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Abstract

In the context of subscription-based services, many technologies improve over time and ser-

vice providers can provide increasingly powerful service upgrades to their customers, but at a

launching cost, and the expense of the sales of existing products. We propose a model of tech-

nology upgrades and characterize the optimal pricing and timing of technology introductions for

a service provider who price-discriminates among customers based on their upgrade experience,

in the face of customers who are averse to switching to improved offerings.

We first characterize optimal discriminatory pricing for the infinite horizon pricing problem

with fixed introduction times. We reduce the optimal pricing problem to a tractable optimization

problem and propose an efficient algorithm for solving it. Our algorithm computes optimal

discriminatory prices within a fraction of a second, even for large problem instances.

We then show that periodic introduction times, combined with optimal pricing, enjoy op-

timality guarantees. In particular, we first show that as long as the introduction intervals are

constrained to be non-increasing, it is optimal to have periodic introductions after an initial

warm-up phase. When allowing general introduction intervals, we show that periodic introduc-

tion intervals after some time are optimal in a more restricted sense. Numerical experiments

suggest that it is generally optimal to have periodic introductions after an initial warm-up phase.
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Finally, we focus on a setting in which the firm does not price-discriminate based on cus-

tomers’ experience. We show both analytically and numerically that in the non-discriminatory

setting, a simple policy of Myerson (i.e., myopic) pricing and periodic introductions enjoys good

performance guarantees.



1 Introduction

Many technologies that fuel subscription-based services develop and improve over time, often driven

by improvements in the underlying components. For example, mobile phones improve with bet-

ter screen, processor, and battery technology; software suites such as Microsoft Office and Adobe

Creative Cloud advance as new features are added to individual applications; subscription services

such as Netflix upgrade their offerings providing higher tiers of service — in the case of Netflix,

higher quality of video, higher allowance of number of devices to stream on, etc.; and cloud service

providers offer upgraded virtual machines with better performance, when the processors, memory,

and expansions cards used in the underlying servers improve.

Service providers face several trade-offs as they seek to make the best use of improved technology.

On one hand, the improved technologies are more valuable to customers and command a higher

price. On the other hand, there is a cost to develop and launch a new version of a product. Further,

the new version of the product competes with existing versions. Thus, the provider faces two

questions. First, when should a new version be introduced? Second, how should it be priced, taking

into account both the versions that currently exist and the ones that will be introduced in the

future?

Existing versions of products and new ones compete in the market in two related ways. First,

new customers may be faced with a choice of versions. Second, existing customers have to decide

whether to stay with the version they are currently using or switch to a new one. We study a model

where the technology in question is rented or otherwise paid for over time (which is the case for

at least some customers of all of the previously mentioned products), so that there is no explicit

monetary cost when switching other than paying the higher rental price for the improved version.

However, this does not mean that switching is frictionless or costless to the customer. Adopting

the new version may prove costly for a variety of reasons, such as redesigning the customer’s

technology to make use of the new version (e.g., updating business processes to use the new feature

of a software suite), downtime during the transition (e.g., needing to transfer the number, settings,

and applications to the new phone, or idle time during the updating to the new version of a software

suite, or needing to shut down a cloud application so it can be relaunched on new hardware), and
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human costs associated with users’ familiarity with a particular version (e.g., retraining on a new

version of a subscription-based service, or simply inertia). Indeed, there is evidence of customers’

aversion to upgrades in the cloud computing services market. Based on a study of Microsoft Azure,

we estimate that customers who arrive after a new virtual machine class is launched are 50% more

likely to use it than existing customers, indicating that these switching costs may be substantial

(see Appendix A for the analysis).1

Another salient feature of subscription-based services is price discrimination. Modern subscrip-

tion services are increasingly personalized to individual subscribers, and as a result discriminatory

pricing is ever-present in the marketplace. Specifically, the subscription-based model allows firms to

keep track of their customers and to reward existing customers with discounts and special offers on

upgrades, as an incentive to upgrade to the improved service. For example, discounts for existing

customers for technology upgrades are commonplace in mobile plan services (Verizon, 2021; Voda-

fone, 2021), home entertainment subscription services (Sky, 2021), and specialized software (PRO

Landscape, 2021; Arturia, 2019) and hardware (Ableton, 2021) suites.

In this context, the service provider has to choose from a wide range of possible policies for

how to price and time the introduction of new technology versions. Our main contribution is to

characterize the optimal discriminatory pricing policy for the service provider and to provide an

efficient algorithm for computing optimal discriminatory prices. We also show that it is generally

optimal to introduce new technologies in periodic intervals after some time2. This policy produces

a marketplace where new customers always select the newest and best offering, while existing

customers may stick with older versions due to switching costs.

In more detail, we propose a model of technology upgrades featuring discriminatory pricing,

in the face of customers who are averse to switching to improved offerings (Section 3). We model

technology introduction as a discrete-time process over an infinite time horizon, with future rewards

discounted. The quality of a new version is assumed to grow linearly with the introduction time.

New customers arrive at each time period and stay for a fixed number of time periods. The provider

seeks to maximize expected discounted profit, with her decisions being when to introduce new
1We provide further justification for modeling switching costs in Section 2.4.
2Periodic introductions have been noticeable in the contexts we are considering. For example, Apple has adopted

a cadence of yearly updates of its phones, with alternating major and minor updates.
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technology classes and how to price them. The provider can price-discriminate among customers and

charge a customer a different price according to how many technology introductions that customer

has switched to. Customers act as simple utility maximizers, and choose the technology offering that

is most valuable to them; if they are existing customers, they incur a switching cost for switching

technologies.

Our first set of results is on developing an efficient algorithm to solve the infinite horizon optimal

discriminatory pricing problem with fixed introduction times (Section 4). We first reduce the

optimal pricing problem to a tractable optimization problem. We then identify key properties

of the optimal solution, which lead naturally to an algorithm for optimal discriminatory pricing.

When introduction intervals are non-increasing these prices are particularly easy to compute and

take the form of discounts offered to existing customers. The proposed algorithm computes optimal

discriminatory prices within a fraction of a second, even for large problem instances.

Our second set of results shows that generally periodic introduction times enjoy optimality

guarantees (Section 5). In particular, we first show that, as long as the introduction intervals are

constrained to be non-increasing, it is optimal to have periodic introductions after an initial “warm-

up” phase. We characterize the optimal period as a function of the details of the setting. We then

allow general introduction intervals and show that periodic introduction intervals after some time

are optimal in a more restricted sense. Finally, we show numerical experiments that suggest that,

when allowing for general introduction intervals, it is optimal to have periodic introduction intervals

after an initial warm-up phase of non-increasing introduction intervals.

For our third set of results, we focus on settings in subscription-based services in which the

firm does not price-discriminate among customers (Section 6). We show both analytically and

numerically that in the non-discriminatory setting, a simple policy of Myerson (i.e., myopic) pricing

and periodic introductions enjoys good performance guarantees.

Finally, we discuss the importance of our modelling assumptions to our results with respect

to the substantive context of subscription-based services, as well as extensions of our assumptions

(Section 7).

In the next section we review the relevant literature on introduction of improved product gen-

erations, motivate some of our modelling assumptions, and summarize our contribution.
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2 Literature Review and Contribution

We first review works that study the optimal decision making of a firm which launches a new

product or technology, or successive generations thereof. Policies for introduction of improved

product generations have been studied, among others, in the operations management, marketing,

and economics literatures. The most commonly examined aspects of the firm’s decision about a

new product launch are timing, level of technology, and pricing, all directly relevant for this current

work. Furthermore, we specifically review works on introduction of new product generations that

focus on price discrimination based on customers’ purchase history. We then discuss some of our

modelling assumptions and state our contribution, in the light of the related literature.

2.1 Introduction of improved product generations

Operations management. We start with the operations management literature. Perhaps the

closest papers to ours are the works by Krankel et al. (2006) and Lobel et al. (2016), which both

consider a firm that introduces successive generations of a product over an infinite time horizon.

Both papers study a trade-off between waiting for further technology improvements, or capturing

the gains of technology improvements sooner, possibly at the cost of slowing sales for the existing

product. Krankel et al. (2006) construct a decision model to solve the firm’s introduction timing

problem, and they prove the optimality of a state-dependent threshold policy governing the firm’s

product introduction decisions. Our setup is different in two important ways. First, Krankel et al.

(2006) look at durable goods and do not allow for upgrades or switches: each purchase uses a unit

from the market potential. Second, they assume a specific pricing strategy (with constant unit

profit margins) and don’t endogenize the pricing decision. Lobel et al. (2016) show that when the

firm makes product launch decisions “on the go”, it is optimal to release products cyclically, i.e.,

whenever the developed technology is better than the one available in the market by a constant

margin. When the firm is able to precommit to a schedule of releases, the optimal policy generally

consists of alternating minor and major technology launch cycles. Our model is different in that

we are studying a subscription-based service, so revenue can be picked up all the time; and buyers

want to maximize their utility at each period, so they are not forward-looking.
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Several other works in operations management have dealt with launch policies for (generations

of) new products. Barriola and de Albéniz (2019) model product renewal with a focus on endo-

genizing the firm’s decision for obsolescence, by allowing the firm to choose the decay rate of the

consumer’s utility for a product. Cohen et al. (1996) show that it is better to delay the intro-

duction of the new generation (and develop a better product) if the existing product has a high

margin, and when the firm is faced with an intermediate level of competition. Paulson Gjerde

et al. (2002) model a firm’s decision regarding the level of innovation to incorporate into successive

product generations and show that the structure of the internal and external environment in which

the firm operates suggests when to innovate to the technology frontier. Klastorin and Tsai (2004)

propose a game-theoretic model with two profit maximizing firms that enter a new market and

decide on the timing, design and pricing of their product introduction; they conclude that it is

not wise for profit-maximizing firms to arbitrarily shorten product life cycle for the sake of com-

petition. Casadesus-Masanell and Yoffie (2007) study competitive interactions between Intel and

Microsoft through a duopoly model between producers of complementary products and demonstrate

that natural conflicts emerge over pricing, the timing of new product releases, and who captures

the greatest value at different phases of product generations. Plambeck and Wang (2009) study

the impact of e-waste regulation on new product introduction in a stylized model of the electronics

industry. Araman and Caldentey (2016) consider a seller who has the ability to first test the market

and gather demand information through crowdvoting, before deciding whether or not and when to

launch a new product.

Marketing. We continue with the relevant marketing literature. The seminal work of Bass (1969)

proposes a growth model for the timing of initial purchase of a single innovative product based on

diffusion from innovators to imitators. A stream of papers build upon the work by Bass (1969) on

product diffusion, by incorporating multiple product generations in their models. Mahajan et al.

(1990) review and evaluate the various new product diffusion models proposed in the first two

decades after the work by Bass (1969). Bayus (1992) investigates the pricing problem for durables

with two successive generations. Norton and Bass (1987) propose a product growth model that en-

compasses both diffusion and substitution between successive generations of a technology. Pae and
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Lehmann (2003) focus on the impact of intergeneration time (i.e., time in between two generations)

on product diffusion, and show that predictions based on intergeneration time achieve improved

accuracy. Stremersch et al. (2010) empirically investigate whether introducing new product gener-

ations accelerates demand growth, and find that passage of time, as opposed to generational shifts,

is what accelerates growth. Wilson and Norton (1989) consider the one-time introduction timing

decision for a new product generation and, under the assumption that the line extension has a

lower profit margin, show that it is best either to introduce the line extension early in the life cycle,

or not to introduce it at all. Mahajan and Muller (1996) extend the work of Wilson and Norton

(1989) to allow for general profit margins and conclude that it will be optimal to either introduce

the improved product early, or wait until the previous generation becomes mature. Gordon (2009)

develops a model of consumer product replacement behavior using data from the PC processor

industry.

Economics. Technology adoption and launch policies have also been studied in the economics

literature. Balcer and Lippman (1984) consider the problem of the adoption of new technology,

which improves over time. They show that the firm will adopt the current best practice if its

technological lag exceeds a certain threshold; moreover, as time passes without new technological

advances, it may become profitable to purchase a technology that has been available even though

it was not profitable to do so in the past. Farzin et al. (1998) investigate the optimal timing of

technology adoption by a competitive firm when technology choice is irreversible and the firm faces

a stochastic innovation process with uncertainties about both the speed of the arrival and the degree

of improvement of new technologies. They explicitly address the option value of delaying adoption,

compare the optimal decision rule to traditional net present value methods, and observe that the

optimal timing decision is greatly affected by technological parameters. Goettler and Gordon (2011)

study the effect of competition on innovation in the personal computer microprocessor industry.

They propose a dynamic model where firms make dynamic pricing and investment decisions while

consumers make dynamic upgrade decisions, anticipating product improvements and price declines.

They find that the rate of innovation in product quality would be higher if Intel were a monopolist,

though higher prices would reduce consumer surplus. Gowrisankaran and Rysman (2012) propose a
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dynamic model of consumer preferences for new durable goods that allows for consumers to upgrade

to new durable goods as features improve. They estimate their model on digital camcorder purchase

data and find that the 1-year elasticity in response to a transitory industrywide price shock is about

25 percent less than the 1-month elasticity.

2.2 Product upgrades and price discrimination

Our work relates closely to the strand of the literature on introduction of new product generations

that studies price discrimination based on customers’ purchase history (Acquisti and Varian, 2005;

Fudenberg and Villas-Boas, 2006; Li and Jain, 2016; Jing, 2017; Cosguner et al., 2017), and in

particular in the form of discounts to existing customers on upgrades (Fudenberg and Tirole, 1998).

This form of price discrimination that uses information about the consumers’ past purchases to

offer different prices (and/or products) to consumers with different purchase histories is oftentimes

referred to as behavior-based price discrimination.

A few papers on this topic deal specifically with software technology upgrades. Mehra et al.

(2012) allow the software vendor to offer discounts on upgrades both to existing customers of a

competitor, and to its own existing customers and, similarly to us, they recognize switching costs

as an important aspect of technology upgrade adoption. Jia et al. (2018) analyze the profitability

of a selling and a leasing model and different price discrimination strategies, including strategies

that differentiate based on consumers’ past purchase behavior. Bala and Carr (2009) analyze the

optimality of upgrade pricing by characterizing the relationship between magnitude of product

improvement and the equilibrium pricing structure, particularly in the context of user upgrade

costs.

The insight that a firm can keep track of its former customers and price-discriminate based on

customers’ previous purchase behavior has been applied in contexts other than software technolo-

gies as well. Penmetsa et al. (2015) study past purchase behavior-based price discrimination in the

general context of subscription markets. Ray et al. (2005) consider trade-in rebates to existing cus-

tomers, as an incentive to replace their product with a new one, in the context of remanufacturable

products.
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2.3 Revenue maximization in service provision

A recent strand of the operations management literature focuses on the revenue maximization

problem of subscription-based service providers. We give three examples of recent work. Borgs

et al. (2014) study a multiperiod pricing problem of a service firm with capacity levels that vary

over time, where customers strategically choose the timing of their purchases, and where the firm

wants to maximize its revenue while guaranteeing service to all paying customers. They provide a

dynamic programming based algorithm that computes the optimal sequence of prices in polynomial

time, and their optimal policies only use a limited number of different price levels. Kilcioglu and

Maglaras (2015) study a problem of market segmentation for a revenue maximizing cloud computing

service provider that offers two classes of service: guaranteed service (on-demand instances) and best

effort (spot instances), in a market with heterogeneous customers with respect to their valuation

and congestion sensitivity. They show that in settings where the user congestion cost rate grows

faster than the valuation rate, it is optimal for the service provider to make the spot service option

stochastically unavailable. Gao et al. (2019) consider a service system with two competing firms: a

fixed-price firm and a bid-based firm. They characterize the structure of the resulting equilibrium

strategy showing that customer equilibrium behavior has a simple threshold structure, and use this

characterization to study the price competition between the two firms.

