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Abstract

In the context of subscription-based services, many technologies improve over time and ser-
vice providers can provide increasingly powerful service upgrades to their customers, but at a
launching cost, and the expense of the sales of existing products. We propose a model of tech-
nology upgrades and characterize the optimal pricing and timing of technology introductions for
a service provider who price-discriminates among customers based on their upgrade experience,
in the face of customers who are averse to switching to improved offerings.

We first characterize optimal discriminatory pricing for the infinite horizon pricing problem
with fixed introduction times. We reduce the optimal pricing problem to a tractable optimization
problem and propose an efficient algorithm for solving it. Our algorithm computes optimal
discriminatory prices within a fraction of a second, even for large problem instances.

We then show that periodic introduction times, combined with optimal pricing, enjoy op-
timality guarantees. In particular, we first show that as long as the introduction intervals are
constrained to be non-increasing, it is optimal to have periodic introductions after an initial
warm-up phase. When allowing general introduction intervals, we show that periodic introduc-
tion intervals after some time are optimal in a more restricted sense. Numerical experiments

suggest that it is generally optimal to have periodic introductions after an initial warm-up phase.



Finally, we focus on a setting in which the firm does not price-discriminate based on cus-
tomers’ experience. We show both analytically and numerically that in the non-discriminatory
setting, a simple policy of Myerson (i.e., myopic) pricing and periodic introductions enjoys good

performance guarantees.



1 Introduction

Many technologies that fuel subscription-based services develop and improve over time, often driven
by improvements in the underlying components. For example, mobile phones improve with bet-
ter screen, processor, and battery technology; software suites such as Microsoft Office and Adobe
Creative Cloud advance as new features are added to individual applications; subscription services
such as Netflix upgrade their offerings providing higher tiers of service — in the case of Netflix,
higher quality of video, higher allowance of number of devices to stream on, etc.; and cloud service
providers offer upgraded virtual machines with better performance, when the processors, memory,
and expansions cards used in the underlying servers improve.

Service providers face several trade-offs as they seek to make the best use of improved technology.
On one hand, the improved technologies are more valuable to customers and command a higher
price. On the other hand, there is a cost to develop and launch a new version of a product. Further,
the new version of the product competes with existing versions. Thus, the provider faces two
questions. First, when should a new version be introduced? Second, how should it be priced, taking
into account both the versions that currently exist and the ones that will be introduced in the
future?

Existing versions of products and new ones compete in the market in two related ways. First,
new customers may be faced with a choice of versions. Second, existing customers have to decide
whether to stay with the version they are currently using or switch to a new one. We study a model
where the technology in question is rented or otherwise paid for over time (which is the case for
at least some customers of all of the previously mentioned products), so that there is no explicit
monetary cost when switching other than paying the higher rental price for the improved version.

However, this does not mean that switching is frictionless or costless to the customer. Adopting
the new version may prove costly for a variety of reasons, such as redesigning the customer’s
technology to make use of the new version (e.g., updating business processes to use the new feature
of a software suite), downtime during the transition (e.g., needing to transfer the number, settings,
and applications to the new phone, or idle time during the updating to the new version of a software

suite, or needing to shut down a cloud application so it can be relaunched on new hardware), and



human costs associated with users’ familiarity with a particular version (e.g., retraining on a new
version of a subscription-based service, or simply inertia). Indeed, there is evidence of customers’
aversion to upgrades in the cloud computing services market. Based on a study of Microsoft Azure,
we estimate that customers who arrive after a new virtual machine class is launched are 50% more
likely to use it than existing customers, indicating that these switching costs may be substantial
(see Appendix A for the analysis).!

Another salient feature of subscription-based services is price discrimination. Modern subscrip-
tion services are increasingly personalized to individual subscribers, and as a result discriminatory
pricing is ever-present in the marketplace. Specifically, the subscription-based model allows firms to
keep track of their customers and to reward existing customers with discounts and special offers on
upgrades, as an incentive to upgrade to the improved service. For example, discounts for existing
customers for technology upgrades are commonplace in mobile plan services (Verizon, 2021; Voda-
fone, 2021), home entertainment subscription services (Sky, 2021), and specialized software (PRO
Landscape, 2021; Arturia, 2019) and hardware (Ableton, 2021) suites.

In this context, the service provider has to choose from a wide range of possible policies for
how to price and time the introduction of new technology versions. Our main contribution is to
characterize the optimal discriminatory pricing policy for the service provider and to provide an
efficient algorithm for computing optimal discriminatory prices. We also show that it is generally
optimal to introduce new technologies in periodic intervals after some time?. This policy produces
a marketplace where new customers always select the newest and best offering, while existing
customers may stick with older versions due to switching costs.

In more detail, we propose a model of technology upgrades featuring discriminatory pricing,
in the face of customers who are averse to switching to improved offerings (Section 3). We model
technology introduction as a discrete-time process over an infinite time horizon, with future rewards
discounted. The quality of a new version is assumed to grow linearly with the introduction time.
New customers arrive at each time period and stay for a fixed number of time periods. The provider

seeks to maximize expected discounted profit, with her decisions being when to introduce new

"We provide further justification for modeling switching costs in Section 2.4.
ZPeriodic introductions have been noticeable in the contexts we are considering. For example, Apple has adopted
a cadence of yearly updates of its phones, with alternating major and minor updates.



technology classes and how to price them. The provider can price-discriminate among customers and
charge a customer a different price according to how many technology introductions that customer
has switched to. Customers act as simple utility maximizers, and choose the technology offering that
is most valuable to them; if they are existing customers, they incur a switching cost for switching
technologies.

Our first set of results is on developing an efficient algorithm to solve the infinite horizon optimal
discriminatory pricing problem with fixed introduction times (Section 4). We first reduce the
optimal pricing problem to a tractable optimization problem. We then identify key properties
of the optimal solution, which lead naturally to an algorithm for optimal discriminatory pricing.
When introduction intervals are non-increasing these prices are particularly easy to compute and
take the form of discounts offered to existing customers. The proposed algorithm computes optimal
discriminatory prices within a fraction of a second, even for large problem instances.

Our second set of results shows that generally periodic introduction times enjoy optimality
guarantees (Section 5). In particular, we first show that, as long as the introduction intervals are
constrained to be non-increasing, it is optimal to have periodic introductions after an initial “warm-
up” phase. We characterize the optimal period as a function of the details of the setting. We then
allow general introduction intervals and show that periodic introduction intervals after some time
are optimal in a more restricted sense. Finally, we show numerical experiments that suggest that,
when allowing for general introduction intervals, it is optimal to have periodic introduction intervals
after an initial warm-up phase of non-increasing introduction intervals.

For our third set of results, we focus on settings in subscription-based services in which the
firm does not price-discriminate among customers (Section 6). We show both analytically and
numerically that in the non-discriminatory setting, a simple policy of Myerson (i.e., myopic) pricing
and periodic introductions enjoys good performance guarantees.

Finally, we discuss the importance of our modelling assumptions to our results with respect
to the substantive context of subscription-based services, as well as extensions of our assumptions
(Section 7).

In the next section we review the relevant literature on introduction of improved product gen-

erations, motivate some of our modelling assumptions, and summarize our contribution.



2 Literature Review and Contribution

We first review works that study the optimal decision making of a firm which launches a new
product or technology, or successive generations thereof. Policies for introduction of improved
product generations have been studied, among others, in the operations management, marketing,
and economics literatures. The most commonly examined aspects of the firm’s decision about a
new product launch are timing, level of technology, and pricing, all directly relevant for this current
work. Furthermore, we specifically review works on introduction of new product generations that
focus on price discrimination based on customers’ purchase history. We then discuss some of our

modelling assumptions and state our contribution, in the light of the related literature.

2.1 Introduction of improved product generations

Operations management. We start with the operations management literature. Perhaps the
closest papers to ours are the works by Krankel et al. (2006) and Lobel et al. (2016), which both
consider a firm that introduces successive generations of a product over an infinite time horizon.
Both papers study a trade-off between waiting for further technology improvements, or capturing
the gains of technology improvements sooner, possibly at the cost of slowing sales for the existing
product. Krankel et al. (2006) construct a decision model to solve the firm’s introduction timing
problem, and they prove the optimality of a state-dependent threshold policy governing the firm’s
product introduction decisions. Our setup is different in two important ways. First, Krankel et al.
(2006) look at durable goods and do not allow for upgrades or switches: each purchase uses a unit
from the market potential. Second, they assume a specific pricing strategy (with constant unit
profit margins) and don’t endogenize the pricing decision. Lobel et al. (2016) show that when the
firm makes product launch decisions “on the go”, it is optimal to release products cyclically, i.e.,
whenever the developed technology is better than the one available in the market by a constant
margin. When the firm is able to precommit to a schedule of releases, the optimal policy generally
consists of alternating minor and major technology launch cycles. Our model is different in that
we are studying a subscription-based service, so revenue can be picked up all the time; and buyers

want to maximize their utility at each period, so they are not forward-looking.



Several other works in operations management have dealt with launch policies for (generations
of) new products. Barriola and de Albéniz (2019) model product renewal with a focus on endo-
genizing the firm’s decision for obsolescence, by allowing the firm to choose the decay rate of the
consumer’s utility for a product. Cohen et al. (1996) show that it is better to delay the intro-
duction of the new generation (and develop a better product) if the existing product has a high
margin, and when the firm is faced with an intermediate level of competition. Paulson Gjerde
et al. (2002) model a firm’s decision regarding the level of innovation to incorporate into successive
product generations and show that the structure of the internal and external environment in which
the firm operates suggests when to innovate to the technology frontier. Klastorin and Tsai (2004)
propose a game-theoretic model with two profit maximizing firms that enter a new market and
decide on the timing, design and pricing of their product introduction; they conclude that it is
not wise for profit-maximizing firms to arbitrarily shorten product life cycle for the sake of com-
petition. Casadesus-Masanell and Yoffie (2007) study competitive interactions between Intel and
Microsoft through a duopoly model between producers of complementary products and demonstrate
that natural conflicts emerge over pricing, the timing of new product releases, and who captures
the greatest value at different phases of product generations. Plambeck and Wang (2009) study
the impact of e-waste regulation on new product introduction in a stylized model of the electronics
industry. Araman and Caldentey (2016) consider a seller who has the ability to first test the market
and gather demand information through crowdvoting, before deciding whether or not and when to

launch a new product.

Marketing. We continue with the relevant marketing literature. The seminal work of Bass (1969)
proposes a growth model for the timing of initial purchase of a single innovative product based on
diffusion from innovators to imitators. A stream of papers build upon the work by Bass (1969) on
product diffusion, by incorporating multiple product generations in their models. Mahajan et al.
(1990) review and evaluate the various new product diffusion models proposed in the first two
decades after the work by Bass (1969). Bayus (1992) investigates the pricing problem for durables
with two successive generations. Norton and Bass (1987) propose a product growth model that en-

compasses both diffusion and substitution between successive generations of a technology. Pae and



Lehmann (2003) focus on the impact of intergeneration time (i.e., time in between two generations)
on product diffusion, and show that predictions based on intergeneration time achieve improved
accuracy. Stremersch et al. (2010) empirically investigate whether introducing new product gener-
ations accelerates demand growth, and find that passage of time, as opposed to generational shifts,
is what accelerates growth. Wilson and Norton (1989) consider the one-time introduction timing
decision for a new product generation and, under the assumption that the line extension has a
lower profit margin, show that it is best either to introduce the line extension early in the life cycle,
or not to introduce it at all. Mahajan and Muller (1996) extend the work of Wilson and Norton
(1989) to allow for general profit margins and conclude that it will be optimal to either introduce
the improved product early, or wait until the previous generation becomes mature. Gordon (2009)
develops a model of consumer product replacement behavior using data from the PC processor

industry.

Economics. Technology adoption and launch policies have also been studied in the economics
literature. Balcer and Lippman (1984) consider the problem of the adoption of new technology,
which improves over time. They show that the firm will adopt the current best practice if its
technological lag exceeds a certain threshold; moreover, as time passes without new technological
advances, it may become profitable to purchase a technology that has been available even though
it was not profitable to do so in the past. Farzin et al. (1998) investigate the optimal timing of
technology adoption by a competitive firm when technology choice is irreversible and the firm faces
a stochastic innovation process with uncertainties about both the speed of the arrival and the degree
of improvement of new technologies. They explicitly address the option value of delaying adoption,
compare the optimal decision rule to traditional net present value methods, and observe that the
optimal timing decision is greatly affected by technological parameters. Goettler and Gordon (2011)
study the effect of competition on innovation in the personal computer microprocessor industry.
They propose a dynamic model where firms make dynamic pricing and investment decisions while
consumers make dynamic upgrade decisions, anticipating product improvements and price declines.
They find that the rate of innovation in product quality would be higher if Intel were a monopolist,

though higher prices would reduce consumer surplus. Gowrisankaran and Rysman (2012) propose a



dynamic model of consumer preferences for new durable goods that allows for consumers to upgrade
to new durable goods as features improve. They estimate their model on digital camcorder purchase
data and find that the 1-year elasticity in response to a transitory industrywide price shock is about

25 percent less than the 1-month elasticity.

2.2 Product upgrades and price discrimination

Our work relates closely to the strand of the literature on introduction of new product generations
that studies price discrimination based on customers’ purchase history (Acquisti and Varian, 2005;
Fudenberg and Villas-Boas, 2006; Li and Jain, 2016; Jing, 2017; Cosguner et al., 2017), and in
particular in the form of discounts to existing customers on upgrades (Fudenberg and Tirole, 1998).
This form of price discrimination that uses information about the consumers’ past purchases to
offer different prices (and/or products) to consumers with different purchase histories is oftentimes
referred to as behavior-based price discrimination.

A few papers on this topic deal specifically with software technology upgrades. Mehra et al.
(2012) allow the software vendor to offer discounts on upgrades both to existing customers of a
competitor, and to its own existing customers and, similarly to us, they recognize switching costs
as an important aspect of technology upgrade adoption. Jia et al. (2018) analyze the profitability
of a selling and a leasing model and different price discrimination strategies, including strategies
that differentiate based on consumers’ past purchase behavior. Bala and Carr (2009) analyze the
optimality of upgrade pricing by characterizing the relationship between magnitude of product
improvement and the equilibrium pricing structure, particularly in the context of user upgrade
costs.

The insight that a firm can keep track of its former customers and price-discriminate based on
customers’ previous purchase behavior has been applied in contexts other than software technolo-
gies as well. Penmetsa et al. (2015) study past purchase behavior-based price discrimination in the
general context of subscription markets. Ray et al. (2005) consider trade-in rebates to existing cus-
tomers, as an incentive to replace their product with a new one, in the context of remanufacturable

products.



2.3 Revenue maximization in service provision

A recent strand of the operations management literature focuses on the revenue maximization
problem of subscription-based service providers. We give three examples of recent work. Borgs
et al. (2014) study a multiperiod pricing problem of a service firm with capacity levels that vary
over time, where customers strategically choose the timing of their purchases, and where the firm
wants to maximize its revenue while guaranteeing service to all paying customers. They provide a
dynamic programming based algorithm that computes the optimal sequence of prices in polynomial
time, and their optimal policies only use a limited number of different price levels. Kilcioglu and
Maglaras (2015) study a problem of market segmentation for a revenue maximizing cloud computing
service provider that offers two classes of service: guaranteed service (on-demand instances) and best
effort (spot instances), in a market with heterogeneous customers with respect to their valuation
and congestion sensitivity. They show that in settings where the user congestion cost rate grows
faster than the valuation rate, it is optimal for the service provider to make the spot service option
stochastically unavailable. Gao et al. (2019) consider a service system with two competing firms: a
fixed-price firm and a bid-based firm. They characterize the structure of the resulting equilibrium
strategy showing that customer equilibrium behavior has a simple threshold structure, and use this

characterization to study the price competition between the two firms.

2.4 Modelling assumptions and related literature

We next discuss some of our modelling assumptions in the light of the related literature.

A crucial aspect of our model is that customers are averse to upgrading to improved versions
of the provided technology. In the introduction, we identified three sources of switching costs:
(a) costs associated to redesigning and reengineering the customer’s business processes, (b) costs
associated to downtime and disruption during the transition, and (c¢) human costs associated with
customer inertia. While the first two can be readily understood in some contexts, including mobile
phones, software suites, and subscription services, we now provide justification for customer inertia.
Indeed, there is evidence, documented in the marketing and information systems literatures, that a

consumer’s past purchase decisions can create inertia in the context of technology adoption. Huang



(2019) finds empirically that learning a technology by doing builds up consumer human capital,
whose non-transferability results in switching costs. Zhu et al. (2006) analyze whether switching
costs are significant barriers to entry of a new standard. They determine that experience with older
standards may create switching costs and make it difficult to shift to potentially better standards,
a phenomenon called “excess inertia” in technology change. Oren and Rothkopf (1984) propose a
model for new product planning that accounts for customer inertia, and describe specific details
of the model used in a system developed for market analysis of high speed nonimpact computer
printers. Finally, other than behavioral and cognitive forces, the organizations literature highlights
the role of an organization’s identity in explaining inertia when faced with new technologies (Tripsas,
2009).

Our model assumes myopic customers who make their decisions based on the current service
offerings, as opposed to forward-looking customers who take into account beliefs about future offer-
ings.? In the canonical formulation of the revenue management problem where a monopolist seller
seeks to maximize revenues from selling a fixed inventory of a product to myopic customers who
arrive over time, maintaining prices fixed at an appropriate level over the selling horizon is asymp-
totically optimal (Gallego and van Ryzin, 1994). Recent works have allowed for forward-looking
customers (i.e, customers that strategize about their time of purchase) and have characterized op-
timal policies that are simple, or admit simple interpretations. Besbes and Lobel (2015) provide
a general formulation that allows for arbitrary correlation in customers’ patience and valuation,
prove that the firm can restrict attention to cyclic pricing policies which have length, at most, twice
the maximum willingness to wait of the customer population, and develop a dynamic programming
approach that efficiently computes optimal policies. Chen and Farias (2018) propose a “robust”
pricing mechanism that guarantees to achieve at least 29% of the expected revenues of an optimal
dynamic mechanism. Their robust pricing mechanism enjoys the simple interpretation of solving
a dynamic pricing problem for myopic customers, with the additional requirement of a price con-
straint that discourages rapid discounting. Chen et al. (2019) demonstrate that for a broad class of

customer utility models, static prices surprisingly continue to remain asymptotically optimal, and

3In Section 7 we discuss another sense in which our customers are myopic, as well as the importance of the myopia
assumption to our results.



that, irrespective of regime, an optimally set static price guarantees the seller revenues that are
within at least 63.2% of the revenues under an optimal dynamic mechanism. Chen and Hu (2020),
motivated by the sharing economy, study a model with forward-looking buyers and sellers and a
single market-making intermediary, and find a simple heuristic policy to be asymptotically opti-
mal. Under their heuristic policy, forward-looking buyers and sellers behave myopically. Caldentey
et al. (2017) consider the dynamic pricing problem in a robust formulation that is based on the
minimization of the seller’s worst-case regret, without distributional assumptions about customers’
willingness-to-pay or arrival times. They characterize optimal price paths for both myopic and
strategic customer purchasing behavior. Finally, Liu and Cooper (2015) and Lobel (2020) devi-
ate from strategic customers to study dynamic pricing in the face of patient customers: a patient
customer is willing to wait up to a certain number of periods for a lower price and will make a
purchase as soon as the price falls below her valuation. Liu and Cooper (2015) prove that there is
an optimal dynamic pricing policy comprised of repeating cycles of decreasing prices, yet such cycles
may no longer be optimal when customers have variable levels of patience. Lobel (2020) proposes
an efficient dynamic programming algorithm for finding optimal pricing policies for arbitrary joint

distributions of patience levels and valuations.

2.5 Our contribution

We summarize the key points of our contribution in light of the related literature. First, we propose a
model for technology upgrades in the context of subscription-based services. Two important features
of our model are (i) the switching cost for the customers who upgrade to improved offerings; and
(ii) price discrimination based on customers’ upgrade history. We recognize these as key features
of modern subscription services markets. Second, we characterize optimal discriminatory pricing
for the service provider and provide an efficient algorithm for retrieving optimal prices. Third, we
show that policies with periodic introduction times after an initial “warm-up” phase, combined with
optimal pricing, enjoy optimality guarantees. Fourth, in the setting where the service provider does
not price-discriminate, we show that a simple policy of Myerson (i.e., myopic) pricing and periodic

introductions enjoys good performance guarantees.
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3 A Model of Technology Upgrades with Price Discrimination

Time is discrete with an infinite horizon. At each time period f, a single service provider can
introduce up to one new technology class. We generally assume that technology classes, once
introduced, remain available for customers to choose thereafter.* We assume an unlimited capacity
of units for all introduced technology classes.’

At each period, a unit mass of new customers arrives. Customers stay in the system for d > 2
periods before departing. Each customer has a type # > 0 that is drawn i.i.d. from a distribution
with differentiable density f and c.d.f. F. We assume that the quality of the offered services grows
linearly with time, so that a customer of type 6 enjoys benefit 8-t when using a unit of a technology
class that was introduced in period t. A customer who has switched m times to an upgraded
technology class as an existing customer incurs cost x; ,, per time period for using technology class
j. Any customer incurs a switching cost ¢ > 0 whenever they switch to a different technology class.

The decisions of the provider are when to introduce new technology classes and how to price
them. The provider incurs provisioning cost C' > 0 for introducing a new technology class. We
assume that the provider can price-discriminate among customers, and charge a customer a different
price according to how many technology introductions that customer has switched to. Thus, for the
Jjth technology class that is introduced, the provider charges price x; o for newly arriving customers;
price x; 1 for customers who have already used one previous technology class before j and for whom
technology class j is the first introduction they switch to as existing customers; et cetera; and price
xj -1 for customers who have already used d — 1 previous technology classes before j and for whom
technology j will be the (d — 1)th introduction they switch to as existing customers. We refer to the
number of times a customer has switched to a better technology class as the customer’s upgrade
experience. We take n to be the maximum possible customer upgrade experience, and we have

n < d — 1. We denote a policy for the provider by

™= ((50 = 07 xro = 0)7 (317 331,0)7 (521 Z2.0, $2,1)> ) (Sjv Lj0y--- 7:Cj,min(j—1,n))a .- ) ’ (1)

4In Section 7, we discuss how this and other model assumptions affect our results.

5This is consistent with the belief that, for some services, providers are not capacity constrained in this stage, but
rather going through a phase of infrastructure investment aiming to increase their market share (e.g., Kilcioglu and
Maglaras, 2015).
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which specifies a (possibly infinite) sequence of tuples of introduction time and prices, where we use
s; to denote the time of the ith introduction. For notational convenience, we sometimes summarize
the introduction times using vector s; we summarize the corresponding pricing decisions with xg;
and we denote the resulting policy as 7 (s, Xs).

We next define the customers’ decision problem, starting with our assumptions. We assume
that customers make decisions myopically, in two senses: we restrict to customers who (i) base
their decisions on the current service offerings, rather than on the basis of beliefs about future
service offerings; and (ii) make their decision only maximizing their utility in the current period,
rather than over their remaining lifetime.® We also impose restrictions on possible upgrades for
the customers. First, we prohibit any “jump” upgrades, i.e., any upgrades from technology class
j—k to j for k> 1. That is, if a customer does not choose a technology upgrade, then she cannot
switch to any of the subsequent upgrades until the end of her customer lifetime. This restriction is
necessary to preclude non-monotone allocation rules, which limits the number of cases which need
to be considered and allows us to use connections between monotonicity and incentive compatibility
to derive results on the optimal pricing. Furthermore, we assume that customers can only upgrade
when they were previously already using the latest technology; as we discuss in Section 7 this rules

out policies which use unreasonable price discrimination.

Assumption 1. The only possible upgrades for customers are to the current technology from the

previous technology.

As an example to motivate this assumption, consider software suites where a user can license a
particular version and then use that version forever, or choose the subscription option which allows
the user to upgrade as new versions come out.

We assume that each customer at each time period can use a single unit from an available
technology class of her choice, or she can opt out. A newly arriving customer of type 6 at time ¢
simply chooses her preferred quality, ¢; € {0,1,...}, among the introduced technology classes, so
her choice at time ¢ is

qi(m,t,0) = argmax @ - s; — x; 0. (2)
7 s.t. 5;<t

5We discuss the myopia assumption and its importance to our results in more detail in Section 7.
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Note that g; = 0 encodes the customer opting out. We assume that customers who don’t get service

in the current period are not available as customers in future periods.
An existing customer in her ¢-th period, with 2 < ¢ < d, will either stay with her previous
choice, or pay the switching cost to adopt a new technology(if there is one), so her choice at time ¢

is given as follows:

0, if t < s,
qo—1(mt —1,0)+ 1, if t > sy and 8¢, | (r,t—1,0)41 =t and
qz(ﬂ" t’ 9) = - ng_l(ﬂ',tflﬁ) - xqg_l(W,tfl,e),mg_l(ﬂ',tflﬁ) (3)

< 0 - Sqe_1(mt—1,0)+1 — Lgp_y (m,t—1,0)+1,me_1 (m,t—1,0)+1 — C;

gr—1(m,t—1,0), otherwise.

where for ¢t > s; and 1 </ < min(t — s; + 1,d),

0, ife=1
my(m,t,0) = me—1(m,t —1,0) 4+ 1, if go(m,t,0) > qo—1(m,t —1,0) (4)
mf—l(ﬂ-7t_170)7 if QZ(W7t39) :qg—l(ﬂ-at_lao)

tracks the customer’s upgrade experience: this is the number of upgrades that a customer of type
0, who is in her ¢-th period at time ¢, has switched to as an existing customer under policy 7.

