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Abstract—Increasing the penetration of low inertia inverter-
based resources in power systems creates new system stability
challenges and requires sophisticated stability assessment tools.
One of the practical tools for large-signal stability assessment is
determining the system region of stability (ROS)—i.e., the portion
of the system state space where variable trajectories converge to
a stable equilibrium point. In contrast to time-domain simulation
methods, Lyapunov function-based methods are fast and can
measure system stability margin from the ROS. This paper pro-
poses a sum of squares (SOS) technique to determine large-signal
stability regions of inverter-based microgrids using the Lyapunov
function. An accurate dynamic model of grid-connected inverter-
based resources is applied for the state-space model of the
network. The Lyapunov function is constructed based on the sum
of squares method by SOSTOOL. In comparison to Krasovskii’s
method, the stability region created by the SOS method is found
more accurate. Two scenarios—a changing load event and an
adjustment to the inverter control—are analyzed in the stability
region assessment.

Index Terms—Inverter-based resources, large-signal stability,
Lyapunov function, the sum of squares method, the domain of
attraction.

I. INTRODUCTION

Enhancing the resilience, dependability, and flexibility of the
power supply is the primary factor behind the development
and deployment of microgrids, generally known as small-
scale autonomous energy systems [1]. Utilizing microgrids can
help lower operating expenses and improve the integration
of renewable energy sources [2]. However, because of their
low inertia, microgrid applications create stability problems.
In order to use microgrids as practical energy systems for
enhancing the resilience, reliability, and flexibility of the
power supply, stability assessment of low-inertia microgrids
is crucial.

Both small-signal and large-signal models have been used
to study and analyze the stability of microgrids [3]. Applying
linearization techniques on the system dynamic model around
the equilibrium point or operating point of the power grid (i.e.,
small-signal stability) analysis exclusively small transient dis-
ruptions [4]. Therefore, to guarantee a comprehensive stability
assessment, a large-signal stability analysis must be carried out
for significant disturbances including line failures, faults, and
load changes.

One of the promising methods to evaluate large-signal
stability assessment of microgrids is the Lyapunov-based tech-
nique [5]. The Lyapunov stability assessment can properly
define the stability boundary for nonlinear systems. Due to the

significant portion of non-linear components of inverter-based
microgrids, detailed models are required for precise large-
signal stability analysis. Applying Lyapunov-based methods
with intricate component models has shown to be a challenge
for the stability assessment of large-scale power systems.

For the stability evaluation and control of single components
such as motor drives, rectifiers, and inverters, Lyapunov tech-
niques have been employed extensively. Large-signal stability
analysis of a single inverter-motor drive system in a DC power
system is evaluated in [6]. In [7], the stability assessment
of a microgrid including three inverter-based resources under
different events is investigated using Krasovskii’s method. An
inverter-based generator’s large-signal stability is investigated
in [8], by utilizing a Popov-based Lyapunov function. How-
ever, the domain of attraction obtained by the Popov-based
Lyapunov function is conservative. Moreover, other methods
such as those using Krasovskii’s method suffer from the same
conservativeness problem.

The small domain of attraction which is the result of using
conservative methods makes the protection setting conserva-
tive against possible faults and contingencies, leading to the
quick tripping of the protection system. Subsequently, the
system experiences an unnecessary outage that can cause cus-
tomer inconvenience and shortages of supply. To circumvent
the conservativeness challenge, the sum of squares method [9]
can be used for stability analysis, providing a larger provable
domain of attraction for the same system compared to the
previous methods like Popove and Krasovskii’s method.

In this study, the sum of squares (SOS) method is applied
on a microgrid for the stability analysis to estimate a less
conservative domain of attraction. In this study:

• The sum of squares method is applied to the time-domain
dynamic model of a microgrid to construct the Lyapunov
function and estimate a less conservative stability region.

• The domain of attraction constructed by the sum of
squares and Krasovskii’s methods are comparatively stud-
ied.

• The effect of two scenarios including inverter control
modification and load-changing event on the SOS-based
domain of attraction are scrutinized.

.
The contour plot tool is applied to present the results.
The rest of the paper is structured as follows. Section II

presents the nonlinear dynamic model of a grid-connected
microgrid. Section III explains the sum of squares method



for constructing the Lyapunov function. Section IV provides
case study results and their assessment. Concluding remarks
are included in Section V.