2.4 Modelling assumptions and related literature

We next discuss some of our modelling assumptions in the light of the related literature.

A crucial aspect of our model is that customers are averse to upgrading to improved versions

of the provided technology. In the introduction, we identified three sources of switching costs:

(a) costs associated to redesigning and reengineering the customer’s business processes, (b) costs

associated to downtime and disruption during the transition, and (c) human costs associated with

customer inertia. While the first two can be readily understood in some contexts, including mobile

phones, software suites, and subscription services, we now provide justification for customer inertia.

Indeed, there is evidence, documented in the marketing and information systems literatures, that a

consumer’s past purchase decisions can create inertia in the context of technology adoption. Huang
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(2019) finds empirically that learning a technology by doing builds up consumer human capital,

whose non-transferability results in switching costs. Zhu et al. (2006) analyze whether switching

costs are significant barriers to entry of a new standard. They determine that experience with older

standards may create switching costs and make it difficult to shift to potentially better standards,

a phenomenon called “excess inertia” in technology change. Oren and Rothkopf (1984) propose a

model for new product planning that accounts for customer inertia, and describe specific details

of the model used in a system developed for market analysis of high speed nonimpact computer

printers. Finally, other than behavioral and cognitive forces, the organizations literature highlights

the role of an organization’s identity in explaining inertia when faced with new technologies (Tripsas,

2009).

Our model assumes myopic customers who make their decisions based on the current service

offerings, as opposed to forward-looking customers who take into account beliefs about future offer-

ings.3 In the canonical formulation of the revenue management problem where a monopolist seller

seeks to maximize revenues from selling a fixed inventory of a product to myopic customers who

arrive over time, maintaining prices fixed at an appropriate level over the selling horizon is asymp-

totically optimal (Gallego and van Ryzin, 1994). Recent works have allowed for forward-looking

customers (i.e, customers that strategize about their time of purchase) and have characterized op-

timal policies that are simple, or admit simple interpretations. Besbes and Lobel (2015) provide

a general formulation that allows for arbitrary correlation in customers’ patience and valuation,

prove that the firm can restrict attention to cyclic pricing policies which have length, at most, twice

the maximum willingness to wait of the customer population, and develop a dynamic programming

approach that efficiently computes optimal policies. Chen and Farias (2018) propose a “robust”

pricing mechanism that guarantees to achieve at least 29% of the expected revenues of an optimal

dynamic mechanism. Their robust pricing mechanism enjoys the simple interpretation of solving

a dynamic pricing problem for myopic customers, with the additional requirement of a price con-

straint that discourages rapid discounting. Chen et al. (2019) demonstrate that for a broad class of

customer utility models, static prices surprisingly continue to remain asymptotically optimal, and
3In Section 7 we discuss another sense in which our customers are myopic, as well as the importance of the myopia

assumption to our results.
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that, irrespective of regime, an optimally set static price guarantees the seller revenues that are

within at least 63.2% of the revenues under an optimal dynamic mechanism. Chen and Hu (2020),

motivated by the sharing economy, study a model with forward-looking buyers and sellers and a

single market-making intermediary, and find a simple heuristic policy to be asymptotically opti-

mal. Under their heuristic policy, forward-looking buyers and sellers behave myopically. Caldentey

et al. (2017) consider the dynamic pricing problem in a robust formulation that is based on the

minimization of the seller’s worst-case regret, without distributional assumptions about customers’

willingness-to-pay or arrival times. They characterize optimal price paths for both myopic and

strategic customer purchasing behavior. Finally, Liu and Cooper (2015) and Lobel (2020) devi-

ate from strategic customers to study dynamic pricing in the face of patient customers: a patient

customer is willing to wait up to a certain number of periods for a lower price and will make a

purchase as soon as the price falls below her valuation. Liu and Cooper (2015) prove that there is

an optimal dynamic pricing policy comprised of repeating cycles of decreasing prices, yet such cycles

may no longer be optimal when customers have variable levels of patience. Lobel (2020) proposes

an efficient dynamic programming algorithm for finding optimal pricing policies for arbitrary joint

distributions of patience levels and valuations.

2.5 Our contribution

We summarize the key points of our contribution in light of the related literature. First, we propose a

model for technology upgrades in the context of subscription-based services. Two important features

of our model are (i) the switching cost for the customers who upgrade to improved offerings; and

(ii) price discrimination based on customers’ upgrade history. We recognize these as key features

of modern subscription services markets. Second, we characterize optimal discriminatory pricing

for the service provider and provide an efficient algorithm for retrieving optimal prices. Third, we

show that policies with periodic introduction times after an initial “warm-up” phase, combined with

optimal pricing, enjoy optimality guarantees. Fourth, in the setting where the service provider does

not price-discriminate, we show that a simple policy of Myerson (i.e., myopic) pricing and periodic

introductions enjoys good performance guarantees.
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3 A Model of Technology Upgrades with Price Discrimination

Time is discrete with an infinite horizon. At each time period t, a single service provider can

introduce up to one new technology class. We generally assume that technology classes, once

introduced, remain available for customers to choose thereafter.4 We assume an unlimited capacity

of units for all introduced technology classes.5

At each period, a unit mass of new customers arrives. Customers stay in the system for d ≥ 2

periods before departing. Each customer has a type θ ≥ 0 that is drawn i.i.d. from a distribution

with differentiable density f and c.d.f. F . We assume that the quality of the offered services grows

linearly with time, so that a customer of type θ enjoys benefit θ · t when using a unit of a technology

class that was introduced in period t. A customer who has switched m times to an upgraded

technology class as an existing customer incurs cost xj,m per time period for using technology class

j. Any customer incurs a switching cost c > 0 whenever they switch to a different technology class.

The decisions of the provider are when to introduce new technology classes and how to price

them. The provider incurs provisioning cost C > 0 for introducing a new technology class. We

assume that the provider can price-discriminate among customers, and charge a customer a different

price according to how many technology introductions that customer has switched to. Thus, for the

jth technology class that is introduced, the provider charges price xj,0 for newly arriving customers;

price xj,1 for customers who have already used one previous technology class before j and for whom

technology class j is the first introduction they switch to as existing customers; et cetera; and price

xj,d−1 for customers who have already used d−1 previous technology classes before j and for whom

technology j will be the (d−1)th introduction they switch to as existing customers. We refer to the

number of times a customer has switched to a better technology class as the customer’s upgrade

experience. We take n to be the maximum possible customer upgrade experience, and we have

n ≤ d− 1. We denote a policy for the provider by

π =
(
(s0 = 0, x0 = 0), (s1, x1,0), (s2, x2,0, x2,1), . . . , (sj , xj,0, . . . , xj,min(j−1,n)), . . .

)
, (1)

4In Section 7, we discuss how this and other model assumptions affect our results.
5This is consistent with the belief that, for some services, providers are not capacity constrained in this stage, but

rather going through a phase of infrastructure investment aiming to increase their market share (e.g., Kilcioglu and
Maglaras, 2015).
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which specifies a (possibly infinite) sequence of tuples of introduction time and prices, where we use

si to denote the time of the ith introduction. For notational convenience, we sometimes summarize

the introduction times using vector s; we summarize the corresponding pricing decisions with xs;

and we denote the resulting policy as π (s,xs).

We next define the customers’ decision problem, starting with our assumptions. We assume

that customers make decisions myopically, in two senses: we restrict to customers who (i) base

their decisions on the current service offerings, rather than on the basis of beliefs about future

service offerings; and (ii) make their decision only maximizing their utility in the current period,

rather than over their remaining lifetime.6 We also impose restrictions on possible upgrades for

the customers. First, we prohibit any “jump” upgrades, i.e., any upgrades from technology class

j − k to j for k > 1. That is, if a customer does not choose a technology upgrade, then she cannot

switch to any of the subsequent upgrades until the end of her customer lifetime. This restriction is

necessary to preclude non-monotone allocation rules, which limits the number of cases which need

to be considered and allows us to use connections between monotonicity and incentive compatibility

to derive results on the optimal pricing. Furthermore, we assume that customers can only upgrade

when they were previously already using the latest technology; as we discuss in Section 7 this rules

out policies which use unreasonable price discrimination.

Assumption 1. The only possible upgrades for customers are to the current technology from the

previous technology.

As an example to motivate this assumption, consider software suites where a user can license a

particular version and then use that version forever, or choose the subscription option which allows

the user to upgrade as new versions come out.

We assume that each customer at each time period can use a single unit from an available

technology class of her choice, or she can opt out. A newly arriving customer of type θ at time t

simply chooses her preferred quality, q1 ∈ {0, 1, ...}, among the introduced technology classes, so

her choice at time t is

q1(π, t, θ) = arg max
i s.t. si≤t

θ · si − xi,0. (2)

6We discuss the myopia assumption and its importance to our results in more detail in Section 7.
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Note that q1 = 0 encodes the customer opting out. We assume that customers who don’t get service

in the current period are not available as customers in future periods.

An existing customer in her `-th period, with 2 ≤ ` ≤ d, will either stay with her previous

choice, or pay the switching cost to adopt a new technology(if there is one), so her choice at time t

is given as follows:

q`(π, t, θ) =



0, if t ≤ s1,

q`−1(π, t− 1, θ) + 1, if t > s1 and sq`−1(π,t−1,θ)+1 = t and

θ · sq`−1(π,t−1,θ) − xq`−1(π,t−1,θ),m`−1(π,t−1,θ)

≤ θ · sq`−1(π,t−1,θ)+1 − xq`−1(π,t−1,θ)+1,m`−1(π,t−1,θ)+1 − c,

q`−1(π, t− 1, θ), otherwise.

(3)

where for t ≥ s1 and 1 ≤ ` ≤ min(t− s1 + 1, d),

m`(π, t, θ) :=


0, if ` = 1

m`−1(π, t− 1, θ) + 1, if q`(π, t, θ) > q`−1(π, t− 1, θ)

m`−1(π, t− 1, θ), if q`(π, t, θ) = q`−1(π, t− 1, θ)

(4)

tracks the customer’s upgrade experience: this is the number of upgrades that a customer of type

θ, who is in her `-th period at time t, has switched to as an existing customer under policy π.

In particular, we define q`(π, t, θ) = 0 for t ≤ s1 and ` = 2, . . . , d. We note that there is

an inherent asymmetry between the first d − 1 periods, counting from the first introduction at

time t = s1, and subsequent periods. In period t = s1, only new customers can choose the new

technology and necessarily q2(π, s1, θ) = . . . = qd(π, s1, θ) = 0. In general, in period t = s1 + t′ with

0 ≤ t′ ≤ d − 2, we have qt′+2(π, t, θ) = . . . = qd(π, t, θ) = 0. We assume without loss of generality

that in case of ties in these definitions, the customer chooses the latest technology class. Specifically,

we assume that a new customer who is indifferent between opting out and buying will buy.

We next define the expected revenue and utility of a policy π. The expected revenue of policy

π at time t is

Revenue(π, t) =
∫

(xq1(π,t,θ),m1(π,t,θ) + xq2(π,t,θ),m2(π,t,θ) + . . .+ xqd(π,t,θ),md(π,t,θ))f(θ)dθ.
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The provider discounts future utility at a rate of δ ∈ (0, 1) per period, so the total revenue of a

policy π is

Revenue(π) =
∞∑
t=1

δtRevenue(π, t).

The cost of policy π at time t is

Cost(π, t) = C · 1t∈π,

where we write t ∈ π as shorthand for t being an introduction time in policy π, i.e., for the existence

of some introduction (sj , xj,0, . . . , xj,n) ∈ π such that sj = t, with j ≥ 1. The total cost of policy

π =
(
(s0 = 0, x0 = 0), (s1, x1,0), (s2, x2,0, x2,1), . . . , (sj , xj,0, . . . , xj,min(j−1,n)), . . .

)

is

Cost(π) =
∞∑
t=1

δtCost(π, t) = C
∑
j≥1

δsj . (5)

We define the utility of a policy π at time t to be the net gain

U(π, t) = Revenue(π, t)− Cost(π, t),

with total utility

U(π) = Revenue(π)− Cost(π) =
∞∑
t=1

δtU(π, t). (6)

We finally present the provider’s optimization problem. The infinite horizon introduction time

and discriminatory pricing problem is to find a policy that maximizes expected utility, i.e., to find

π∗ such that

π∗ ∈ arg max
π

U(π). (7)

We are also interested in a variation of the optimization problem where the introduction times are

considered fixed, and we optimize the revenue over the prices. The infinite horizon discriminatory

pricing problem with fixed introduction times s is to find prices that maximize the expected revenue
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given the introduction times s, i.e., to find x∗s such that

x∗s ∈ arg max
xs

Revenue(π (s,xs)). (8)

4 Optimal Pricing Policy

In this section we characterize the optimal pricing scheme for the infinite horizon discriminatory

pricing problem with fixed introduction times. That is, we consider a fixed set of introduction

times, and characterize the optimal discriminatory pricing to maximize the expected revenue. We

first reduce the optimal pricing problem to a tractable optimization problem (Section 4.2). We then

identify key properties of the optimal solution, which lead naturally to an algorithm for optimal

discriminatory pricing (Section 4.3). We finally provide numerical evidence for the efficiency of our

pricing algorithm (Section 4.4).

4.1 Preliminaries

We start with some definitions and an assumption. We first define p∗ as

p∗ := arg max
θ≥0

(1− F (θ)) · θ.

We refer to Myerson pricing as the pricing that sets the price at introduction time sj to xj = sjp
∗,

with j = 1, 2, . . .. This is the price that maximizes the one-period expected revenue, assuming the

newly introduced technology class is the only product being offered.

We state a “niceness” assumption on F , in particular Myerson’s regularity condition of monotone

hazard rate, which our analysis throughout the paper requires.

Assumption 2. The support of the density f is the interval [0, ζ ] (or [0, ζ) if ζ = ∞) and the

function 1−F (p)
f(p) is monotonically decreasing on this support.

Assumption 2 is common in the literature and satisfied by a number of common distributions,

including uniform, normal, exponential, beta (with shape parameters a ≥ 1, b ≥ 1), and gamma

(with shape parameter k ≥ 1).
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We denote the virtual valuation function by

v(θ) := θ − 1− F (θ)
f(θ)

and define its inverse (extended to include values too large or small to be in the image of v) as7

v−1(γ) := min (inf{θ | v(θ) ≥ γ}, ζ) . (9)

4.2 The optimization problem

We first argue that the infinite horizon discriminatory pricing problem with fixed introduction times

can be decomposed into smaller problems that are decoupled.