In particular, we define go(m,¢,0) = 0 for t < s; and ¢ = 2,...,d. We note that there is
an inherent asymmetry between the first d — 1 periods, counting from the first introduction at
time ¢t = s1, and subsequent periods. In period t = si, only new customers can choose the new
technology and necessarily ga(7, s1,0) = ... = gq(m, s1,0) = 0. In general, in period ¢ = s; + ¢’ with
0 <t <d-2, we have quyo(m, t,0) = ... = qq(m,t,0) = 0. We assume without loss of generality
that in case of ties in these definitions, the customer chooses the latest technology class. Specifically,
we assume that a new customer who is indifferent between opting out and buying will buy.

We next define the expected revenue and utility of a policy w. The expected revenue of policy

7 at time t is

Revenue(ﬂ'v t) = /(xq1(7r,t,9),m1(7r,t,9) + xqg(fr,tﬂ),mg(fr,t,e) +...+ qu(w,t,a),md(ﬂ,t,e))f(e)da'
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The provider discounts future utility at a rate of § € (0,1) per period, so the total revenue of a
policy 7 is

Revenue(7) = Z §'Revenue(r, t).
t=1

The cost of policy 7 at time ¢ is

Cost(m,t) = C - Lien,

where we write t € w as shorthand for ¢ being an introduction time in policy 7, i.e., for the existence

of some introduction (sj,z;0,...,%;j,) € 7™ such that s; = t, with j > 1. The total cost of policy
= ((So = 0,70 = 0), (51,71,0), (52, 72,0, 72,1)5 - -+ (875 4.0, - -+ Tjmin(j—1,m) ) - - )
is
o.]
Cost(m) = ZétCOSt(W,t) = CZ 5% (5)
t=1 j>1

We define the utility of a policy 7 at time ¢ to be the net gain
U(m,t) = Revenue(mw,t) — Cost(m, ),

with total utility
U(m) = Revenue(w) — Cost () = Z §'U (7, t). (6)
t=1

We finally present the provider’s optimization problem. The infinite horizon introduction time
and discriminatory pricing problem is to find a policy that maximizes expected utility, i.e., to find
7* such that

" € argmax U (). (7)

™

We are also interested in a variation of the optimization problem where the introduction times are
considered fixed, and we optimize the revenue over the prices. The infinite horizon discriminatory

pricing problem with fixed introduction times s is to find prices that maximize the expected revenue
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given the introduction times s, i.e., to find x7 such that

X5 € arg max Revenue(7 (s, Xs)). (8)

4 Optimal Pricing Policy

In this section we characterize the optimal pricing scheme for the infinite horizon discriminatory
pricing problem with fixed introduction times. That is, we consider a fixed set of introduction
times, and characterize the optimal discriminatory pricing to maximize the expected revenue. We
first reduce the optimal pricing problem to a tractable optimization problem (Section 4.2). We then
identify key properties of the optimal solution, which lead naturally to an algorithm for optimal
discriminatory pricing (Section 4.3). We finally provide numerical evidence for the efficiency of our

pricing algorithm (Section 4.4).

4.1 Preliminaries

We start with some definitions and an assumption. We first define p* as

p* == argmax (1 — F(0)) - 0.
0>0

We refer to Myerson pricing as the pricing that sets the price at introduction time s; to z; = s;p*,
with 7 = 1,2,.... This is the price that maximizes the one-period expected revenue, assuming the
newly introduced technology class is the only product being offered.

We state a “niceness” assumption on F', in particular Myerson’s regularity condition of monotone

hazard rate, which our analysis throughout the paper requires.

Assumption 2. The support of the density f is the interval [0,(] (or [0,() if ( = oco) and the

function 1}50()7’ ) is monotonically decreasing on this support.

Assumption 2 is common in the literature and satisfied by a number of common distributions,
including uniform, normal, exponential, beta (with shape parameters a > 1,b > 1), and gamma

(with shape parameter k > 1).
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We denote the virtual valuation function by

and define its inverse (extended to include values too large or small to be in the image of v) as”

v™!(7) = min (inf{0 | v(8) > 7},). (9)

4.2 The optimization problem

We first argue that the infinite horizon discriminatory pricing problem with fixed introduction times
can be decomposed into smaller problems that are decoupled.

We fix j > 1. We focus on the problem of optimizing revenue from customers who arrive in

periods s;,...,s;41 — 1, which we denote with Revenue[sj,sjﬂ):
sj41+d—2 min(t—s;+1,d)
Revemuer, = 3. o [ S Tutmimann | FO)d. (10)
t=s; f=max(1,t—sj11+2)

These customers all face the same set of available technology classes as new customers and, if
still in the system, face the same prices when considering whether to upgrade. By Assumption 1,
customers can only upgrade if they first adopt the latest technology, and the only relevant prices

are those specified in the following observation.

Observation 1. Revenue, s, ) is a function of prices x1,0, 2,0, - -, 5,0, Tj+1,1, Lj+2,25 - - - Tjtn,ns

and no other prices.

We show that with optimal prices newly arriving customers will always choose the latest tech-
nology (or nothing), which means that prices of older technology classes targeted to new customers,
x;0 for ¢ < j, are not relevant. Apart from this initial decision, the only future options that will be
offered to these customers under our discriminatory policy are those with prices of the form x;4; ;.
Therefore, maximizing Revenue(w) given fixed introduction times si, so, ... reduces to maximizing

Revenueg, ;. ) separately for each j.

"We write inf ) = +o0.
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We next focus on the problem of maximizing Revenue, ;.. ) for a fixed j. We reduce the search
for optimal prices to an optimization problem over thresholds 93 for the customer type at which

customers switch to more advanced technologies.

Lemma 1. For fixed j > 1, consider the optimization problem

max Revenuer,. .. T1.0,22.0, .-+, Li0,Li T e T 11
T1,01T2,01 rT 5,058 4 1 1oT 42,25 rT b [SJ,SJ+1)( 1,0, 42,05 s Lg,05 Lg4+1,1y L5422, y j+n,n) ( )

and the optimization problem

J nd J
0,00, 1,00,

max 1g(1—pwpng+f}gﬂ(1—pwﬁﬂ)Q%H—gﬂkgﬁﬂ—c) (12)
i=1

* _ nJ J J
s.t. p —9j§0j+1§...§0j+n.

There exist constants Ag, A§+1, ceey A;:Jrn such that the two optimization problems have equal optimal

objective values. The optimal prices for problem (11) and the optimal thresholds for problem (12)

are related as follows:

i = sip’, 1<i<j

* % . o J* :
Tiyii =T 11+ (Sj+i — Sjpim1)0y, —¢, 1<i<n

All proofs are deferred to the Appendix.

Intuitively, the formulation of problem (12) optimizes over the choice of the minimum value for
the customer type 91‘7 that upgrades at the ith introduction. This relies on Assumption 1 to avoid
having these cutoffs depend on the pattern of previous upgrades. In turn, the assumption imposes
the monotonicity constraint to ensure that only prior upgraders accept future upgrades. The prices
then follow to ensure that customers whose type is exactly the chosen cutoff are indifferent about
whether to upgrade. In particular, 05 = p* because p* is defined to optimize (1 — F'(0))60. New
customers then prefer buying technology class j to buying nothing if s;(6 —p*) > 0, or § > p*. New
customers prefer technology j > 2 to j — 1 if s;(6 — p*) > s;_1(6 — p*), or § > p*. Thus all new
customers choose the latest technology class, or opt out.

Having reduced optimizing prices to solving optimization problem (12), we now examine its
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solution. We first address the unconstrained version of the problem and show that it is straightfor-
ward to solve. This turns out to solve the full problem in an important special case. Building on

the insights from the unconstrained version, we then address the solution of the full problem.

4.2.1 Solving the unconstrained problem

The objective of (12) is nicely separable: there is a separate summand for each sz yfor j+1<¢ <

j+n. To optimize (1 —F (023 )) ((sl — si_l)Hg — c) we take the derivative with respect to QZ yielding

(=£©OD) ((si = si)t = ¢) + (1= F(8)) (5 — 1)

= (si —si1) (1= F(00) = £(0)0]) + F(0))e.

The derivative is non-negative if and only if

g _1F0) ¢ (14)
RO s

The left hand side is monotone increasing by Assumption 2, meaning that the summand is quasi-

concave and maximized by

efFOC;::U—I(C). (15)

Si — Si—1
An important implication is that for n > 2, the optimal solution to problem (12), which we
oI ) _ ( j,FOC gi-FOC

i (R ETIN ii ) if and only if® intro-

denote 0]‘ , 0j+1, e 9j+n, satisfies (9j+1,...

duction intervals are non-increasing, i.e.,
Si — Si—1 = Si+1 — Si, j+1<i<34+n—1. (16)

We return to this class of introduction times, which notably includes policies that introduce with a
fixed period, in Section 5, where we argue that good polices are largely of this form.
This class of policies suffices to guarantee that optimal prices take the form of a discount. By

the definition of p*, v(@f ) =0 for Hg = p*, and v is increasing at a rate of at least 1 by Assumption 2.

8For n = 1, the summation in the second summand of (12) has only one term, and 9?11 = egfloc is satisfied

without requiring non-increasing intervals. The case n = 0 is trivial. In the sequel, the main case of interest is n > 2.
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Thus we have p* < Hg’FOC < p*+c/(si —si—1) for j +1 < i < j+ n. Combining this with (13)

yields the following observation, which confirms that the pricing for upgraders is in fact a discount.

Observation 2. If introduction intervals are non-increasing then the optimal prices satisfy

* * .
Titii < Tjgi0 I<i<n.

This observation is not true for general introduction times, meaning that in some cases optimal
prices for upgrading customers are higher than prices charged to new customers. Working an
example requires our upcoming analysis of the constrained optimization problem, so we defer it to

Appendix C.

4.2.2 Pricing when introduction intervals are not non-increasing

In the general case there may be some index ¢, with j +1 < i < j + n, for which 9{ * £ Hg’FOC:

that is, the unconstrained optimum Og’FOC

is not chosen at the optimal solution. Then, because
each of the summands in the objective of problem (12) is quasiconcave, at least one of the following
two monotonicity constraints must be binding at the optimal solution: 9{_1 < «9{ , 9{ < Gg 41+ In the
sequel, if at the optimal solution we have that 9{ Y= 9511 for some ¢, then we say that thresholds
0{, G{H are “lumped”.

If we know which thresholds are lumped, problem (12) can be solved in the same manner as in

the unconstrained case. Assume that at the optimal solution, the following thresholds are lumped:

09,0}, 1,....00, with j +1 < ¢ <i” < j+n. That is, we have 6" = 67", | = ... = ¢;, while the
remaining 05 *’s, with j +1 < i < j + n, are not equal to 9{,* =...= Hg,f. Then the optimal 9{:

maximizes the joint term

(1-F@)) Z AL ((si = sim1) 0 = c), (17)

=1/
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and therefore satisfies the first-order condition?

. A
6y = vt ( MOV ST ) . (18)

oAl (si— si1)

The challenge for optimization is that there are exponentially many ways in which the thresholds
0{ can be lumped. Therefore, we next present an algorithm that efficiently identifies how to optimally

lump the thresholds 93 .

4.3 An algorithm for optimal discriminatory pricing

In developing our algorithm we first identify two key properties of the optimal lumping and then

specify an algorithm which naturally follows.

4.3.1 Properties of the optimal lumping

Throughout the discussion, we fix introduction index j and focus on optimizing Revenuey,; s, ).
Recall that the 0{ are monotone. Thus, we formally represent a lumping as a subset of the following
set of equality constraints: {93 = 9{ 11| j+1<i<j+n}. Thatis, a lumping is fully defined by

which of these n — 1 constraints are required to be satisfied. Given a lumping £/ and an index 4

with j +1 <4 < j+ n, we define
L) ={te{j+1,....5+n}:LIF6 =6} (19)

(where - denotes logical entailment) to be the set of all indices whose corresponding thresholds are

lumped together with Hg in lumping £7. In the sequel, we suppress the superscript j from notation

L7 for simplicity. We use 925)0 “ %o denote the solution to the first-order condition

61.10C — 1 ¢ Seecw A (20)
‘o Zéeﬁ(i) Afg (s¢—s¢-1)

which is a translation of (18) to our lumping formalism.

?Comparing the condition in (18) against the simple first-order condition in (15), we note that (18) collapses to (15)
when no 6’s are lumped together.
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Our first key property essentially states that when lumping terms together, the maximizer of
the new joint term lies somewhere “in the middle” of the maximizers of the terms that make up the
lumping. This is a direct consequence of a quasiconcavity property implied by Assumption 2 and
applies even if some of these terms have already been lumped together, which is why the statement

of the lemma includes two lumpings rather than one.

Lemma 2. Let lumpings L, L' satisfy L C L'. Then

g h0" < 0EG” < g 0" vit1sisidn

This leads to our second key property, which establishes a condition under which two terms must
be lumped together. Intuitively, if we find the largest 0{ which is out of order then by Lemma 2

there is no way to fix this without adding it to the lumping. In the statement of the lemma, we

denote an optimal lumping for optimization problem (12) by L£*.

Lemma 3. Assume that a lumping L satisfies L C L*. Let k* := arg maxk,ese £ C) where S =

j+k

{k : 3K s.t. 1§k<k'gnmﬂ6$% 9”;25,} with k* == —oco if S = 0. Then if k* > —oo, it

holds that at the optimal solution 9j+k* = 0j+k*+1'

We now interpret Lemma 3. Start with a lumping £ that has a subset of the constraints in
L*: that is, all the Hj’s that are lumped together in £, are also lumped together in the optimal
the 9] with the largest ¢

solution. Identify ¢! “ which is out of the desired order 6’ G41) S

ke E( ) L(j+1) =
. < HJL(J )" The lemma says that such 6 it if it exists, is lumped with 0 itk ab the optimal
solution.

4.3.2 The algorithm

Lemma 3 motivates naturally the following algorithm for identifying an optimal lumping: (i) start
with a lumping that is a subset of the optimal lumping; (ii) identify the largest first-order condition
solution that is out of the desired order, 6 et (iii) update the lumping by adding the constraint
95: = 9; Le1; (V) repeat, starting from the updated lumping.

Having fixed an introduction index j, the OPTIMALLUMPING algorithm (Algorithm 1) executes

this idea in order to produce an optimal lumping of the upgrade thresholds 0? ’s for optimizing
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Revenuey,, ;. ), i.e., the revenue from customers who arrive in periods sj,...,s;j41 — 1. Rather

than repeatedly doing calculations of the form 9? = vil(fyz-j ), the algorithm operates directly on

LF(0))
1(67)

thresholds #’s. Because v™1(v) is non-decreasing in v by Assumption 2, the two are equivalen

the right-hand side terms ’yg ’s of first-order conditions of the form (9? — = ’yg , and not on

t.10

As its output, the algorithm produces a set of n terms (indexed ’yj Y1 ,’yg Jrn), which are then

fed into the DISCRIMINATORYPRICING algorithm (Algorithm 2) as the right-hand side terms for

()
1(67)

algorithm calls the OPTIMALLUMPING routine and solves the first-order condition equations to

first-order conditions of the form 95 — = 'yg . In particular, the DISCRIMINATORYPRICING

produce the optimal upgrade thresholds «9? *’s, which it then converts to optimal prices using (13).

Algorithm 1 OPTIMALLUMPING Algorithm
Input: Introduction times (s1, $2,..., ), current introduction j, maximum customer upgrade ex-
perience n, switching cost ¢, objective coefficients Ag

L0
fori=j+1,...,j+ndo
’y;’?ksi_zi—l

end for

S%{k:ﬂk’s.t.1§k<k'§n/\’y§+k>’y§+k,}

D S ' ifS=190
argmaxgeg Y g,  otherwise

while £* > 0 do '
E<—LU{9§+k* :0§+k*+1}
for . € L(j + k*) do

J
W DR DL
¢ Zé&ﬁ(j+k*) Az(sf_sé—l)
end for

S {k: W st. 1<k <K <nAyl >0

o 170 ‘ it S=0
arg maxXycg 'yj s otherwise
end while
J J
return Yit1s- > Vign

OTnterestingly, this means that the optimal lumping is independent of the virtual valuation function v (and thus
the customer type distribution F').
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Algorithm 2 DISCRIMINATORYPRICING Algorithm
Input: Introduction times (s1, s, ..., ), maximum customer upgrade experience n, customer type
distribution f, switching cost ¢, discount factor J, customer lifetime d

forj=1,...,do
Calculate Alli=j+1,...,74 n according to (38)

YVit1r s Vjgn & OPTIMALLUMPING ((31,32, cey )y gy, AZ)
xj0 < s;p*
fori=1,...,n do

0 vt (ﬁﬂ')
Set price Tjii; < Tjri1,i—1 + (Sj4i — Sj+i—1) 0§+i —c
end for
end for
return Prices (2,0, 241,15 Tj4nn) oy

When an iteration of the OPTIMALLUMPING algorithm lumps together some thresholds 67, then
these 0{ ’s are truly lumped together in the optimal solution, by Lemma 3. This, in turn, implies that
the DISCRIMINATORYPRICING algorithm correctly produces optimal prices for the infinite horizon

discriminatory pricing problem with fixed introduction times.

Theorem 1. The DISCRIMINATORYPRICING algorithm produces optimal prices for the infinite hori-

zon discriminatory pricing problem with fixed introduction times given by (8).

4.4 Efficient computation of optimal prices

We note that the OPTIMALLUMPING Algorithm (Algorithm 1) has time complexity that grows as
O(n?), where n is the maximum customer upgrade experience. In turn, the DISCRIMINATORY PRIC-
ING algorithm (Algorithm 2) has linear time complexity in the number of introductions (indexed by
j). We provide an implementation of these algorithms in order to compute optimal prices for given
introduction times. The proposed implementation is practical, as it can compute optimal prices
within a fraction of a second even for large problem instances.

We provide some numerical results to show that the proposed implementation computes optimal
prices efficiently. We fix the discount rate § and the switching cost ¢, and vary the customer lifetime,
the end of the horizon, as well as the given introduction times. We run 1000 simulations for each

distinct setting. In each simulation we randomly generate introduction intervals, with introductions
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Figure 1: Box plots for the running time required to compute optimal prices for the entire horizon,
over 1000 simulations, against the length of the horizon and customer lifetime d, for switching cost
¢ = 0.5, for discount rate 6 = 0.9, for the uniform distribution on [0, 1]. For the left subfigure, d is
set to 10; for the right subfigure, the horizon is set to 200 periods. The experiments were run using
R version 4.3 on a 2.5 GHz Intel Core i7 processor.

up to 20 periods apart, up to the end of the horizon. For each simulation we keep track of the running
time for computing the optimal prices for all technology classes within the horizon, i.e., the running
time of the DISCRIMINATORYPRICING algorithm when truncated at the end of horizon. Figure 1
summarizes running times using box plots that capture the outcomes of each set of 1000 simulations.
Our optimal pricing algorithm can compute an optimal set of introduction and upgrade prices for
the entire horizon in a fraction of a second, even for large horizons and for large values of the

customer lifetime d.

5 Optimal Introduction Times

Having characterized optimal discriminatory pricing given fixed introduction times, in this section
we focus on optimal introduction times. Overall, we show that policies with periodic introduction
times after an initial “warm-up” phase, combined with optimal pricing, enjoy optimality guarantees.
First, we show the optimality of periodic introduction intervals after an initial warm-up phase, when

the technology introductions are constrained to have non-increasing intervals. We characterize the
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optimal period as a function of the details of the setting (customer type distribution, switching cost,
provisioning cost, discount factor). Secondly, when we allow general introduction intervals, we show
that periodic introduction intervals after some time are optimal in a more restricted sense. Finally,
we detail numerical experiments that suggest that, when allowing for general introduction intervals,
it is optimal to have non-increasing introduction intervals during a warm-up phase, and periodic
introduction intervals after that phase, with a possible reduction of the length of the intervals

between the warm-up and the continuation.

5.1 Optimality of periodic introductions under non-increasing introduction in-

tervals

In this subsection we assume that introduction intervals are non-increasing and show that, after the
initial warm-up phase, periodic introductions are optimal. The initial warm-up phase corresponds
to the early stages of the process, when the mass of customers in the system is still building up
(because we are less than d — 1 periods after the first introduction, and therefore less than a mass d
of customers have arrived since and including the first introduction time). We show that once this
phase has ended, periodic introductions from then on are optimal.

Specifically, we assume
Assumption 3. Introduction intervals are non-increasing; that is, s; —s;—1 > s;41 —s; for all 4 > 2.

We also assume that all prices are calculated optimally given the introduction times, hence any
policy is fully characterized by the introduction times.!!

We now state our theorem on optimal introduction times.

Theorem 2. Assume that technology introductions are restricted to have non-increasing intervals
(Assumption 3). Then there is an optimal policy with the following property: all introductions
made at or after time t = s1 +d — 1 are periodic, with each introduction a constant interval from

its previous introduction.

We highlight the main intuition underlying this result. To do so, we first introduce some notation.

Given a policy 7 with introduction times (s;) and a fixed j > 1, define 75, = ((so = 0,79 =

' An optimal policy in this restricted policy space exists, i.e., there is some 7* that introduces at times (s}, s3,...)
such that U(x™) = sup, U(w), where U(7™) is finite.
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0), (s1,%1),---,(8j,x})) to be the finite (truncated) policy that has introduction times (s1,..., s;),
where s; is its last introduction, and where the prices x; = (mio, - ,xzmin(i_l’n)), 1=1,...,7, are
optimal prices given the introduction times. Assuming non-increasing introduction intervals, we
express the excess utility of policy 7, ,, (which makes one more introduction, at some time s;1)
over policy s, as

U(ms;i1) = Ulms;) = 0% (g(sj41 — 55) = C) (21)

for some function g that captures the difference in the revenue. Function g depends on introduction
times only through the difference s;;11 — s;, and also depends on the details of the problem setting
(customer type distribution F', customer lifetime d, switching cost ¢, discount factor 4.) The utility

of a policy m can be thought of in terms of the excess utility of the policy over the utility U(ms,):

U(r) =Ul(ms;) + i 5% (g(sk — sk—1) — C) . (22)
k=j+1

excess utility

We show that this excess utility is maximized for periodic introduction intervals.
We note that when customers switch to upgraded technologies as existing customers at most
once, i.e., n = 1, then a stronger version of Theorem 2 holds: periodic introductions after time

s1 +d — 1 are optimal, without restricting to non-increasing introductions.

5.1.1 Characterizing the optimal period

We now characterize the optimal period. The proof of Theorem 2 shows that the excess revenue

of policy 7, , over policy 7s,, shown in (21), can be written in terms of the function

_sd d N
99 = g (= FO ) o + TS 0 PO (0 -9, e nt (23)

where 6*(z) denotes the solution to the first-order condition

0*(z) ;= vt (C) . (24)

z
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We also define

h(z) :=g(z)—C, ze&NT, (25)

The following corollary of Theorem 2 characterizes the optimal periodicity after the initial warm-up

phase.

Corollary 1. Assume that technology introductions are restricted to have non-increasing intervals
(Assumption 3). Then there is an optimal policy with the following property: all introductions made

at or after time t = s1 +d — 1 are at a time which is an interval of

52

T* € argmax h(z) (26)

z€NT 1— 067

after their previous introduction.

We make some observations related to the characterization of T™. First, h(z) is naturally
extended from the positive integers to the positive reals. We note that 1f%h(z) is bounded and
therefore has a finite maximum, because function h(z) is bounded above by a linear function of z for
fixed 6,d,c,C and distribution F.'2 Lastly, at a critical point z* where the derivative of 1f%h(z)
equals zero, we have that

logd - h(z*) + (1 — 6% )W (z*) = 0. (27)
More details on the derivatives of 1f%h(z) are given in Appendix I.
The example of the uniform distribution on [0,1]. To illustrate the behavior of the opti-

mal periodicity as a function of the problem parameters, we provide further details for the spe-

cific case when F is the uniform distribution on [0,1]. Then'® we have p* = 1/2 and 0*(z) =

12We also remark that if the set arg max, o+ %h(z) has more than one element, then choosing any of the elements
in the set as the period would be optimal. However, setting the introduction intervals to alternate between different
elements of the set does not guarantee optimality (in particular, cycling through the elements of the set would break
the assumption of non-increasing intervals).