II. DYNAMIC MODEL OF A GRID-CONNECTED
MICROGRID

A microgrid’s large-signal dynamic model is applied to
investigate the system’s dynamic response against various
extreme contingencies and disruptions. All components of
a distribution system, such as distributed generators (DGs),
converters, loads, and batteries, should be modeled using
reasonable approximations to obtain a precise large-signal
model of the microgrid.

Fig. 1 represents the network and the controlling system
of the inverter-based resource studied in this paper. The
Network includes an inverter-based resource connected to the
main grid and two loads. In this study, the dynamic model
of the inverter-based resource is as the proposed model in
[5], [10]. The following subsections describe the inverter-
based resource’s theoretical model. The power control, voltage
control, current control, LCL filter, lines and connection, and
loads are modeled and presented. In the end, all components
using the network mapping model are combined to construct
the state space model of the microgrid. In this model, the DC
side components are ignored.

a) Power Controller: The power controller includes
Q/V , P/f , and low-pass filter (ωf ). The nonlinear state-space
model of the power controller is as follows:

Pi =
ωf

s+ ωf
p̃ , Qi =

ωf

s+ ωf
q̃

p̃ = voq ioq + vod iod , q̃ = vod ioq − voq iod

(1)

mp Pi =ωn − ω , nq Qi = Vn − v∗od , v∗oq = 0

δ =

∫
(ω − ωref ) , △ωn = ωn − ωref

(2)

ẊPctrl
=AP XPctrl

+ BPω △ωn +BP Uinv

YPctrl
=CP XPctrl

+ EP

XT
Pctrl

=
[
δ P Q

]
, Y T

Pctrl
=

[
ω v∗od v∗oq

]
,

UT
inv =

[
ild ilq vod voq iod ioq

]
,EP =

ωn

Vn
0

 ,
(3)

AP =

0 −mp 0
0 −ωf 0
0 0 −ωf

 ,CP =

0 −mp 0
0 0 −nq

0 0 0

 ,
BPω =

10
0

 , BP =

0 0 0 0 0 0
0 0 0 0 ωf vod ωf voq
0 0 0 0 −ωf voq ωf vod


(4)

where Pi and Qi are considered P and Q, respectively. The
angle between the inverter’s local d-q reference frame and the
global D-Q reference frame is represented by δ. Vn indicates
d-axis nominal output voltage, and ωn represents the nominal

frequency is set in the inverter droop controller; and ω and
ωref are local rotating reference frame of each inverter and
angular frequencies of the global reference frame, respectively.

b) Voltage Controller: Following is a definition of the
voltage controller’s state space:

dζd
dt

= v∗od − vod ,
dζq
dt

= v∗oq − voq (5)

ẊVctrl
= AvXVctrl

+Bv1 Uv +Bv2 Uinv

YVctrl
= Cv XVctrl

+ Dv1 Uv +Dv2 Uinv

(6)

Xζctrl =

[
ζd
ζq

]
, Yζctrl =

[
i∗ld
i∗lq

]
, Uv =

[
v∗od
v∗oq

]
,

Bv1 =

[
1 0
0 1

]
, Bv2 =

[
0 0 −1 0 0 0
0 0 0 −1 0 0

]
,

Av =

[
0 0
0 0

]
,Cv =

[
Kiv 0
0 Kiv

]
,Dv1 =

[
Kpv 0
0 Kpv

]
,

Dv2 =

[
0 0 −Kpv −ωn Cf F 0
0 0 ωn Cf −Kpv 0 F

]
(7)

where the Proportional Integral (PI) coefficients of the
voltage controller of the inverter are represented by Kpv and
Kiv . Additionally, F indicates the feed-forward coefficient
of the voltage controller of the inverter. In this study, the
microgrid is assumed to operate in the grid-connected mode,
and the grid frequency is set as the angular frequency of the
global D-Q reference frame.

c) Current Controller: The state space model of the
current controller is as follows.

dγd
dt

= i∗ld − ild ,
dγq
dt

= i∗lq − ilq (8)

Ẋγctrl
= AcXγctrl

+Bc1 Uc +Bc2 Uinv

Yγctrl
= Cc Xγctrl

+ Dc1 Uc +Dc2 Uinv

(9)

Xγctrl
=

[
γd
γq

]
, Uc =

[
i∗ld
i∗lq

]
, Yγctrl

=

[
v∗inv,d
v∗inv,q

]
,

Bc1 =

[
1 0
0 1

]
,Bc2 =

[
−1 0 0 0 0 0
0 −1 0 0 0 0

]
,

Ac =

[
0 0
0 0

]
, Cc =

[
Kic 0
0 Kic

]
, Dc1 =

[
Kpc 0
0 Kpc

]
,

Dc2 =

[
−Kpc −ωn Lf 0 0 0 0
ωn Lf −Kpc 0 0 0 0

]
(10)

where Kic and Kpc are the current controller’s PI coefficients.
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Fig. 1. Network and the DC/AC droop controlled inverter.