We fix j ≥ 1. We focus on the problem of optimizing revenue from customers who arrive in

periods sj , . . . , sj+1 − 1, which we denote with Revenue[sj ,sj+1):

Revenue[sj ,sj+1) :=
sj+1+d−2∑
t=sj

δt
∫  min(t−sj+1,d)∑

`=max(1,t−sj+1+2)
xq`(π,t,θ),m`(π,t,θ)

 f(θ)dθ. (10)

These customers all face the same set of available technology classes as new customers and, if

still in the system, face the same prices when considering whether to upgrade. By Assumption 1,

customers can only upgrade if they first adopt the latest technology, and the only relevant prices

are those specified in the following observation.

Observation 1. Revenue[sj ,sj+1) is a function of prices x1,0, x2,0, . . . , xj,0, xj+1,1, xj+2,2, . . . , xj+n,n,

and no other prices.

We show that with optimal prices newly arriving customers will always choose the latest tech-

nology (or nothing), which means that prices of older technology classes targeted to new customers,

xi,0 for i < j, are not relevant. Apart from this initial decision, the only future options that will be

offered to these customers under our discriminatory policy are those with prices of the form xj+i,i.

Therefore, maximizing Revenue(π) given fixed introduction times s1, s2, . . . reduces to maximizing

Revenue[sj ,sj+1) separately for each j.
7We write inf ∅ = +∞.
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We next focus on the problem of maximizing Revenue[sj ,sj+1) for a fixed j. We reduce the search

for optimal prices to an optimization problem over thresholds θji for the customer type at which

customers switch to more advanced technologies.

Lemma 1. For fixed j ≥ 1, consider the optimization problem

max
x1,0,x2,0,...,xj,0,xj+1,1,xj+2,2,...,xj+n,n

Revenue[sj ,sj+1) (x1,0, x2,0, . . . , xj,0, xj+1,1, xj+2,2, . . . , xj+n,n) (11)

and the optimization problem

max
θjj ,θ

j
j+1,...,θ

j
j+n

Ajj

(
1− F (θjj)

)
sjθ

j
j +

n∑
i=1

Ajj+i

(
1− F (θjj+i)

) (
(sj+i − sj+i−1)θjj+i − c

)
(12)

s.t. p∗ = θjj ≤ θ
j
j+1 ≤ . . . ≤ θ

j
j+n.

There exist constants Ajj , A
j
j+1, . . . , A

j
j+n such that the two optimization problems have equal optimal

objective values. The optimal prices for problem (11) and the optimal thresholds for problem (12)

are related as follows:

x∗i,0 = sip
∗, 1 ≤ i ≤ j

x∗j+i,i = x∗j+i−1,i−1 + (sj+i − sj+i−1)θj∗j+i − c, 1 ≤ i ≤ n
(13)

All proofs are deferred to the Appendix.

Intuitively, the formulation of problem (12) optimizes over the choice of the minimum value for

the customer type θji that upgrades at the ith introduction. This relies on Assumption 1 to avoid

having these cutoffs depend on the pattern of previous upgrades. In turn, the assumption imposes

the monotonicity constraint to ensure that only prior upgraders accept future upgrades. The prices

then follow to ensure that customers whose type is exactly the chosen cutoff are indifferent about

whether to upgrade. In particular, θjj = p∗ because p∗ is defined to optimize (1− F (θ)) θ. New

customers then prefer buying technology class j to buying nothing if sj(θ−p∗) ≥ 0, or θ ≥ p∗. New

customers prefer technology j ≥ 2 to j − 1 if sj(θ − p∗) ≥ sj−1(θ − p∗), or θ ≥ p∗. Thus all new

customers choose the latest technology class, or opt out.

Having reduced optimizing prices to solving optimization problem (12), we now examine its
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solution. We first address the unconstrained version of the problem and show that it is straightfor-

ward to solve. This turns out to solve the full problem in an important special case. Building on

the insights from the unconstrained version, we then address the solution of the full problem.

4.2.1 Solving the unconstrained problem

The objective of (12) is nicely separable: there is a separate summand for each θji , for j + 1 ≤ i ≤

j+n. To optimize
(
1− F (θji )

) (
(si − si−1)θji − c

)
we take the derivative with respect to θji yielding

(
−f(θji )

) (
(si − si−1)θji − c

)
+
(
1− F (θji )

)
(si − si−1)

= (si − si−1)
(
1− F (θji )− f(θji )θ

j
i

)
+ f(θji )c.

The derivative is non-negative if and only if

θji −
1− F (θji )
f(θji )

≤ c

si − si−1
. (14)

The left hand side is monotone increasing by Assumption 2, meaning that the summand is quasi-

concave and maximized by

θj,FOCi := v−1
(

c

si − si−1

)
. (15)

An important implication is that for n ≥ 2, the optimal solution to problem (12), which we

denote θj∗j , θj∗j+1, . . ., θj∗j+n, satisfies
(
θj∗j+1, . . . , θ

j∗
j+n

)
=
(
θj,FOCj+1 , . . . , θj,FOCj+n

)
if and only if8 intro-

duction intervals are non-increasing, i.e.,

si − si−1 ≥ si+1 − si, j + 1 ≤ i ≤ j + n− 1. (16)

We return to this class of introduction times, which notably includes policies that introduce with a

fixed period, in Section 5, where we argue that good polices are largely of this form.

This class of policies suffices to guarantee that optimal prices take the form of a discount. By

the definition of p∗, v(θji ) = 0 for θji = p∗, and v is increasing at a rate of at least 1 by Assumption 2.
8For n = 1, the summation in the second summand of (12) has only one term, and θj∗j+1 = θj,FOCj+1 is satisfied

without requiring non-increasing intervals. The case n = 0 is trivial. In the sequel, the main case of interest is n ≥ 2.
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Thus we have p∗ ≤ θj,FOCi ≤ p∗ + c/(si − si−1) for j + 1 ≤ i ≤ j + n. Combining this with (13)

yields the following observation, which confirms that the pricing for upgraders is in fact a discount.

Observation 2. If introduction intervals are non-increasing then the optimal prices satisfy

x∗j+i,i ≤ x∗j+i,0, 1 ≤ i ≤ n.

This observation is not true for general introduction times, meaning that in some cases optimal

prices for upgrading customers are higher than prices charged to new customers. Working an

example requires our upcoming analysis of the constrained optimization problem, so we defer it to

Appendix C.

4.2.2 Pricing when introduction intervals are not non-increasing

In the general case there may be some index i, with j + 1 ≤ i ≤ j + n, for which θj∗i 6= θj,FOCi :

that is, the unconstrained optimum θj,FOCi is not chosen at the optimal solution. Then, because

each of the summands in the objective of problem (12) is quasiconcave, at least one of the following

two monotonicity constraints must be binding at the optimal solution: θji−1 ≤ θ
j
i , θ

j
i ≤ θ

j
i+1. In the

sequel, if at the optimal solution we have that θj∗i = θj∗i+1 for some i, then we say that thresholds

θji , θ
j
i+1 are “lumped”.

If we know which thresholds are lumped, problem (12) can be solved in the same manner as in

the unconstrained case. Assume that at the optimal solution, the following thresholds are lumped:

θji′ , θ
j
i′+1, . . . , θ

j
i′′ , with j + 1 ≤ i′ < i′′ ≤ j + n. That is, we have θj∗i′ = θj∗i′+1 = . . . = θj∗i′′ , while the

remaining θj∗i ’s, with j + 1 ≤ i ≤ j + n, are not equal to θj∗i′ = . . . = θj∗i′′ . Then the optimal θj∗i′′

maximizes the joint term

(
1− F (θji′′)

) i′′∑
i=i′

Aji

(
(si − si−1) θji′′ − c

)
, (17)

19



and therefore satisfies the first-order condition9

θj∗i′′ = v−1
(

c
∑i′′
i=i′ A

j
i∑i′′

i=i′ A
j
i (si − si−1)

)
. (18)

The challenge for optimization is that there are exponentially many ways in which the thresholds

θji can be lumped. Therefore, we next present an algorithm that efficiently identifies how to optimally

lump the thresholds θji .

4.3 An algorithm for optimal discriminatory pricing

In developing our algorithm we first identify two key properties of the optimal lumping and then

specify an algorithm which naturally follows.

4.3.1 Properties of the optimal lumping

Throughout the discussion, we fix introduction index j and focus on optimizing Revenue[sj ,sj+1).

Recall that the θji are monotone. Thus, we formally represent a lumping as a subset of the following

set of equality constraints: {θji = θji+1 | j + 1 ≤ i < j + n}. That is, a lumping is fully defined by

which of these n − 1 constraints are required to be satisfied. Given a lumping Lj and an index i

with j + 1 ≤ i ≤ j + n, we define

Lj(i) := {` ∈ {j + 1, . . . , j + n} : Lj ` θj` = θji } (19)

(where ` denotes logical entailment) to be the set of all indices whose corresponding thresholds are

lumped together with θji in lumping Lj . In the sequel, we suppress the superscript j from notation

Lj for simplicity. We use θj,FOCL(i) to denote the solution to the first-order condition

θj,FOCL(i) := v−1

 c
∑
`∈L(i)A

j
`∑

`∈L(i)A
j
` (s` − s`−1)

 , (20)

which is a translation of (18) to our lumping formalism.
9Comparing the condition in (18) against the simple first-order condition in (15), we note that (18) collapses to (15)

when no θji ’s are lumped together.
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Our first key property essentially states that when lumping terms together, the maximizer of

the new joint term lies somewhere “in the middle” of the maximizers of the terms that make up the

lumping. This is a direct consequence of a quasiconcavity property implied by Assumption 2 and

applies even if some of these terms have already been lumped together, which is why the statement

of the lemma includes two lumpings rather than one.

Lemma 2. Let lumpings L,L′ satisfy L ⊆ L′. Then

min
ι∈L′(i)

θj,FOCL(ι) ≤ θj,FOCL′(i) ≤ max
ι∈L′(i)

θj,FOCL(ι) , ∀j + 1 ≤ i ≤ j + n.

This leads to our second key property, which establishes a condition under which two terms must

be lumped together. Intuitively, if we find the largest θji which is out of order then by Lemma 2

there is no way to fix this without adding it to the lumping. In the statement of the lemma, we

denote an optimal lumping for optimization problem (12) by L∗.

Lemma 3. Assume that a lumping L satisfies L ⊆ L∗. Let k∗ := arg maxk∈S θ
j,FOC
L(j+k) where S =

{k : ∃k′ s.t. 1 ≤ k < k′ ≤ n ∧ θj,FOCL(j+k) > θj,FOCL(j+k′)}, with k∗ := −∞ if S = ∅. Then if k∗ > −∞, it

holds that at the optimal solution θj∗j+k∗ = θj∗j+k∗+1.

We now interpret Lemma 3. Start with a lumping L that has a subset of the constraints in

L∗: that is, all the θji ’s that are lumped together in L, are also lumped together in the optimal

solution. Identify θjj+k∗ : the θji with the largest θj,FOCL(i) which is out of the desired order θjL(j+1) ≤

. . . ≤ θjL(j+n). The lemma says that such θjj+k∗ , if it exists, is lumped with θjj+k∗+1 at the optimal

solution.

4.3.2 The algorithm

Lemma 3 motivates naturally the following algorithm for identifying an optimal lumping: (i) start

with a lumping that is a subset of the optimal lumping; (ii) identify the largest first-order condition

solution that is out of the desired order, θjj+k∗ ; (iii) update the lumping by adding the constraint

θjj+k∗ = θjj+k∗+1; (iv) repeat, starting from the updated lumping.

Having fixed an introduction index j, the OptimalLumping algorithm (Algorithm 1) executes

this idea in order to produce an optimal lumping of the upgrade thresholds θji ’s for optimizing
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Revenue[sj ,sj+1), i.e., the revenue from customers who arrive in periods sj , . . . , sj+1 − 1. Rather

than repeatedly doing calculations of the form θji = v−1(γji ), the algorithm operates directly on

the right-hand side terms γji ’s of first-order conditions of the form θji −
1−F(θji )
f(θji )

= γji , and not on

thresholds θji ’s. Because v−1(γ) is non-decreasing in γ by Assumption 2, the two are equivalent.10

As its output, the algorithm produces a set of n terms (indexed γjj+1, . . . , γ
j
j+n), which are then

fed into the DiscriminatoryPricing algorithm (Algorithm 2) as the right-hand side terms for

first-order conditions of the form θji −
1−F(θji )
f(θji )

= γji . In particular, the DiscriminatoryPricing

algorithm calls the OptimalLumping routine and solves the first-order condition equations to

produce the optimal upgrade thresholds θj∗i ’s, which it then converts to optimal prices using (13).

Algorithm 1 OptimalLumping Algorithm
Input: Introduction times (s1, s2, . . . , ), current introduction j, maximum customer upgrade ex-
perience n, switching cost c, objective coefficients Aji

L ← ∅
for i = j + 1, . . . , j + n do
γji ← c

si−si−1
end for
S ← {k : ∃k′ s.t. 1 ≤ k < k′ ≤ n ∧ γjj+k > γjj+k′}

k∗ ←
{
−∞, if S = ∅
arg maxk∈S γ

j
j+k, otherwise

while k∗ > 0 do
L ← L

⋃
{θjj+k∗ = θjj+k∗+1}

for ι ∈ L(j + k∗) do

γjι ←
c
∑

`∈L(j+k∗) A
j
`∑

`∈L(j+k∗) A
j
`
(s`−s`−1)

end for
S ← {k : ∃k′ s.t. 1 ≤ k < k′ ≤ n ∧ γjj+k > γjj+k′}

k∗ ←
{
−∞, if S = ∅
arg maxk∈S γ

j
j+k, otherwise

end while
return γjj+1, . . . , γ

j
j+n

10Interestingly, this means that the optimal lumping is independent of the virtual valuation function v (and thus
the customer type distribution F ).
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Algorithm 2 DiscriminatoryPricing Algorithm
Input: Introduction times (s1, s2, . . . , ), maximum customer upgrade experience n, customer type
distribution f , switching cost c, discount factor δ, customer lifetime d

for j = 1, . . . , do
Calculate Aji , i = j + 1, . . . , j + n according to (38)
γjj+1, . . . , γ

j
j+n ← OptimalLumping

(
(s1, s2, . . . , ), j, n, c, Aji

)
xj,0 ← sjp

∗

for i = 1, . . . , n do
θjj+i ← v−1

(
γjj+i

)
Set price xj+i,i ← xj+i−1,i−1 + (sj+i − sj+i−1) θjj+i − c

end for
end for
return Prices (xj,0, xj+1,1, . . . , xj+n,n)j=1,...

When an iteration of the OptimalLumping algorithm lumps together some thresholds θji , then

these θji ’s are truly lumped together in the optimal solution, by Lemma 3. This, in turn, implies that

the DiscriminatoryPricing algorithm correctly produces optimal prices for the infinite horizon

discriminatory pricing problem with fixed introduction times.

Theorem 1. The DiscriminatoryPricing algorithm produces optimal prices for the infinite hori-

zon discriminatory pricing problem with fixed introduction times given by (8).

4.4 Efficient computation of optimal prices

We note that the OptimalLumping Algorithm (Algorithm 1) has time complexity that grows as

O(n2), where n is the maximum customer upgrade experience. In turn, the DiscriminatoryPric-

ing algorithm (Algorithm 2) has linear time complexity in the number of introductions (indexed by

j). We provide an implementation of these algorithms in order to compute optimal prices for given

introduction times. The proposed implementation is practical, as it can compute optimal prices

within a fraction of a second even for large problem instances.