13We provide more details for the U0, 1] case in Appendix I. For convenience, we repeat here the expression

hyo,11(2) = gup,(z) = C

1-g¢ 6% 4d(1-8)—1
_ ) =92’
) 1-s?
(1-8)2

+ L= if z>¢
(1-0)2 1z
-C if z<e.

NSNS
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min (% (5 +1), 1). Notice that for z < ¢, #*(z) = 1, meaning customers never upgrade: they just
stick with the latest technology they were offered at their arrival time.

In general, %hU{O,H (z) can be multi-modal. For z < ¢, %hU[O,l](Z) is either decreasing or
has a local maximum at z* < ¢ satisfying (27). Similarly for z > ¢, %hU[o,l](Z) can be decreasing
or have a local maximum at z* > ¢ satisfying (27). As a consequence, we find that three possible
scenarios can play out, depending on the parameter values for d, ¢, C, . We describe these scenarios

qualitatively below, and provide specific examples in Appendix I and Figure 4 therein.

1. T* = 1, where introductions are made as frequently as possible. This happens, for example,
when ¢, C are both small. In general, for small provisioning cost C' there is an incentive to
introduce frequently. If ¢ is also small enough, then it is optimal to put 7 = 1 (i.e., introduce

at every period), where almost all customers would always upgrade.

Furthermore, if C' is sufficiently small and ¢ large, then it can still be optimal to introduce as

frequently as possible (T* = 1), but now 7™ < ¢, hence no customer ever upgrades.

2. 1 <T* < ¢. No customer upgrades, but now introductions are delayed to offset introduction
costs. This happens, for example, when C' is small but larger than 1, ¢ is large (larger than
(), and ¢ is neither too large nor too small. The local maximum for z < ¢ (T™ < ¢) exceeds

that for z > c.

3. T* > max(c, 1). Some customers upgrade, and introductions are delayed to offset introduction
costs. In this case the local maximum for z > ¢ dominates that for z < ¢, and hence some

customers upgrade.

T* > ¢ > 1 can happen, for instance, when C > ¢ > 1: the provisioning cost to the provider

is greater than or equal to the switching cost to the customer.
Interestingly, even for quite small provisioning cost C, the optimal period T can be greater

than 1, i.e., it may be best not to introduce as frequently as possible, and we have T* > 1 > c.

We note that we can have a situation where different values of the period, 77" < ¢ < T3 yield

near identical values of the function 1f%h(z), where the corresponding real-valued local maxima
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2}, z5 yield near identical values (Figure 5 in Appendix I).
We see similar behavior when the customer type has a beta distribution (with shape parameters
larger than 1). When the distribution F' has infinite support, such as for the exponential or gamma

distributions, then some customers will always upgrade.

5.2 Optimality of periodic introductions under general introduction intervals

If we allow general introduction intervals (e.g., increasing intervals), we can demonstrate that peri-
odic intervals after some time are optimal in a more restricted sense. Recall that, given a policy 7
with introduction times (s;), s, refers to a policy that has introduction times (s, ..., s;) (and none

after that) and optimal prices given these introductions.

Theorem 3. Fiz j > 2 and an arbitrary sequence of introduction times s, ..., s; with s; > s1+d—1.
Fix time t such that t > sj+d—1 and t = sj +mI™ for some m. Consider the policy & with

introduction times

N N N N *
(S1=s1,...,8j-1 =s8j-1,8; = 5,841 = 5; + 17,

§j+2 =s;+ 2T*, ..., §j+m =t= s; + mT™, §j+m+1 =s;+ (m + 1)T*, .. )

and optimal pricing. Then

U(#) = U(7z) =2 U(n') = U(ry) (28)
for any policy 7" with introduction times (s} = s1,...,8j_1 = 851,87 = 8,80 1,...,8,_1,5) =
t Shy1s---) for some k > j, and optimal pricing. Furthermore, the policy # satisfies

o
7 €argmax » o0'U(m,t),
g1 ; (m,1t)

where the supremum is over all policies m which have the first j introduction times fized at (s1, ..., s;)

and a later introduction at time t.

The interpretation of Theorem 3 is that, having fixed the first j introduction times and also an
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introduction at time ¢ at least d — 1 periods after the jth introduction time, a policy with periodic
introductions starting from the jth introduction time optimizes the total discounted utility from
time ¢ onwards. In particular, take any policy 7/ with the first j introductions (si,...,s;) fixed,
that also makes an introduction at time ¢, where ¢ is at least d — 1 periods after sj. Consider the
policy 7 that starts with introductions at (s1,...,s;) and is periodic starting at time s; with period
T*, including having an introduction at time . Compared to 7/, policy 4 has (i) at least as large
additional utility over the truncated policy that stops introducing at introduction time #; and (ii)
at least as large utility from time £ onward.

Note that this doesn’t imply that 7 is optimal from time s; onwards (given initial introductions
(s1,...,8;)); it only implies that # is optimal for time ¢ onward. Theorem 3 doesn’t rule out the
existence of a policy 7 for which U(7) —U(7s;) > U(%) —U(#s,), as it says nothing about the utility
between times s; and s; +d — 2.

The restriction that the policy 7 has an introduction at time s; +mT™ for some m is essentially
without loss of generality. Fixing some arbitrary t with £ > $;j +d—1, for any comparison policy n’
with introductions at times (s} = s1,..., 59 = sj, 59+1» .oo,8, =1,...) for some k, we can redefine
7 to be any policy that has non-increasing introductions starting from period s;, an introduction
at period ¢, and then periodic introductions from ¢ onward with period T*. In particular, we state

the following result, whose proof mirrors the proof of Theorem 3:

Corollary 2. Fiz j > 2 and introduction times s1 and s; with s; > s1 +d — 1. Fix time t

such that t > sj+d—1. Fix m > 1 and consider the policy & with introduction times (51 =

51,82, ., §j—1a §j = S5j, §j+1> SR §j+m—17 §]+m = Ev Sj+m+1 = t~+ T*a Sj+m+2 = £+ 2T*7 . ')7 where
the intervals of introduction times (8;,841,...,8j4m) are non-increasing, and pricing is optimal.
Then

U(#) = U(7;) =2 U(n') = U(ry) (29)
for any policy @' with introduction times (s = s1,5,...,8,_1,8, = t,8},1,...) which has a first

introduction at s1 and an introduction at sj, =t for some k > 2, and optimal pricing. Furthermore,
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the policy Tt satisfies

oo
7 € arg max Z §'U(m,t),
=i

where the supremum is over all polices that have an introduction at s1 and a later introduction at

time t.

The interpretation of Corollary 2 is that, having fixed the first introduction time and a time at
least 2d — 2 periods after the first introduction, a policy with periodic introductions from that latter
time on optimizes the total discounted utility from that time onward. In particular, take any policy
7/ with its first introduction s; fixed and also an introduction at time ¢, where ¢ is at least 2d — 2
periods after starting time s;. Now consider the policy 7 which starts at time s;, has non-increasing
introductions for at least d — 1 periods before ¢, and then is periodic starting at ¢ with period T*.
Compared to 7', policy & has (i) at least as large additional utility over the truncated policy that
stops introducing at introduction time £, and (ii) at least as large utility from time ¢ onward.

Note that this doesn’t imply that the policy 7 is optimal from time s; onwards, only that it is
optimal for time # onwards. Neither does it imply that given an arbitrary set of fixed introductions
up to time £, that it is then optimal to have periodic introductions from time ¢ on. Instead, the
result is about the optimality, from time ¢ onwards, of a policy that has non-increasing introductions

for at least d — 1 periods before time ¢, and then periodic introductions starting at .

5.3 Numerical experiments

We have shown that periodic introductions after a warm-up phase are optimal under non-increasing
introduction intervals. We have also shown a more restricted optimality guarantee for periodic
introduction intervals when allowing for general introduction intervals. In this subsection, we present
numerical experiments in order to answer two questions: (i) Is there an introduction policy that
can outperform periodic introductions? (ii) How should the provider best time introductions in the

warm-up phase?
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5.3.1 Experimental setup

We refer to a combination of customer type distribution F', customer lifetime d, provisioning cost
C, switching cost ¢, and discount rate §, as an (experimental) problem instance. For each problem
instance, we sample patterns of introduction times according to a set of introduction pattern gener-
ating schemes. These sampling schemes are the following: random introduction intervals (Random);
periodic introductions (Per); non-increasing introduction intervals (NT); non-decreasing introduc-
tion intervals (ND); non-increasing introduction intervals in the warm-up, periodic introductions
after (NI-Per); non-increasing introductions in the warm-up, non-increasing introductions after
(NI-NI); non-decreasing introduction intervals in the warm-up, periodic introductions after (ND-
Per); non-decreasing introduction intervals in the warm-up, non-decreasing introduction intervals
after (ND-ND); and introduction intervals from grid search (Grid and Log-Grid). The details of
the pattern generating schemes are provided in Appendix K. We fix the first introduction as s; = 1
in all the generated introduction patterns.

For a given experimental problem instance, for each introduction pattern generating scheme, we
retain the introduction pattern that achieves the highest utility out of all the generated introduction
patterns from that scheme. We use the NI-Per scheme as the benchmark against which we compare
the utilities achieved by the other schemes. The end of horizon is set at 200, meaning we only

calculate utility accumulated until period 200. We provide results for the uniform distribution on

[0, 1], while the results for the beta distribution (p.d.f. f(z) = FF(ES;:(%)) 7 1(1 — z)#~1) with shape
k-1

parameters « = = 2, and the gamma distribution (p.d.f. f(z) = Wx 67%) with shape

parameter k£ = 2 and scale parameter = 0.25, are similar.

5.3.2 Results

For a given problem instance and a given introduction pattern generating scheme, we are interested

in the utility ratio
best utility achieved by scheme
best utility achieved by NI-Per’

(30)

For a given introduction pattern we calculate the generated utility as follows. We first optimize

the pricing for the given introduction times using the DISCRIMINATORYPRICING algorithm (Algo-
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rithm 2). We then use the optimized prices to calculate the ensuing revenue by (10). We use the
introduction times to calculate the ensuing cost by (5).'* Finally we calculate the utility by (6).
Figure 2 summarizes the results for all the described introduction pattern generating schemes,
over several problem instances, for a customer type distribution that is uniform on [0, 1]. The figure
shows a box plot for the comparison of each introduction pattern generating scheme against the
benchmark NI-Per scheme. Each box plot summarizes the values for the utility ratio in (30) for

the respective scheme, across the considered experimental problem instances.
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Figure 2: Box plots for the ratio between the best utility achieved by each introduction pattern gen-
erating scheme and the best utility achieved by the NI-Per benchmark, across different experimental
problem instances. Each box plot summarizes 60 utility ratio values: as many as the combinations
of three values for customer lifetime d (6,10,14), four values for provisioning cost C' (1, 5, 10, 20),
and five values for switching cost ¢ (0.5, 1, 2, 5, 10). The discount rate is fixed at 6 = 0.9 and the
customer type distribution F' is the uniform distribution on [0, 1].

“For both the revenue and the cost calculation, we truncate time at the end of horizon, which in our experiments
is set at 200.
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Essentially no pattern generating scheme achieves a better utility than the best policy with
periodic introductions after the warm-up phase, for any problem instance.'® Two of the schemes
that don’t impose periodicity have the exact same introduction pattern as the best policy with
periodic introductions after the warm-up, and therefore achieve a utility ratio against NI-Per equal
to one, for some experimental instances (10 out of 60 for Grid, eight out of 60 for Log-Grid). The
NI-Per scheme outperforms these two schemes for all other instances.

Four other introduction pattern generating schemes that don’t impose periodicity have a utility

ratio against the best NI-Per pattern that is only slightly smaller than one:

110 < best ut.il?ty ach'ieved by scheme <1,
best utility achieved by NI-Per

for some experimental problem instances (seven instances out of 60 for ND-ND; six instances for ND;
and three instances for each of NI and NI-NT). Nevertheless, for the vast majority of experimental
problem instances, the best NI-Per introduction pattern does better than the best patterns from
these schemes by more than a small margin.'®

Having established that it is optimal to have periodic introduction intervals after the warm-up
in the scenarios covered by our experimental setup, we now look closer at the optimal introduction
intervals to use during the warm-up. The concrete question of interest here is the following: out
of the three schemes that impose periodic introductions after the warm-up (NI-Per, Per, and ND-
Per), which one attains the highest utility? Our numerical results show that in general it is optimal

to have non-increasing introduction intervals in the warm-up phase.'” In 43 out of 60 experimental

5For 11 generating scheme-problem instance tuplets, out of 540 total, the utility ratio in (30) is actually slightly
larger than one, exceeding one by a decimal that has its first non-zero at the 10th decimal digit or after. For these
tuplets, the earliest discrepancy compared to the best identified NI-Per introduction pattern occurs late in the horizon
(at period 169 at the earliest, and mostly at or after period 190). For these 11 cases, the utility ratio is greater than
one due to end of horizon effects.

For two other scheme-problem instance tuplets, the utility ratio is around 1.0013. These tuplets are { ND-ND,d =
14,¢ =0.5,C = 20} and {ND-ND,d = 14,¢ = 1,C = 10}. For each of these there is an NI-Per-consistent introduction
pattern that beats the corresponding ND-ND pattern, and that was not identified by our NI-Per scheme in the reported
experiment. Recall that the NI-Per scheme searches the policy space through sampling, and therefore it may miss
the optimal introduction pattern.

16 A5 a side note, we observe that in general the best ND patterns do well, and in particular generally better than
the best NI patterns. A main reason for this observation is that the shape of the marginal revenue for the particular
examples considered here make it such that introducing too late hurts less than introducing too soon; many NI
sampled patterns randomly choose to introduce too soon and get stuck with short intervals forever, which is bad,
while the consequences for similar behavior by ND patterns are less severe.

"Tn detail, we report the following results for the comparison between the utilities of the best introduction pattern
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problem instances, the best NI-Per introduction pattern is identical to the best periodic (Per)
pattern, and therefore has the same periodicity in the warm-up phase as it does in the continua-
tion. However, in the remaining 17 instances the best NI-Per introduction pattern has at least one
introduction interval that is shorter than its previous interval — i.e., it has at least one instance of
decreasing intervals. For these 17 latter parameter settings, the best NI-Per introduction pattern,
which has at least one instance of decreasing intervals in the warm-up phase and periodic inter-
vals afterwards, attains strictly higher utility than the best periodic introduction pattern, which
introduces at constant intervals throughout. Furthermore, in 36 out of 60 experimental problem
instances, the best NI-Per introduction pattern is identical to the best ND-Per pattern — and in
24 out of these 36 instances, the best NI-Per and ND-Per introduction patterns coincide with the
best fully periodic (Per) pattern. However, in 22 instances the best NI-Per introduction pattern
attains strictly higher utility than the best ND-Per introduction pattern. Lastly, there are two
instances where the best ND-Per introduction pattern achieves slightly higher utility than the best
NI-Per and Per patterns. That this may happen for some parameter settings we attribute to the

discreteness of introduction times in our model.

5.3.3 Discussion

These results shed light on the optimal introduction timing for the general discriminatory pricing
problem, i.e., without assuming structural constraints for the introduction times. They suggest that
no introduction timing policy can outperform a policy that introduces periodically after an initial
warm-up phase. These results also suggest that, in general, it is optimal to have non-increasing
introduction intervals in the warm-up phase. For some parameter settings, having decreasing intro-
duction intervals in the warm-up phase is strictly better than having periodic intervals throughout.

We provide some intuition about the optimal introduction timing suggested by our numerical

of each of the NI-Per, Per, and ND-Per schemes:
e NI-Per = Per = ND-Per for 24 out of 60 experimental problem instances
e NI-Per = Per > ND-Per for 18 instances
e NI-Per = ND-Per > Per for 12 instances
e NI-Per > Per, ND-Per for four instances.

In the remaining two experimental problem instances, the best ND-Per introduction pattern actually dominates
the best NI-Per pattern. These instances are {d =10,c=1,C =1}, for which ND-Per > NI-Per > Per; and
{d =14,c =2,C = 1}, for which ND-Per > NI-Per = Per.
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results, starting by explaining why it is optimal to have periodic introductions after a warm-up
phase. When comparing a policy 7;, which makes j technology introductions and none after that,
to a policy 7s,,,, which makes one additional introduction at s;;1, we can show (Lemma 5 in

Appendix J) that the excess utility from the additional introduction is upper bounded by

U(ms;i) = Ulms;) < 6% (g(sj41 = 55) = C), (31)

where g is the revenue difference function we characterized when assuming non-increasing introduc-
tion intervals (Section 5.1). Periodic introductions achieve that upper bound in the case where we
start from a sequence of non-increasing introduction intervals, and are optimal, by Theorem 2.

We next explain why it may be best to have decreasing intervals in the warm-up phase. During
the warm-up phase the mass of customers in the system has not yet reached its steady state level
of d customers, and is still building up. Before the system has “warmed up”, the provider is more
reluctant to introduce than when there is already a mass of d customers in the system, because the
introduction costs are the same, yet the benefits are lower. However, this effect wears off as the
mass of customers in the system accumulates, particularly for low values of the switching cost. As
a result, for some parameter settings it is best to start introducing at intervals that are longer than
the identified optimal period 7% from (26) during the warm-up; and to then introduce at periodic
intervals that are T™ periods apart. On the other hand, a policy that is constrained to introduce
at constant intervals throughout will have to choose between using period T™ throughout, which
is optimal for the continuation, but not great for the warm-up; and using a period that is slightly
higher than T* throughout, ensuring a good start, but performing suboptimally in the continuation.
A well tuned NI-Per introduction pattern can achieve the best of both worlds.

Finally, we argue why it is not easy to show that non-increasing introductions in the warm-up
phase are optimal for some parameter settings, even conditional on optimal introduction intervals
thereafter. In the warm-up phase, i.e., before a mass of d customers has been built in the system, we
can generalize the argument of Section 5.1 and Lemma 5 to show that the utility difference between

a policy that terminates at s; and the related policy which has an additional introduction at s;11
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is upper bounded by

U(7781+1) - U(Wsj) < %t (G(Sj — 51,8541 — Sj) -C), (32)

for some function G(z,y) < ¢(y) that captures the exact difference in the revenue under the as-
sumption of non-increasing introduction intervals (even when there are less than d customers in
the system). For s; —s; > d — 1, G(s; — s1,5j41 — ;) = g(sj+1 — sj). However, proving that
it is optimal for (s1,...,s;) to have non-increasing intervals is not easy, even when condition-
ing on optimal periodic introductions subsequent to s;. G(z,y) is now a bivariate function, and
we are seeking the arguments that maximize a sum of terms, similar to (22), each of which has
form 6%+ (G(s; — $1,8i+1 — si) — C). Even when the customer type distribution F' is uniform,
the analysis is not straightforward, as can be seen in the complexities that the simpler function

5%+1(g(s;41 — 8;) — O) exhibits and that were illustrated in Section 5.1.18

6 The Non-Discriminatory Pricing Setting

We have proposed an algorithm for identifying optimal discriminatory prices given fixed introduction
times; and have shown that, under some conditions, periodic introductions after an initial warm-up
phase are optimal for the infinite horizon introduction time and discriminatory pricing problem. In
this section we provide results for the setting where the firm does not price-discriminate based on
customer experience. In the non-discriminatory setting, we show that, under some conditions, a
simple policy of myopic pricing and periodic introductions enjoys good performance guarantees.
In a setting with non-discriminatory pricing, the price of every technology class is the same for
all customers, regardless of how many technology classes a customer has switched to. Using our

notation for the discriminatory pricing setting in Section 3, this imposes the following constraints:

Tjo=Tjl1=...= xj,min(j—l,n)a \V/] = ]_, ce (33)

18 As an aside, in the special case where ¢ and all optimal introduction intervals z = sj —sj—1 are such that ¢/z > ¢,
then for any customer type distribution F' no customer upgrades, i.e., F'(60*(z)) = 1, implying G(z,y) = g(y) and that
g is linear. It is then optimal to make all introduction intervals periodic with the same period T, including those in
the warm-up phase.
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In the non-discriminatory setting, we denote the price of technology class j simply by z;.
Adding the constraints (33) when solving the infinite horizon discriminatory pricing problem
with fixed introduction times (8) makes the optimization problem difficult. Being able to decouple

the problems of optimizing Revenuej,, i.e., the revenue from customers who arrive in periods

15541)7
sj,8j+1,...,58j41—1, across different introductions j = 1, ..., is what leads to a tractable optimiza-
tion problem for the discriminatory setting (Section 4). However, the constraints (33) couple these
problems together. For this reason, in the non-discriminatory setting we focus on characterizing
the optimal single-period revenue.

For the results in this section we assume that consecutive introductions are at least d—1 periods
apart. Because each customer stays in the system for d periods, this implies that each customer

can experience at most one introduction as an existing customer.'?

Assumption 4. For every ¢ > 2, we have that s; —s;_1 > d — 1.

In the remainder of the section, we first show that under a linear pricing rule, which subsumes
Myerson pricing, there is no loss of optimality with a periodic schedule of introductions (Section 6.1).
We then characterize optimal pricing for a single period (Section 6.2). Third, we give a formal
statement for the performance guarantees of Myerson pricing (Section 6.3), and provide two different
bounds on the approximation ratio in terms of the type distribution (Section 6.4). Although the
focus in this section is on the non-discriminatory pricing setting, our results also speak to the power
of simple prices in at least a subset of the discriminatory pricing setting (where the provider can
price-discriminate between customers who were present as existing customers for the most recent
introduction and customers who arrived after it), beyond what our results in Section 4 show. Finally,
we show numerically that our analytical bounds for Myerson pricing provide strong guarantees, and
that in reality Myerson pricing is often some orders of magnitude closer to optimal than our bounds

suggest (Appendix Q).

19The results in this section can in principle be extended to allowing customers to experience multiple introductions
as existing customers during their customer lifetime. Such analysis relies on characterizing optimal pricing for a
single period for the setting where the provider can price-discriminate between customers depending on how many
introductions they have experienced as existing customers. This analysis would be similar to the analysis for optimal

discriminatory pricing in Section 4, but focused on a single period rather than the entire slice Revenueys; ;.. ,)-
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6.1 Results on linear pricing

We provide a summary of our results on linear pricing here, and include all statements and details
in Appendix L.

We first analyze a simple, natural pricing policy: charge a price which is linear in the quality
of the technology class. We show this has several nice properties. First, with linear pricing all
newly arriving customers will select the latest quality. Second, when restricting to linear pricing,
it is optimal to have periodic introductions after the first introduction. A particularly interesting
special case is one where the linear prices are chosen to be optimal for each technology class as if
it were the only item offered for sale, as per Myerson’s approach. Third, we show that if a periodic
schedule is used, then Myerson pricing is optimal in the limit, in the sense that Myerson pricing

gets arbitrarily close to the optimal policy after sufficient introductions.

6.2 Optimal pricing for a single period

We provide a summary of our results on optimal pricing for a single period here, and include all
statements and details in Appendix N.

The objective of the service provider in our model is to maximize infinite-horizon revenue and
utility. In this subsection we provide optimal pricing results for the single-period problem. These
results are useful for the infinite-horizon problem, because we bound the infinite-horizon revenue of
a policy, and the infinite-horizon competitive ratio between policies, using the single-period revenue.

We consider the set of all non-discriminatory policies with a particular pattern of introductions.

Definition 1. For a set of introduction times s = (sg, s1, 2, ...), we denote by II(s) the set of all

policies with these introduction times. That is, we define

I(s) = {ﬂ-/ = ((86,.%6), (Sllvxll)ﬂ (8,2,.%,2), e ) | S; =5 Vl}

We use the following trivial upper bound, for which the revenue in each time period is optimized

separately.
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Observation 3. Let introduction times s be given. Then, for all § > 0 we have

max 8" Revenue(m,t) < 8" max Revenue(m,t).
mell(s) zt: ( ) o Zt: mell(s) ( )

The proposed upper bound calculates the revenue in the case where the provider is allowed to
pick new prices, at each time ¢, for introductions that have happened already. Clearly the optimal
revenue at time ¢ in this case is an upper bound of the real revenue at time ¢ under the optimal
pricing policy.

For maximizing revenue at a particular time, our first observation is that to maximize revenue
from customers who have not seen an introduction as existing customers (i.e., revenue from cus-
tomers who entered the system at the time of or after the most recent introduction), the optimal
policy simply uses Myerson prices (Lemma 6).

This leaves the question of how to set prices to maximize revenue at a particular time from
customers who have experienced an introduction as existing customers during their lifetime. These
are the customers who entered the system before the most recent introduction. We show that it is
optimal to set all but the most recent introduction prices to the Myerson price; furthermore, we can
put a lower and an upper bound on the optimal price for the most recent introduction (Lemma 7).

