minimization
technique developed here is needed for the determination of
the correct solution. Furthermore, the determination of the
most effective objective function may be further investigated
and is not discussed here.
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Appendix

Here we present the objective functions (OF) used to calculate
the system parameters error in section 2.3 and section 2.5:

_BL-pL R R
. OF1 LBk _ 3 s

1
BiL \/ﬁ
2. OF2 _PL=BL \/f?_\/f?o
’ B,L \/720
3 OF3 :£31L7;’32L _ \/f?*\/fizo
’ BsL ﬁ
p 2 _ 2 fO _fO
4. OF4 =L —GsL? [ 15
o (BiLY? I
GL?—(BL? K-8
. OF5 = —
5. OFS (B2L)? 19
B = Bl?  f -1
. OF6 = —
6. OF6 (B5L)? I
- - ()?
7. OF7 =&L - GL s 3
o (BiL)* (f0)?
G = @Bl WP =P
. OF8 = —
8. OF8 (BaL)* ()
_BL -Gl W -
9. OF9 =225 7y
(BiL) (B2L)? (BsL)
10. OF10 = -2
R + 5 7
Ba2L)? BsL)* (BiL)?
11. OF11 =%L° | b7 5
G 7
12. OF12 :(/ﬂﬁ)“ + (/fsﬁ)“ _ szﬁ)
h 1 f
ORCID iDs

Nadav Zimron-Politi
6141-3560
Ryan C Tung © https: //orcid.org/0000-0003-2862-6980

https: //orcid.org /0000-0001-

References

[1] Rabe U and Arnold W 1994 Acoustic microscopy by atomic
force microscopy Appl. Phys. Lett. 64 1493-5

[2] Rabe U, Janser K and Arnold W 1996 Vibrations of free and
surface-coupled atomic force microscope cantilevers: theory
and experiment Rev. Sci. Instrum. 67 3281-93

[3] Ding X, Kuang B, Xiong C, Mao R, Xu Y, Wang Z and Hu H
2022 A super high aspect ratio atomic force microscopy
probe for accurate topography and surface tension
measurement Sensors Actuators A 347 113891

[4] Efremov Y M, Suter D M, Timashev P S and Raman A 2022
3d nanomechanical mapping of subcellular and sub-nuclear
structures of living cells by multi-harmonic afm with long-
tip microcantilevers Sci. Rep. 12 529

[5] Jafari A and Sadeghi A 2023 A new insight into the
mechanical properties of nanobiofibers and vibrational


https://orcid.org/0000-0001-6141-3560
https://orcid.org/0000-0001-6141-3560
https://orcid.org/0000-0001-6141-3560
https://orcid.org/0000-0001-6141-3560
https://orcid.org/0000-0001-6141-3560
https://orcid.org/0000-0003-2862-6980
https://orcid.org/0000-0003-2862-6980
https://orcid.org/0000-0003-2862-6980
https://orcid.org/0000-0003-2862-6980
https://doi.org/10.1063/1.111869
https://doi.org/10.1063/1.111869
https://doi.org/10.1063/1.111869
https://doi.org/10.1063/1.1147409
https://doi.org/10.1063/1.1147409
https://doi.org/10.1063/1.1147409
https://doi.org/10.1016/j.sna.2022.113891

Nanotechnology 34 (2023) 365712

N Zimron-Politi and R C Tung

(6]

(7]

(8]

(9]

[10]

[11]

(12]

(13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

behavior of atomic force microscope beam considering them
as the samples J. Mech. Behav. Biomed. Mater. 142 105842

Sajjadi M, Chahari M, Pishkenari H N and Vossoughi G 2022
Designing nonlinear observer for topography estimation in
trolling mode atomic force microscopy J. Vib. Control 28
3890-905

Guan D, Charlaix E, Qi R Z and Tong P 2017 Noncontact
viscoelastic imaging of living cells using a long-needle
atomic force microscope with dual-frequency modulation
Phys. Rev. Appl. 8 044010

Minary-Jolandan M, Tajik A, Wang N and Yu M F 2012
Intrinsically high-q dynamic afm imaging in liquid with a
significantly extended needle tip Nanotechnology 23 235704

Mohammadi S Z, Moghadam M and Pishkenari H N 2019
Dynamical modeling of manipulation process in trolling-
mode afm Ultramicroscopy 197 83-94

Shibata M, Uchihashi T, Ando T and Yasuda R 2015 Long-tip
high-speed atomic force microscopy for nanometer-scale
imaging in live cells Sci. Rep. 5§ 8724

Yamada Y, Ichii T, Utsunomiya T, Kimura K, Kobayashi K,
Yamada H and Sugimura H 2023 Fundamental and higher
eigenmodes of qplus sensors with a long probe for vertical-
lateral bimodal atomic force microscopy Nanoscale Adv. 5
840-50

Martin-Jimenez D, Ruppert M G, lhle A, Ahles S,
Wegner H A, Schirmeisen A and Ebeling D 2022 Chemical
bond imaging using torsional and flexural higher eigen-
modes of qplus sensors Nanoscale 14 5329-39