d) LCL Filter: The LC filter can be modeled as follows:

dild
dt

=
−rf
Lf

ild + ω ilq +
1

Lf
(vinv,d − vod)

dilq
dt

=
−rf
Lf

ilq − ω ild +
1

Lf
(vinv,q − voq)

dvod
dt

= ω voq +
1

Cf
(ild − iod)

dvoq
dt

= −ω vod +
1

Cf
(ilq − ioq)

diod
dt

=
−rc
Lc

iod + ω ioq +
1

Lc
(vod − vbd)

dioq
dt

=
−rc
Lc

ioq − ω iod +
1

Lc
(voq − vbq)

(11)

ẊLCfltr
= ALCXLCfltr

+BLC1 ULC1 +BLC2 ULC2

XLCfltr
= Uinv , ULC1 =

[
vinv,d
vinv,q

]
, ULC2 =

[
vbd
vbq

]
(12)

where vbd and vbq are the output voltage in Park frame, and
ALC, BLC1, and BLC2 are explained in [5].

e) State-Space model of an Inverter-based Resource:
The three-phase system has no harmonics and is balanced.
In this study, the modulation ratio is assumed equal to 1.
According to [5], for the state-space model of an inverter-
based resource, all aforementioned dynamic model equations
are combined as follows:

ẊIBR =AIBRXIBR +BIBR1 UIBR +BIBR2 +BIBR3 ωref

YIBR = CIBRXIBR +DIBR1 ωn

XT
IBR = [δ P Q ζd ζq γd γq ild ilq vod voq

iod ioq] ,

UT
IBR = [vbD vbQ]

(13)

where AIBR, BIBR2, and DIBR are given in (14); in (14), C ′
P

is the rows 2 and 3 of CP , which is given in (4). The other
parameters, including BIBR1, BIBR3, and CIBR can be found
in [5], [10].

f) Network: The dynamic equation of the network is as
follows:

diD,line

dt
=

−rline iD,line

Lline
− (vkD − vbD)

Lline
+ ω iQ,line

diQ,line

dt
=

−rline iQ,line

Lline
− (vkQ − vbQ)

Lline
− ω iD,line

(15)

The nonlinear state-space model of the network is given by:

ẊiNtwrk
= ANtwrkXiNtwrk

+BNtwrk UNtwrk (16)

XT
iNtwrk

=
[
XT

iline1

]
, UT

Ntwrk =
[
vTbDQ1 vTbDQ2

]
,

Xiline
=

[
iD,line

iQ,line

]
, vbDQ =

[
vbD
vbQ

]
ANtwrk =

[
ALINE1

]
,

ALINE1 =

[
−rline/Lline ωref

−ωref −rline/Lline

]
,

BT
Ntwrk =

[
BT

LINE1

]
,

BLINE1 =

[ 1
Lline

0 −1
Lline

0

0 1
Lline

0 −1
Lline

]
− node b− −node k−

(17)

where the network topology and line config are represented
by the variables (.)Ntwrk and (.)LINE , respectively.; and vk
and vb are defined vb2 (or v2) and vb1 based on the Fig. 1. In
matrix BLINE, the line current leaves the node b (+1/Lline)
and enters to the node k (−1/Lline). The other components
of this matrix have values of zero.

g) Load: In this study, a general constant resistive-
inductive (RL) load type is considered. The load dynamics
behavior at each node is modeled as follows:

diD,load

dt
=

−Rload iD,load

Lload
+

vbD
Lload

+ ω iQ,load

diQ,load

dt
=

−Rload iQ,load

Lload
+

vbQ
Lload

− ω iD,load

(18)



Ẋiload
= AloadXiload

+Bload Uload

Xiload
=

[
iD,load

iQ,load

]
, Uload = ULC2 [TDQ] =

[
vbD
vbQ

]
,

Aload =

[
−Rload/Lload ωref

−ωref −Rload/Lload

]
,

Bload =

[
1/Lload 0

0 1/Lload

]
(19)

where TDQ is the transfer function for the global D-Q
reference frame

h) Microgrid Model and Mapping matrices: To de-
termine the voltage of each node, a virtual resistor (rv) is
provided between the ground and each node. In Fig. 1, the
virtual resistor is depicted, where a large enough amount is
chosen for it (7000 Ω), minimizing its effect on the grid’s
dynamic model’s precision. The voltage of nodes is expressed
as follows:

vbDQ = Rv(MIBR ioDQ+ML iloadDQ+MNtwrk ilineDQ)
(20)