We have identified two classes of customers that are in the system at a particular time: cus-
tomers who have arrived since the most recent introduction, and customers who arrived before
the most recent introduction. We have argued that the policies for maximizing revenue from each
of these two classes of customers agree that Myerson pricing should be used for all but the most
recent introduction, but disagree on what the price of the most recent introduction should be. In
particular, both policies will be of the following restricted form: charge Myerson prices for pre-
vious introductions, and a price from within a restricted range for the current introduction. We
show (Theorem 4) that the optimal policy for maximizing combined revenue over both classes of
customers at a particular time will also be of the same form, intuitively with a compromise over
what the price of the current introduction should be. This follows from a quasiconcavity property

implied by Assumption 2.
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6.3 Performance guarantees of Myerson pricing

We provide a summary of our results on performance guarantees of Myerson pricing here, and
include all statements and details in Appendix O.

Having proved our result on optimal one-period pricing, we can now combine it with our results
on linear pricing (Section 6.1) to give a precise sense in which Myerson pricing with periodic in-
troductions enjoys good performance guarantees for the non-discriminatory setting. In particular,
optimizing U is a bicriterion problem: we want to simultaneously maximize revenue while mini-
mizing cost. While we do not achieve a bounded approximation ratio to U, we can simultaneously
approximate these two objective functions. Such bounds are common in bicriteria settings, where
an algorithm is an («, 8) approximation if its result is simultaneously an « approximation to the
first objective?® and a 3 approximation to the second (Ravi et al., 2001; Iyer and Bilmes, 2013).

We make the approximation ratio precise (Corollary 3), and we interpret that result next. Profit
has two parts—revenue and cost. For revenue, our result shows that, given a set of introduction
times, pricing a la Myerson guarantees a revenue close to the optimal revenue. We characterize
analytically how close the revenue of Myerson pricing is to the optimal revenue in the next subsec-
tion. In Appendix Q, we show that in simulations the approximation is substantially tighter than
guaranteed by our analytical bounds. For cost, note that once we have fixed introduction times the
cost is also fixed, thus clearly the Myerson policy achieves that same cost.

As is common in bicriteria settings, such bicriteria approximations do not provide a bounded
approximation ratio to the combined objective U. However, since one of the approximation ratios
is 1, we achieve the quite strong guarantee that, for whatever introduction strategy the provider
chooses, she can capture most of the revenue by using Myerson pricing, while keeping the cost
fixed. Furthermore, we can guarantee that she can always do weakly better than that by keeping
Myerson pricing and switching to the optimal choice of periodic introductions (which in particular

guarantees that U will be non-negative).

20When maximizing (minimizing), we say an algorithm is an « approximation to an objective, with & > 1 (o < 1),
if the best objective value attainable, divided by the value of the objective function that the algorithm obtains, is at
most (at least) a.
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6.4 Bounding the competitive ratio of Myerson pricing

We now use the above characterization of the approximation ratio to provide our performance
guarantee for Myerson pricing. We provide a summary of the results here, and include all statements
and details in Appendix P.

Corollary 3 implies that we can bound our approximation ratio by bounding the competitive
ratio of Myerson pricing for the one-period revenue. We provide two such bounds in terms of the
customer type distribution F' and the introduction times sequence (s;) (Proposition 3, Corollary 4).
Our first bound is directly in terms of F' but worsens with increasing customer lifetime d, while
our second bound requires the derivative of F' and an additional optimization to make the bound
concrete, but improves with increasing d. Our bounds show that Myerson pricing is approximately
optimal when switching costs for the customers who upgrade are small or large. Intuitively, with
small switching costs all customers act essentially like new ones, while with large ones few customers
will switch so only the new ones are relevant when considering pricing.

Putting together the characterization of the approximation ratio (Corollary 3) with the bounds

for the competitive ratio yields the main performance guarantee for Myerson pricing (Theorem 5).

7 Discussion

As technology improves over time, service providers have the ability to offer more powerful products
and services, which are more valuable to customers. At the same time, introduction of a new
technology class comes at a cost for development and launching, and at the expense of the sales of
existing classes. We have presented a model of improved technology introductions for subscription
services markets that addresses this trade-off, considering a service provider who price-discriminates
based on customers’ upgrade experience, in the face of customers who are averse to upgrading to
improved offerings. The decision problem for the provider is when to introduce a new technology
class and how to price it in order to maximize total profit, taking into account (discounted) future
rewards. We have reduced the optimal pricing problem to a tractable optimization problem and
developed an efficient algorithm for solving it. We have also shown that periodic introduction times

after an initial “warm-up” phase enjoy optimality guarantees.
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We conclude by discussing our various modelling assumptions, and their importance to our

results, with respect to the substantive context of subscription-based services.

7.1 Discussion of modelling assumptions

We restrict to myopic customers, where myopia is meant in two senses: first, customers base their
decisions on the current service offerings, rather than on the basis of beliefs about future service
offerings; and secondly, customers make their decision only maximizing their utility in the current
period, rather than over their remaining lifetime.

We first comment on the first sense of myopia: we restrict to customers who make their decisions
based on the currently offered technologies, as opposed to forward-looking customers who take
into account future introductions. This avoids introducing a separate Bayesian belief framework
for customers. In general, a forward-looking customer may choose not to upgrade when a new
technology class is introduced, but upgrade on the next introduction. Our Assumption 1 doesn’t
allow such upgrading. In our model we also do not allow for patient customers, that is customers
who do not purchase, yet are willing to wait (and stay in the system) and buy later. Therefore,
precluding patient customers, the only thing that changes with forward-looking customers in our
setting is that it is possible that they will buy a unit of a new technology class with negative utility
in their first period, if an introduction in a subsequent period generates sufficient positive utility.
This is a small effect and also not well aligned with common intuition about what customers actually
do in practice.

We now comment on the second sense in which our customers are myopic: we assume customers
maximize their utility in the current period, as opposed to maximizing their utility over the an-
ticipated usage time. Relatedly, we model a customer’s switching cost as being assessed against a
single-period revenue gain, and not amortized over a customer’s anticipated remaining lifetime. For
example, this reflects a setting where the upgrade generates a capital cost or labor cost incurred
only at the time when the upgrade occurs, and offset against the single-period revenue gain, con-
sistent with a single-period accrual basis of accounting. If customers make decisions maximizing
their utility over their remaining lifetime, then their decisions would change. Such behavior can be

incorporated into our model, but at a complexity cost: the state space necessarily depends upon
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the remaining lifetime of a customer. While the same general principle of optimizing over each slice
separately when pricing applies, the optimization problem is more complex. One heuristic approach
would be to apply our algorithm from Section 4 using an adjusted c reflecting an “average” amor-
tized switching cost. It is unclear whether results on the optimality of periodic introductions carry
over, since the dependence of the state space on the remaining customer lifetime makes the revenue
difference function g multidimensional rather than univariate.

The details of the switching cost model play an important role in the analysis. In our model,
the switching cost ¢ is a constant, regardless of the technology levels that a customer upgrades
from and to. In an alternative specification, the switching cost can be modeled as being related to
the technology difference, e.g., as ¢ - (s; — sj_1) for a transition where a customer upgrades from
technology class j — 1 to technology class j. This switching cost specification would simplify the
analysis significantly: upgrades happen at a single 6 threshold for the customer type, and difficulties
with increasing introduction intervals disappear, leading to a quite simpler pricing algorithm. Note
that this specification implies that an upgrade from technology A to technology B, followed by
an upgrade from technology B to technology C, would generate total switching costs equal to a
single upgrade from technology A to technology C' (when ignoring discounting). This modeling is
thus quite different from our main specification. Out of the three sources of switching costs that
we identified in the introduction, costs related to redesigning the customer’s business processes
may be well modelled with this alternative specification; whereas downtime costs and customer
inertia costs may be better modelled with our main switching cost specification. If the described
alternative specification is considered as an extreme point in the space of switching cost models,
one can also consider switching cost models that lie in between our main specification and the
alternative specification described here.

We assumed that customers can only upgrade if they were already using the latest technology
(Assumption 1). This partially captures, for example, the model of various subscription software
suites, including for productivity (e.g., Office), music creation and editing (e.g., Pro Tools), technical

computing (e.g., Mathematica), etc.?! For tractability, some restriction on possible upgrades seems

'However, our framework does not capture some of the details of software suite offerings. For example, oftentimes
the web versions of a software suite update immediately and the customer has no control. On the installed versions,
oftentimes the user can avoid upgrading, at least for a while, but when she does upgrade, in most cases she will be
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necessary as otherwise the number of upgrade patterns to be considered is exponential. A weaker
assumption would be to permit customers to upgrade one technology level at a time, even if they
are not currently using the latest technology. This opens the possibility, for example, of customers
buying some technology other than the latest and then upgrading over time. Much of our analysis
in Section 4 carries over, but it is no longer the case that it is always optimal to set prices so that
new customers buy the latest technology. The reason is that this opens another avenue for price
discrimination where a high initial price for the latest technology causes some customers with lower
values to choose an older technology. But now that the market is segmented between high- and
low-valued customers, the pricing of future upgrade discounts can exploit this. As such pricing
schemes rely heavily on our assumption of myopia and seem unrealistic in practice, we prefer our
stronger assumption on possible upgrades.

We lastly discuss some of our other modelling assumptions. Our assumption that technology
classes remain available once introduced is not crucial, given that our results show that with optimal
prices, all new customers choose the latest class anyways. We also make the assumption that
customers can choose up to one unit of a technology class in any given period, meaning we do not
allow using multiple units in a period. This modeling assumption fails to capture cases, such as
in cloud computing, where some degree of distribution or parallelization is needed. For example,
in the context of cloud computing, consider a customer who minimizes purchasing cost subject to
achieving a level of computational power, which is known to her in advance. Such a customer may
naturally consider the option of purchasing more units of an older and weaker virtual machine class,
rather than one unit of the newest and stronger virtual machine class. Although our model fails
to capture such cases, which is a limitation, our assumption is natural in many other contexts of
interest, including subscription software suites, subscription services, mobile phones, and others.
Finally, our results extend to the case where the number of customers arriving at each period is
stochastic rather than a unit mass, as long as the expected arrival rate is constant through time and
the policy is decided a priori rather than adaptively based on the state of the system. Time-varying

expected arrival rates will affect the relative weights between current and future customers and the

forced to the latest version, and won’t be able to install the old version any more on a new machine. Upgrading to
the latest version after having avoided some upgrades is a “jump” upgrade and violates our assumption on possible
upgrades. Furthermore, in this case the price the user pays does not depend on the user’s upgrade history.
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periodicity, but they will not affect the general shape of our results on optimal pricing (Section 4) .
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A Analysis of Virtual Machine Series Launches

Every virtual machine (VM) used on Microsoft Azure is part of a series (such as “Av2” or “NC”)
which describes the features (such as relative amount of memory or availability of a graphics card)
that are associated with it. Within each series, there are typically multiple different sizes of VM.
We analyze the launch of new series by Azure, ignoring size distinctions since all sizes are launched
simultaneously. Recall that our model assumes that customers are averse to switching away from a
series of VM they are already using when a new series launches. Here we provide evidence for this
modelling assumption based on a dataset consisting of a snapshot of all active VMs on Azure at a
particular point in time.

We note that while our dataset shows the set of currently running VMs, we lack the larger
context in which a given VM is being used. For example, a customer may be using multiple VMs
to run a service, and this service may automatically launch and terminate VMs over time. Or a
customer may have built a piece of software that launches a VM when run and terminates it when
the task is complete. So even a VM that was recently created may be a part of some long-standing
system. The switching cost in our model captures the cost of changing this underlying system, so
what we would really like to analyze is the date this system was created. Of course, that date is

not available.
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Each VM running on Azure is associated with an account known as a subscription. As a proxy
for the creation date of the system, we use the creation month of the subscription. This is an
imperfect proxy for a number of reasons: a subscription could be repurposed or used for multiple
systems created at different times; a new subscription might be created for an existing system
for administrative reasons; a single system can span multiple subscriptions. Nevertheless, it is
reasonable to assume that creation time of the system and creation time of the subscription are
correlated. We show that subscriptions created before a VM series launches have less of a tendency
to use VMs of that series at the time of the snapshot compared to subscriptions that are created
after the VM series launches. We interpret this as evidence of customers’ aversion to upgrading,
and justification for the switching cost in our model.

From our snapshot of all active VMs on Azure we computed the number of VMs for each (series,
subscription creation month) pair. There is substantial variation in the number of subscriptions
created each month as well as grown over time. Therefore, for each subscription creation month,

and each series, we calculate the following fraction:

number of VMs of the series from subscriptions created that month that are used at time of snapshot

total number of VMs from subscriptions created that month that are used at time of snapshot

For the twenty series for which we had adequate data and could identify the month in which they
were launched, we calculated these fractions for each of seven months: from three months before the
launch, to three months after it. For each of these twenty series, we then summed these fractions
across the seven months to get to total relative usage over this seven month period, and plotted
what fraction of this total is associated with each of the seven months in Figure 3.

While there is considerable variation among the series, the yellow bar, representing the launch
month, is typically shifted to the left of 0.5, indicating that subscriptions created after the launch
are typically more likely to use the series at the time of the snapshot than subscriptions created
before the launch. On average, relative usage among subscriptions from the three months after
the launch is 50% higher than from the three months before the launch, suggesting a substantial

switching cost effect.
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Figure 3: Relative usage of twenty different VM series on Azure by subscriptions created the specified
number of months relative to their launch month.

B Proof of Lemma 1

We begin by considering optimal pricing under a simpler version of the problem, where newly
arriving customers are constrained to either buy the jth technology or nothing (so in particular
they cannot buy technology class 1 through j — 1). We subsequently show that this behavior is
consistent with optimal pricing.

Under this assumption, a newly arriving customer will buy technology j if

GSJ' — 50 > 0



and customers will upgrade to technology j + i 4+ 1 when it becomes available if
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Given prices 20, Zj41,1 - - -, Tj4n,n, We can compute the minimum types that choose to buy and

upgrade as, respectively,

. a:‘~0
i _ i
o) =2 (34)
j
and
67, . =max | ZZHELT JH 0. .. (35)
Jjti+1 . i 7 Vg
Sj+i4+1 — Sj+i

The max in (35) follows from Assumption 1 as a given type can only upgrade if it also adopted the
most recent prior technology. In particular, this means that the 95: 4; are monotone non-decreasing
in 3.

At optimal prices, we must have

* *

. xs . 1441 — T:. ..+ c .

07y = Lt L 0<i<n-1, (36)
Sj+i+1 = Sj+i

which we refer to as the prices being “non-wasteful”. Suppose for contradiction that

TG 101~ Tjpig <o
Sjtitl = Sjti al
Consider the effects of increasing x;4i41,4+1 so that equality holds while holding all other prices
fixed. This has no effect on which types will upgrade, and increases revenue. The other effect of
this price increase is that it may lower the threshold at which customers adopt technology j + i+ 2,
which again increases revenue, because xj1y2,12 as well as all subsequent prices (if this leads to
further adoptions) were fixed. Thus making prices non-wasteful can only increase revenue and so
optimal prices are non-wasteful. Solving (34) and (36) for prices yields (13).
We can write the revenue
sj41+d—2 min(t—s;+1,d)

Revenuey, ;. )= 5t/ > Ty (m,t,0),me(mt,0) | £(0)dO

t=s; l=max(1,t—sj41+2)
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. j .
in terms of the Hj +; and prices as

Sj+1—1¢ +d—1 ' n Sj+1—1t'+d—1 )
Do o =FO)+> Y. Y 8 (@i — wirioni)(1— F(0,,)).
t’:sj t=t’ =1 t’:sj t=8j+i

We explain the last expression. The summation over ¢’ is to sum over the times when the customers
from this slice arrive: that could be in periods s;,s; +1,...,5;41 — 1. The summation over ¢ is to
sum over the times when the revenue is being accumulated, starting at s;; (¢ for the first part
of the expression) and going through the last period during which that customer is in the system:
t' +d — 1. The term with the price difference between the current and the previous technology
comes from telescoping: as we sum over ¢, we end up with the price for the current technology.

Substituting the thresholds for the prices yields

Sj+1—1¢ +d—1 ' ' n Sj+1—1¢/+d—1 ' '
YooY sl =FOD) + Y > > 8((sjri — sjri-i)0i — (1= F(07,)-
t'=8]' t=t’ i=1 t/ZSj t=s;+i

Finally, letting
Sj+1—1¢/ +d—1
j ¢
B= 3 X )

t'=s; t=t'

and
Sj+1—1¢'4d—1

A= S & i=1..n (38)

t'=s; 1=Sj+i

yields the desired form

n

A0 = FOD) + 3 Aoy = 3500 = 1= FO]))
1=
The optimal choice of 9; maximizes Ag:sjﬁj:(l - F(Hj)), making the optimal choice Gg* =p*.
Next, we deal with the possibility of newly arrived customers buying some older technology
than j, paying a lower price and never upgrading. We have seen that, neglecting this possibility,
the optimal prices to set for new customers are 7, = s;p” for all «. With these prices, the customer
only prefers technology class ¢ over j if 0s; — s;p* < 0s; — s;p*, or s; < s;. Thus newly arrived

customers always buy the newest technology (or nothing), even if they are allowed to buy older
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technologies, as long as ;0 = s;p* for all 7. This shows that under these prices, new customers
behave as described in our analysis even if they have the option of choosing an old technology.
Finally, it remains to be shown that it is not profitable to set prices differently so that some new
customers do buy older technologies. However, as the initial decision is a single-parameter setting,
Myerson (1981) shows that the optimal solution is to sell the latest technology to all customers with

a non-negative virtual valuation, which is exactly what the prices we derived do.

C Example where Optimal Prices Are Higher for Existing Cus-

tomers

The following example shows how increasing introduction intervals can lead to optimal prices that

charge existing customers higher prices than new customers.

Example 1. Suppose d is large and sj1o = sj11 + d — 2. By taking d large and sj412 — 55 >>
sj+1— S; we can make the constants from (12), provided in (38), satisfy A; 4 >> A;: 4o Concretely,
fixing sj41 = s; + 1, we have by (38) that Agﬂ = ij;sjﬂ 8t and A§+2 = 0%+2. In particular,
A§+2 < A;H(S(SJ'H’SJH). Essentially, the price ;41,1 matters for an arbitrarily long period of time

while x ;492 matters for a single period.

As sj10 — Sj41 > Sjq41 — S5, 0§+1 and 0§+2 are lumped at the optimal solution and satisfy

_ g FocC
=00,

J J

jix o1 c(Ajp + Ajpo) -1 ¢
0 = ~ U _
{j+1vj+2} . . AJ . . A.] Ss — S
(53+1 - 8,7) 41 + (51+2 - 33+1) 42 J+l1 J

as Ag 1o is exponentially smaller than Ag 1

Taking customer types to be uniformly distributed on [0, 1] (so that v(#) = 260 —1) and applying
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the equations for prices (13) gives

*

25,0 = S;jP

1 C
Tj+1,1 = Zjo + (Sj+1 - Sj)v - | —¢
Sj+1 — 55

~ -1 ¢
Tjr22 R Tip11+ (Sj42 —sjp1)v | ———— | —¢
Sj+1 = 5

" " c/2
=8ﬂ94-@jw-—%)<p<+’/>-—26
Sj+1 785

Sit9 — S84
:sj+2p*—|— ((:L_;) 6/2—26
J J

Since we took sjio —s; >> sj11 — 55, we have xj122 > s;12p" meaning the price to existing

customers who upgrade is higher than that charged to new customers.

D Proof of Lemma 2

Proof. For lumping L, each of the joint terms

(1=F©)) 3 A ((sc—se)bl —c), j+1<i<j+n (39)
eL(i)

of the objective function of optimization problem (12) is quasiconcave in its argument 93 . To see
this, note that Assumption 2 is equivalent to the log-concavity of 1 — F'(#) as a function of 6, because
in general log-concavity of a function g is equivalent to ¢’/g being monotonically decreasing (Bagnoli
and Bergstrom, 1989, Remark 1). Note also that the term > s, Az ((35 — S4-1) 0{ — c) is log-
concave in 93 , because it can be written as a - 95 + b, where a, b are constants, and a linear function
of 9{ is log-concave in 9{ . Then (39) is log-concave as the product of log-concave functions. Because

log-concavity implies quasiconcavity, it follows that (39) is quasiconcave as a function of 93 .
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Fix 4, with j +1 <i<j+n. 9%,};30 maximizes the joint term

(1=F©) > Al ((se—se1)8 —c). (40)
teL! (i)
Because each of the terms
(1-=F©)) Y A ((sc—sc)00 —c), ve L) (41)
LeL(e)

is quasiconcave, and £(:) C L'(i) for £ C £ and ¢ € L/(i), it follows that any ¢/ with ¢/ <

min, e z/(;) 0%5)00 does not maximize (40); and neither does any 0{ with 9{ > max,c () 025)00. O

E Proof of Lemma 3

Proof. Per the statement of the lemma, we assume that £ C £* and £* > —oo. This means

that (9]552(1}), 9253;, . ,9%52%) is not a feasible solution for optimization problem (12) because
j,FOC j,FOC
O Gakey > Ol kg

Let k' = min {k : 025?_% > 92535*)} By definition, j + k* is the index of the largest out of
order OZ, so if {k: : Higg% > 92525*)} # () we have 9253(;,) <...< 0263%. By the definition of
K, 6§+k'—1 = 954—1@’ ¢ L. We claim that 9§+k,_1 = 9§+k’ ¢ L* either. Suppose for contradiction
that it is and let £/ = £* — {¢?,,, . =6 ,,}. £ C L/, so applying Lemma 2 with i = j + & — 1

jt+k'—1 Jj+k

we can conclude that Hﬁiﬁi,_l) < maxi<p<i/—1 ‘92535) < 9%52(]5,) < 92;2](.16;,), where the last

inequality is again by Lemma 2 but with ¢ = j + k’. Because by assumption 9; 1= 05: yw €LY

while 0; w1 = 0; T ¢ L', the constraint 0; w1 < 9; L 18 violated in £’. Therefore we have
Gﬁiﬁi,) < Qﬁiﬁz,_l), contradicting the above.
Assume for the purposes of contradiction that 9§ 4 and 0? 4441 are not lumped together in the
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optimal solution, i.e., that 9§+k* = 9§+k*+1 ¢ L*. Then we can write

_ gi,Foc

0’
L*(G+k*+1)

*
J+k*+1

< max
LEL* (j+Kk*+1)

< max j’EOC
= kekr a1,k —1) LUTE)

j,FOC
<Ok (42)
where the equality is definitional for optimal lumping £*, the first inequality follows by the right-
hand side bound of Lemma 2 applied for lumpings £ C L*, the second inequality follows because
9; Y1 = 0;: 4w & £ and by our assumption that 9; g = 9; i1 & L7, and the third inequality

= 9§+k*+1 ¢ L* and because GQFOC is the largest 9{ in

follows because we have assumed &’ S
(5+k*)

e
lumping £ for ¢ < j + k.

. . j j
Since by assumption 6, .. and 6}, .

41 are not lumped together in the optimal solution, it
must be that Ojik* < gj'ik*—l—l‘ This means that no upper bound constraint binds on 9§+k* in

the optimal solution. Therefore, a small increase for 95 would be feasible. If it were the case

+k*
that Hﬁi?fk*) < ngg(lj*), then such an increase would also lead to higher objective value, because

¢i:FOC

L C L* and by quasiconcavity. But then 0. (k) would not be optimal. Therefore, we have

j,FOC J.FOC
08 (k) = O Gy (43)

Combining (42) with (43) yields ng_k,* a< Gﬁ_k* at the optimal solution, which is infeasible, leading

to a contradiction. O

F Proof of Theorem 1

Proof. For a fixed j > 1, the OPTIMALLUMPING algorithm produces a set of right-hand side terms
'yf ’s. The DISCRIMINATORYPRICING algorithm calls the OPTIMALLUMPING algorithm as a subrou-
tine, and sets sz +— vil('yf‘) for j +1 < i < j 4+ n. Because function v~!(-) is non-decreasing, an

ordering of ’yg ’s corresponds to the same ordering of the 05 ’s, possibly with some more ties. In this
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proof, as in the rest of Section 4, we keep referring to a lumping as a set of equality constraints
on the thresholds 0{ , although our implementation of the algorithm in Algorithm 1 operates on the
'yg ’s.

We first show that for given j > 1, the OPTIMALLUMPING algorithm correctly identifies an
optimal lumping for Revenue,; s . ).

To show correctness of the OPTIMALLUMPING algorithm (Algorithm 1), we show the following
claim: At each iteration, the OPTIMALLUMPING algorithm results in a lumping that is a subset
of an optimal lumping £* for problem (12). We proceed to prove this claim by induction on the
iterations of the algorithm.