Ruppert M G, Martin-Jimenez D, Yong Y K, Ihle A,
Schirmeisen A, Fleming A J and Ebeling D 2022
Experimental analysis of tip vibrations at higher eigenmodes
of gplus sensors for atomic force microscopy Nanotechnol-
ogy 33 185503

Giessibl F J 2019 The gplus sensor, a powerful core for the
atomic force microscope Rev. Sci. Instrum. 90 011101

Piirckhauer K, Weymouth A J, Pfeffer K, Kullmann L,
Mulvihill E, Krahn M P, Miiller D J and Giessibl F J 2018
Imaging in biologically-relevant environments with afm
using stiff gplus sensors Sci. Rep. 8 9330

Yamada Y, Ichii T, Utsunomiya T and Sugimura H 2019
Simultaneous detection of vertical and lateral forces by
bimodal afm utilizing a quartz tuning fork sensor with a long
tip Jpn. J. Appl. Phys. 58 095003

Cihan E, Heier J, Lubig K, Graf S, Muller F A and Gnecco E
2023 Dynamics of sliding friction between laser-induced
periodic surface structures (lipss) on stainless steel and pmma
microspheres ACS Appl. Mater. Interfaces 15 14970-8

Li X, van der Gucht J, Erni P and de Vries R 2023 Active
microrheology of protein condensates using colloidal probe-
afm J. Colloid Interface Sci. 632 357-66

Chighizola M, Puricelli L, Bellon L and Podesta A 2021 Large
colloidal probes for atomic force microscopy: Fabrication
and calibration issues J. Mol. Recognit. 34 2879

Eskhan A and Johnson D 2022 Microscale characterization of
abiotic surfaces and prediction of their biofouling/anti-
biofouling potential using the afm colloidal probe technique
Adv. Colloid Interface Sci. 310 102796

Kappl M and Butt H J 2002 The colloidal probe technique and
its application to adhesion force measurements Part. Part.
Syst. Charact.: Meas. Description Part. Prop. Behav.
Powders Other Disperse Syst. 19 129-43

Francius G, Hemmerlé J, Ohayon J, Schaaf P, Voegel J C,
Picart C and Senger B 2006 Effect of crosslinking on the
elasticity of polyelectrolyte multilayer films measured by
colloidal probe afm Microsc. Res. Tech. 69 84-92

Nguyen Q D, Oh E S and Chung K H 2019 Nanomechanical
properties of polymer binders for li-ion batteries probed with

16

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

(33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

colloidal probe atomic force microscopy Polym. Test. 76
245-53

Parvini C H, Cartagena-Rivera A X and Solares S D 2022
Viscoelastic parameterization of human skin cells char-
acterize material behavior at multiple timescales Commun.
Biol. 517

Solares S D and Cartagena-Rivera A X 2022 Frequency-
dependent nanomechanical profiling for medical diagnosis
Beilstein J. Nanotechnol. 13 1483-9

Stylianou A, Kontomaris S V, Grant C and Alexandratou E
2019 Atomic force microscopy on biological materials
related to pathological conditions Scanning 2019
8452851

Lyonnais S, Hénaut M, Neyret A, Merida P, Cazevieille C,
Gros N, Chable-Bessia C and Muriaux D 2021 Atomic force
microscopy analysis of native infectious and inactivated
sars-cov-2 virions Sci. Rep. 11 11885

Jaquez-Moreno T, Aureli M and Tung R C 2019 Contact
resonance atomic force microscopy using long, massive tips
Sensors 19 4990

Yuya P, Hurley D and Turner J A 2008 Contact-resonance
atomic force microscopy for viscoelasticity J. Appl. Phys.
104 074916

Rabe U, Turner J and Arnold W 1998 Analysis of the high-
frequency response of atomic force microscope cantilevers
Appl. Phys. A 66 S277-82

Meirovitch L 1967 Analytical Methods in Vibrations (New
York, NY: MacMillan)

Muraoka M 2002 Sensitive detection of local elasticity by
oscillating an afm cantilever with its mass concentrated
JSME Int. J. A 45 567-72

Rabe U, Hirsekorn S, Reinstiddtler M, Sulzbach T,

Lehrer C and Arnold W 2006 Influence of the cantilever
holder on the vibrations of afm cantilevers Nanotechnology
18 044008

Hurley D C and Turner J A 2007 Measurement of poisson’s
ratio with contact-resonance atomic force microscopy
J. Appl. Phys. 102 033509

Chidamparam P and Leissa A W 1993 Vibrations of planar
curved beams, rings, and arches ASME. Appl. Mech. Rev. 46
467-83

Chang C S and Hodges D 2009 Vibration characteristics of
curved beams J. Mech. Mater. Struct. 4 675-92

Turner J A and Wiehn J S 2001 Sensitivity of flexural and
torsional vibration modes of atomic force microscope
cantilevers to surface stiffness variations Nanotechnology
12 322

Rabe U, Amelio S, Kopycinska M, Hirsekorn S, Kempf M,
Goken M and Arnold W 2002 Imaging and measurement of
local mechanical material properties by atomic force
acoustic microscopy Surf. Interface Anal. 33 65-70