We provide some numerical results to show that the proposed implementation computes optimal

prices efficiently. We fix the discount rate δ and the switching cost c, and vary the customer lifetime,

the end of the horizon, as well as the given introduction times. We run 1000 simulations for each

distinct setting. In each simulation we randomly generate introduction intervals, with introductions
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Figure 1: Box plots for the running time required to compute optimal prices for the entire horizon,
over 1000 simulations, against the length of the horizon and customer lifetime d, for switching cost
c = 0.5, for discount rate δ = 0.9, for the uniform distribution on [0, 1]. For the left subfigure, d is
set to 10; for the right subfigure, the horizon is set to 200 periods. The experiments were run using
R version 4.3 on a 2.5 GHz Intel Core i7 processor.

up to 20 periods apart, up to the end of the horizon. For each simulation we keep track of the running

time for computing the optimal prices for all technology classes within the horizon, i.e., the running

time of the DiscriminatoryPricing algorithm when truncated at the end of horizon. Figure 1

summarizes running times using box plots that capture the outcomes of each set of 1000 simulations.

Our optimal pricing algorithm can compute an optimal set of introduction and upgrade prices for

the entire horizon in a fraction of a second, even for large horizons and for large values of the

customer lifetime d.

5 Optimal Introduction Times

Having characterized optimal discriminatory pricing given fixed introduction times, in this section

we focus on optimal introduction times. Overall, we show that policies with periodic introduction

times after an initial “warm-up” phase, combined with optimal pricing, enjoy optimality guarantees.

First, we show the optimality of periodic introduction intervals after an initial warm-up phase, when

the technology introductions are constrained to have non-increasing intervals. We characterize the
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optimal period as a function of the details of the setting (customer type distribution, switching cost,

provisioning cost, discount factor). Secondly, when we allow general introduction intervals, we show

that periodic introduction intervals after some time are optimal in a more restricted sense. Finally,

we detail numerical experiments that suggest that, when allowing for general introduction intervals,

it is optimal to have non-increasing introduction intervals during a warm-up phase, and periodic

introduction intervals after that phase, with a possible reduction of the length of the intervals

between the warm-up and the continuation.

5.1 Optimality of periodic introductions under non-increasing introduction in-

tervals

In this subsection we assume that introduction intervals are non-increasing and show that, after the

initial warm-up phase, periodic introductions are optimal. The initial warm-up phase corresponds

to the early stages of the process, when the mass of customers in the system is still building up

(because we are less than d− 1 periods after the first introduction, and therefore less than a mass d

of customers have arrived since and including the first introduction time). We show that once this

phase has ended, periodic introductions from then on are optimal.

Specifically, we assume

Assumption 3. Introduction intervals are non-increasing; that is, si−si−1 ≥ si+1−si for all i ≥ 2.

We also assume that all prices are calculated optimally given the introduction times, hence any

policy is fully characterized by the introduction times.11

We now state our theorem on optimal introduction times.

Theorem 2. Assume that technology introductions are restricted to have non-increasing intervals

(Assumption 3). Then there is an optimal policy with the following property: all introductions

made at or after time t = s1 + d − 1 are periodic, with each introduction a constant interval from

its previous introduction.

We highlight the main intuition underlying this result. To do so, we first introduce some notation.

Given a policy π with introduction times (si) and a fixed j ≥ 1, define πsj = ((s0 = 0, x0 =
11An optimal policy in this restricted policy space exists, i.e., there is some π∗ that introduces at times (s∗1, s∗2, . . .)

such that U(π∗) = supπ U(π), where U(π∗) is finite.
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0), (s1,x∗1), . . . , (sj ,x∗j )) to be the finite (truncated) policy that has introduction times (s1, ..., sj),

where sj is its last introduction, and where the prices x∗i =
(
x∗i,0, . . . , x

∗
i,min(i−1,n)

)
, i = 1, . . . , j, are

optimal prices given the introduction times. Assuming non-increasing introduction intervals, we

express the excess utility of policy πsj+1 (which makes one more introduction, at some time sj+1)

over policy πsj as

U(πsj+1)− U(πsj ) = δsj+1 (g(sj+1 − sj)− C) , (21)

for some function g that captures the difference in the revenue. Function g depends on introduction

times only through the difference sj+1 − sj , and also depends on the details of the problem setting

(customer type distribution F , customer lifetime d, switching cost c, discount factor δ.) The utility

of a policy π can be thought of in terms of the excess utility of the policy over the utility U(πsj ):

U(π) = U(πsj ) +
∞∑

k=j+1
δsk (g(sk − sk−1)− C)

︸ ︷︷ ︸
excess utility

. (22)

We show that this excess utility is maximized for periodic introduction intervals.

We note that when customers switch to upgraded technologies as existing customers at most

once, i.e., n = 1, then a stronger version of Theorem 2 holds: periodic introductions after time

s1 + d− 1 are optimal, without restricting to non-increasing introductions.

5.1.1 Characterizing the optimal period

We now characterize the optimal period. The proof of Theorem 2 shows that the excess revenue

of policy πsj+1 over policy πsj , shown in (21), can be written in terms of the function

g(z) := 1− δd
(1− δ)2 (1− F (p∗)) zp∗ + δd + d(1− δ)− 1

(1− δ)2 (1− F (θ∗(z))) (zθ∗(z)− c) , z ∈ N+. (23)

where θ∗(z) denotes the solution to the first-order condition

θ∗(z) := v−1
(
c

z

)
. (24)
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We also define

h(z) := g(z)− C, z ∈ N+. (25)

The following corollary of Theorem 2 characterizes the optimal periodicity after the initial warm-up

phase.

Corollary 1. Assume that technology introductions are restricted to have non-increasing intervals

(Assumption 3). Then there is an optimal policy with the following property: all introductions made

at or after time t = s1 + d− 1 are at a time which is an interval of

T ∗ ∈ arg max
z∈N+

δz

1− δz h(z) (26)

after their previous introduction.

We make some observations related to the characterization of T ∗. First, h(z) is naturally

extended from the positive integers to the positive reals. We note that δz

1−δz h(z) is bounded and

therefore has a finite maximum, because function h(z) is bounded above by a linear function of z for

fixed δ, d, c, C and distribution F .12 Lastly, at a critical point z∗ where the derivative of δz

1−δz h(z)

equals zero, we have that

log δ · h(z∗) + (1− δz∗)h′(z∗) = 0. (27)

More details on the derivatives of δz

1−δz h(z) are given in Appendix I.

The example of the uniform distribution on [0, 1]. To illustrate the behavior of the opti-

mal periodicity as a function of the problem parameters, we provide further details for the spe-

cific case when F is the uniform distribution on [0, 1]. Then13 we have p∗ = 1/2 and θ∗(z) =
12We also remark that if the set arg maxz∈N+

δz

1−δz h(z) has more than one element, then choosing any of the elements
in the set as the period would be optimal. However, setting the introduction intervals to alternate between different
elements of the set does not guarantee optimality (in particular, cycling through the elements of the set would break
the assumption of non-increasing intervals).

13We provide more details for the U [0, 1] case in Appendix I. For convenience, we repeat here the expression

hU [0,1](z) = gU [0,1](z)− C

=

{
1−δd

(1−δ)2 · z4 + δd+d(1−δ)−1
(1−δ)2 · (z−c)2

4z − C if z > c
1−δd

(1−δ)2 · z4 − C if z ≤ c.
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min
(

1
2
(
c
z + 1

)
, 1
)
. Notice that for z ≤ c, θ∗(z) = 1, meaning customers never upgrade: they just

stick with the latest technology they were offered at their arrival time.

In general, δz

1−δz hU [0,1](z) can be multi-modal. For z ≤ c, δz

1−δz hU [0,1](z) is either decreasing or

has a local maximum at z∗ < c satisfying (27). Similarly for z > c, δz

1−δz hU [0,1](z) can be decreasing

or have a local maximum at z∗ > c satisfying (27). As a consequence, we find that three possible

scenarios can play out, depending on the parameter values for d, c, C, δ. We describe these scenarios

qualitatively below, and provide specific examples in Appendix I and Figure 4 therein.

1. T ∗ = 1, where introductions are made as frequently as possible. This happens, for example,

when c, C are both small. In general, for small provisioning cost C there is an incentive to

introduce frequently. If c is also small enough, then it is optimal to put T ∗ = 1 (i.e., introduce

at every period), where almost all customers would always upgrade.

Furthermore, if C is sufficiently small and c large, then it can still be optimal to introduce as

frequently as possible (T ∗ = 1), but now T ∗ < c, hence no customer ever upgrades.

2. 1 < T ∗ ≤ c. No customer upgrades, but now introductions are delayed to offset introduction

costs. This happens, for example, when C is small but larger than 1, c is large (larger than

C), and δ is neither too large nor too small. The local maximum for z ≤ c (T ∗ < c) exceeds

that for z > c.

3. T ∗ > max(c, 1). Some customers upgrade, and introductions are delayed to offset introduction

costs. In this case the local maximum for z > c dominates that for z ≤ c, and hence some

customers upgrade.

T ∗ > c ≥ 1 can happen, for instance, when C ≥ c ≥ 1: the provisioning cost to the provider

is greater than or equal to the switching cost to the customer.

Interestingly, even for quite small provisioning cost C, the optimal period T ∗ can be greater

than 1, i.e., it may be best not to introduce as frequently as possible, and we have T ∗ > 1 ≥ c.

We note that we can have a situation where different values of the period, T ∗1 < c < T ∗2 yield

near identical values of the function δz

1−δz h(z), where the corresponding real-valued local maxima
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z∗1 , z
∗
2 yield near identical values (Figure 5 in Appendix I).

We see similar behavior when the customer type has a beta distribution (with shape parameters

larger than 1). When the distribution F has infinite support, such as for the exponential or gamma

distributions, then some customers will always upgrade.

5.2 Optimality of periodic introductions under general introduction intervals

If we allow general introduction intervals (e.g., increasing intervals), we can demonstrate that peri-

odic intervals after some time are optimal in a more restricted sense. Recall that, given a policy π

with introduction times (si), πsj refers to a policy that has introduction times (s1, ..., sj) (and none

after that) and optimal prices given these introductions.

Theorem 3. Fix j ≥ 2 and an arbitrary sequence of introduction times s1, ..., sj with sj ≥ s1+d−1.

Fix time t̃ such that t̃ ≥ sj + d − 1 and t̃ = sj + mT ∗ for some m. Consider the policy π̂ with

introduction times

(ŝ1 = s1, ..., ŝj−1 = sj−1, ŝj = sj , ŝj+1 = sj + T ∗,

ŝj+2 = sj + 2T ∗, . . . , ŝj+m = t̃ = sj +mT ∗, ŝj+m+1 = sj + (m+ 1)T ∗, . . .
)

and optimal pricing. Then

U(π̂)− U(π̂t̃) ≥ U(π′)− U(π′t̃) (28)

for any policy π′ with introduction times (s′1 = s1, . . . , s
′
j−1 = sj−1, s

′
j = sj , s

′
j+1, . . . , s

′
k−1, s

′
k =

t̃, s′k+1, . . . ) for some k > j, and optimal pricing. Furthermore, the policy π̂ satisfies

π̂ ∈ arg max
π

∞∑
t=t̃

δtU(π, t),

where the supremum is over all policies π which have the first j introduction times fixed at (s1, . . . , sj)

and a later introduction at time t̃.

The interpretation of Theorem 3 is that, having fixed the first j introduction times and also an
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introduction at time t̃ at least d− 1 periods after the jth introduction time, a policy with periodic

introductions starting from the jth introduction time optimizes the total discounted utility from

time t̃ onwards. In particular, take any policy π′ with the first j introductions (s1, . . . , sj) fixed,

that also makes an introduction at time t̃, where t̃ is at least d − 1 periods after sj . Consider the

policy π̂ that starts with introductions at (s1, . . . , sj) and is periodic starting at time sj with period

T ∗, including having an introduction at time t̃. Compared to π′, policy π̂ has (i) at least as large

additional utility over the truncated policy that stops introducing at introduction time t̃; and (ii)

at least as large utility from time t̃ onward.

Note that this doesn’t imply that π̂ is optimal from time s1 onwards (given initial introductions

(s1, . . . , sj)); it only implies that π̂ is optimal for time t̃ onward. Theorem 3 doesn’t rule out the

existence of a policy π̄ for which U(π̄)−U(π̄sj ) > U(π̂)−U(π̂sj ), as it says nothing about the utility

between times sj and sj + d− 2.

The restriction that the policy π̂ has an introduction at time sj +mT ∗ for some m is essentially

without loss of generality. Fixing some arbitrary t̃ with t̃ ≥ sj + d− 1, for any comparison policy π′

with introductions at times (s′1 = s1, . . . , s
′
j = sj , s

′
j+1, . . . , s

′
k = t̃, . . . ) for some k, we can redefine

π̂ to be any policy that has non-increasing introductions starting from period sj , an introduction

at period t̃, and then periodic introductions from t̃ onward with period T ∗. In particular, we state

the following result, whose proof mirrors the proof of Theorem 3:

Corollary 2. Fix j ≥ 2 and introduction times s1 and sj with sj ≥ s1 + d − 1. Fix time t̃

such that t̃ ≥ sj + d − 1. Fix m ≥ 1 and consider the policy π̂ with introduction times (ŝ1 =

s1, ŝ2, . . . , ŝj−1, ŝj = sj , ŝj+1, . . . , ŝj+m−1, ŝj+m = t̃, sj+m+1 = t̃ + T ∗, sj+m+2 = t̃ + 2T ∗, . . .), where

the intervals of introduction times (ŝj , ŝj+1, . . . , ŝj+m) are non-increasing, and pricing is optimal.

Then

U(π̂)− U(π̂t̃) ≥ U(π′)− U(π′t̃) (29)

for any policy π′ with introduction times (s′1 = s1, s
′
2, . . . , s

′
k−1, s

′
k = t̃, s′k+1, . . . ) which has a first

introduction at s1 and an introduction at s′k = t̃ for some k ≥ 2, and optimal pricing. Furthermore,
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the policy π̂ satisfies

π̂ ∈ arg max
π

∞∑
t=t̃

δtU(π, t),

where the supremum is over all polices that have an introduction at s1 and a later introduction at

time t̃.

The interpretation of Corollary 2 is that, having fixed the first introduction time and a time at

least 2d−2 periods after the first introduction, a policy with periodic introductions from that latter

time on optimizes the total discounted utility from that time onward. In particular, take any policy

π′ with its first introduction s1 fixed and also an introduction at time t̃, where t̃ is at least 2d − 2

periods after starting time s1. Now consider the policy π̂ which starts at time s1, has non-increasing

introductions for at least d − 1 periods before t̃, and then is periodic starting at t̃ with period T ∗.

Compared to π′, policy π̂ has (i) at least as large additional utility over the truncated policy that

stops introducing at introduction time t̃, and (ii) at least as large utility from time t̃ onward.

Note that this doesn’t imply that the policy π̂ is optimal from time s1 onwards, only that it is

optimal for time t̃ onwards. Neither does it imply that given an arbitrary set of fixed introductions

up to time t̃, that it is then optimal to have periodic introductions from time t̃ on. Instead, the

result is about the optimality, from time t̃ onwards, of a policy that has non-increasing introductions

for at least d− 1 periods before time t̃, and then periodic introductions starting at t̃.