First, we show the base case. At the zero-th iteration of the OPTIMALLUMPING algorithm, the
algorithm proposes no equality constraints for different thresholds 9{ ’s. This is the “no lumping”,
which is a lumping that is vacuously a subset of L£*.

We proceed to show the inductive step. Given a lumping £, we denote by O Liter(L) the lumping
that results from one iteration of the OPTIMALLUMPING algorithm on lumping £. The inductive
step claims that if for a lumping it holds that £ C £*, then OLiter(L) C L*.

Recall that an iteration of the OPTIMALLUMPING algorithm, when applied on lumping £, iden-

tifies the highest 025)0 © that is out of the desired order, which we denote 0%522*). Then the
algorithm adds to the lumping the constraint 95: Tk = 9; +k*4+1- By Lemma 3, the resulting lumping

OLiter(L) satisfies OLiter(L) C L*.

We have shown that in each iteration, the OPTIMALLUMPING algorithm only lumps together
terms that are truly lumped together in the optimal solution. Also, when lumping terms together,
i.e., when imposing more equality constraints, the objective value of problem (12) decreases. Fur-
thermore, the OPTIMALLUMPING algorithm terminates with a lumping that corresponds to a feasible
solution to problem (12). It follows that, for fixed j > 1, the OPTIMALLUMPING algorithm identi-
fies an optimal lumping, and that the DISCRIMINATORYPRICING algorithm produces optimal prices
(:1;}'770, Tig1qs-- ,x;‘f+n7n) for Revenueg, ;.. ).

By producing optimal prices for each revenue slice Revenueys, , 3 = 1,..., the DISCRIMI-

8j+1)
NATORYPRICING algorithm produces optimal prices for the infinite horizon discriminatory pricing

problem with fixed introduction times.
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G Proof of Theorem 2

Proof. Fix j > 1. Let m5; = ((so = 0,29 = 0),(s1,%}),...,(8j,X})) be the finite policy that
has introduction times (si,...,s;), where s; is the last introduction, and where the prices x; =
(xzo, . ,x;‘,mm(ifl’n)), 1 = 1,...,4, are optimal prices given these introduction times. We take
J large enough so that s;j11 > s1 +d — 1. Under our assumptions, the prices are derived from

expression (13) and the first order condition (15), hence
sip*, ifm=0

Tim = (44)
x:—l,m—l + (i — 3i—1)efoc —c¢, f0<m<n

where 6F OC is given by

6r0C = 41 (C ) , (45)

8; — Si—1
for 1 <1i < j. Note that 6 OC doesn’t depend upon m, and we write

0 = FOC = 41 <C> . (46)

Si — Si—1

We will calculate the additional revenue generated by introducing at time s;i1, by comparing
policies 75, and ms;. We first look at the revenue of policy 75;. We fix a time ¢ > min(s; +1,s1 +
d — 1), such that there is a mass d of customers in the system, and we break Revenue(rs,,?) into

four parts.

1. Revenue from newly arriving customers at time ¢ who buy technology class j because 0s; —

sjp* > 0 <= 6 > p*. This expected revenue is (1 — F'(p*))s;p*.

2. Revenue from customers who arrive at or after s;, before ¢, and within the last d — 1 periods
before ¢, and who buy technology class j. There are min(t — sj,d — 1) such periods, making

the expected revenue for this part min(¢t — s;,d — 1)(1 — F(p*))s;p*.
3. Revenue from customers who arrive before s; and upgrade from technology class j —1 to class
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j at time sj, because their type satisfies § > 7. There are (d — min(t — s; +1,d)) (1 — F(H;))

*

m» conditional on the number of upgrades

such customers, and such a customer pays price x

m she has switched to as an existing customer.

4. Revenue from customers who arrive prior to ¢, and didn’t upgrade to technology class j, or

use a technology class older than j.

Notice that the first three revenue parts are from customers who use technology j at time ¢.
We next consider policy 7, ,. We take time t = s;41(> s;), and focus on the additional revenue

of policy 7, , over policy 7s,, that is, Revenue(rs, ,,t) — Revenue(rs,, t).

1. Newly arriving customers at t who purchased technology class j as new customers under policy
Ts,;, can now purchase j + 1 instead, at a price s;;1p*, generating revenue (1 — F(p*))s;11p",

i.e., an additional revenue of

(1= F(p"))(sj+1 = sj)p"-

2. Customers who purchased technology class j as new customers at times prior to ¢ = sj41
under policy 7, can now upgrade to class j + 1 at price x7, ;, as long as their type satisfies
0 > 07, ;. There are min(t—s;,d—1)(1—F(6},,)) such customers, and they generate additional

revenue (over policy ;) of
min(t — s;,d = 1) (1= F(07.1)) (5541 = 5;)0}11 — ¢)

3. Customers who upgraded to technology class j and are still in the system at ¢ = s;11, can
now further upgrade to technology class j + 1, provided their type satisfies 6§ > 67, ,. There

are (d —min(t — s; +1,d))(1 — F'(0;,,)) such customers, and customers who previously paid

*

Ly

'm 1OW pay upgrade prices x4, 11, for m = 2,...,n. They generate additional revenue of

(d = min(t — 55+ 1,d)) (1= F(O711)) (5541 — )01 — )

= (d=1—min(t - s;,d = 1)) (1= F(0},1)) (501 = 5,)0}41 — ¢)

63



4. The revenue from customers??> who don’t upgrade to technology class j 4+ 1 from j, or who

stay with existing technologies, is the same under both policies 75, and 7, ;.

At time t = 541, we can thus write

Revenue(rs,,,,t) — Revenue(rs;,,t)

— (1= FG))(sj41 = s)p" + (d = D1 = FO31) (501 — 58y —¢)  (47)
Similarly, for ¢ = s;41 + k,k > 0, we can write

Revenue(rs, ,,t) — Revenue(rs,, t)
= min(k + 1,d) (1 = F(p")) (501 = 5;)p" + (d = min(k + 1,d)) (1 = F(0;11)) (311 = 5,)07:1 — ¢)

— min(k+ 1,d) (1 — F(p")) Asji1p°

. -1 c ot ¢ _
+ (d — min(k + 1,d)) [1 - F (v <Asj+1>>1 [ASJH <Asj+1> 1 ; (48)

where we define As;yq := 511 — s;.

We note that this revenue difference is a function of sj1; — s;. Multiplying (48) by the discount
factor §' and summing over ¢ for ¢ > sji1, as well as noting that we can write §* = §%i+16F for

t = sj41 + k, implicitly defines a function g(-) on the positive integers, such that

Z 5t (Revenue(ﬂsj+1,t) — Revenue(wsj,t)> = 0%*1g(sj41 — Sj),

t=8j+1

where g(-) depends on d, F, c and § but not on the introduction times (s1,...,s;,sj4+1). Explicitly,

22Note that this includes both group 4 customers from policy 7s;, and group 2 and group 3 customers from policy
ms; who don’t upgrade to technology class j + 1.
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since?® 3222, * min(k + 1,d) = @ 2;2, we define

_sd d _ _
9= g (= PO 2+ S P ) (0 -9 (49)

where 6*(z) :=v™! (£), see (9).

Since Revenue(rs,,,,t) = Revenue(rs,,t) for t < s;11, we can write

Z st (Revenue(ﬁsj+1,t) — Revenue(wsj,t)) = 0%+ g(sj41 — 85). (50)

t=s1

We recall that the utility of a policy 7 is U(m) = Y12, 6" (Revenue(r,t) — Cost(m, t)), hence we

have

U(ms; ) = Ulms;) = 6%+ (g(sjt1 = s5) = C) - (51)

Pick an arbitrary policy 7 = ((so = 0,29 = 0), (s, x}):;) which has non-increasing introduction
intervals, and uses optimal prices. For fixed j such that s;11 > s1 +d — 1, we can write the utility

of policy 7 as

U(m) = U(rs;) Z U(ms,) — U(ms,_,) (52)
k=j+1
Ul(rs,) Z % (g(sk — sk—1) — C), (53)
k=j+1

ZWe explain this algebraic step in detail:

D o min(k+1,d) =1+25+36°+ ...+ (d—1)6" " +d »_

:1+25+362+.“+(d—1)6d*2+dfd7;

C(1=0)24+25(1—0) 4 ...+ (d— 1)04*(1 — 8)® +ds* (1 —6)
(1-4)?

(=91 =8 +26(1—8) + ...+ (d—1)5"(1 - 6) +d6!]
(1-4)?

(A =8)[14+5+6 4. 5]

(1—-46)?
_1-4
- (1-9)?

65



where 75, is the finite policy defined above, using the same introduction times s; as 7 for i < j,
but that has j as the last introduction. The second summand in (52) is a telescopic series, whose
individual terms are bounded and decreasing, because ¢ is an increasing function by Lemma 4
below, while by assumption As; = s, — si_1 are non-increasing with k.

We next introduce some definitions and notation. For any policy, we assume that prices are
calculated optimally given the introduction times. We first define an operator that shifts all intro-

duction times of a policy by a constant:

Definition 2. Fix a positive integer K. Given a policy 7 that introduces at times sg = 0, s1, s9, . . .,

we define Tk (m) to be the policy that introduces at times sy = 0,s] = s1 + K, sy =s2 + K, .. ..

Given a policy 7 that introduces at times (so =0, s1,. .., Sk, Sk+1, - - .), and finite policy 7, , we
denote by 7 — 7, the policy with introduction times (s} = sg4+1, 85 = Sg42,...). That is, 7 — 7, is
the policy that uses introductions from 7, with its first introduction at time sgy1.

Let m* denote a policy that is optimal among the policies with non-increasing introduction in-
tervals. We denote its introduction times by (s}), and its prices are calculated optimally given the
introduction times. Fix j, with s7,; > s7 +d — 1. Consider a policy = with non-increasing intro-
duction intervals, which has the first j introductions timed optimally, and denote its introductions
times by (sf, 8%y 187,841, Sj42 - - .), where we restrict sj41 < s7,;.

Consider now the policy 7 that starts with introduction times (s’{, S5yt 337), and then uses the
introduction times of policy TAS;H(W — W:;il), where As?, ;= s7,; — s;. That is, the introduction

times of policy 7 are
~ * ~ * o~ * ~ * ~ *
(Sl = 815000587 = 85,8541 = 811,8j42 = Sj+1 + ASjJrl, Sj+3 = Sj+2 + ASjJrl, .. ) , (54)

and its prices are calculated optimally given the introduction times. To denote the concatenation

of the two sets of introduction times that make up 7, we use notation

~ * *
7= (WS;,TAS;+1(7T - ﬂsj_l)) .
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Note that 7 has non-increasing introduction intervals, as

* * k * * k %
Sg =81 283 = 83... 28541 —8j = Sj41 — 85 = Sj42 — Sl = Sj+3 — Sj42. .-

We define
h(z) = g(2) - C. (55)
Then we can write
* * * OO
U(ﬁ') = U(T{':;) + §%i+1 h(s;-i-l — S;) + 5Asj+15sj+lh(8j+1 — Sj) + 5ASJ'+1 Z 5Skh(sk — Sk—l) (56)
k=j+2
—U (w;‘;ﬂ) + %5 [U(r) - U(w;‘;)} , (57)

where the first line follows from (53); and the second line follows because U (7} ) + 5S;+1h(s;'f 41—
J

si)=U (77:*_+1) by (51), while the rest of the summands in the right-hand side of (56) sum up to
J

*

58+ (U () — U(w;‘;)] by (53).

Note that setting m = 7* optimizes (57), because for fixed sj,...,s}, s, optimizing (57)
reduces to optimizing U(w). Now any policy with non-increasing introduction intervals which
has the first j + 1 introduction times set optimally (s; = s} for ¢ < j+ 1) can be written as
(W;‘; , TA5§+1 (m— 71':;_1)) for some policy 7 with non-increasing introduction intervals which has the

first j introduction times set optimally (s; = s},i < 5).%4

24We detail this construction for completeness. Start with policy «’ that introduces at times
y
(s’l =87,...,8; = 85,8541 =811, 849,513, .), and has non-increasing introduction intervals:

* * * * * * ’ * ’ ’
32_812...28j_8j_128]‘+1_8j 28]'+2_5j+125j+3_5]'+22...

Then policy 7 that introduces at times (51 =87,...,8; = 87,841 = Sipo — Asi 1,802 = Sjig — Asiyq, .. ) also has
non-increasing introduction intervals:

* * * * / * / ’
82—81Z...ZSJ'—8j7128j+2—8j+128j+3—5j+22...,

and satisfies that (7‘(‘:* JTase (T —7hs )) — .
J j+1 j—1

J
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: ~k oL * * *
Hence, defining 7* := (WS;,TAS; (m* — Ws;il)), we have

~ % . % o *
U(7*)> sup U(W.sl—51,...,5j+1—sj+1,sj+2,sj+3...)
554255543

=U(7")
This shows that policy 7*, which introduces at times

~% ~k % o~k % ~% % * ~% % *
(31—31,...,3]-—sj,st—st,strQ—sj+1+Asj+1,sj+3—sj+2+Asj+1,...),

and calculates prices optimally given these introduction times, is also optimal: 7* € arg max, U ().
Note that policy 7* has 87, — 87 = 87,9 — 87, = Asj

Define recursively?”

™, if k=0

( Tas (76D — 77:;71)) , if k> 1.
For any fixed k > 0, policy #*(®), which introduces at times

(k) o« (k) x ~x(k) * (k) o« * (k) o« *
(51 =810 8 =878 = Sj41, 849 = Sjp1 +ASjL, 8505 = Sj 2487,

(k) (k) *(k)

Sjtk+1l = Sjp1 T RAS 1,85 k00 = Sjup T RASj 1,85 s = Sjps T kAS L, - ) ,
and calculates prices optimally given these introduction times, is also optimal: 7x(k) arg max, U(7).
Note that policy #**) has introduction intervals

~*(k) §*(k) . §*(k) (k) o 5*(k) ~*(k)

*
Si+1 = Sj T = Si42 T840 T - T Skl T Sk T Asji .

In the final step of the proof we will show that the sequence of policies defined in (58) converges
to a policy that is periodic after time s; and is optimal. Remember that we restrict to policies with

non-increasing introduction intervals and that use optimal pricing given the introduction times.

25We have #*(1) = 7*.

68



Therefore a policy is characterized by its introduction times.

For the remainder of the proof, we formally define the introduction times of a policy as an
infinite binary sequence. We use o™ to denote the binary sequence for the introduction times of a
policy 7 which introduces at times s and that uses optimal pricing. In particular, o] =1 (of = 0)
means that policy 7 makes (does not make) an introduction in period .26

We next define a metric space. Consider the set of all infinite binary sequences: {0,1}. On

that set, we define the following metric:

d(X, y) _ 2—max{n: Ti=Y; Vign}_ (59)

,ﬁ,*(k)

Consider the sequence {o™ "}, where 7*(*) is the policy defined in (58) for a fixed k. Denote

by 7*(°°) the policy with introduction times

~x(00) % ~x(00) 4 ~k(00) ~x(00) % * ~x(00) %
(sl =81,...,8;  =85,8;41 = 811,840 = 8j11 T A 1,843 =851 T 2487,

~%
sj(f]jll = s;+1 + kAs;f+1, .. ) ,
i.e., that has periodic introduction intervals after time s;‘» ad infinitum, and that has optimal prices.

We can see that for every € > 0 there is an integer N such that k& > N implies that
1(o7 7)< ¢

~x(k ~Zx(0c0) . . .
Therefore, the sequence {o™ ( >} converges to o™ ©*)in the defined metric space; we write

lim o™ " = g™
k—o0
We next argue that the utility U is a continuous mapping from the set of infinite binary sequences
with the metric defined in (59), into R with the usual metric d(z,y) = |r—y|. Take two policies 71, m2

with corresponding introduction times and optimal prices given by their respective introduction

times. Take time v to be the latest time such that the two policies are identical up to that time,

%6For policy m with introduction times s, s; = t is equivalent to: (i) of = 1, and (ii) Zzzl oF =j.
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ie., d(o™,07™)=27". Then we can bound the difference in the utilities as follows:

Ulm) - Ulm)l < Y 84— F@ )i +C 3 &

t=v+1 t=v+1
=d(1-F(@")p*- Y t'+C > ¢
t=v+1 t=v+1
. . 51/+1 1 51/+1
=d(1-F((p"))p 13 <V+1—5>+Cl—5

5V+1

- 1—-96 (d(l_F(p*))P* (V—i-lié) +C>

where the last step follows after some algebra.?” This bound can become arbitrarily small by setting
a large enough v, showing that U is uniformly continuous with the respect to the defined metric
spaces.?®

Having argued that U is uniformly continuous and therefore continuous with respect to the
defined metric spaces, we can write that U(7*(%)) = limj_,, U(7*¥)). Because for each k, the
policy 7*(k) is optimal, 7*(°) is also optimal. Policy 7*(09) has periodic introductions starting at

its jth introduction, with E;(flo) > E’{(Oo) 4+ d — 1, and the statement follows.

Lemma 4. g(-) is an increasing function.

2T"We detail here the algebra for the last step:

i 16t = i(t’ + )5t
t=v+1 t/'=1

t/=1 t/'=1

_ s vé + 1
- 1—-36  (1—-946)2
s 1
*1—5(”+1—5)

28In fact, it can be shown that the defined metric space of infinite binary sequences is compact, and therefore the
concepts of continuity and uniform continuity are equivalent for mappings from that metric space.

— <1/ i 5+ i t’(sf’)
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Proof. For F(0*(z)) < 1, we have

L1 PO D) () - o) = 10 ()

z dz

(20°(2) — &) + (1 — F(6"(2))) (9*(z) + zde*(z))

dz
do*(z)

= (1= F(07(2)) 0°(2) + — [(1 — F(07(2))) 2 — f(07(2)) (26" (2) — C)}

= (1= F(07(2) 0°(2), (60)

where (60) follows because | (1 — F(0*(2)))z — f(0*(2)) (20*(z) — c)] = 0 by the definition of
0*(z) == v~ (£). If F(6*(2)) = 1, then we have that (1 — F(6%(2))) (26*(z) — ¢) = 0.
Overall, by the definition of function g in (49), it follows that

164 6 +d(1-0)—1

g'(z) = T (1—-F(p"))p" + e

(1 - F(67(2))) 07 (2) > 0,

because?® §¢ + d(1 — §) — 1 > 0. Therefore g is increasing.

H Proof of Corollary 1

Proof. Using the notation in the proof of Theorem 2, and repeating (53), we write

U(r) = Ul(ns;) + i 5% (g(sg — sk—1) — C)
k=j+1

UG+ Y O (bl i)
k=j+1

for a policy m with non-increasing introduction intervals, and for j such that s;11 > s1+d—1. We

apply this to policy 77: a policy with introduction times (s’{, sy 85,85+, s+ 2T .), which

has introduction intervals of length 7' starting at time s}, where (s}) are the introduction times of

29To see this, observe that

1—4¢

5 = d>1464+68>+...+671,

' 4d1-06)—-1>0 < d>

which holds as long as 0 < § < 1 and integer d > 1.
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a policy that is optimal among the policies with non-increasing introduction intervals. We get

U(ny) = U(rl) +6% Y 6 Th(T) (61)
k=1
s* 5T
= U(n};) + 8% —=ph(T). (62)

By Theorem 2, there is an optimal policy with the following property: all introductions made
at or after time ¢ = s; + d — 1 are periodic, with each introduction a constant interval from its
previous introduction. Denoting its period by T, it follows that 7™ satisfies

(ST

T* € arg max

' me ﬁh(T). (63)

We note that 1f§T h(T) is bounded, because function h(z) is bounded above by a linear function of

z for fixed 4, d, ¢, C' and distribution F'.

I Details of Characterizing the Optimal Period and of the Uniform

Distribution Example

We have

7 (T2540)) = g loms 1) + (1= (2)

and a turning point z* satisfies the necessary condition
logd h(z*) + (1 —0° )h(z*) = 0. (64)

We calculate the second derivative to be

2 \T—e)) = » (65)

2 ( 5 h(g)) 07 (1= %) (1= 0°) W"(2) + 210g 8 W'(2)) + (1 + 6%) log?(8)h(2))
(-5
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hence at turning point z = z*, using (64) to replace

(1+6%)1og?(6)h(z) = — (1 +67) (1 — 6%)logd ()

and simplifying, we have that

2 2 .
% (1662h(2)) =7 f 5 (logd h'(z) + h"(2)). (66)

We restrict to the uniform distribution on [0, 1]. When f is the density of the uniform distribution

on [0,1], then ¢ =1, p* =1/2, 6*(2) = min (% (£+1), 1), and explicitly,

1-§¢ 2z | 6%4d(1-8)-1 (2—c)? .
-2 4 : —-C ifz>c
1-0)2 4 1-6)2 4z
huio(2) = ( 1 4=
(%:27)2 2-C if z<e.

We can naturally extend h to take values on the positive reals. h(z) is upper bounded by a linear
function, implying 1f%h(z) has a finite maximum at z*. Note that for 0 < §d < 1 and d > 1, we
have 6% +d(1 — ) — 1 > 0.

There are potentially two local maxima of li—;zh(z), one in z < ¢ and one in z > ¢, where the
local maximum can be a turning point or the left-hand boundary of the interval.

For z < ¢, it is straightforward to see that the right-hand side of (66) is negative, since h” = 0.
Hence for z < ¢ a turning point is a local maximum. It is also possible to show that 1f%h(z) can
decrease over the interval z < c.

For z > ¢, analytical results are no longer straightforward. For example, showing a turning point
that is a local maximum analytically requires z >> ¢, since there can be a local minimum in z > c.

However, it is simple to numerically evaluate the function and describe its qualitative behavior.

Specific examples of parameter settings: We next provide some specific examples of parame-

ter settings for the different scenarios discussed for the uniform distribution on [0, 1] in Section 5.1.1.
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Figure 4: Examples that illustrate the behavior ef the optimal periodicity 7™ across different cases
for the parameters d, ¢, C,d. The red vertical dashed line indicates the optimal period T™.



o T* =1 (Figure 4, top row).

— Example with small ¢ — almost all customers always upgrade: d = 50,¢ = 0.01,C =

0.2,0<9d< 1.

— Example with large ¢ — no customer upgrades: d = 50,¢ =7,C = 0.01,0 = 0.9. In this
case 1f%h(z) decreases for z < ¢, then increases after a local minimum, and has a local
maximum for z* = 14.6 (T = 15). The value at the local maximum however is less than

the value at z = 1.

o 1 <T* <c (Figure 4, middle row). No customer ever upgrades. For d = 50,c¢="7,C = 2,0 =

0.8, the optimal period is T* = 2.
o T >max(c, 1) (Figure 4, bottom row). Some customers upgrade.

— For d = 50,c = 1,C = 2, the optimal period increases with §, from 7™ = 2 for small § to
T* =9 as § approaches 1.

— For d = 50,¢c = C = 0.2, = 0.9, the optimal period is T* = 3. Despite the small
provisioning cost C, the optimal period is not 1, i.e., it is best to not introduce in every

period.

e Two different values of the period that are local maxima, one smaller and the other larger
than the switching cost ¢, can yield near identical values of the function lﬁ%h(z). Figure 5

illustrates.

— For d = 50,¢c =7,C =5, at 6 = 0.82 the optimal strategy is to set T* = 3, where no
customer upgrades.

— For d =50,c="7,C =5, at 6 = 0.83, the optimal period is T* = 12, yielding 8* = 0.79,
where users with 0 larger than 0.79 will upgrade.
At 0 = 0.82, the difference in the value of the function lf%h(z) between the two policies
(introduce with period 3 or with period 12) is 1.3%, and at § = 0.83 the difference is
0.1%.3

39The value of the function %h(z) is equal for the two policies (introduce with period 3 or with period 12) for §
around 0.8293.
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Figure 5: The case when two different values of the period that are local maxima, one smaller and
the other larger than the switching cost ¢, can yield near identical values of the function 1f%h(z).
The red vertical dashed line indicates the optimal period T™.

J Proof of Theorem 3

We first state and prove the following lemma.

Lemma 5. For any policy m with introduction times (s1,S2,...,) that uses optimal pricing, for

j > 1 we have
U(”Sjﬂ) - U(”Sj) < 6% (g(sj41 —s5) — C). (67)

Proof. At time t > s;11, under policy 7, ,, users who purchase technologies can be classified as
newly arrived, upgraders from technology s;, or those who stick with existing technology s; or
previous technologies. Only the first two types of customers generate more revenue at ¢t compared
to policy ms;. The incremental revenue per customer for each of these two types is, respectively,
(1 - F(p*)) (sj+1 — sj)p* and (1 - F (952?)) ((sj_H - sj)ﬂj(-lﬁ - c), where Hj(zﬁ is the optimal up-
grade threshold at time s;,1 for a user for whom technology j +1 is the ith upgrade, i = 0,1,...,n.