The voltage values given in (20) are then used as the input
of load (L), line (Network), and inverter (IBR) models. Rv

is the matrix of rv based on the configuration and number of
nodes. Rv contains diagonal items with the value rv . MIBR

is intended to map the inverters’ connecting points to the
grid’s nodes. Depending on whether the inverter i is linked
to the node j, the corresponding element is either 1 or 0. The
connection between loads and grid nodes is mapped using
ML. In the absence of a connection between the load and the
node, the element is 1, otherwise, it is 0. The mapping of the
lines to the nodes of the grid is done by item MNtwrk. This
matrix’s element has a value of 1 when the current enters the
node and a value of -1 when it exits [5], [10]. The following
is a description of the state-space model for all components
[5].

ẊMicrogrid = AMicrogrid(XMicrogrid)XMicrogrid+BMicrogrid

(21)
where AMicrogrid is presented in (22) and additional infor-

mation about the matrices of (22) is available in [10] (Section
II-B, Eq. 52).

III. CONSTRUCTING THE LYAPUNOV FUNCTION BY
SOSTOOL

In Parrilo’s thesis, the sum of squares method was first
presented [11]. In this method, numerous problems in system

analysis that were previously challenging to answer have been
addressed. One of the addressed challenges is the algorith-
mic stability analysis of nonlinear systems using Lyapunov
techniques. In this paper, the application of the SOS-based
Lyapunov function is suggested for stability analysis of the
inverter-based microgrid to find a region of attraction with
lower conservativeness. The SOSTOOL is applied to find the
polynomial Lyapunov function. The sum of squares polyno-
mial optimization programs can be created and solved using
the free MATLAB toolbox SOSTOOLS [12]. According to
the number of states in the inverter-based resource model, the
constructed Lyapunov function by SOSTOOL is too bulky to
present here.

IV. RESULTS AND ANALYSIS

The case study includes two loads and an inverter-based
resource connected to the main grid. The parameter of the
network is tabulated in Table I. The stability analysis is com-
paratively discussed for both SOS-based Lyapunov function
and Krasovoskii’s methods. The sensitivity analysis of the
SOS-based method is investigated for two scenarios including
load changing and control parameter modifications. In this
study, the contour plot is used to represent the results.

TABLE I
THE PARAMETERS OF THE INVERTER CONTROL AND NETWORK

Kpv 0.225 Lf 10.1 mH mp 8.9e-5

Kiv 610 Cf 6600 µF nq 2.5e-3

Kpc 63 rf 0.1 Ω ωref 2×50 π rad/s

Kic 1620 Vn 380.5 volt ωf 2×5π rad/s

A contour plot is a graphical technique for portraying a
three-dimensional area that involves drawing contours on a
two-dimensional platform using constant z-slice data. In other
words, assuming a value for z value, lines are created linking
the (x,y) places where that value of z occurs. The number on
the contour line shows the z value. Moreover, the changing
color between each two contour lines shows the different z-
slices.

A. Accuracy of the SOS-based Stability Region

As claimed about the accuracy of the SOS-based Lyapunov
function, this method can enlarge the domain of attraction to
provable state space. Fig. 2 represents a comparative study
for the domain of attraction constructed by two methods
including Krasovskii and the sum of squares. The stable

AIBR =


AP 03×4 BP

Bv1 C
′
P 02×4 Bv2

Bc1 Dv1 C
′
P Bc1 Cv 02×2 Bc1 Dv2 +Bc2

ψ BLCL1 Dc1 Dv1 C
′
P ψ BLCL1 Dc1 Cv ψ BLCL1 Cc σ


13×13

ψ = GIBR Vdc , σ = ALCL +BLCL1 ψ (Dc1 Dv2 +Dc2) ,

DT
IBR = [1 01×2] , BT

IBR2 = [ωn 01×2 Vn 0 KpvVn 01×7]

(14)
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Fig. 2. (a) Domain of attraction based on SOS (contour) and Krasovskii(surf).

state space represented by Krasovskii’s method is extremely
small compared to what is constructed by the sum of squares
method. The domain of attraction proposed by Krasovskii
causes a very conservative response of the power system
during the contingencies. Generally, the relay and protection
systems are adjusted based on the transient stability analysis
like the domain of attraction. The domain of attraction can
determine the critical time to clear the fault and other con-
tingencies to guarantee a stable and reliable operation of the
network. A small domain of attraction leads to a conservative
adjustment of the protection system, and as a result, the system
experiences an excessive outage or load shedding.