5.3 Numerical experiments

We have shown that periodic introductions after a warm-up phase are optimal under non-increasing

introduction intervals. We have also shown a more restricted optimality guarantee for periodic

introduction intervals when allowing for general introduction intervals. In this subsection, we present

numerical experiments in order to answer two questions: (i) Is there an introduction policy that

can outperform periodic introductions? (ii) How should the provider best time introductions in the

warm-up phase?
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5.3.1 Experimental setup

We refer to a combination of customer type distribution F , customer lifetime d, provisioning cost

C, switching cost c, and discount rate δ, as an (experimental) problem instance. For each problem

instance, we sample patterns of introduction times according to a set of introduction pattern gener-

ating schemes. These sampling schemes are the following: random introduction intervals (Random);

periodic introductions (Per); non-increasing introduction intervals (NI ); non-decreasing introduc-

tion intervals (ND); non-increasing introduction intervals in the warm-up, periodic introductions

after (NI-Per); non-increasing introductions in the warm-up, non-increasing introductions after

(NI-NI ); non-decreasing introduction intervals in the warm-up, periodic introductions after (ND-

Per); non-decreasing introduction intervals in the warm-up, non-decreasing introduction intervals

after (ND-ND); and introduction intervals from grid search (Grid and Log-Grid). The details of

the pattern generating schemes are provided in Appendix K. We fix the first introduction as s1 = 1

in all the generated introduction patterns.

For a given experimental problem instance, for each introduction pattern generating scheme, we

retain the introduction pattern that achieves the highest utility out of all the generated introduction

patterns from that scheme. We use the NI-Per scheme as the benchmark against which we compare

the utilities achieved by the other schemes. The end of horizon is set at 200, meaning we only

calculate utility accumulated until period 200. We provide results for the uniform distribution on

[0, 1], while the results for the beta distribution (p.d.f. f(x) = Γ(α+β)
Γ(α)Γ(β)x

α−1(1− x)β−1) with shape

parameters α = β = 2, and the gamma distribution (p.d.f. f(x) = 1
Γ(k)θkx

k−1e−
x
θ ) with shape

parameter k = 2 and scale parameter θ = 0.25, are similar.

5.3.2 Results

For a given problem instance and a given introduction pattern generating scheme, we are interested

in the utility ratio
best utility achieved by scheme
best utility achieved by NI-Per . (30)

For a given introduction pattern we calculate the generated utility as follows. We first optimize

the pricing for the given introduction times using the DiscriminatoryPricing algorithm (Algo-
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rithm 2). We then use the optimized prices to calculate the ensuing revenue by (10). We use the

introduction times to calculate the ensuing cost by (5).14 Finally we calculate the utility by (6).

Figure 2 summarizes the results for all the described introduction pattern generating schemes,

over several problem instances, for a customer type distribution that is uniform on [0, 1]. The figure

shows a box plot for the comparison of each introduction pattern generating scheme against the

benchmark NI-Per scheme. Each box plot summarizes the values for the utility ratio in (30) for

the respective scheme, across the considered experimental problem instances.
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Figure 2: Box plots for the ratio between the best utility achieved by each introduction pattern gen-
erating scheme and the best utility achieved by the NI-Per benchmark, across different experimental
problem instances. Each box plot summarizes 60 utility ratio values: as many as the combinations
of three values for customer lifetime d (6,10,14), four values for provisioning cost C (1, 5, 10, 20),
and five values for switching cost c (0.5, 1, 2, 5, 10). The discount rate is fixed at δ = 0.9 and the
customer type distribution F is the uniform distribution on [0, 1].

14For both the revenue and the cost calculation, we truncate time at the end of horizon, which in our experiments
is set at 200.
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Essentially no pattern generating scheme achieves a better utility than the best policy with

periodic introductions after the warm-up phase, for any problem instance.15 Two of the schemes

that don’t impose periodicity have the exact same introduction pattern as the best policy with

periodic introductions after the warm-up, and therefore achieve a utility ratio against NI-Per equal

to one, for some experimental instances (10 out of 60 for Grid, eight out of 60 for Log-Grid). The

NI-Per scheme outperforms these two schemes for all other instances.

Four other introduction pattern generating schemes that don’t impose periodicity have a utility

ratio against the best NI-Per pattern that is only slightly smaller than one:

1− 10−9 ≤ best utility achieved by scheme
best utility achieved by NI-Per < 1,

for some experimental problem instances (seven instances out of 60 for ND-ND; six instances for ND;

and three instances for each of NI and NI-NI ). Nevertheless, for the vast majority of experimental

problem instances, the best NI-Per introduction pattern does better than the best patterns from

these schemes by more than a small margin.16

Having established that it is optimal to have periodic introduction intervals after the warm-up

in the scenarios covered by our experimental setup, we now look closer at the optimal introduction

intervals to use during the warm-up. The concrete question of interest here is the following: out

of the three schemes that impose periodic introductions after the warm-up (NI-Per, Per, and ND-

Per), which one attains the highest utility? Our numerical results show that in general it is optimal

to have non-increasing introduction intervals in the warm-up phase.17 In 43 out of 60 experimental
15For 11 generating scheme-problem instance tuplets, out of 540 total, the utility ratio in (30) is actually slightly

larger than one, exceeding one by a decimal that has its first non-zero at the 10th decimal digit or after. For these
tuplets, the earliest discrepancy compared to the best identified NI-Per introduction pattern occurs late in the horizon
(at period 169 at the earliest, and mostly at or after period 190). For these 11 cases, the utility ratio is greater than
one due to end of horizon effects.

For two other scheme-problem instance tuplets, the utility ratio is around 1.0013. These tuplets are {ND-ND, d =
14, c = 0.5, C = 20} and {ND-ND, d = 14, c = 1, C = 10}. For each of these there is an NI-Per-consistent introduction
pattern that beats the corresponding ND-ND pattern, and that was not identified by our NI-Per scheme in the reported
experiment. Recall that the NI-Per scheme searches the policy space through sampling, and therefore it may miss
the optimal introduction pattern.

16As a side note, we observe that in general the best ND patterns do well, and in particular generally better than
the best NI patterns. A main reason for this observation is that the shape of the marginal revenue for the particular
examples considered here make it such that introducing too late hurts less than introducing too soon; many NI
sampled patterns randomly choose to introduce too soon and get stuck with short intervals forever, which is bad,
while the consequences for similar behavior by ND patterns are less severe.

17In detail, we report the following results for the comparison between the utilities of the best introduction pattern
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problem instances, the best NI-Per introduction pattern is identical to the best periodic (Per)

pattern, and therefore has the same periodicity in the warm-up phase as it does in the continua-

tion. However, in the remaining 17 instances the best NI-Per introduction pattern has at least one

introduction interval that is shorter than its previous interval — i.e., it has at least one instance of

decreasing intervals. For these 17 latter parameter settings, the best NI-Per introduction pattern,

which has at least one instance of decreasing intervals in the warm-up phase and periodic inter-

vals afterwards, attains strictly higher utility than the best periodic introduction pattern, which

introduces at constant intervals throughout. Furthermore, in 36 out of 60 experimental problem

instances, the best NI-Per introduction pattern is identical to the best ND-Per pattern — and in

24 out of these 36 instances, the best NI-Per and ND-Per introduction patterns coincide with the

best fully periodic (Per) pattern. However, in 22 instances the best NI-Per introduction pattern

attains strictly higher utility than the best ND-Per introduction pattern. Lastly, there are two

instances where the best ND-Per introduction pattern achieves slightly higher utility than the best

NI-Per and Per patterns. That this may happen for some parameter settings we attribute to the

discreteness of introduction times in our model.

5.3.3 Discussion

These results shed light on the optimal introduction timing for the general discriminatory pricing

problem, i.e., without assuming structural constraints for the introduction times. They suggest that

no introduction timing policy can outperform a policy that introduces periodically after an initial

warm-up phase. These results also suggest that, in general, it is optimal to have non-increasing

introduction intervals in the warm-up phase. For some parameter settings, having decreasing intro-

duction intervals in the warm-up phase is strictly better than having periodic intervals throughout.

We provide some intuition about the optimal introduction timing suggested by our numerical

of each of the NI-Per, Per, and ND-Per schemes:
• NI-Per = Per = ND-Per for 24 out of 60 experimental problem instances
• NI-Per = Per > ND-Per for 18 instances
• NI-Per = ND-Per > Per for 12 instances
• NI-Per > Per, ND-Per for four instances.

In the remaining two experimental problem instances, the best ND-Per introduction pattern actually dominates
the best NI-Per pattern. These instances are {d = 10, c = 1, C = 1}, for which ND-Per > NI-Per > Per ; and
{d = 14, c = 2, C = 1}, for which ND-Per > NI-Per = Per.
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results, starting by explaining why it is optimal to have periodic introductions after a warm-up

phase. When comparing a policy πsj , which makes j technology introductions and none after that,

to a policy πsj+1 , which makes one additional introduction at sj+1, we can show (Lemma 5 in

Appendix J) that the excess utility from the additional introduction is upper bounded by

U(πsj+1)− U(πsj ) ≤ δsj+1 (g(sj+1 − sj)− C) , (31)

where g is the revenue difference function we characterized when assuming non-increasing introduc-

tion intervals (Section 5.1). Periodic introductions achieve that upper bound in the case where we

start from a sequence of non-increasing introduction intervals, and are optimal, by Theorem 2.

We next explain why it may be best to have decreasing intervals in the warm-up phase. During

the warm-up phase the mass of customers in the system has not yet reached its steady state level

of d customers, and is still building up. Before the system has “warmed up”, the provider is more

reluctant to introduce than when there is already a mass of d customers in the system, because the

introduction costs are the same, yet the benefits are lower. However, this effect wears off as the

mass of customers in the system accumulates, particularly for low values of the switching cost. As

a result, for some parameter settings it is best to start introducing at intervals that are longer than

the identified optimal period T ∗ from (26) during the warm-up; and to then introduce at periodic

intervals that are T ∗ periods apart. On the other hand, a policy that is constrained to introduce

at constant intervals throughout will have to choose between using period T ∗ throughout, which

is optimal for the continuation, but not great for the warm-up; and using a period that is slightly

higher than T ∗ throughout, ensuring a good start, but performing suboptimally in the continuation.

A well tuned NI-Per introduction pattern can achieve the best of both worlds.

Finally, we argue why it is not easy to show that non-increasing introductions in the warm-up

phase are optimal for some parameter settings, even conditional on optimal introduction intervals

thereafter. In the warm-up phase, i.e., before a mass of d customers has been built in the system, we

can generalize the argument of Section 5.1 and Lemma 5 to show that the utility difference between

a policy that terminates at sj and the related policy which has an additional introduction at sj+1
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is upper bounded by

U(πsj+1)− U(πsj ) ≤ δsj+1 (G(sj − s1, sj+1 − sj)− C) , (32)

for some function G(x, y) ≤ g(y) that captures the exact difference in the revenue under the as-

sumption of non-increasing introduction intervals (even when there are less than d customers in

the system). For sj − s1 ≥ d − 1, G(sj − s1, sj+1 − sj) = g(sj+1 − sj). However, proving that

it is optimal for (s1, . . . , sj) to have non-increasing intervals is not easy, even when condition-

ing on optimal periodic introductions subsequent to sj . G(x, y) is now a bivariate function, and

we are seeking the arguments that maximize a sum of terms, similar to (22), each of which has

form δsi+1(G(si − s1, si+1 − si) − C). Even when the customer type distribution F is uniform,

the analysis is not straightforward, as can be seen in the complexities that the simpler function

δsi+1(g(si+1 − si)− C) exhibits and that were illustrated in Section 5.1.18

6 The Non-Discriminatory Pricing Setting

We have proposed an algorithm for identifying optimal discriminatory prices given fixed introduction

times; and have shown that, under some conditions, periodic introductions after an initial warm-up

phase are optimal for the infinite horizon introduction time and discriminatory pricing problem. In

this section we provide results for the setting where the firm does not price-discriminate based on

customer experience. In the non-discriminatory setting, we show that, under some conditions, a

simple policy of myopic pricing and periodic introductions enjoys good performance guarantees.

In a setting with non-discriminatory pricing, the price of every technology class is the same for

all customers, regardless of how many technology classes a customer has switched to. Using our

notation for the discriminatory pricing setting in Section 3, this imposes the following constraints:

xj,0 = xj,1 = . . . = xj,min(j−1,n), ∀j = 1, . . . (33)
18As an aside, in the special case where c and all optimal introduction intervals z = sj−sj−1 are such that c/z ≥ ζ,

then for any customer type distribution F no customer upgrades, i.e., F (θ∗(z)) = 1, implying G(x, y) = g(y) and that
g is linear. It is then optimal to make all introduction intervals periodic with the same period T ∗, including those in
the warm-up phase.
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In the non-discriminatory setting, we denote the price of technology class j simply by xj .

Adding the constraints (33) when solving the infinite horizon discriminatory pricing problem

with fixed introduction times (8) makes the optimization problem difficult. Being able to decouple

the problems of optimizing Revenue[sj ,sj+1), i.e., the revenue from customers who arrive in periods

sj , sj+1, . . . , sj+1−1, across different introductions j = 1, . . ., is what leads to a tractable optimiza-

tion problem for the discriminatory setting (Section 4). However, the constraints (33) couple these

problems together. For this reason, in the non-discriminatory setting we focus on characterizing

the optimal single-period revenue.

For the results in this section we assume that consecutive introductions are at least d−1 periods

apart. Because each customer stays in the system for d periods, this implies that each customer

can experience at most one introduction as an existing customer.19

Assumption 4. For every i ≥ 2, we have that si − si−1 ≥ d− 1.

In the remainder of the section, we first show that under a linear pricing rule, which subsumes

Myerson pricing, there is no loss of optimality with a periodic schedule of introductions (Section 6.1).

We then characterize optimal pricing for a single period (Section 6.2). Third, we give a formal

statement for the performance guarantees of Myerson pricing (Section 6.3), and provide two different

bounds on the approximation ratio in terms of the type distribution (Section 6.4). Although the

focus in this section is on the non-discriminatory pricing setting, our results also speak to the power

of simple prices in at least a subset of the discriminatory pricing setting (where the provider can

price-discriminate between customers who were present as existing customers for the most recent

introduction and customers who arrived after it), beyond what our results in Section 4 show. Finally,

we show numerically that our analytical bounds for Myerson pricing provide strong guarantees, and

that in reality Myerson pricing is often some orders of magnitude closer to optimal than our bounds

suggest (Appendix Q).
19The results in this section can in principle be extended to allowing customers to experience multiple introductions

as existing customers during their customer lifetime. Such analysis relies on characterizing optimal pricing for a
single period for the setting where the provider can price-discriminate between customers depending on how many
introductions they have experienced as existing customers. This analysis would be similar to the analysis for optimal
discriminatory pricing in Section 4, but focused on a single period rather than the entire slice Revenue[sj ,sj+1).
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6.1 Results on linear pricing

We provide a summary of our results on linear pricing here, and include all statements and details

in Appendix L.

We first analyze a simple, natural pricing policy: charge a price which is linear in the quality

of the technology class. We show this has several nice properties. First, with linear pricing all

newly arriving customers will select the latest quality. Second, when restricting to linear pricing,

it is optimal to have periodic introductions after the first introduction. A particularly interesting

special case is one where the linear prices are chosen to be optimal for each technology class as if

it were the only item offered for sale, as per Myerson’s approach. Third, we show that if a periodic

schedule is used, then Myerson pricing is optimal in the limit, in the sense that Myerson pricing

gets arbitrarily close to the optimal policy after sufficient introductions.