But
(1=F(025)) ((s501 = 5)0% =€) < (1= FO759) (511 = )05 — )

where 9;1010 =v7! ( : ) is the value of the threshold 6 that maximizes (1 — F/(0)) ((sj+1 — ;)0 — ¢).

5j+17S;)
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Because g(sj11 — s;) is defined in (49) to use Hﬁgc, the result follows. O
We now prove Theorem 3.

Proof. Consider a policy m with introduction times (s}, ... ,s], ] +1>---), and the derived policy 7y
J

with the last introduction at 5 . We have

U(T") Z U 7TS sifl) ’

i=j+1
which, combined with Lemma 5, implies
U(m) = Ulmg) < 37 8% (g(s} — si1) = C) (68)
’ =i
= Z 5%ih(s, — si_,). (69)
i=j+1

By the arguments in the proof of Theorem 2 and the proof of Corollary 1, the right-hand side is

maximized by having s} — s,_; =T* for i > j + 1.

Let 7 denote the policy with introduction times (81 = s1,...,8j_1 = sj-1,8; = 8,841 =
sj+T*,8j40=35;+2T", ..., 8j1m = t= sj +mT™,...), and optimal pricing. Then we have
i A
U(#) = Ulfts;y,) = D, 0°h(T) (70)
i=j+m-+1
~ > .
= §%itm Z(S’T h(T™) (71)
i=1
0 /
> N7 5%h(s; — si_y) (72)
i=k+1
>U(r") = U(rl) (73)
for any policy 7’ with introductions at times (s] = sq, ... ,5;- = sj,sgﬂ, oy 8h =1, Shy1s---) and

optimal pricing that has its k-th introduction at ¢ for some k > j. The first equality follows because
all customers present at time ¢ > ¢ have arrived within the last d periods, when all the introduction

times were periodic and hence non-increasing under 7. The last inequality follows from (69).
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Consider a policy 7 with its first j introduction times fixed at given (si,...,s;), and the rest
denoted by sji1,.... Fort > s; +d — 1, policy s, just depends upon s; (as under m,; new arrivals

are offered technology s; at price s;p*, and no one upgrades). We have that (48) holds exactly, and

therefore
S 8 (Ut = Ulmg,t) = > 5% (g(si —si1) = C). (74)
t=Sj+m i=j+m+1

By the arguments in the proof of Theorem 2, & maximizes the right-hand side. This implies that

oo
7 €argmax y 0'U(m,t),
gr ; (m,1)

where the supremum is taken over all policies 7 which have the first j introductions (si,...,s;)

fixed. O

K Details of the Experimental Setup for Experiments on Period-
icity
We describe in detail the schemes we use to generate introduction patterns.

o Random introduction intervals (Random): We generate 1000 random introduction patterns.
For each pattern, each introduction interval is drawn uniformly at random and i.i.d. from the

discrete uniform distribution whose support is the set {1,2,...,2d}.

o Periodic introductions (Per): All introduction intervals are set to be equal. For each d, we

produce periodic introduction patterns for all values of the period between 1 and 2d.

o Non-increasing introduction intervals (NI): We randomly generate 1000 random introduction
patterns with introduction intervals that are non-increasing: s; — s;—1 > s;41 — s, for ¢ >
2. To do this we first sample the first interval first_interval uniformly at random from
range [1,2d]; we then sample independently sufficiently many intervals uniformly from the
range [1, first_interval] and sort them in non-increasing order.3! We only retain introduction

patterns that are not periodic.

31We follow a similar process for sampling monotonic intervals for other schemes.
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o Non-decreasing introduction intervals (ND): We randomly generate 1000 random introduction
patterns with introduction intervals that are non-decreasing: s; — s;—1 < Sj+1 — i, for ¢ > 2.

We only retain introduction patterns that are not periodic.

o Non-increasing introduction intervals in the warm-up; periodic introductions after ( NI-Per):
We randomly generate 1000 introduction patterns with introduction intervals that are non-
increasing during the warm-up phase, and periodic after. Consistently with Theorem 2, pe-
riodic intervals are imposed starting with the first interval whose end falls at or after time
s1 +d — 1. We use this scheme as the benchmark against which we compare the utilities

achieved by the other schemes.

e Non-increasing introduction intervals in the warm-up; non-increasing introduction intervals
after (NI-NI): We randomly generate 1000 introduction patterns with introduction intervals
that are non-increasing during the warm-up phase, and non-increasing also in the continuation.
We build two different patterns of non-increasing introduction intervals: one for the warm-up
and one for the continuation. That is, we allow the transition from the warm-up phase to the
continuation to violate the monotonicity of the introduction differences. We stop building the
warm-up when adding one more interval in the warm-up would result in reaching at or after
time s; +d — 1 — we don’t add that last interval in the warm-up, and start the continuation

instead. We only retain introduction patterns that are not periodic after the warm-up phase.

o Non-decreasing introduction intervals in the warm-up; periodic introductions after (ND-Per):
We randomly generate 1000 introduction patterns with introduction intervals that are non-
decreasing during the warm-up phase, and periodic after. Consistently with Theorem 2,
periodic intervals are imposed starting with the first interval whose end falls at or after time

s1+d-—1.

e Non-decreasing introduction intervals in the warm-up; non-decreasing introduction intervals
after (ND-ND): We randomly generate 1000 introduction patterns with introduction intervals
that are non-decreasing during the warm-up phase, and non-decreasing after. We build two

different patterns of non-decreasing introduction intervals: one for the warm-up and one for
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the continuation. That is, we allow the transition from the warm-up phase to the continuation
to violate the monotonicity of the introduction differences. We stop building the warm-up
when adding one more interval in the warm-up would result in reaching at or after time
s1 +d—1— we don’t add that last interval in the warm-up, and start the continuation

instead. We only retain introduction patterns that are not periodic after the warm-up phase.

o Introduction intervals from grid search (Grid): We pick a total of 2000 introduction patterns
over the space of all possible patterns; we next describe how. Having fixed s; = 1, there

are 211

possible introduction patterns until time H: in each period 2,3,..., H, one has the
choice of introducing or not introducing. To ensure numerical precision, we first focus only
on the first 53 periods following s; = 1. We first pick 1000 integers, equally spaced, from the

set {0,1,2,...,2% — 1}. These 1000 integers are the set

{[97919 (253—1ﬂ :n:0,1,...,999}.

We convert each picked integer to two binary numbers; each binary number is a binary vector,
so that a “1” represents an introduction at that time, whereas a “0” means no introduction.

We next detail the two ways to produce a binary vector from a picked integer:

— Implement a binary vector that grows from right to left — i.e, the rightmost bit corre-
sponds to 2°. We then add a 1 followed by as many 0’s as necessary in the beginning
(left) of each vector to ensure each vector has length 54, representing an introduction

pattern in the first 54 periods.

— Implement a binary vector that grows from left to right — i.e, the leftmost bit corresponds
to 2°. We then add a 1 in the beginning (left), and as many 0’s as necessary at the end
(right) of each vector to ensure each vector has length 54, representing an introduction

pattern in the first 54 periods.

For each binary vector, we repeat the derived introduction pattern as many times as necessary

to reach to a specified multiple of the end of the horizon.
o Introduction intervals from grid search on the exponent (Log-Grid): We pick a total of 2000
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introduction patterns over the space of all possible patterns, this time doing a grid search on
the exponent. The process for Log-Grid mirrors the process described above for Grid, with

the only difference that the 1000 initially picked integers are the set

L Linear Pricing in the Non-Discriminatory Pricing Setting

In this section we analyze a simple, natural pricing policy: charge a price which is linear in the
quality of the technology class. We show this has several nice properties. First, with linear pricing
all newly arriving customers will select the latest quality. Second, with linear pricing the optimal
policy has a periodic pattern of introductions. A particularly interesting special case is one where
the linear prices are chosen to be optimal for each technology class as if it were the only item
offered for sale, as per Myerson’s approach. Third, we show that if a periodic schedule is used, then
Myerson pricing is optimal in the limit, in the sense that Myerson pricing gets arbitrarily close to
the optimal policy after sufficient introductions.

Formally, we define linear pricing with base price p > 0 to be as follows: set the price at
introduction time s; to x; = s;p, with j = 1,2,.... Assuming linear pricing with base price p > 0,
new customers prefer buying technology j > 1 to buying nothing if s;(# —p) > 0, or § > p, so the set
of customers willing to buy each technology is the same. Customers prefer technology j > 2 to j—1
if s;(6 —p) > sj—1(0 — p), or > p. Thus all new customers choose the latest technology. Existing
customers prefer to switch to the new technology at a time t = s; if 5;(6 —p) —c > s;_1(60 —p), or
0>p+c/(sj—sj-1).

We next define p* as the price that maximizes the single-item expected revenue in one period:

p* = argmax(l — F(p)) - p.
p

We refer to Myerson pricing as the special case of linear pricing with base price p*. Myerson pricing,
which sells to the set of customers with 6 > p*, is optimal for new customers.

Assuming a policy 7, which follows linear pricing with base price p, we write down the revenue
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for the provider at time ¢ with s; <t < ;41,7 > 2:

Revenue(my,t) =min(t — s; + 1,d) (1 — F(p)) s;p

+max(d(t5j+1),0){ 1F<p+c>>sjp
Sj—ijl

+ (F <p+ _C> —F(p)> 8j1p}- (75)
SJ 83_1

The first summand is the revenue from customers who arrive at or after period s;. These customers
buy technology j as long as # > p. The term (1 — F'(p)) s;p is the per-period expected revenue for
customers who arrive at or after s;, and within the last d — 1 periods before, or at, period ¢. There
are min(t — s; + 1, d) such terms.

The second summand is the revenue from customers who arrive before period s;. Some of them
switch to technology j at period s;; these are the customers for whom § > p 4 ¢/(s; — s;_1) (first
term inside the curly brackets). Some of them stick to technology j — 1; these are the customers for
whom p < 6 <p+c/(sj —sj—1) (second term inside the curly brackets). The same terms apply to
all customers who arrive in each of the periods before s;, and within the last d — 1 periods before
period t. There are d — min(t — s; + 1,d) = max (d — (t — s; + 1), 0) such periods.

For j =1, we can write
Revenue(mp,t) = min(t — s; + 1,d) (1 — F(p)) s1p. (76)

For the special case of periods when an introduction occurs, i.e., t = s; for some j > 1,

expression (75) becomes

(1—=F(p))sjp+(d—-1) {(1 - F (p+ S]._‘;j_l)) 85D

Revenue(my, s;) = + (F (p_|_ < ) — F(p)) Sj—lp}, j=>2 (77)

S5 —S85j—1

(1= F(p)) s1p, j=1.
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L.1 Under linear pricing, periodic introductions are optimal

Our first result shows that there exists a policy that is optimal within the class of policies that use
linear pricing, which uses periodic introductions. As previously discussed, there is an asymmetry
with the first introduction because there are no existing customers, but after that the optimization
problem is invariant to being shifted by one introduction. Thus the proof inductively constructs a

periodic optimal policy from an arbitrary optimal policy.

Proposition 1. Assuming linear pricing, periodic introductions are optimal after the first intro-

duction. In particular, this applies to Myerson pricing.

The proof is given in Appendix M.
We remark that the optimal policy could be to not offer a service (wys = ((0,0)). However, a suffi-
cient condition to prefer to first introduce the service at a time ¢ = s is 6°C' < Revenue((0,0), (s, sp)),

which implies

1 s+d—2 9]
C< 58{58 (1-F(p)sp+ > 0 (t—s+1)Q—-F@p)sp+ Y, d&d(1—F(p)) sp}
t=s+1 t=s+d—1
Lo 2 a—y 487
= 0% 14204307+ 4 (d= 1) + T | (1= F(p)) sp

d
= <1+25+352+...+(d1)5d‘2+ 1_5>(1F(p))510-

Hence, given a base price level p, for finite C' and § < 1, it is always optimal to introduce at some
time s. The optimal policy depends upon C' and § (as well as ¢). However, the dependence upon
C, ceteris paribus, essentially constrains the periodicity and the time of the first introduction. In
the rest of Section 6 we show that Myerson pricing guarantees a bounded approximation ratio to

both revenue and cost for the infinite-horizon problem, having fixed the introduction times.

L.2 Under periodic introductions, Myerson pricing is optimal for one-period

revenue in the limit of many introductions

We have shown that under Myerson pricing, periodic introductions are optimal. In the rest of

Section 6 we will show the near-optimality of Myerson pricing even with arbitrary introduction
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times. Together, these results yield the insight that a simple policy combining Myerson pricing
with periodic introductions is effective.

Before we show this, we first argue for the efficacy of Myerson pricing from a different angle:
Myerson pricing is effective when introductions are periodic. Under periodic introduction times, an
alternate pricing scheme may have revenue gains over Myerson pricing early in the horizon; however
such gains vanish after sufficiently many introductions.

In particular, shading prices down from the Myerson levels doesn’t gain much additional rev-
enue. Informally, we have an incentive to increase the first introduction price, sacrificing short-term
revenue; but shade down subsequent prices, giving extra incentive for existing customers to switch.

However, the latter effect diminishes with time, as we now prove formally.

Proposition 2. Let w be a policy with periodic introductions and my be a policy that uses the same

introduction times as w, but Myerson pricing. Then we have

lim Revenue(r, s;)

<1.
j—o0 Revenue(mys, s5)

Proof. Fix the periodicity of introductions 7 > 0 and the introduction times. Using the alternative
expression (78), the revenue of policy s, which uses Myerson pricing, at period s; can be written

as

Revenue(mas, s5) = d (1 — F(p*)) sjp™ — (d — 1) (F (p* + 70_) - F (p*)) D",

for j > 2. Note that the first term is linear in s;, while the second term is constant with respect to
sj. By the optimality of p*, an upper bound on the possible revenue of any policy at time period
s is d (1= F(p*)) s;p", so

Revenue(r, s;) < lim d(1—F(p")) s;p*

=1
fartl Revenue(mys, s;) ~ j—oc d (1 — F(p*)) sjp* — (d — 1) (F (p* + £) — F (p*)) 7p*

O

The key insight is that the potential gains from alternate prices can be bounded in terms of
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the length of the periodicity used by policy 7, independent of introduction index j. As a result,
assuming periodic introductions, the potential additional revenue of any pricing policy over the
Myerson policy decays to zero as the introduction time increases.

In particular, the potential additional revenue earned by shading prices down from the Myerson
prices decays to zero as the introduction time increases. Among the class of policies which use
multiples of a fixed base rate (i.e., they charge z; = (1 — h)s;p*, with 0 < h < 1) and introduce
periodically, Myerson pricing gets arbitrarily close to the optimal policy for one-period revenue,

after sufficient introductions.

M Proof of Proposition 1

Proof. Let ﬂ-; = ((80 = 0,20 = 0)7 (51 = STaxl = Sfp), (52 = 5§7$2 = 55P)> (83 = 8§,$3 = S:’;p): .- )
denote a policy which is optimal among those policies using linear pricing with base price p. We
first show that such a policy exists.

For an arbitrary policy using linear pricing with base price p,

Tp = ((80 = O,CC() = 0)7 (817371 = 31p)7 (827'7;2 = 32p)7 (837'%'3 = 33p)7 v )7
we have that

U(mp) = Revenue(m,) — Cost(m,) = Z &' (Revenue(m,, t) — Cost(mp, 1)),

t=s1

i.e., revenue accumulated less costs incurred during period s; and subsequent periods. Optimal

policy m; must optimize U(mp).
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For policy ), we can write Equation (75) as

Revenue(my,t) =min(t — s; + 1,d) (1 — F(p)) s;p

+ (d — min(t — s; + 1,d)) { (1—F(p))s;p

- (F <p+ _C> - F(P)) (sj — Sj—l)P}
55 — 851

=d (1= F(p))sjp — (d — min(t — s; + 1,d)) <F (p + S]_Csjl> - F(?)) (sj = sj-1)p-

(78)

Notice that the first term of Equation (78) depends only on the introduction times through s;, while
the second term only depends on the introduction times through s; and the difference s; — s;_1.
Therefore, we can represent the problem of choosing introduction times as a Markov Decision
Process whose states are a pair consisting of the current time and the previous introduction time,
while the actions are to either introduce or not in the current period. As this MDP has a countably
infinite set of states and a finite set of actions, it has a (deterministic) optimal policy (Puterman,
2014, Thm 6.2.10). Since the state transitions are deterministic, such an optimal policy for the
MDP induces an optimal policy for our problem.

Given the structure of expression (78), we show how to take any optimal policy 7, and construct
a slightly different policy that is also optimal. As a first step, we define policy mapping 7x(-), where

k is a positive integer.

Definition 3. Fix a positive integer k. Given a policy m, = ((so = 0,29 = 0), (81,21 = $1p), (s2, 22 =
sa2p), (83,3 = s3p), ... ) that uses linear pricing with base price p, and introduces at times (s1, s2, s3, . . .),

we define Ty (m,) to be the following policy:

776(7Tp) ::((86 = 03566 = 0)7 (8/1 =851+ ka$/1 = Sllp)a

(s = so+ k,xh, = sop), (s§ = s3 + k, 2% = sp),...).

Since mapping T (mp) delays each introduction by the same constant, it affects the timing and
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revenue from the first term of expression (78): introduction times have been changed, which changes
the prices customers pay. But it only changes the timing from the second term of expression (78):
the loss due to customers not switching to a newly introduced technology only depends on the
differences in introduction times, which we have not changed, although we have shifted the periods

in which these losses occur later.

We first write

Ury) = Y 0" (Revenue(my,t) — Cost(mp, 1))
t=s1
s1+d—2 sp—1
= STA-F@)sip+ Y St—si+1)(A-F@)sip+ > 8d(1—F(p)sip (79)
t=s1+1 t=s1+d—1
62 {d(1= F@) sop = (d= 1) (F (p+ —— ) = F(0)) (s2 = s1)p | (50)
s3—1 sg+d—2
I I S O (F(p+ =)~ F®) (52 = s0)is)
t=s2+ t=sa3+
6% {1 = F@) sap = (@=1) (F (p+ —=) = F()) (s —s2)p |
sqa—1 s3+d—2
+ Y Saa-FE)sw— Y 8= (t=sa+ D) (F(p+ ) = F)) (53— sy
t=s3+1 t=s3+1
+...
—C (6 +62+63+..). (82)
Line (79) corresponds to the revenue accumulated during periods sy, ..., sa—1. The term 6°' (1 — F(p)) sip

is the revenue from customers who arrive in period s; and buy technology class 1. The term
Zf;l‘fl;f §t(t — s1 + 1) (1 — F(p)) s1p is the revenue accumulated during periods s1+1,...,s1+d—2
from both new and existing customers. Notice that the mass of existing customers builds up dur-
ing this time, as a unit mass of new customers arrives in each period, while customers who buy
the technology do not leave the system yet. The term Zfi;ll rd—1 §td (1 — F(p)) s1p is the revenue
accumulated during periods s;1 +d — 1,...,s9 — 1 from both new and existing customers. Notice
that during these periods, and for the continuation of the infinite horizon, the expected mass of
customers who yield revenue remains stable.

Lines (80), (81) correspond to the revenue accumulated during periods s, ..., s3 — 1. In partic-
ular, the term in line (80) corresponds to the revenue accumulated during the period of the second

introduction, as per Equation (78) for s; = 2; and the term in line (81) corresponds to the revenue
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accumulated during the non-introduction periods s2 + 1,...,s3 — 1. Line (82) accounts for the

provisioning costs from the introductions.

We then write the utility of policy 7j(mp), for a fixed positive integer :

U(Ti(mp)) = Z 8" (Revenue(Tx(mp), t) — Cost(Tr(mp), 1))

t=s1

s1+k+d—2 sot+k—1
= PO -F@) itk Y. St— (iR DA -F@) (i +Rp+ Y 81— F(p) (s1+ k)p
t=s1+k+1 t=s1+k+d—1

w67 {1 = F@) 2+ 0)p— (=) (F (p+ ——) = F®)) (s2 = 51}

s3+k—1
+ > 8d1—F(@)(s2+k)p
t=so+k+1
sot+k+d—2

- > 6t(d—(t—(82+k)+1))(F(p+

t=so+k+1

Jgeath {d (1—-F(p) (ss+k)p—(d—1) (F (p +— ) - F(p)) (s3— @)p}

§3 — 52

S92 — 81

)= F®) (s2 = s)p

§2 — 81

sqa+k—1

+ Y A1 —F@)(ss+k)p
t=s3+k+1
s3+k+d—2

= ) A= (t—(ss+k)+1) (F(p+

t=s3+k+1

C

) - F(P)) (s3 —s2)p

S3 — 82
+...

—C (§1HE gt gttty (83)
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Thus we have

U(Ti(7p)) :5kU(7Tp)

s1+k+d—2
+ 01— Fp)kp+ > 6t —(s1+k)+1)(1 — F(p))kp
t=s1+k+1
so+k—1
+ ) §d(1 - F(p)kp
t=s1+k+d—1
s3+k—1
+5%2Fd(1—F(p))kp+ > 6'd(1—F(p))kp
so+k+1
sq4+k—1
+6%kd (1= F(p))kp+ > 6'd(1—F(p)) kp
s3+k+1

+ ...

=" [U(Wp) + 5% (1 +20+ 382+ ...+ (d— 1)5d—2) (1 —F(p)) kp+ fj 5td (1 — F(p)) kp}
s1+d—1

gt [U(Wp) 4 (581 (1425435 4 ...+ (d— 15 2) + d(s?id;) (1= F(p)) k‘p] .

(84)

This is because shifting the introductions k periods later discounts all revenue and costs by &%,
and the remaining terms capture the changes to the first term of (78), with the t = s1 + k,s1 +
k+1,...,51 + k+ d— 2 terms handled differently from the rest, due to the expected mass of
revenue-generating customers still building up at those times.

Every policy using linear pricing with base price p, whose first introduction is s3, can be written
as 7}:5;_5;(%) for some policy 7, that uses linear pricing with base price p, and whose first
introduction is s3.32 Thus by Equation (84) and the optimality of Ty, Tss—s:(my) is optimal among
all policies using linear pricing with base price p whose first introduction time is s3.

We now define policy mapping Si(-), where k is a positive integer.

Definition 4. Fix a positive integer k. Given a policy 7, = ((so = 0,29 = 0), (81,21 = s1p), (s2, 22 =

sap), (83,3 = s3p), ... ) that uses linear pricing with base price p, and introduces at times (s1, s2, s3, . . .),

32We detail this construction, for completeness. We take all considered policies to use linear pricing with base
price p. Start with policy 7, that introduces at times (s7 = s3, s, s5,...). Then policy 7, that introduces at times
(s1= 81,82 = 85 — (83 — 57),83 = 85 — (83 — s1),...) satisfies that Tz (mp) = 7.
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we define Si(7p) to be the following policy:

Sk(ﬂp) ::((86 = O,$6 = 0)7 (8/1 = slaxll = Sllp)a (3/2 =381+ k7x,2 = 8/2]?),

(s3=s2+k, x5 = s5p), (s} = s3 + k, 2 = sp),...).

That is, Sg(7mp) uses the same introductions as 7j(7,), but additionally introduces in period s;.
Since 7, = ((so = 0,79 = 0), (51 = 87,71 = s1p), (52 = 85,72 = 53p), (53 = 83,73 = s3p),...) is

an optimal policy among those policies using linear pricing with base price p, it follows that policy

Sk:s%—s’l‘ (ﬂ;) ::((07 0)7 (3;7 Sfp)> (83, 33]9)» (85 + (8; - Sf)a (83 + (33 - ST))p)a

(s34 (3 = 51), (s34 (55 = 51))p), - --)

is also optimal. We prove this by contradiction.
Assume Sg;_s: () is not optimal. Then U (7)) > U(Ss;—s: (7). Because U(my,t) =U (Ssgfs*{ (w;),t)
for t = s7,...,s3, it then follows that policy m; is superior when looking at the sum of discounted

utilities starting at time s3:

iétU(w Z 50 (Suy-sy (), ) - (85)

t=s3 t=s3

We can subtract from both sides of the inequality the revenues accumulated at time s3 or after from

customers who arrive in periods sj, s]+1,...,s5 — 1. By Equation (75), these terms can be written
as
s5+d—2 c ¢
Z 5t (d t—32+1)){(1—F(p+H))sSp—F(F(p—i— . *)—F(p))sfp}. (86)
t=s} 83— 51 S = 5

These terms will be equal for both policies 7, and Sgs s (7[';), because the two policies are identical
for the customers who arrive in periods s7,s] +1,...,s55 — 1.

After subtracting expression (86) from both sides of inequality (85), we recognize the right-hand
side as the utility of policy 7s;—s+(my,), which first introduces at time s3. So we have shown that

the policy whose first introduction is at s3 and from then on follows policy 7, has greater utility
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than policy Tgs s (m,). This means that Tsy—st (m,) is not optimal among all policies using linear
pricing with base price p and whose first introduction time is s5. This is a contradiction.