B. Analysis of the Region of Stability using Contour Plot

Based on the Lyapunov stability, the constructed Lyapunov
function must have the following conditions for the stability
region:

V (0) = 0 , V (xn) > 0 , V̇ (xn) ≤ 0 (23)

For the first condition, the state space of the system is shifted
to its equilibrium point ( i.e. xn = x − x0 that x0 is the
equilibrium point of the system). So, V (xn) at xn = 0 is zero.
Fig. 3 illustrates the Lyapunov function (left) and the derivative
of the Lyapunov function (right). Negative contours in the
Lyapunov function plot cannot satisfy the second Lyapunov
stability condition. As a result, the regions in Fig. 3-(left) with
dark purple areas are not included in the stability region. The
positive contours in Fig. 3-(right), which include the yellow
and light orange zones, are excluded from the stability region,
satisfying the third criterion for the negative derivative of the
Lyapunov function. Consequently, the common area of the
second and third conditions constructs the stability region. In
Fig. 4, red lines created as a result of subscribing to the second
and third conditions identify the stability region.

Fig. 3. Lyapunov function based on SOS (left) Derivative of Lyapunov
function based on SOS (right).

Fig. 4. The stability region satisfied the Lyapunov stability conditions.

C. Sensitivity Analysis

The following section represents the effect of two scenarios
including a load-changing event and control modification on
the stability region. These two scenarios are common in
inverter-based microgrids as a smart system to modify the
system based on the transient and permanent changes and
guarantee reliable and stable operation.

1) Load Changing: Load reconfiguration is a remedy to
increase the system reliability during contingencies, resulting
in a change in the stability region. Appropriate load recon-
figuration or load shedding enlarges the region of stability,
improving the stability capability of the network during the
possible transient fault in the future. Fig. 5 illustrates the
impact of load increasing in the stability region. By increasing
load 1, the contour lines for the same V -slices shrink to a
smaller region of stability.

2) Control Modification: Various inverter controlling tech-
niques are applied on the inverter switching system to guar-
antee a reliable and stable operation. Changing the controlling

AMicrogrid(XMicrogrid) =

AIBR +BIBRRvMIBRCIBRc BIBRRvMNtwrk BIBRRvML

BNtwrkRvMIBRCIBRc
ANtwrk +BNtwrkRvMNtwrk BNtwrkRvML

BloadRvMIBRCIBRc
BloadRvMNtwrk Aload +BloadRvML

 (22)



Fig. 5. (a) Increasing load.

Fig. 6. (a) Increasing Kpv.

parameter during contingencies or normal operation is the
nature of a smart controlling system. Besides all controlling
objects for making an appropriate decision for the switching
system, the region of attraction can be another criterion for
modifying the controlling parameter. Fig. 6 represents the
effect of increasing the Kpv on the region of stability, leading
to expanding the contour lines of the stability region and
improving the stability capability of the system.

V. CONCLUSION

This paper has presented a sum of squares method to
construct the domain of attraction for the large-signal stability
analysis of inverter-based microgrids. The nonlinear dynamic
model has been developed for a grid-connected microgrid. The
results proved that the SOS-based Lyapunov method could
construct a less conservative domain of attraction for stability
analysis, determining a more precise critical clearing time
compared to the domain constructed by Krasovskii’s method.

However, the computational process of the sum of squares
method for a high-order state space model was extremely time-
consuming, and in some cases, could not converge to a rea-
sonable response. In SOSTOOL, a major problem with using
higher-degree Lyapunov functions for a large-scale system was
the significant increase in the number of optimization decision

variables. As a solution to take the advantage of the SOS-based
method for a larger-scale system, a simpler and small-order
model of inverters should be applied.

The simple dynamic model must have reasonable approxi-
mations for transient stability analysis. One of the acceptable
and accurate models of inverters is the 5-order state-space
model of inverter-based resources proposed by [13]. The other
low-order state space model is the synchronverter model [8];
however, the synchronverter model can provide only frequency
and angle as the states. Therefore, there is a trade-off between
the number of states that can be monitored and the feasible
computation process.

On the other hand, although Krasovskii’s method is not
accurate enough, this is more salable and the computation time
is acceptable for a complex system in terms of the numbers
of inverter-based resources and distributed generators.
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