6.2 Optimal pricing for a single period

We provide a summary of our results on optimal pricing for a single period here, and include all

statements and details in Appendix N.

The objective of the service provider in our model is to maximize infinite-horizon revenue and

utility. In this subsection we provide optimal pricing results for the single-period problem. These

results are useful for the infinite-horizon problem, because we bound the infinite-horizon revenue of

a policy, and the infinite-horizon competitive ratio between policies, using the single-period revenue.

We consider the set of all non-discriminatory policies with a particular pattern of introductions.

Definition 1. For a set of introduction times s = (s0, s1, s2, . . .), we denote by Π(s) the set of all

policies with these introduction times. That is, we define

Π(s) := {π′ =
(
(s′0, x′0), (s′1, x′1), (s′2, x′2), . . .

)
| s′i = si ∀i}.

We use the following trivial upper bound, for which the revenue in each time period is optimized

separately.
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Observation 3. Let introduction times s be given. Then, for all δ > 0 we have

max
π∈Π(s)

∑
t

δtRevenue(π, t) ≤
∑
t

δt max
π∈Π(s)

Revenue(π, t).

The proposed upper bound calculates the revenue in the case where the provider is allowed to

pick new prices, at each time t, for introductions that have happened already. Clearly the optimal

revenue at time t in this case is an upper bound of the real revenue at time t under the optimal

pricing policy.

For maximizing revenue at a particular time, our first observation is that to maximize revenue

from customers who have not seen an introduction as existing customers (i.e., revenue from cus-

tomers who entered the system at the time of or after the most recent introduction), the optimal

policy simply uses Myerson prices (Lemma 6).

This leaves the question of how to set prices to maximize revenue at a particular time from

customers who have experienced an introduction as existing customers during their lifetime. These

are the customers who entered the system before the most recent introduction. We show that it is

optimal to set all but the most recent introduction prices to the Myerson price; furthermore, we can

put a lower and an upper bound on the optimal price for the most recent introduction (Lemma 7).

We have identified two classes of customers that are in the system at a particular time: cus-

tomers who have arrived since the most recent introduction, and customers who arrived before

the most recent introduction. We have argued that the policies for maximizing revenue from each

of these two classes of customers agree that Myerson pricing should be used for all but the most

recent introduction, but disagree on what the price of the most recent introduction should be. In

particular, both policies will be of the following restricted form: charge Myerson prices for pre-

vious introductions, and a price from within a restricted range for the current introduction. We

show (Theorem 4) that the optimal policy for maximizing combined revenue over both classes of

customers at a particular time will also be of the same form, intuitively with a compromise over

what the price of the current introduction should be. This follows from a quasiconcavity property

implied by Assumption 2.
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6.3 Performance guarantees of Myerson pricing

We provide a summary of our results on performance guarantees of Myerson pricing here, and

include all statements and details in Appendix O.

Having proved our result on optimal one-period pricing, we can now combine it with our results

on linear pricing (Section 6.1) to give a precise sense in which Myerson pricing with periodic in-

troductions enjoys good performance guarantees for the non-discriminatory setting. In particular,

optimizing U is a bicriterion problem: we want to simultaneously maximize revenue while mini-

mizing cost. While we do not achieve a bounded approximation ratio to U , we can simultaneously

approximate these two objective functions. Such bounds are common in bicriteria settings, where

an algorithm is an (α, β) approximation if its result is simultaneously an α approximation to the

first objective20 and a β approximation to the second (Ravi et al., 2001; Iyer and Bilmes, 2013).

We make the approximation ratio precise (Corollary 3), and we interpret that result next. Profit

has two parts—revenue and cost. For revenue, our result shows that, given a set of introduction

times, pricing à la Myerson guarantees a revenue close to the optimal revenue. We characterize

analytically how close the revenue of Myerson pricing is to the optimal revenue in the next subsec-

tion. In Appendix Q, we show that in simulations the approximation is substantially tighter than

guaranteed by our analytical bounds. For cost, note that once we have fixed introduction times the

cost is also fixed, thus clearly the Myerson policy achieves that same cost.

As is common in bicriteria settings, such bicriteria approximations do not provide a bounded

approximation ratio to the combined objective U . However, since one of the approximation ratios

is 1, we achieve the quite strong guarantee that, for whatever introduction strategy the provider

chooses, she can capture most of the revenue by using Myerson pricing, while keeping the cost

fixed. Furthermore, we can guarantee that she can always do weakly better than that by keeping

Myerson pricing and switching to the optimal choice of periodic introductions (which in particular

guarantees that U will be non-negative).
20When maximizing (minimizing), we say an algorithm is an α approximation to an objective, with α ≥ 1 (α ≤ 1),

if the best objective value attainable, divided by the value of the objective function that the algorithm obtains, is at
most (at least) α.
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6.4 Bounding the competitive ratio of Myerson pricing

We now use the above characterization of the approximation ratio to provide our performance

guarantee for Myerson pricing. We provide a summary of the results here, and include all statements

and details in Appendix P.

Corollary 3 implies that we can bound our approximation ratio by bounding the competitive

ratio of Myerson pricing for the one-period revenue. We provide two such bounds in terms of the

customer type distribution F and the introduction times sequence (si) (Proposition 3, Corollary 4).

Our first bound is directly in terms of F but worsens with increasing customer lifetime d, while

our second bound requires the derivative of F and an additional optimization to make the bound

concrete, but improves with increasing d. Our bounds show that Myerson pricing is approximately

optimal when switching costs for the customers who upgrade are small or large. Intuitively, with

small switching costs all customers act essentially like new ones, while with large ones few customers

will switch so only the new ones are relevant when considering pricing.

Putting together the characterization of the approximation ratio (Corollary 3) with the bounds

for the competitive ratio yields the main performance guarantee for Myerson pricing (Theorem 5).

7 Discussion

As technology improves over time, service providers have the ability to offer more powerful products

and services, which are more valuable to customers. At the same time, introduction of a new

technology class comes at a cost for development and launching, and at the expense of the sales of

existing classes. We have presented a model of improved technology introductions for subscription

services markets that addresses this trade-off, considering a service provider who price-discriminates

based on customers’ upgrade experience, in the face of customers who are averse to upgrading to

improved offerings. The decision problem for the provider is when to introduce a new technology

class and how to price it in order to maximize total profit, taking into account (discounted) future

rewards. We have reduced the optimal pricing problem to a tractable optimization problem and

developed an efficient algorithm for solving it. We have also shown that periodic introduction times

after an initial “warm-up” phase enjoy optimality guarantees.
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We conclude by discussing our various modelling assumptions, and their importance to our

results, with respect to the substantive context of subscription-based services.

7.1 Discussion of modelling assumptions

We restrict to myopic customers, where myopia is meant in two senses: first, customers base their

decisions on the current service offerings, rather than on the basis of beliefs about future service

offerings; and secondly, customers make their decision only maximizing their utility in the current

period, rather than over their remaining lifetime.

We first comment on the first sense of myopia: we restrict to customers who make their decisions

based on the currently offered technologies, as opposed to forward-looking customers who take

into account future introductions. This avoids introducing a separate Bayesian belief framework

for customers. In general, a forward-looking customer may choose not to upgrade when a new

technology class is introduced, but upgrade on the next introduction. Our Assumption 1 doesn’t

allow such upgrading. In our model we also do not allow for patient customers, that is customers

who do not purchase, yet are willing to wait (and stay in the system) and buy later. Therefore,

precluding patient customers, the only thing that changes with forward-looking customers in our

setting is that it is possible that they will buy a unit of a new technology class with negative utility

in their first period, if an introduction in a subsequent period generates sufficient positive utility.

This is a small effect and also not well aligned with common intuition about what customers actually

do in practice.

We now comment on the second sense in which our customers are myopic: we assume customers

maximize their utility in the current period, as opposed to maximizing their utility over the an-

ticipated usage time. Relatedly, we model a customer’s switching cost as being assessed against a

single-period revenue gain, and not amortized over a customer’s anticipated remaining lifetime. For

example, this reflects a setting where the upgrade generates a capital cost or labor cost incurred

only at the time when the upgrade occurs, and offset against the single-period revenue gain, con-

sistent with a single-period accrual basis of accounting. If customers make decisions maximizing

their utility over their remaining lifetime, then their decisions would change. Such behavior can be

incorporated into our model, but at a complexity cost: the state space necessarily depends upon
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the remaining lifetime of a customer. While the same general principle of optimizing over each slice

separately when pricing applies, the optimization problem is more complex. One heuristic approach

would be to apply our algorithm from Section 4 using an adjusted c reflecting an “average” amor-

tized switching cost. It is unclear whether results on the optimality of periodic introductions carry

over, since the dependence of the state space on the remaining customer lifetime makes the revenue

difference function g multidimensional rather than univariate.

The details of the switching cost model play an important role in the analysis. In our model,

the switching cost c is a constant, regardless of the technology levels that a customer upgrades

from and to. In an alternative specification, the switching cost can be modeled as being related to

the technology difference, e.g., as c · (sj − sj−1) for a transition where a customer upgrades from

technology class j − 1 to technology class j. This switching cost specification would simplify the

analysis significantly: upgrades happen at a single θ threshold for the customer type, and difficulties

with increasing introduction intervals disappear, leading to a quite simpler pricing algorithm. Note

that this specification implies that an upgrade from technology A to technology B, followed by

an upgrade from technology B to technology C, would generate total switching costs equal to a

single upgrade from technology A to technology C (when ignoring discounting). This modeling is

thus quite different from our main specification. Out of the three sources of switching costs that

we identified in the introduction, costs related to redesigning the customer’s business processes

may be well modelled with this alternative specification; whereas downtime costs and customer

inertia costs may be better modelled with our main switching cost specification. If the described

alternative specification is considered as an extreme point in the space of switching cost models,

one can also consider switching cost models that lie in between our main specification and the

alternative specification described here.

We assumed that customers can only upgrade if they were already using the latest technology

(Assumption 1). This partially captures, for example, the model of various subscription software

suites, including for productivity (e.g., Office), music creation and editing (e.g., Pro Tools), technical

computing (e.g., Mathematica), etc.21 For tractability, some restriction on possible upgrades seems
21However, our framework does not capture some of the details of software suite offerings. For example, oftentimes

the web versions of a software suite update immediately and the customer has no control. On the installed versions,
oftentimes the user can avoid upgrading, at least for a while, but when she does upgrade, in most cases she will be
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necessary as otherwise the number of upgrade patterns to be considered is exponential. A weaker

assumption would be to permit customers to upgrade one technology level at a time, even if they

are not currently using the latest technology. This opens the possibility, for example, of customers

buying some technology other than the latest and then upgrading over time. Much of our analysis

in Section 4 carries over, but it is no longer the case that it is always optimal to set prices so that

new customers buy the latest technology. The reason is that this opens another avenue for price

discrimination where a high initial price for the latest technology causes some customers with lower

values to choose an older technology. But now that the market is segmented between high- and

low-valued customers, the pricing of future upgrade discounts can exploit this. As such pricing

schemes rely heavily on our assumption of myopia and seem unrealistic in practice, we prefer our

stronger assumption on possible upgrades.

We lastly discuss some of our other modelling assumptions. Our assumption that technology

classes remain available once introduced is not crucial, given that our results show that with optimal

prices, all new customers choose the latest class anyways. We also make the assumption that

customers can choose up to one unit of a technology class in any given period, meaning we do not

allow using multiple units in a period. This modeling assumption fails to capture cases, such as

in cloud computing, where some degree of distribution or parallelization is needed. For example,

in the context of cloud computing, consider a customer who minimizes purchasing cost subject to

achieving a level of computational power, which is known to her in advance. Such a customer may

naturally consider the option of purchasing more units of an older and weaker virtual machine class,

rather than one unit of the newest and stronger virtual machine class. Although our model fails

to capture such cases, which is a limitation, our assumption is natural in many other contexts of

interest, including subscription software suites, subscription services, mobile phones, and others.

Finally, our results extend to the case where the number of customers arriving at each period is

stochastic rather than a unit mass, as long as the expected arrival rate is constant through time and

the policy is decided a priori rather than adaptively based on the state of the system. Time-varying

expected arrival rates will affect the relative weights between current and future customers and the

forced to the latest version, and won’t be able to install the old version any more on a new machine. Upgrading to
the latest version after having avoided some upgrades is a “jump” upgrade and violates our assumption on possible
upgrades. Furthermore, in this case the price the user pays does not depend on the user’s upgrade history.
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periodicity, but they will not affect the general shape of our results on optimal pricing (Section 4) .
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A Analysis of Virtual Machine Series Launches

Every virtual machine (VM) used on Microsoft Azure is part of a series (such as “Av2” or “NC”)

which describes the features (such as relative amount of memory or availability of a graphics card)

that are associated with it. Within each series, there are typically multiple different sizes of VM.

We analyze the launch of new series by Azure, ignoring size distinctions since all sizes are launched

simultaneously. Recall that our model assumes that customers are averse to switching away from a

series of VM they are already using when a new series launches. Here we provide evidence for this

modelling assumption based on a dataset consisting of a snapshot of all active VMs on Azure at a

particular point in time.

We note that while our dataset shows the set of currently running VMs, we lack the larger

context in which a given VM is being used. For example, a customer may be using multiple VMs

to run a service, and this service may automatically launch and terminate VMs over time. Or a

customer may have built a piece of software that launches a VM when run and terminates it when

the task is complete. So even a VM that was recently created may be a part of some long-standing

system. The switching cost in our model captures the cost of changing this underlying system, so

what we would really like to analyze is the date this system was created. Of course, that date is

not available.
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Each VM running on Azure is associated with an account known as a subscription. As a proxy

for the creation date of the system, we use the creation month of the subscription. This is an

imperfect proxy for a number of reasons: a subscription could be repurposed or used for multiple

systems created at different times; a new subscription might be created for an existing system

for administrative reasons; a single system can span multiple subscriptions. Nevertheless, it is

reasonable to assume that creation time of the system and creation time of the subscription are

correlated. We show that subscriptions created before a VM series launches have less of a tendency

to use VMs of that series at the time of the snapshot compared to subscriptions that are created

after the VM series launches. We interpret this as evidence of customers’ aversion to upgrading,

and justification for the switching cost in our model.

From our snapshot of all active VMs on Azure we computed the number of VMs for each (series,

subscription creation month) pair. There is substantial variation in the number of subscriptions

created each month as well as grown over time. Therefore, for each subscription creation month,

and each series, we calculate the following fraction:

number of VMs of the series from subscriptions created that month that are used at time of snapshot
total number of VMs from subscriptions created that month that are used at time of snapshot .

For the twenty series for which we had adequate data and could identify the month in which they

were launched, we calculated these fractions for each of seven months: from three months before the

launch, to three months after it. For each of these twenty series, we then summed these fractions

across the seven months to get to total relative usage over this seven month period, and plotted

what fraction of this total is associated with each of the seven months in Figure 3.

While there is considerable variation among the series, the yellow bar, representing the launch

month, is typically shifted to the left of 0.5, indicating that subscriptions created after the launch

are typically more likely to use the series at the time of the snapshot than subscriptions created

before the launch. On average, relative usage among subscriptions from the three months after

the launch is 50% higher than from the three months before the launch, suggesting a substantial

switching cost effect.
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Figure 3: Relative usage of twenty different VM series on Azure by subscriptions created the specified
number of months relative to their launch month.