Since Sgx— s+ preserves optimality, any number of applications of it does so as well. Since each
application shifts the schedule of introductions by s — s7, a simple induction argument shows that

S0

o5t (7)), i.e., applying the Ss3—sr operator j times, results in an optimal policy whose j + 1

P
introductions after the first each come after s5 — s periods from the previous introduction. That
is, it is periodic with period length s5 — s7 for the j + 1 introductions after the first.

This allows us to define a sequence of optimal policies {ﬂ;(j )}, such that the jth element of
the sequence, W;(j) = Sﬁglsf(wz), is periodic through the j + 1th introduction after the first. This
sequence converges to the infinitely periodic policy with first introduction s] and period s5—s7, in the
metric space defined in the proof of Theorem 2 in Appendix G. Similarly to the proof of Theorem 2,
we can show that U is a continuous mapping with respect to the defined metric spaces. As U is

continuous and each policy in the sequence is optimal, the periodic policy with first introduction sj

and period sj — s7 is also optimal. O

N Details of Optimal Pricing Results for a Single Period in the

Non-Discriminatory Pricing Setting

Lemma 6. Let introduction times s and time t be given with s; <t < sji1 for some introduction
7 >1, and wpr be a policy that uses introduction times s and Myerson pricing. Then

min(t—s;+1,d)
Ty € arg max / Z Lqy(m,t,0) f(0)do.

well(s) -1

Proof. All the terms in this sum correspond to customers who arrived at the time of or after the
most recent introduction, and therefore none of them faced a switching cost when deciding which
technology to adopt. In the spirit of Myerson’s argument, we know that the optimal policy would
be to offer all such customers only the latest technology at the Myerson price. But we know from
Section L that all these customers will choose the latest technology regardless for any linear pricing

scheme. Thus, the given policy is optimal. O
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Lemma 7. Let introduction times s and time t be given with s; <t < s;+d—1 for some introduction

j > 1. There exists a policy ©" € II(s) that mazimizes

d

/ Z To,(rt0) | F(O)dO

f=t78j+2

among all policies m € II(s), and that uses pricing x; = s;p* for i < j and max(s;_1p*,s;jp* —c) <

T < Sjp*.

Proof. For j =1, qe(m,t,0) =0 for £ >t — s1 + 2, regardless of the choice of 7, so optimality holds
vacuously.
Fix 7 > 2. We first focus on finding an optimal setting of prices for the expected revenue in

period t that comes from the existing customer who is in her period /¢ at time ¢,

/ xqg(w,t,ﬁ)f(a)dea

where ¢t — s; +2 < ¢ < d. (This customer arrived in the system at time ¢t — ¢ + 1.)

In the spirit of Myerson’s argument, we know that all allocation rules achievable by pricing
are incentive compatible and thus monotone, so we can optimize over them instead. In particular,
with a finite menu of technology classes, the monotone allocation function is piecewise constant:
customers who do not buy get an allocation of 0, those who do get some technology class ¢. By
monotonicity, we just need to choose the thresholds ¢1,...,0; where the transitions occur. Fixing

these, we get an allocation function:

0 if 0<6
a@) =9i if ; <0<y, 1<i<j—1 (87)
i if 6 <.

Fix a and the resulting policy 7/(a), and let Ip,(0) = 1 if § > 6; be an indicator for agents who

do switch (and thus pay the cost of ¢). Then the payment the provider gets from a customer of
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type € who is in her period £ at time ¢ is

0
xQe(W’(a)Jﬁ) = Sa(g)ﬁ - /0 Sa(gl)dQI — Ig], (9)0 (88)

This makes the expected revenue [ g, (x/(a),,9).f(0)d0 equal to

i+1 0
/0 Ty (' (a) t,0).f (0 d9+2/ (a),t.0)f (0 )d9+/9, Ty (' (a).1,0).f (0)dO
J
i=1 i i—1
:Z/g < 9_519 0 Zsz/ 41 — )f(ﬁ)dﬂ
1=1""" i'=1

Q
)_l

+/ (sJ —s55(0 —0;) Zs,/ 0111 — 0ir) )f(a)de
i'=1
i1 0it1 i1 . -
_ ; /9 s (0)d0 2131 /9 (0 —00) S0)a0 + /9 " sty =) 1(0)09

7—1

= (F(0i+1) — F(0;)) 8:0; — (1 — F(0i41)) 8i(0i1 — 9i)) + (1= F(6;)) (s;6; — )

i=1
1
= (1—F(6;))si6; — (1 — F(0;11)) 3i9i+1> + (1= F(8;)) (s50; — c)

<.

i=1
j—1
= [ D (A =F()) (si —si1)0: | + (1= F(6))) ((s5 — sj-1)0; —¢). (89)
i=1
Fach summand in the summation of terms ¢ = 1,...,5 — 1, is, up to a constant multiplier,

exactly what p* is defined to optimize, so it is optimal to set 8; = p* for ¢ < j. This implies that it
is optimal to set z; = s;p* for i < j.
The term after the summation can be optimized using a first order condition. Taking the

derivative with respect to 6; yields

(=f(0;)) ((sj — sj—1)0; — c) + (1 = F'(6;)) (sj — sj-1),

or

(57— sj-1) (1= F(8;) — £(6,)6;) + 1 (6)c. (90)
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The first order condition can then be rewritten as

(sj — 8j-1) <9j _ o) }(];j()aj)> =c. (91)

By the definition of p*, the left hand side of Equation (91) is exactly 0 for 6; = p*, and is increasing
in 6; by Assumption 2. Thus the optimal solution satisfies #; > p* and so our separate optimization
of each 0; does produce a monotone allocation rule.

We wish to turn §; > p* into a lower bound on ;. The threshold ¢; at which customers switch

to technology j solves s;0; — x; —c = s;_10; — xj_1, therefore we have
zj = j-1+(sj = sj-1)0; — . (92)

We observe that for x;_1 = s;_1p*, 0 > p* implies x; > s;p* —c.

Furthermore, a customer can only switch to technology j if she has already bought technology
J — 1, so any choice with z; < s;_1p* is dominated by z; = s;_1p*, because in the latter case,
customers that switch to the new technology pay strictly more than in the former case. Therefore,
we have x; > s;_1p*.

To obtain an upper bound on z;, we rewrite the first order condition in (91) as

1—F(6,) c
0; = 2+
J f((%) Sj — Sj—l
1-F(p") ¢
f(p*) S5 — Sj—1
N c
= P —
85— Sj—1

where the inequality follows because 6; > p* and by Assumption 2. We observe that, by Equa-
tion (92), and for x;_1 = s;_1p*, § < p* + ﬁ implies x; < s;p*.

Note that nothing in the above analysis is specific to the choice of ¢, the tenure of the customer
at time ¢, as long as t — s; +2 < £ < d. Therefore, there exists a policy 7’ € II(s) that maximizes
J gy (m0,0)f(0)d0 for each £ such that t — s; +2 < £ < d, and that uses pricing x; = s;p* for i < j

and max(s;_1p*, s;p* — ¢) < xj; < s;p*. The result follows. O
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Lemma 6 and Lemma 7 show that the policy that maximizes revenue from customers who arrived
at or after the most recent introduction, and the policy that does for those who arrived before the
most recent introduction, agree that Myerson pricing should be used for all but the most recent
introduction, but disagree on what the price of the most recent introduction should be. As a step
towards showing that the optimal prices for the combined revenue share this structure (intuitively
with a compromise over what the price of the most recent introduction should be), we first give an
explicit characterization of the revenue from such policies.

As a further step toward our goal of providing an upper bound to the optimal revenue, we
consider an expansion of the set of policies to allow separate prices to be offered to customers,
depending on whether they were already existing customers at the time of the most recent intro-
duction. Such a discriminatory strategy would offer a discount to the customers who arrived before
the most recent introduction, as an incentive to upgrade. Assuming s; <t < s; +d — 1 so that
both types of customers exist??, the (expected) revenue of such a discriminatory strategy employing
policy m, for customers arriving since the most recent introduction, and policy 7. for customers

who arrived before it, at time t, is

RevenueD (7, e, t) = / (qu(ﬂ'nat76) +of Lgp—s;41(mn t,0) + Lgr—s;42(me,t,0) +...t x‘ld(ﬂ'evtﬁ)) f(0)do.

The following lemma gives our characterization of the revenue of both types of policies.

Lemma 8. Let introduction times s and timet be given with s; <t < sj11 for some introduction j >
1. Consider policy m € II(s) that uses prices x; = s;p* fori < j and xj; = x, with max(s;_1p*, s;p* —

c) <x <sjp*. Then

max(d — (t = 8 +1),0) {(1 = F@) sjmp” + (1= F (555 (@ = 552007 |

8;—8;—1
Revenue(r, t) = +(min(t - s+ 1,d)) (1= F (£)) =, j>2
(min(t — 51 +1,d)) (1= F (£)) =, j=1

(93)

33 A customer who arrives right before time sj, i.e., at time s; — 1, stays in the system until period s; + d — 2.
Therefore, during times ¢ such that s; <t < s; +d — 1, both customers who have arrived since the most recent
introduction, and customers who arrived before the most recent introduction exist in the system.
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Consider also a discriminatory strategy that uses policies my, 7. € 1I(8) with prices x; = s;p* for
i < j, xj = xy for customers who arrive at or after introduction j, and x; = x. for customers who

arrive before introduction j, with max(s;j_1p*,s;jp* —c) < xn,xe < s;p*. Then

max(d — (¢ — 8 +1),0) {(1 = F@p) sjmp” + (1= F (“5527) ) (e = 5007)

8j—8j—1

RevenueD(my, e, t) = +(min(t - 55+ 1,d) (1= F (2)) 2, j>2

(min(t — 51 +1,d)) (1= F (22)) 2, j=1
(94)

Proof. For j > 2, we show that
Revenue(w,t) = min(t —s;+1,d) (1 - F (:)) x
J
T —sj_1p* +c
+max(d— (t—s;+1),0)- [[1-F | ———— | |z
Sj — Sj_l
i (F <x_sﬂ—1p+c) _ F(p*)> sj_lp*] . (95)
Sj — Sj_l

We first explain the summand in the first row of Equation (95). This summand corresponds to
revenue from customers who arrive at or after period s;. The term (1 - F (%)) x is the expected
revenue accumulated at time ¢ from a customer who arrives at or after period s; and buys the new
technology class as long as 0s; —x > 0 <= 6 > % Notice that this customer would buy technology

class k < j instead of technology class j if s5(6 —p*) > 0 <=0 > p* and 0s; —z < s3(0 — p*) <=

0 < % Since xs;iksz; - < 2P ::z:p - p*, the two cannot happen at the same time. We record this
revenue term for all customers who arrive at or after s;, and within the last d — 1 periods before,
or at, period t. There are min(t — s; + 1, d) such terms.

We next explain the summand in the second and third rows of Equation (95). This summand

corresponds to revenue from customers who arrive before period s;. The term

1_F r—sj_1p-+c .
Sj—ijl

is the expected revenue accumulated at time ¢ from a customer who arrives before period s; and
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switches to the new technology class introduced at time s;, because fs; —x —c¢ > s;_1(0 — p*) <=

_ . * . _ . * oS P . * _ . *
0 > TS=P FE Notice that T=8=1P 1€ > P ¢80 F€ _ % therefore as long as () > Z=5-1P *¢

5j—5j_1 8j—8j_1 Sj—85_1 Sj—8j_1

this customer buys technology class 7 — 1 when she arrives and doesn’t opt out, because § > p* <—-
sj—1(0 —p*) = 0.

The term

(F (W) - F(p*)> 5510
S5 — Sj—1

is the expected revenue accumulated at time ¢t from a customer who arrives before period s;, and

does not switch to the new technology class j at time s;, because fs; —x —c < s;_1(0 —p*) <=0 <

T—s;_1p*+c
Sj—S85j—1

0 > p*.

, while she buys technology class j — 1 when she arrives, because s;_1(§ — p*) > 0 <=

We record these revenue terms for all customers who arrive in each of the periods before s;, and
within the last d—1 periods before period ¢. There are d —min(t—s;+1,d) = max(d— (t—s;+1),0)
such periods.

By rewriting

(1 F (m — 8j—1P +c>> o4 (F (x — 8j—1p +c> _ F(p*)> Sj_1p*
S5 — Sj—-1 S5 — Sj-1

= <1 - F (W» (x = sj-1p") + (1 = F(p*)) sj-10",

S5 — Sj—1

the result in Equation (93) for j > 2 follows. The result for the j > 1 case follows by only taking
into account the summand in the first row of Equation (95).

The results for RevenueD(,,, ¢, t) follow analogously. A similar argument shows that, for j > 2,

RevenueD(ﬂ'm 7-[-67‘[:) = mln(t _— S]’ + 17 d) (1 — F (LZ)) In

83
Te — ijlp* +c
+max(d— (t—s;+1),0)- || 1-F Te
S5 — Sj-1
Te —Sj_1p" +c . .
+(F —F(p) | sj-1p"| ,(96)
S5 — Sj—1

from which the result in Equation (94) for j > 2 follows. The result for the j > 1 case follows by
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only taking into account the summand in the first row of Equation (96). O

Theorem 4. Let introduction times s and time t be given with s; <t < sj11 for some introduction
j > 1. There exists a policy @’ € 11(s) that mazimizes Revenue(rw,t) among all policies © € TI(s),
and that uses pricing x; = s;p* for i < j and max(s;_1p*, s;p* —c) < x; < s;p*. Furthermore, the

price xj of this policy m' can be determined as the mazimizer z* of (93).

Proof. By definition, we have

Revenue(w,t) = / (.qu(mt’g) + ZTgp(mp0) Tt qu(mt,g)) f(6)do.

For 7 = 1, all the non-zero terms correspond to customers who arrived since the most recent
introduction. Therefore, by Lemma 6, the given form is optimal. Similarly, if j > 2 and ¢ >
sj +d — 1, then again all the non-zero terms correspond to customers who arrived since the most
recent introduction, and the given form is optimal.

Fix j > 2 and take ¢ such that s; <t < s;+d—1. The essence of our proof is that our assumption
makes both the sum of terms representing revenue from customers who arrived since the most
recent introduction (i.e., terms covered by Lemma 6) and the sum of terms representing revenue
from customers who arrived before the most recent introduction (i.e., terms covered by Lemma 7)
quasiconcave. While the sum of two quasiconcave functions is not necessarily quasiconcave, for
univariate quasiconcave functions it holds that if there is an interval that contains the maxima of
both functions, then their sum is also maximized in that interval.

We begin with the terms from Lemma 7. Fix ¢ with t — s; +2 < ¢ < d and consider the
term [ xg,(r+0)f(0)d0. Let policy n’ have pricing x; = s;p* for i < j and x; = x. In the proof of

Lemma 7, we argued that the threshold 6; at which customers switch to technology j solves
Sj@j — :L’j —C= Sj_lej - xj_l, (97)

from which it follows that
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We rewrite Equation (89) in the proof of Lemma 7, using (97) and (98), as follows:

x—sj_1p* +c

[ Tt 1000 = (1 = Fp) 0" + (1 -F ( )) (@=siw’). (%)

Sj — Sj-1
and therefore
d
/ Z T, (m.0) | £(0)dO
i:t—8j+2
* * — s 1P+ )
= (d—(t—s;+1))- {(1—F(P ) sj—1p" + <1_F<w>> @ 1 )}'
J J—

(100)

By Lemma 7, the maximizing x is at least max(s;_1p*, s;p* — ¢) and at most s;p*. Furthermore,
Assumption 2 is equivalent to the log-concavity of 1 — F(x) as a function of x, because in general
log-concavity of a function g is equivalent to ¢g'/g being monotonically decreasing (Bagnoli and
Bergstrom, 1989, Remark 1). In turn, term (1 - F (%)) is log-concave as a function of
x, and so is term (1 - F (%)) (x — sj—1p*) as product of log-concave functions. Because
log-concavity implies quasiconcavity, the latter term is quasiconcave on [s;_1p*, 00), and so is the
entire right-hand side of (100), because a non-decreasing function of a quasiconcave function remains

quasiconcave.

We next turn to the terms covered by Lemma 6, i.e.,

=1

t—s;j+1
/ ( > ﬂfw,t,e)) F(0)do.

Note that each term [ zg,(x+0)f(0)df, with 1 < £ <t —s;+1, is identical to term [ 2y, (x 1) f(6)d0,
with t —s; +2 < £ < d, if ¢ = 0. Our analysis above only assumed that ¢ > 0. Thus the same
analysis, mutatis mutandis, shows that the desired properties hold for the sum of those terms as
well.

Therefore both terms
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and
d

/ S 2yenn | F0)d0

i:t—Sj +2

are quasiconcave and, by Lemma 6 and Lemma 7, have their maxima on the interval
(max(s;1p", sjp" — ¢), ;"]

meaning their combined maximum is on this interval as well. For the final part of the theorem,

note that this means we are optimizing over policies of the form contemplated by Lemma 8. O

O Details of Performance Guarantees of Myerson Pricing in the

Non-Discriminatory Pricing Setting

Before stating our approximation ratio, we first give a lemma which shows that the single period

where Myerson pricing performs worst relative to optimal pricing is one of the introduction periods.

Lemma 9. Let introduction times s and time t be given with s; <t < s;11 for some introduction
j > 1. Let nf maximize (93) for period t, w7 do so for period s;, and mwy use Myerson pricing.

Then
Revenue(ry},t) Revenue(r, s;)

Revenue(mar,t) — Revenue(mar, s5)

Similarly let 7}, and 7y, maximize (94) for period t, and 7, and 75 . do so for period sj. Then

RevenueD(r},,, mf.,t) _ RevenueD(7} , 75 ., sj)
Revenue(myr,t)  —  Revenue(myy, S5)

Proof. If j =1 ort > s; +d — 1, then Myerson pricing is trivially optimal and both ratios are 1.
For j > 2andt < s;+d—1,let zf be the price for the jth introduction used by policy 7}, and T
be the price for the jth introduction used by policy ;. For brevity, let g(z) = (1 — F(p*)) sj—1p* +

(1 —-F (M)) (x —sj—1p*) and h(z) = (1 -F (%)) x. Then

S5 —S85—1
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Revenue(ny,t)  (d— (t —s; +1))g(x}) + (t — 55 + 1)h(x})
Revenue(mys,t)  (d— (t —sj+1))g(s;p*) + (t — s + 1)h(s;p*)
EOE) (d = Dg(ag) + hla)) + (¢ - 55+ 1— L) hiap)
TS (d = Dg(sip?) + hlsip) + (= 55 + 1= S hisp0)
(d —1g(af) + h(zf)
~ (d=1)g(s;p") + h(s;p*)
_ Revenue(ry, s;)

~ Revenue(myy, s5)
Revenue(r7, s;)
~ Revenue(myy, s;)

The first inequality follows because the term (t -5 +1-— %

) is non-negative for s; <t <
sj+d—1, and sjp* optimizes h, which allows us to rewrite the ratio without the second summand
of the numerator and the denominator. The third equality follows from Lemma 8. The second
inequality follows because 7} is defined to optimize revenue at s;.

The same argument applies, mutatis mutandis, to discriminatory pricing. ]

Lemma 9 allows us to focus on a special case of Equations (93) and (94), where ¢t = s;. As our

subsequent results all focus on this special case, we give it its own notation.

Definition 5. We define

(A=) {1 = F@))smp* + (1 - F (5222259)) (@ = s5-007)

Revj(x) = +(1-F(2))a, j>2 (101)

(1—F(§))x, j=1.
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and

(=) {1 = F@) sjap* + (1= F (2525225 (we - 55-10%) )

Sj—S8j—1

RevDjj(wn, ze) = + (1 —F (m—")) T, j>2 (102)

We remark that the revenue under Myerson pricing at introduction period s; is given by Equa-
tion (77) (for p = p*) and Equation (101) (for z = s;p*), which are equivalent: Revenue(myy,s;) =
Revj(sjp*), where we let mps be the policy that uses Myerson pricing and introduction times s.

We can now state a corollary making the approximation ratio precise.

Corollary 3. Let introduction times s be given. Let mp € TI(s) be a policy that uses Myerson

pricing and uses introduction times s. Then, for every policy = € II(s), we have that wy; is a

( Rev;(x7)

HlaX] Revj(sjp*) I

1) approzimation to the revenue of and cost of w respectively, where x}" is the

value x that maximizes Revj(x). Similarly, for every pair of policies m,, . € II(s), we have that
Reij(:c;’n,;B;’e)

T 1S a (man Rev, (3707 ,1) approximation to the revenue of and cost of discriminatory policy

(Tn, me), where %, and x*, are the values of x,, and x. respectively that mazimize RevD;(xy, x.).

J?n J?e
Furthermore, denoting by w3, the policy that is optimal among those that use Myerson pricing and

periodic introductions (after the first introduction), we have U(mar) < U(myy).

Proof. Since 7,7y € II(s), they have the same cost. For revenue, we can write

Revenue(n) 3= 0" max ey (s) Revenue(r, t)
Revenue(myr) — >, 6'Revenue(myy, t)

max,cry(s) Revenue(r, )

ma
o Revenue(myy, t)
max,crys) Revenue(m, s;)

ma
i Revenue(myy, s5)

Rev;(z3)

axX ——————
i Revj(sip*)

The first line follows from Observation 3, the third by Lemma 9, and the fourth by Theorem 4 and
by the observation that Revenue(mys, sj) = Rev;(s;p*). The proof for the discriminatory case is the

same, mutatis mutandis. The last part of the statement follows directly from Proposition 1. O
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P Details of Bounding the Competitive Ratio of Myerson Pricing

in the Non-Discriminatory Pricing Setting

Corollary 3 implies that we can bound our approximation ratio by bounding the competitive ratio
of Rev or RevD. In the remainder of the section we provide two such bounds in terms of the
distribution F. Our first bound is directly in terms of F' but worsens with increasing customer
lifetime d, while our second bound requires the derivative of ' and an additional optimization to

make the bound concrete, but improves with increasing d.

Proposition 3. Let introduction number j > 2 be given. Let xj be the value that mazimizes Revj(x)

and z3,, = s;p*, x; . be the values that mazimize RevDj(zn,xe). It holds that

Rev;(x7) - RevDj(z} ., 75 .) - 1—|-(d —1)(sj — sj-1) .F (p* + Sjjsj,l) — max (F(p*), F (ijzj—1>) |

Revj(s;jp*) ~ Rev;(sjp*) - (d—1)sj—1+s; 1 — F(p*)
(103)

For the first introduction, we can write

Revi(x})  RevDi(ai,,z7.) .
Rev:(s;p*) Rev:(s;p*) '

Proof. The result for the first introduction is trivial.
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For j > 2, we have

Revj(x;) - RevDj(s;jp*, 7 .)
Revj(sjp*) ~ Revj(s;p*)

RevDj(s;p*,x},) — Rev;(s;p”)

Revj(sjp*)

=1+

T Y * * * c *
P T T

Revj(sjp*)
* c xf’e—s-_ pr+c *
<1+(d—D(F@)+%%1)—F(JSQQ:))C%—Sﬁﬂp
- Rev;(sjp*)
« x5, —8j—1p"+c «
. (d—1) (F (p + sjfng) —F (%)) (85 —sj—1)p
(d—=1)(1 = F(p*)) sj—1p* + (1 — F(p*)) s;p*
" ¢ B T, —Sj—1p"+c
14 (d—1)(sj —sj-1) F (p + 51—5171) F < 8j—8j—1 >
(d— 1)Sj_1 + 85 1 — F(p*)
* c max(sj_1p*,s;p*—c)—s;_1p*+c
<1+ (d—1)(sj —sj-1) . F (p + Sj—sj—l) B F( ] Sj]—sa'—l ] )
(d—1)sj—1+sj 1— F(p*)
<1+ (d—1)(sj —sj-1) . F (p + Srsj—l) _max (F(p ) F (Srs]‘—l))
(d— 1)Sj_1 + 55 1 —F(p*) )

The first inequality follows because s;p* is the optimal price for new customers and we define x

to be optimal for existing ones, the second equality follows from the definitions in (101) and (102),

*

the second inequality because 27,

< s;p* by Lemma 7, the third inequality because, by (101),
Rev;(sjp*) > (d—1)(1 — F(p*)) sj—1p* + (1 — F(p*)) sjp*, and the fourth inequality follows from

the lower bound on z7j, by Lemma 7. O

Several remarks are in order. First, the bound of Proposition 3 deteriorates with increasing

customer lifetime d.3* Second, the right-hand side of Equation (103) can be simplified by observing

that
* c _ * c "
F (p + SrSj—l) fHax (F(p ), F (Srsj‘fl)) < 1—F(p") _
1 —F(p*) ~1-F(p)
34 Formally, if we define g(d) = (E0i=%=1) "we have ¢/(d) = —£2=%=1)__

(d=1)sj_1+s; ’ T ((@=1)s;1+s)
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Third, the right-hand side of Equation (103) is close to 1 for large or small ¢. This is aligned with
intuition. For switching cost ¢ close to zero, an existing customer is likely to behave as if she were
a new customer, and chooses her preferred quality among the available ones, thus Myerson pricing
is close to optimal. For large ¢, a customer is not likely to switch to a new technology, and again
Myerson pricing is close to optimal.