Hurley D C 2009 Contact resonance force microscopy
techniques for nanomechanical measurements Applied
Scanning Probe Methods XI (Berlin: Springer) pp 97-138

Rabe U, Amelio S, Kester E, Scherer V, Hirsekorn S and
Arnold W 2000 Quantitative determination of contact
stiffness using atomic force acoustic microscopy Ultrasonics
38 430-7

Rabe U, Amelio S, Kopycinska M, Hirsekorn S, Kempf M,
Goken M and Arnold W 2002 Imaging and measurement of
local mechanical material properties by atomic force
acoustic microscopy Surf. Interface Anal. 33 65-70

Hurley D C, Shen K, Jennett N and Turner J A 2003 Atomic
force acoustic microscopy methods to determine thin-film
elastic properties J. Appl. Phys. 94 2347-54

Rabe U 2006 Atomic force acoustic microscopy Applied
Scanning Probe Methods II (Berlin: Springer) pp 37-90


https://doi.org/10.1177/10775463211038140
https://doi.org/10.1177/10775463211038140
https://doi.org/10.1177/10775463211038140
https://doi.org/10.1177/10775463211038140
https://doi.org/10.1103/PhysRevApplied.8.044010
https://doi.org/10.1088/0957-4484/23/23/235704
https://doi.org/10.1016/j.ultramic.2018.11.017
https://doi.org/10.1016/j.ultramic.2018.11.017
https://doi.org/10.1016/j.ultramic.2018.11.017
https://doi.org/10.1039/D2NR01062C
https://doi.org/10.1039/D2NR01062C
https://doi.org/10.1039/D2NR01062C
https://doi.org/10.1088/1361-6528/ac4759
https://doi.org/10.1063/1.5052264
https://doi.org/10.1038/s41598-018-27608-6
https://doi.org/10.7567/1347-4065/ab3617
https://doi.org/10.1021/acsami.3c00057
https://doi.org/10.1021/acsami.3c00057
https://doi.org/10.1021/acsami.3c00057
https://doi.org/10.1016/j.jcis.2022.11.071
https://doi.org/10.1016/j.jcis.2022.11.071
https://doi.org/10.1016/j.jcis.2022.11.071
https://doi.org/10.1002/1521-4117(200207)19:3<129::AID-PPSC129>3.0.CO;2-G
https://doi.org/10.1002/1521-4117(200207)19:3<129::AID-PPSC129>3.0.CO;2-G
https://doi.org/10.1002/1521-4117(200207)19:3<129::AID-PPSC129>3.0.CO;2-G
https://doi.org/10.1002/jemt.20275
https://doi.org/10.1002/jemt.20275
https://doi.org/10.1002/jemt.20275
https://doi.org/10.1016/j.polymertesting.2019.03.025
https://doi.org/10.1016/j.polymertesting.2019.03.025
https://doi.org/10.1016/j.polymertesting.2019.03.025
https://doi.org/10.1016/j.polymertesting.2019.03.025
https://doi.org/10.3762/bjnano.13.122
https://doi.org/10.3762/bjnano.13.122
https://doi.org/10.3762/bjnano.13.122
https://doi.org/10.1155/2019/8452851
https://doi.org/10.1155/2019/8452851
https://doi.org/10.3390/s19224990
https://doi.org/10.1063/1.2996259
https://doi.org/10.1007/s003390051145
https://doi.org/10.1007/s003390051145
https://doi.org/10.1007/s003390051145
https://doi.org/10.1063/1.2767387
https://doi.org/10.1115/1.3120374
https://doi.org/10.1115/1.3120374
https://doi.org/10.1115/1.3120374
https://doi.org/10.1115/1.3120374
https://doi.org/10.2140/jomms.2009.4.675
https://doi.org/10.2140/jomms.2009.4.675
https://doi.org/10.2140/jomms.2009.4.675
https://doi.org/10.1088/0957-4484/12/3/321
https://doi.org/10.1002/sia.1163
https://doi.org/10.1002/sia.1163
https://doi.org/10.1002/sia.1163
https://doi.org/10.1016/S0041-624X(99)00207-3
https://doi.org/10.1016/S0041-624X(99)00207-3
https://doi.org/10.1016/S0041-624X(99)00207-3
https://doi.org/10.1002/sia.1163
https://doi.org/10.1002/sia.1163
https://doi.org/10.1002/sia.1163
https://doi.org/10.1063/1.1592632
https://doi.org/10.1063/1.1592632
https://doi.org/10.1063/1.1592632

	1. Introduction
	2. Theory
	2.1. System parameters solution, analysis, and estimation technique
	2.2. Graphical representation by a minimization technique
	2.3. Example problem 1: modified sensor
	2.4. Example problem 2: sensor with large tip
	2.5. Example problem 3: solution multiplicity

	3. Experimental validation
	3.1. Experimental setup

	4. Results and discussion
	4.1. Contact-resonance post processing
	4.2. Eigenvalue boundaries

	5. Conclusions
	Acknowledgments
	Data availability statement
	Appendix
	References