B Proof of Lemma 1

We begin by considering optimal pricing under a simpler version of the problem, where newly

arriving customers are constrained to either buy the jth technology or nothing (so in particular

they cannot buy technology class 1 through j − 1). We subsequently show that this behavior is

consistent with optimal pricing.

Under this assumption, a newly arriving customer will buy technology j if

θsj − xj,0 ≥ 0
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and customers will upgrade to technology j + i+ 1 when it becomes available if

θsj+i+1 − xj+i+1,i+1 − c ≥ θsj+i − xj+i,i.

Given prices xj,0, xj+1,1 . . . , xj+n,n, we can compute the minimum types that choose to buy and

upgrade as, respectively,

θjj = xj,0
sj

(34)

and

θjj+i+1 = max
(
xj+i+1,i+1 − xj+i,i + c

sj+i+1 − sj+i
, θjj+i

)
. (35)

The max in (35) follows from Assumption 1 as a given type can only upgrade if it also adopted the

most recent prior technology. In particular, this means that the θjj+i are monotone non-decreasing

in i.

At optimal prices, we must have

θj∗j+i+1 =
x∗j+i+1,i+1 − x∗j+i,i + c

sj+i+1 − sj+i
, 0 ≤ i ≤ n− 1, (36)

which we refer to as the prices being “non-wasteful”. Suppose for contradiction that

x∗j+i+1,i+1 − x∗j+i,i + c

sj+i+1 − sj+i
< θj∗j+i.

Consider the effects of increasing xj+i+1,i+1 so that equality holds while holding all other prices

fixed. This has no effect on which types will upgrade, and increases revenue. The other effect of

this price increase is that it may lower the threshold at which customers adopt technology j+ i+ 2,

which again increases revenue, because xj+i+2,i+2 as well as all subsequent prices (if this leads to

further adoptions) were fixed. Thus making prices non-wasteful can only increase revenue and so

optimal prices are non-wasteful. Solving (34) and (36) for prices yields (13).

We can write the revenue

Revenue[sj ,sj+1) :=
sj+1+d−2∑
t=sj

δt
∫  min(t−sj+1,d)∑

`=max(1,t−sj+1+2)
xq`(π,t,θ),m`(π,t,θ)

 f(θ)dθ
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in terms of the θjj+i and prices as

sj+1−1∑
t′=sj

t′+d−1∑
t=t′

δtxj,0(1− F (θjj)) +
n∑
i=1

sj+1−1∑
t′=sj

t′+d−1∑
t=sj+i

δt(xj+i,i − xj+i−1,i−1)(1− F (θjj+i)).

We explain the last expression. The summation over t′ is to sum over the times when the customers

from this slice arrive: that could be in periods sj , sj + 1, . . . , sj+1 − 1. The summation over t is to

sum over the times when the revenue is being accumulated, starting at sj+i (t′ for the first part

of the expression) and going through the last period during which that customer is in the system:

t′ + d − 1. The term with the price difference between the current and the previous technology

comes from telescoping: as we sum over i, we end up with the price for the current technology.

Substituting the thresholds for the prices yields

sj+1−1∑
t′=sj

t′+d−1∑
t=t′

δtsjθ
j
j(1− F (θjj)) +

n∑
i=1

sj+1−1∑
t′=sj

t′+d−1∑
t=sj+i

δt((sj+i − sj+i−i)θjj+i − c)(1− F (θjj+i)).

Finally, letting

Ajj =
sj+1−1∑
t′=sj

t′+d−1∑
t=t′

δt (37)

and

Ajj+i =
sj+1−1∑
t′=sj

t′+d−1∑
t=sj+i

δt, i = 1, . . . , n (38)

yields the desired form

Ajjsjθ
j
j(1− F (θjj)) +

n∑
i=1

Ajj+i((sj+i − sj+i−i)θ
j
j+i − c)(1− F (θjj+i)).

The optimal choice of θjj maximizes Ajjsjθ
j
j(1− F (θjj)), making the optimal choice θj∗j = p∗.

Next, we deal with the possibility of newly arrived customers buying some older technology

than j, paying a lower price and never upgrading. We have seen that, neglecting this possibility,

the optimal prices to set for new customers are x∗i,0 = sip
∗ for all i. With these prices, the customer

only prefers technology class i over j if θsj − sjp∗ < θsi − sip∗, or sj < si. Thus newly arrived

customers always buy the newest technology (or nothing), even if they are allowed to buy older
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technologies, as long as xi,0 = sip
∗ for all i. This shows that under these prices, new customers

behave as described in our analysis even if they have the option of choosing an old technology.

Finally, it remains to be shown that it is not profitable to set prices differently so that some new

customers do buy older technologies. However, as the initial decision is a single-parameter setting,

Myerson (1981) shows that the optimal solution is to sell the latest technology to all customers with

a non-negative virtual valuation, which is exactly what the prices we derived do.

C Example where Optimal Prices Are Higher for Existing Cus-

tomers

The following example shows how increasing introduction intervals can lead to optimal prices that

charge existing customers higher prices than new customers.

Example 1. Suppose d is large and sj+2 = sj+1 + d − 2. By taking d large and sj+2 − sj >>

sj+1−sj we can make the constants from (12), provided in (38), satisfy Ajj+1 >> Ajj+2. Concretely,

fixing sj+1 = sj + 1, we have by (38) that Ajj+1 = ∑sj+2
t=sj+1 δ

t and Ajj+2 = δsj+2 . In particular,

Ajj+2 ≤ A
j
j+1δ

(sj+2−sj+1). Essentially, the price xj+1,1 matters for an arbitrarily long period of time

while xj+2,2 matters for a single period.

As sj+2 − sj+1 > sj+1 − sj , θjj+1 and θjj+2 are lumped at the optimal solution and satisfy

θj∗{j+1,j+2} = v−1

 c(Ajj+1 +Ajj+2)
(sj+1 − sj)Ajj+1 + (sj+2 − sj+1)Ajj+2

 ≈ v−1
(

c

sj+1 − sj

)
= θj,FOCj+1 ,

as Ajj+2 is exponentially smaller than Ajj+1.

Taking customer types to be uniformly distributed on [0, 1] (so that v(θ) = 2θ−1) and applying
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the equations for prices (13) gives

xj,0 = sjp
∗

xj+1,1 ≈ xj,0 + (sj+1 − sj)v−1
(

c

sj+1 − sj

)
− c

xj+2,2 ≈ xj+1,1 + (sj+2 − sj+1)v−1
(

c

sj+1 − sj

)
− c

= sjp
∗ + (sj+2 − sj)

(
p∗ + c/2

sj+1 − sj

)
− 2c

= sj+2p
∗ +

(
sj+2 − sj
sj+1 − sj

)
c/2− 2c

Since we took sj+2 − sj >> sj+1 − sj , we have xj+2,2 > sj+2p
∗ meaning the price to existing

customers who upgrade is higher than that charged to new customers.

D Proof of Lemma 2

Proof. For lumping L, each of the joint terms

(
1− F (θji )

) ∑
`∈L(i)

Aj`

(
(s` − s`−1) θji − c

)
, j + 1 ≤ i ≤ j + n (39)

of the objective function of optimization problem (12) is quasiconcave in its argument θji . To see

this, note that Assumption 2 is equivalent to the log-concavity of 1−F (θ) as a function of θ, because

in general log-concavity of a function g is equivalent to g′/g being monotonically decreasing (Bagnoli

and Bergstrom, 1989, Remark 1). Note also that the term ∑
`∈L(i)A

j
`

(
(s` − s`−1) θji − c

)
is log-

concave in θji , because it can be written as a · θji + b, where a, b are constants, and a linear function

of θji is log-concave in θji . Then (39) is log-concave as the product of log-concave functions. Because

log-concavity implies quasiconcavity, it follows that (39) is quasiconcave as a function of θji .
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Fix i, with j + 1 ≤ i ≤ j + n. θj,FOCL′(i) maximizes the joint term

(
1− F (θji )

) ∑
`∈L′(i)

Aj`

(
(s` − s`−1) θji − c

)
. (40)

Because each of the terms

(
1− F (θjι )

) ∑
`∈L(ι)

Aj`

(
(s` − s`−1) θjι − c

)
, ι ∈ L′(i) (41)

is quasiconcave, and L(ι) ⊆ L′(i) for L ⊆ L′ and ι ∈ L′(i), it follows that any θji with θji <

minι∈L′(i) θj,FOCL(ι) does not maximize (40); and neither does any θji with θji > maxι∈L′(i) θj,FOCL(ι) .

E Proof of Lemma 3

Proof. Per the statement of the lemma, we assume that L ⊆ L∗ and k∗ > −∞. This means

that
(
θj,FOCL(j+1), θ

j,FOC
L(j+2), . . . , θ

j,FOC
L(j+n)

)
is not a feasible solution for optimization problem (12) because

θj,FOCL(j+k∗) > θj,FOCL(j+k∗+1).

Let k′ = min
{
k : θj,FOCL(j+k) > θj,FOCL(j+k∗)

}
. By definition, j + k∗ is the index of the largest out of

order θji , so if
{
k : θj,FOCL(j+k) > θj,FOCL(j+k∗)

}
6= ∅ we have θj,FOCL(j+k′) ≤ . . . ≤ θj,FOCL(j+n). By the definition of

k′, θjj+k′−1 = θjj+k′ 6∈ L. We claim that θjj+k′−1 = θjj+k′ 6∈ L∗ either. Suppose for contradiction

that it is and let L′ = L∗ − {θjj+k′−1 = θjj+k′}. L ⊆ L′, so applying Lemma 2 with i = j + k′ − 1

we can conclude that θj,FOCL′(j+k′−1) ≤ max1≤k≤k′−1 θ
j,FOC
L(j+k) < θj,FOCL(j+k′) ≤ θj,FOCL′(j+k′), where the last

inequality is again by Lemma 2 but with i = j + k′. Because by assumption θjj+k′−1 = θjj+k′ ∈ L∗

while θjj+k′−1 = θjj+k′ 6∈ L′, the constraint θjj+k′−1 ≤ θjj+k′ is violated in L′. Therefore we have

θj,FOCL′(j+k′) < θj,FOCL′(j+k′−1), contradicting the above.

Assume for the purposes of contradiction that θjj+k∗ and θjj+k∗+1 are not lumped together in the
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optimal solution, i.e., that θjj+k∗ = θjj+k∗+1 6∈ L∗. Then we can write

θj∗j+k∗+1 = θj,FOCL∗(j+k∗+1)

≤ max
ι∈L∗(j+k∗+1)

θj,FOCL(ι)

≤ max
k∈[k∗+1,...,k′−1]

θj,FOCL(j+k)

< θj,FOCL(j+k∗), (42)

where the equality is definitional for optimal lumping L∗, the first inequality follows by the right-

hand side bound of Lemma 2 applied for lumpings L ⊆ L∗, the second inequality follows because

θjj+k′−1 = θjj+k′ 6∈ L∗ and by our assumption that θjj+k∗ = θjj+k∗+1 6∈ L∗, and the third inequality

follows because we have assumed θjj+k∗ = θjj+k∗+1 6∈ L∗ and because θj,FOCL(j+k∗) is the largest θji in

lumping L for i < j + k′.

Since by assumption θjj+k∗ and θjj+k∗+1 are not lumped together in the optimal solution, it

must be that θj∗j+k∗ < θj∗j+k∗+1. This means that no upper bound constraint binds on θjj+k∗ in

the optimal solution. Therefore, a small increase for θjj+k∗ would be feasible. If it were the case

that θj,FOCL∗(j+k∗) < θj,FOCL(j+k∗), then such an increase would also lead to higher objective value, because

L ⊆ L∗ and by quasiconcavity. But then θj,FOCL∗(j+k∗) would not be optimal. Therefore, we have

θj,FOCL(j+k∗) ≤ θ
j,FOC
L∗(j+k∗). (43)

Combining (42) with (43) yields θj∗j+k∗+1 < θj∗j+k∗ at the optimal solution, which is infeasible, leading

to a contradiction.

F Proof of Theorem 1

Proof. For a fixed j ≥ 1, the OptimalLumping algorithm produces a set of right-hand side terms

γji ’s. The DiscriminatoryPricing algorithm calls the OptimalLumping algorithm as a subrou-

tine, and sets θji ← v−1(γji ) for j + 1 ≤ i ≤ j + n. Because function v−1(·) is non-decreasing, an

ordering of γji ’s corresponds to the same ordering of the θji ’s, possibly with some more ties. In this
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proof, as in the rest of Section 4, we keep referring to a lumping as a set of equality constraints

on the thresholds θji , although our implementation of the algorithm in Algorithm 1 operates on the

γji ’s.

We first show that for given j ≥ 1, the OptimalLumping algorithm correctly identifies an

optimal lumping for Revenue[sj ,sj+1).

To show correctness of the OptimalLumping algorithm (Algorithm 1), we show the following

claim: At each iteration, the OptimalLumping algorithm results in a lumping that is a subset

of an optimal lumping L∗ for problem (12). We proceed to prove this claim by induction on the

iterations of the algorithm.

First, we show the base case. At the zero-th iteration of the OptimalLumping algorithm, the

algorithm proposes no equality constraints for different thresholds θji ’s. This is the “no lumping”,

which is a lumping that is vacuously a subset of L∗.

We proceed to show the inductive step. Given a lumping L, we denote by OLiter(L) the lumping

that results from one iteration of the OptimalLumping algorithm on lumping L. The inductive

step claims that if for a lumping it holds that L ⊆ L∗, then OLiter(L) ⊆ L∗.

Recall that an iteration of the OptimalLumping algorithm, when applied on lumping L, iden-

tifies the highest θj,FOCL(i) that is out of the desired order, which we denote θj,FOCL(j+k∗). Then the

algorithm adds to the lumping the constraint θjj+k∗ = θjj+k∗+1. By Lemma 3, the resulting lumping

OLiter(L) satisfies OLiter(L) ⊆ L∗.

We have shown that in each iteration, the OptimalLumping algorithm only lumps together

terms that are truly lumped together in the optimal solution. Also, when lumping terms together,

i.e., when imposing more equality constraints, the objective value of problem (12) decreases. Fur-

thermore, the OptimalLumping algorithm terminates with a lumping that corresponds to a feasible

solution to problem (12). It follows that, for fixed j ≥ 1, the OptimalLumping algorithm identi-

fies an optimal lumping, and that the DiscriminatoryPricing algorithm produces optimal prices(
x∗j,0, x

∗
j+1,1, . . . , x

∗
j+n,n

)
for Revenue[sj ,sj+1).

By producing optimal prices for each revenue slice Revenue[sj ,sj+1), j = 1, . . ., the Discrimi-

natoryPricing algorithm produces optimal prices for the infinite horizon discriminatory pricing

problem with fixed introduction times.