Fourth, for a loose upper bound, the right-hand side of Equation (103) can be bounded by

(d—1)(sj — s5-1) ‘F(p +S‘—S 71) max (F (Sj—zj—l»
Sj p*)

<1+(d-1)- F o+ =) ;Tif(g;(p*)j (=5 1)>

<1+

Fifth, a tighter bound to the right-hand side of Equation (103) can be obtained if an upper bound
in the time difference between consecutive introductions can be assumed. For example, assuming
periodic introductions every d — 1 periods, with so =0 and s; = j - (d — 1), we can write

(d—1)(sj —sj-1) _ (d—1)? _d-1
(d—1)sj_1+s; (d=1DG—-1)(d-1)+jd-1) d(ij—1)+1

which shows that Myerson pricing gets arbitrarily close to the optimal policy after sufficient intro-
ductions. Note that this is consistent with Proposition 2 and the discussion in Section L.2.
As a corollary to Proposition 3, we propose the following result, which provides an upper bound

for the competitive ratio of Myerson pricing that does not deteriorate with the customer lifetime d.

Corollary 4. Let introduction number j > 2 be given. Let z} be the value that mazimizes Rev;(z)

and x;n = sjp*,x;e be the values that maximize RevDj(xy,x.). It holds that

Revi(a) _ ReoDi(@in i) _ ¢ f()

Rev;(s;p*) Rev;(s;p*) dj —2)+1 : P Fp*) (104)

for some p € (maX (p ) 55=8; ) p* +sj—sg 1)
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Proof. If p* >

s e have
J J—

fwmq><RwD<waa<1+u_n@_%4>F0f+%;4)=m¢>
Revj(s;p*) = Revj(s;p*) (d—1)sj—1+s; 1—F(p*)
(d—1)(s; —sj—1) R c 1
=1 (d— 1)52_1 —isj 1(p)- sj—sj—1 1—F(p¥)
o c(d—1) f(p)
(d=1)sj1+s; pf(p*)
14 c AC))

d(j =2)+1 p*f(p*)’

where the second line follows by the mean value theorem on function F' with p € (p ,p* + s]-—s] 1)
the third line follows by the definition of p*, and the fourth line is using that introductions are at
least d—1 periods apart (after the first introduction), thus s;_; > (j—2)(d—1) and s; > (j—1)(d—1).

If p* < - , then we have

Revj(x;) < RevDj(z; Linr e Gie) <1+ (d—1)(sj — Sj—l) F (p + SJ_SJ 1) - F (sj—gj,l)
Rev;(sjp*) Rev;(sjp*) - (d—1)sj_1+ s 1— F(p*)
L s s )
(d 1)SJ 1+s; 1-— F(p*)
d—1)(s; —si_1 . c 1
< ((d—SSle:Sj) T sj—sj-1 1= F(p")
R £0)

A -2+ )

where the second line follows by the mean value theorem on function £’ with p € ( P— - ,pF + —= ),
J J—

and in the third line we have used p* < Py sj -

Putting together Corollary 3 and Proposition 3, we can state the main performance guarantee

attained by our analysis for Myerson pricing in the following theorem.3?

Theorem 5. Let introduction times s be given. Let mpr € II(s) be a policy that uses Myerson

pricing and uses introduction times s. Then, for every policy m € 11(s), we have that wyr is a

1+ (d—1)(s; = 5j-1) . F (p* + Sj_zj71> —max (F(p*),F (Sj_§j71>) 1
e (d—1)sj_1 + s, 1— F(pY) ;

35We can similarly state a performance guarantee by putting together Corollary 3 and Corollary 4.
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approzimation to the revenue of and cost of w respectively. Similarly, for every pair of policies

Tn, Te € 1I(s), we have that myr is a

(d—1)(s; — s;—q) F 0"+ 5=5—) —max (F(p"), F (5=
nex (d—l)zj_ljfs; ' ( — 1) 1—F(](9*) (] ’ 1))’1

approximation to the revenue of and cost of discriminatory policy (my,me). Furthermore, denoting
by my, the policy that is optimal among those that use Myerson pricing and periodic introductions

(after the first introduction), we have U(myr) < U(myy)-

Q Numerical Illustrations for Myerson Pricing in the Non-Discriminatory
Pricing Setting

We now illustrate our results with a variety of distributions for customer type 6. We show that
our bounds for Myerson pricing from Section 6 can provide strong guarantees for natural families
of distributions. We also show numerically that in reality Myerson pricing is often some orders of
magnitude closer to optimal than our bounds suggest.

We first examine our analytical bounds for Myerson pricing from Proposition 3 and show that,
after sufficiently many introductions, they are tight not only for small and large values of the
switching cost ¢, but also for intermediate ones, for a variety of distributions for customer type 6.

We then run simulations and, for fixed introduction times, calculate the gain ratio of the op-
timal total revenue (estimated by a best-response updating algorithm we propose in Section Q.2),

throughout the horizon, over Myerson total revenue:

optimal revenue — Revenue(myy)

Revenue(myy)

We show that the gain ratio is small for a variety of distributions for customer type 6, thus showing
that Myerson pricing is near optimal in many cases. We also look at the gain ratio of the optimal

revenue for a single introduction period®®, which was proposed in Theorem 4, over the Myerson

36Remember from Section 6 and in particular Observation 3 that the optimal revenue for a single introduction
period is an upper bound of the real revenue in that period under the optimal policy, having fixed introduction times.
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revenue in that introduction period, reporting the maximum gain ratio over all introductions,

Revj(z*) — Revenue(myy, s5)
max .
j Revenue(myy, s5)

Finally, we also run numerical experiments for the setting with discriminatory pricing, which
separates customers depending on whether they were already existing customers at the time of the

most recent introduction. Again, we show that Myerson pricing is close to optimal.

Q.1 Examining our analytical bounds

Although the bound of Proposition 3 deteriorates with the length d of customer lifetime, we show

that it is a meaningful upper bound after sufficiently many introductions, even for quite a long

Rewv; (:z:’; )—Rev;(s;jp*)

customer lifetime. Figure 6 shows the upper bound on the gain ratio Rev; (5,57

from Propo-

sition 3, which is

(d—1)(s; — sj-1) ) F (p* + ijzjfl) _max (F(p*)’ F (%’*zjfl))
(d—1)sj_1 + s 1— F(p*) ’

against the switching cost ¢, for customer lifetime d = 14. We show the upper bound for the

uniform distribution on [0, 1], the beta distribution (p.d.f. f(z) = FIE(CYO;JIC(’Bg)xO‘_l(l — x)%71) with

shape parameters « = § = 2, and the gamma distribution (p.d.f. f(z) = k=1¢=%) with

O
shape parameter £ = 2 and scale parameter § = 0.25. The figure illustrates that Myerson pricing is
close to optimal for large or small switching costs, while it raises the possibility that there is room
for substantial improvement over the Myerson pricing for intermediate switching costs.?”

We also note that, rather than applying the general bound from Proposition 3, we can directly

calculate the left-hand side of Equation (103) in Proposition 3, and subtract 1 to recover the gain
Revj(r;)—Revj(sjp*)
Rev;(s;p*)

ratio . Figure 7 plots the gain ratio for customer lifetime d = 14, for the uniform
distribution on [0, 1], the beta distribution with shape parameters « = = 2, and the gamma
distribution with shape parameter £k = 2 and scale parameter § = 0.25. As explained before,

the optimal revenue for a single introduction period is an upper bound on the real revenue in

3"We note that it is also possible to derive bounds for specific distributions from first principles. For example, we
can derive a bound of (d — 1)?/(2d) for the case of the uniform distribution on [0, 1].
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Figure 6: The right-hand side of Equation (103) in Proposition 3, reduced by 1, against the switching
cost ¢, for customer lifetime d = 14, for selected pairs of introduction times s;_1, s;, for the uniform
distribution on [0, 1], the beta distribution with shape parameters « = § = 2, and the gamma
distribution with shape parameter k£ = 2 and scale parameter § = 0.25. The right subfigure zooms
in, plotting the upper bound for the same introduction times as the left subfigure except for the
early introduction times.

Rev;(z})—Rev;(s;p*) ‘s an
Rev;(s;p*)

that period under the optimal pricing policy, and therefore the gain ratio
upper bound to the gain ratio in that period under the optimal pricing policy for the real problem.
The gains over Myerson pricing are less than 25% after sufficiently many introductions, even for
intermediate switching costs — a bound substantially tighter than the one given by the right-hand
side of Equation (103) in Proposition 3. We note that this bound is calculated using quite a long3®
customer lifetime d = 14, and that the gain ratio bound is smaller for shorter customer lifetimes.
We can apply this approach to the exponential distribution to show that, for that distribution,

Myerson pricing is in fact optimal. This can be verified by observing that Rev;-(sjp*) = 0.

Q.2 Numerical experiments

We now turn from analyzing a single introduction time in isolation to analyzing a full policy. To
do so, we run 100 simulations for each combination of distribution f, customer lifetime d, switching

cost ¢, and discount rate §. In each simulation, a set of 50 introduction times is randomly generated,

38Remember that one period in our model corresponds in practice to the time interval after which the provider
would revisit the decision of launching a new technology class or not.
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Figure 7: The left-hand side of Equation (103) in Proposition 3, reduced by 1, against the switching
cost ¢, for customer lifetime d = 14, for selected pairs of introduction times s;_1, s;, for the uniform
distribution on [0, 1], the beta distribution with shape parameters « = § = 2, and the gamma
distribution with shape parameter k£ = 2 and scale parameter § = 0.25. The right subfigure zooms
in, plotting the gain ratio for the same introduction times as the left subfigure except for the early

introduction times.

with introductions up to 15 periods apart.

We calculate the optimal pricing given the set of introduction times using the following best-
response updating algorithm: initialize prices, then optimize the price of each introduction given
the prices for the preceding and the subsequent introduction in the previous iteration, and proceed
through all the introductions (looping back to the first introduction after the last introduction has
been optimized). Stop when no introduction can have an improvement ratio above 10730, Because
of the arguments in Rosen (1965), there is a unique revenue maximizing price vector, and if our
proposed updating algorithm converges (which it always did), it converges to the unique optimal

pricing.

Figure 8 plots the average of the gain ratio of the optimal total revenue over Myerson total

revenue,
optimal revenue — Revenue(mys)

Revenue(myy)

)

over 100 simulations, against the switching cost ¢, for different values of the customer lifetime d and

the discount rate 0, for the uniform distribution on [0, 1].
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Figure 8: The average of the gain ratio of optimal total revenue over Myerson total revenue, over 100
simulations, against the switching cost ¢, for customer lifetime d = 2,6, 10, 14, and for discount rate

0 =0.1,0.3,0.5,0.7,0.9, for the uniform distribution on [0, 1]. The whiskers indicate the minimum
and maximum gain ratio over 100 simulations for each setting.

Holding the switching cost ¢ constant, the higher the §, the larger the gain ratio of the optimal
total revenue over the Myerson total revenue. The near-optimality of Myerson pricing, that is, is

more pronounced as the provider becomes less patient. Note that these are ratios and that the

absolute gain is small for small J.

Holding the discount rate ¢ fixed, for switching cost ¢ close to zero, an existing customer is likely

to behave as if she were a new customer, and chooses her preferred quality among the available ones,
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Figure 9: The average of the gain ratio of optimal total revenue over Myerson total revenue, over
100 simulations, against the switching cost ¢ for customer lifetime d = 2,6, 10, 14, for discount rate
d = 0.9, for the uniform distribution on [0, 1]. The whiskers indicate the minimum and maximum
gain ratio over 100 simulations for each setting.

thus Myerson pricing is close to optimal. For large ¢, a customer is not likely to switch to a new
technology, and again Myerson pricing is close to optimal. Therefore, the gain ratio of the optimal
total revenue over the Myerson total revenue becomes smaller as the switching cost becomes very
large or very small.

Figure 9 shows that the gain ratio of the optimal total revenue over the Myerson total revenue
increases with higher customer lifetime d, yet stays small even for quite long customer lifetimes,
and even for intermediate switching costs. We note that the gain ratio is in the order of 0.01 for
d = 14 in the worst case for the switching cost.

We also look at the full histogram of the total revenue gain ratio over 100 simulations for different
values of d, ¢ and ¢, along with the histogram of the gain ratio of the optimal revenue for a single

introduction period over the Myerson revenue in that period, for the introduction that attains the
Rev; (a:;‘ ) —Revenue(wM ,55)

R , over 100 simulations. In Figure 10 we show
evenue(my,s;)

maximum gain ratio, max;
the histograms for a reasonably high value for the customer lifetime d, and we note that the gain

ratio values are smaller for shorter customer lifetimes. Figure 10 shows the effect of varying the
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Figure 10: Histograms of the gain ratio of optimal total revenue over Myerson total revenue, over
100 simulations, for the uniform distribution on [0, 1], for customer lifetime d = 14, switching cost
c = 0.5, and discount rate 6 = 0.1,0.3,0.5,0.7,0.9. Also, a histogram of the gain ratio of the optimal
revenue for a single introduction period over Myerson revenue, for the introduction that attains the
maximum gain ratio, over 100 simulations.

discount rate ¢ in detail. The overall trend is consistent with the averages, so the main additional
takeaway from the full histogram is that in most instances Myerson pricing is essentially optimal.
The histogram of the gain ratio of the optimal revenue for a single introduction period shows that
this relaxation is often loose by an order of magnitude or more. We note that our worst case
analytical bounds for the uniform distribution on [0, 1] are loose even relative to this relaxation.
Figure 11 shows again that in most instances Myerson pricing is essentially optimal, if instead we
vary the switching cost c.

Figures 12 and 13 show experiments for the beta distribution, while Figures 14 and 15 show
experiments for the gamma distribution. The results for the beta and gamma distributions are

consistent with our results for the uniform distribution.

We present experiments for the discriminatory setting in Appendix R. Both in the non-discriminatory
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Figure 11: Histograms of the gain ratio of optimal total revenue over Myerson total revenue, over
100 simulations, for the uniform distribution on [0, 1], for customer lifetime d = 14, discount rate
6 = 0.5, and for switching cost ¢ = 0.1,0.5,2,4,6, 8.

and in the discriminatory setting, the experiments show that the gain ratio of optimal total rev-
enue over Myerson total revenue is several orders of magnitude smaller than our theoretical bounds

suggest.

R Numerical Experiments for Myerson Pricing in the Discrimina-
tory Pricing Setting

We focus on the total revenue under a discriminatory strategy that offers separate prices to cus-
tomers, depending on whether they were already existing customers at the time of the most recent
introduction. In particular, at time ¢ such that s; < ¢ < s;41 for some introduction j > 1, the
provider offers technology class j at price x;, to customers who arrived at time s; or after, and at
price x;. to customers who arrived before time s;. As argued in Appendix N, the optimal revenue

in this discriminatory setting is an upper bound of the optimal revenue in the non-discriminatory
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Figure 12: The average of the gain ratio of optimal total revenue over Myerson total revenue, over
100 simulations, against the switching cost ¢, for customer lifetime d = 2,6, 10, 14, and for discount
rate & = 0.1,0.3,0.5,0.7,0.9, for the beta distribution with shape parameters « = g = 2. The
whiskers indicate the minimum and maximum gain ratio over 100 simulations for each setting.
setting.

Before presenting numerical experiments for the setting with discriminatory pricing, we first

look at the corresponding revenue optimization problem. Fix introduction times sg = 0, s1,... and
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Figure 13: The average of the gain ratio of optimal total revenue over Myerson total revenue, over
100 simulations, against the switching cost ¢ for customer lifetime d = 2,6, 10, 14, for discount rate
6 = 0.9, for the beta distribution with shape parameters o« = = 2. The whiskers indicate the
minimum and maximum gain ratio over 100 simulations for each setting.

introduction index j. We write down all the terms of total revenue that include x;, or ;41 c:

sj+1—1

Z 6 - min(t — s; + 1,d) (1 —F <$3n>> “Tjn
Sj

t=s;

siza”! P .
+ Z 5t-Inax(d—(t—5j+1+1),0){<1—F(max <x]+1,e x],n—i—c’x]m))) CTjle
Sj+1 = 8j 53

1=sj+1
p [ Tatle = Tin T € [ Zin 1
+ o - ) “Ljn Tin o Tjt+le=Tinte (s
Sj+1 = 55 55 i = sj41-%

(105)

where the first summand is the revenue accumulated in periods sj,...,sj41 — 1 from customers
who arrive at or after period s; and buy technology class j, and the second summad is the revenue
accumulated in periods s;y1,...,5j12 — 1 from customers who arrive before period s;;1. In the
second summand, the first term inside the curly brackets is the revenue from customers who switch
to technology class j+1 in period s;41, and the second term inside the curly brackets is the revenue

from customers who do not switch to technology class j + 1 in period s;41.
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Figure 14: The average of the gain ratio of optimal total revenue over Myerson total revenue,
over 100 simulations, against the switching cost ¢, for customer lifetime d = 2,6, 10,14, and for
discount rate 6 = 0.1,0.3,0.5,0.7,0.9, for the gamma distribution with shape parameter k = 2 and
scale parameter § = 0.25. The whiskers indicate the minimum and maximum gain ratio over 100
simulations for each setting.

Assuming “2* < Zitle=2intC the second summand of (105) can be rewritten as
J

Sjt2—1

Z 5t~max(d—(t—sj+1+1),0) {(1 —F <%>> *Tjn + (1 - F <W>> . (ijrl’e - xj,n)} .
Sj Sj4+1 — S5

t=s;jt1

- 84178

J
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Figure 15: The average of the gain ratio of optimal total revenue over Myerson total revenue, over
100 simulations, against the switching cost ¢ for customer lifetime d = 2,6, 10, 14, for discount rate
6 = 0.9, for the gamma distribution with shape parameter £ = 2 and scale parameter 6 = 0.25. The
whiskers indicate the minimum and maximum gain ratio over 100 simulations for each setting.

Notice that the Myerson pricing z;, = s;p* optimizes the first summand of (105), as well as
the first term inside the curly brackets in (106). So overall, an optimal setting for the total revenue
in the discriminatory setting is to set z;, to the Myerson pricing, and then optimize the term
(1 - F (%)) “(j41,e —jn) over zj11.. This matches exactly the prices xjn, Zj41.
that would be set by optimizing RevD; and RevD;y; in (102). Therefore, optimizing the total

revenue throughout the horizon in the discriminatory setting can be conveniently decomposed into

optimizing the revenue RevD; per introduction period, for all introductions j.
Numerical experiments. Figure 16 plots the average of the gain ratio of the optimal total
revenue over Myerson total revenue,

optimal discriminatory revenue — Revenue(7yy)
Revenue(7yy)

i

against the switching cost ¢, for different values of the customer lifetime d and the discount rate &,

for the uniform distribution on [0, 1]. The same patterns are observed as in the non-discriminatory
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Figure 16: The average of the gain ratio of optimal total revenue in the discriminatory setting over
Myerson total revenue, over 100 simulations, against the switching cost ¢, for customer lifetime
d = 2,6,10,14, and for discount rate 6 = 0.1,0.3,0.5,0.7,0.9, for the uniform distribution on [0, 1].
The whiskers indicate the minimum and maximum gain ratio over 100 simulations for each setting.

setting, with the difference that the values of the gain ratio are now generally larger by one order
of magnitude or more.

Figure 17 shows that the gain ratio of the optimal total revenue over the Myerson total revenue
increases with higher customer lifetime d, yet stays small even for quite long customer lifetimes,
and even for intermediate switching costs. We note that the gain ratio is less than 0.1 for d = 14 in

the worst case for the switching cost.

119



Disc. optimal, unif(0,1), «+ =0.9

-
-
O. .
o
Rel
=Y
83
S o
T
O]
8 |y
P o
o |4
2
-4- d=2
. d=6
& |-a- =10
I -+ d=14
o
- T T T T T T
0.1 2 4 6 8 10

Figure 17: The average of the gain ratio of optimal total revenue in the discriminatory setting
over Myerson total revenue, over 100 simulations, against the switching cost ¢ for customer lifetime
d = 2,6,10, 14, for discount rate § = 0.9, for the uniform distribution on [0,1]. The whiskers
indicate the minimum and maximum gain ratio over 100 simulations for each setting.

We again also look at the full histogram of the total revenue gain ratio in the discriminatory
setting over 100 simulations for different values of d, ¢ and §, along with the histogram of the gain

ratio of the optimal revenue for a single introduction period over the Myerson revenue in that period,

RevD;(s;p*,z2)—Revenue(myy,s;)

in the
Revenue(ryy,s)) ’

for the introduction that attains the maximum gain ratio, max;
discriminatory setting, over 100 simulations. In Figure 18 we show the histograms for a reasonably
high value for the customer lifetime d, and we note that the gain ratio values for lower values
of d are smaller. Figure 18 shows the effect of varying the discount rate ¢ in detail. Similarly
to the non-discriminatory setting, the overall trend is consistent with the averages, so the main
additional takeaway from the full histogram is that in most instances Myerson pricing is essentially
optimal. Notice that the values of the gain ratio as indicated in the histograms are larger in the
discriminatory setting than in the non-discriminatory setting. Figure 19 shows again that in most
instances Myerson pricing is essentially optimal, if instead we vary the switching cost c.

Figures 20 and 21 show experiments for the beta distribution, while Figures 22 and 23 show

experiments for the gamma distribution, in the discriminatory setting. The results are consistent
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Figure 18: Histograms of the gain ratio of optimal total revenue over Myerson total revenue in
the discriminatory setting, over 100 simulations, for the uniform distribution on [0, 1], for customer
lifetime d = 14, switching cost ¢ = 0.5, and for discount rate § = 0.1,0.3,0.5,0.7,0.9. Also, a
histogram of the gain ratio of the optimal revenue for a single introduction period over Myerson
revenue, for the introduction that attains the maximum gain ratio, in the discriminatory setting,
over 100 simulations.

with our results for the uniform distribution, and the values of the gain ratio in the discriminatory
setting are again larger than the values of the gain ratio in the non-discriminatory setting, but still

small in absolute terms.
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Figure 19: Histograms of the gain ratio of optimal total revenue over Myerson total revenue in
the discriminatory setting, over 100 simulations, for the uniform distribution on [0, 1], for customer
lifetime d = 14, discount rate § = 0.5, and for switching cost ¢ = 0.1,0.5,2,4, 6, 8.

122



Disc. optimal, Beta(2,2), d=2 Disc. optimal, Beta(2,2), d=6

-
o
-
T o
o
~ ©
Q| 9
[ 9]
-~ : —
2 e}
= 7 =
g o S o
£ 1~ . n £ 1
T O [ S T @
o - o A @ T H B o -
o e
n N
() ()
-~ —
o o
T T T T T T
0.1 2 4 6 8 10
c
Disc. optimal, Beta(2,2), d=10
= e
o o
wn Y]
T T
[0} [0}
- -

Gain ratio
1e-11
Gain ratio
1e-11

1e-17
1e-17

0
0

Figure 20: The average of the gain ratio of optimal total revenue in the discriminatory setting over
Myerson total revenue, over 100 simulations, against the switching cost ¢, for customer lifetime
d = 2,6,10, 14, and for discount rate § = 0.1,0.3,0.5,0.7,0.9, for the beta distribution with shape
parameters « = § = 2. The whiskers indicate the minimum and maximum gain ratio over 100
simulations for each setting.
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Figure 21: The average of the gain ratio of optimal total revenue in the discriminatory setting
over Myerson total revenue, over 100 simulations, against the switching cost ¢ for customer lifetime
d=2,6,10, 14, for discount rate § = 0.9, for the beta distribution with shape parameters o = g = 2.
The whiskers indicate the minimum and maximum gain ratio over 100 simulations for each setting.
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Figure 22: The average of the gain ratio of optimal total revenue in the discriminatory setting
over Myerson total revenue, over 100 simulations, against the switching cost ¢, for customer lifetime
d=2,6,10, 14, and for discount rate § = 0.1,0.3,0.5,0.7,0.9, for the gamma distribution with shape
parameter k = 2 and scale parameter § = 0.25. The whiskers indicate the minimum and maximum
gain ratio over 100 simulations for each setting.
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Figure 23: The average of the gain ratio of optimal total revenue in the discriminatory setting
over Myerson total revenue, over 100 simulations, against the switching cost ¢ for customer lifetime
d = 2,6,10, 14, for discount rate § = 0.9, for the gamma distribution with shape parameter k = 2
and scale parameter § = 0.25. The whiskers indicate the minimum and maximum gain ratio over

100 simulations for each setting.
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