61



G Proof of Theorem 2

Proof. Fix j ≥ 1. Let πsj = ((s0 = 0, x0 = 0), (s1,x∗1), . . . , (sj ,x∗j )) be the finite policy that

has introduction times (s1, ..., sj), where sj is the last introduction, and where the prices x∗i =(
x∗i,0, . . . , x

∗
i,min(i−1,n)

)
, i = 1, . . . , j, are optimal prices given these introduction times. We take

j large enough so that sj+1 ≥ s1 + d − 1. Under our assumptions, the prices are derived from

expression (13) and the first order condition (15), hence

x∗i,m =


sip
∗, if m = 0

x∗i−1,m−1 + (si − si−1)θFOCi − c, if 0 < m ≤ n
(44)

where θFOCi is given by

θFOCi = v−1
(

c

si − si−1

)
, (45)

for 1 ≤ i ≤ j. Note that θFOCi doesn’t depend upon m, and we write

θ∗i = θFOCi = v−1
(

c

si − si−1

)
. (46)

We will calculate the additional revenue generated by introducing at time sj+1, by comparing

policies πsj+1 and πsj . We first look at the revenue of policy πsj . We fix a time t > min(sj + 1, s1 +

d − 1), such that there is a mass d of customers in the system, and we break Revenue(πsj , t) into

four parts.

1. Revenue from newly arriving customers at time t who buy technology class j because θsj −

sjp
∗ ≥ 0⇐⇒ θ ≥ p∗. This expected revenue is (1 − F (p∗))sjp∗.

2. Revenue from customers who arrive at or after sj , before t, and within the last d− 1 periods

before t, and who buy technology class j. There are min(t − sj , d − 1) such periods, making

the expected revenue for this part min(t − sj , d− 1)(1− F (p∗))sjp∗.

3. Revenue from customers who arrive before sj and upgrade from technology class j−1 to class
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j at time sj , because their type satisfies θ ≥ θ∗j . There are (d−min(t− sj + 1, d))
(
1− F (θ∗j )

)
such customers, and such a customer pays price x∗j,m, conditional on the number of upgrades

m she has switched to as an existing customer.

4. Revenue from customers who arrive prior to t, and didn’t upgrade to technology class j, or

use a technology class older than j.

Notice that the first three revenue parts are from customers who use technology j at time t.

We next consider policy πsj+1 . We take time t = sj+1(> sj), and focus on the additional revenue

of policy πsj+1 over policy πsj , that is, Revenue(πsj+1 , t)− Revenue(πsj , t).

1. Newly arriving customers at t who purchased technology class j as new customers under policy

πsj , can now purchase j + 1 instead, at a price sj+1p
∗, generating revenue (1− F (p∗))sj+1p

∗,

i.e., an additional revenue of

(1− F (p∗))(sj+1 − sj)p∗.

2. Customers who purchased technology class j as new customers at times prior to t = sj+1

under policy πsj , can now upgrade to class j + 1 at price x∗j+1,1, as long as their type satisfies

θ ≥ θ∗j+1. There are min(t−sj , d−1)(1−F (θ∗j+1)) such customers, and they generate additional

revenue (over policy πsj ) of

min(t− sj , d− 1)
(
1− F (θ∗j+1)

) (
(sj+1 − sj)θ∗j+1 − c

)
.

3. Customers who upgraded to technology class j and are still in the system at t = sj+1, can

now further upgrade to technology class j + 1, provided their type satisfies θ ≥ θ∗j+1. There

are (d−min(t− sj + 1, d))(1− F (θ∗j+1)) such customers, and customers who previously paid

x∗j,m now pay upgrade prices x∗j+1,m+1, for m = 2, ..., n. They generate additional revenue of

(d−min(t− sj + 1, d))
(
1− F (θ∗j+1)

) (
(sj+1 − sj)θ∗j+1 − c

)
= (d− 1−min(t− sj , d− 1))

(
1− F (θ∗j+1)

) (
(sj+1 − sj)θ∗j+1 − c

)
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4. The revenue from customers22 who don’t upgrade to technology class j + 1 from j, or who

stay with existing technologies, is the same under both policies πsj and πsj+1 .

At time t = sj+1, we can thus write

Revenue(πsj+1 , t)− Revenue(πsj , t)

= (1− F (p∗))(sj+1 − sj)p∗ + (d− 1)(1− F (θ∗j+1))
(
(sj+1 − sj)θ∗j+1 − c

)
(47)

Similarly, for t = sj+1 + k, k ≥ 0, we can write

Revenue(πsj+1 , t)− Revenue(πsj , t)

= min(k + 1, d) (1− F (p∗)) (sj+1 − sj)p∗ + (d−min(k + 1, d))
(
1− F (θ∗j+1)

) (
(sj+1 − sj)θ∗j+1 − c

)
= min(k + 1, d) (1− F (p∗)) ∆sj+1p

∗

+ (d−min(k + 1, d))
[
1− F

(
v−1

(
c

∆sj+1

))][
∆sj+1v

−1
(

c

∆sj+1

)
− c
]
, (48)

where we define ∆sj+1 := sj+1 − sj .

We note that this revenue difference is a function of sj+1− sj . Multiplying (48) by the discount

factor δt and summing over t for t ≥ sj+1, as well as noting that we can write δt = δsj+1δk for

t = sj+1 + k, implicitly defines a function g(·) on the positive integers, such that

∞∑
t=sj+1

δt
(
Revenue(πsj+1 , t)− Revenue(πsj , t)

)
= δsj+1g(sj+1 − sj),

where g(·) depends on d, F, c and δ but not on the introduction times (s1, . . . , sj , sj+1). Explicitly,
22Note that this includes both group 4 customers from policy πsj , and group 2 and group 3 customers from policy

πsj who don’t upgrade to technology class j + 1.
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since23 ∑∞
k=0 δ

k min(k + 1, d) = 1−δd
(1−δ)2 , we define

g(z) := 1− δd
(1− δ)2 (1− F (p∗)) zp∗ + δd + d(1− δ)− 1

(1− δ)2 (1− F (θ∗(z))) (zθ∗(z)− c) , (49)

where θ∗(z) := v−1 ( c
z

)
, see (9).

Since Revenue(πsj+1 , t) = Revenue(πsj , t) for t < sj+1, we can write

∞∑
t=s1

δt
(
Revenue(πsj+1 , t)− Revenue(πsj , t)

)
= δsj+1g(sj+1 − sj). (50)

We recall that the utility of a policy π is U(π) = ∑∞
t=s1 δ

t (Revenue(π, t)− Cost(π, t)), hence we

have

U(πsj+1)− U(πsj ) = δsj+1 (g(sj+1 − sj)− C) . (51)

Pick an arbitrary policy π =
(
(s0 = 0, x0 = 0), (si,x∗i )

∞
i=1
)

which has non-increasing introduction

intervals, and uses optimal prices. For fixed j such that sj+1 ≥ s1 + d− 1, we can write the utility

of policy π as

U(π) = U(πsj ) +

 ∞∑
k=j+1

U(πsk)− U(πsk−1)

 (52)

= U(πsj ) +
∞∑

k=j+1
δsk (g(sk − sk−1)− C) , (53)

23We explain this algebraic step in detail:
∞∑
k=0

δk min(k + 1, d) = 1 + 2δ + 3δ2 + . . .+ (d− 1)δd−2 + d

∞∑
k=d−1

δk

= 1 + 2δ + 3δ2 + . . .+ (d− 1)δd−2 + d
δd−1

1− δ

= (1− δ)2 + 2δ(1− δ)2 + . . .+ (d− 1)δd−2(1− δ)2 + dδd−1(1− δ)
(1− δ)2

=
(1− δ)

[
(1− δ) + 2δ(1− δ) + . . .+ (d− 1)δd−2(1− δ) + dδd−1]

(1− δ)2

=
(1− δ)

[
1 + δ + δ2 + . . .+ δd−1]

(1− δ)2

= 1− δd
(1− δ)2

65



where πsj is the finite policy defined above, using the same introduction times si as π for i ≤ j,

but that has j as the last introduction. The second summand in (52) is a telescopic series, whose

individual terms are bounded and decreasing, because g is an increasing function by Lemma 4

below, while by assumption ∆sk = sk − sk−1 are non-increasing with k.

We next introduce some definitions and notation. For any policy, we assume that prices are

calculated optimally given the introduction times. We first define an operator that shifts all intro-

duction times of a policy by a constant:

Definition 2. Fix a positive integer K. Given a policy π that introduces at times s0 = 0, s1, s2, . . .,

we define TK(π) to be the policy that introduces at times s′0 = 0, s′1 = s1 +K, s′2 = s2 +K, . . ..

Given a policy π that introduces at times (s0 = 0, s1, . . . , sk, sk+1, . . .), and finite policy πsk , we

denote by π− πsk the policy with introduction times (s′1 = sk+1, s
′
2 = sk+2, . . .). That is, π− πsk is

the policy that uses introductions from π, with its first introduction at time sk+1.

Let π∗ denote a policy that is optimal among the policies with non-increasing introduction in-

tervals. We denote its introduction times by (s∗i ), and its prices are calculated optimally given the

introduction times. Fix j, with s∗j+1 ≥ s∗1 + d − 1. Consider a policy π with non-increasing intro-

duction intervals, which has the first j introductions timed optimally, and denote its introductions

times by
(
s∗1, s

∗
2, . . . , s

∗
j , sj+1, sj+2, . . .

)
, where we restrict sj+1 ≤ s∗j+1.

Consider now the policy π̃ that starts with introduction times
(
s∗1, s

∗
2, . . . , s

∗
j

)
, and then uses the

introduction times of policy T∆s∗j+1
(π − π∗s∗j−1

), where ∆s∗j+1 = s∗j+1 − s∗j . That is, the introduction

times of policy π̃ are

(
s̃1 = s∗1, . . . , s̃j = s∗j , s̃j+1 = s∗j+1, s̃j+2 = sj+1 + ∆s∗j+1, s̃j+3 = sj+2 + ∆s∗j+1, . . .

)
, (54)

and its prices are calculated optimally given the introduction times. To denote the concatenation

of the two sets of introduction times that make up π̃, we use notation

π̃ =
(
π∗s∗j

, T∆s∗j+1
(π − π∗s∗j−1

)
)
.

66



Note that π̃ has non-increasing introduction intervals, as

s∗2 − s∗1 ≥ s∗3 − s∗2 . . . ≥ s∗j+1 − s∗j ≥ sj+1 − s∗j ≥ sj+2 − sj+1 ≥ sj+3 − sj+2 . . .

We define

h(z) = g(z)− C. (55)

Then we can write

U(π̃) = U(π∗s∗j ) + δs
∗
j+1h(s∗j+1 − s∗j ) + δ∆s∗j+1δsj+1h(sj+1 − s∗j ) + δ∆s∗j+1

∞∑
k=j+2

δskh(sk − sk−1) (56)

= U
(
π∗s∗j+1

)
+ δ∆s∗j+1

[
U(π)− U(π∗s∗j )

]
, (57)

where the first line follows from (53); and the second line follows because U(π∗s∗j ) + δs
∗
j+1h(s∗j+1 −

s∗j ) = U
(
π∗s∗j+1

)
by (51), while the rest of the summands in the right-hand side of (56) sum up to

δ∆s∗j+1
[
U(π)− U(π∗s∗j )

]
by (53).

Note that setting π = π∗ optimizes (57), because for fixed s∗1, . . . , s
∗
j , s
∗
j+1, optimizing (57)

reduces to optimizing U(π). Now any policy with non-increasing introduction intervals which

has the first j + 1 introduction times set optimally (si = s∗i for i ≤ j + 1) can be written as(
π∗s∗j

, T∆s∗j+1
(π − π∗s∗j−1

)
)

for some policy π with non-increasing introduction intervals which has the

first j introduction times set optimally (si = s∗i , i ≤ j).24

24We detail this construction for completeness. Start with policy π′ that introduces at times(
s′1 = s∗1, . . . , s

′
j = s∗j , s

′
j+1 = s∗j+1, s

′
j+2, s

′
j+3, . . .

)
, and has non-increasing introduction intervals:

s∗2 − s∗1 ≥ . . . ≥ s∗j − s∗j−1 ≥ s∗j+1 − s∗j ≥ s′j+2 − s∗j+1 ≥ s′j+3 − s′j+2 ≥ . . .

Then policy π that introduces at times
(
s1 = s∗1, . . . , sj = s∗j , sj+1 = s′j+2 −∆s∗j+1, sj+2 = s′j+3 −∆s∗j+1, . . .

)
also has

non-increasing introduction intervals:

s∗2 − s∗1 ≥ . . . ≥ s∗j − s∗j−1 ≥ s′j+2 − s∗j+1 ≥ s′j+3 − s′j+2 ≥ . . . ,

and satisfies that
(
π∗s∗

j
, T∆s∗

j+1
(π − π∗s∗

j−1
)
)

= π′.
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Hence, defining π̃∗ :=
(
π∗s∗j

, T∆s∗j (π
∗ − π∗s∗j−1

)
)
, we have

U(π̃∗) ≥ sup
sj+2,sj+3...

U
(
π : s1 = s∗1, . . . , sj+1 = s∗j+1, sj+2, sj+3 . . .

)
= U(π∗)

This shows that policy π̃∗, which introduces at times

(
s̃∗1 = s∗1, . . . , s̃

∗
j = s∗j , s̃

∗
j+1 = s∗j+1, s̃

∗
j+2 = s∗j+1 + ∆s∗j+1, s̃

∗
j+3 = s∗j+2 + ∆s∗j+1, . . .

)
,

and calculates prices optimally given these introduction times, is also optimal: π̃∗ ∈ arg maxπ U(π).

Note that policy π̃∗ has s̃∗j+1 − s̃∗j = s̃∗j+2 − s̃∗j+1 = ∆s∗j+1.

Define recursively25

π̃∗(k) =


π∗, if k = 0(
π∗s∗j

, T∆s∗j (π̃
∗(k−1) − π∗s∗j−1

)
)
, if k ≥ 1.

(58)

For any fixed k > 0, policy π̃∗(k), which introduces at times

(
s̃
∗(k)
1 = s∗1, . . . , s̃

∗(k)
j = s∗j , s̃

∗(k)
j+1 = s∗j+1, s̃

∗(k)
j+2 = s∗j+1 + ∆s∗j+1, s̃

∗(k)
j+3 = s∗j+1 + 2∆s∗j+1, . . . ,

s̃
∗(k)
j+k+1 = s∗j+1 + k∆s∗j+1, s̃

∗(k)
j+k+2 = s∗j+2 + k∆s∗j+1, s̃

∗(k)
j+k+3 = s∗j+3 + k∆s∗j+1, . . .

)
,

and calculates prices optimally given these introduction times, is also optimal: π̃∗(k) ∈ arg maxπ U(π).

Note that policy π̃∗(k) has introduction intervals

s̃
∗(k)
j+1 − s̃

∗(k)
j = s̃

∗(k)
j+2 − s̃

∗(k)
j+1 = . . . = s̃

∗(k)
j+k+1 − s̃

∗(k)
j+k = ∆s∗j+1.

In the final step of the proof we will show that the sequence of policies defined in (58) converges

to a policy that is periodic after time s∗j and is optimal. Remember that we restrict to policies with

non-increasing introduction intervals and that use optimal pricing given the introduction times.
25We have π̃∗(1) = π̃∗.
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Therefore a policy is characterized by its introduction times.

For the remainder of the proof, we formally define the introduction times of a policy as an

infinite binary sequence. We use σπ to denote the binary sequence for the introduction times of a

policy π which introduces at times s and that uses optimal pricing. In particular, σπt = 1 (σπt = 0)

means that policy π makes (does not make) an introduction in period t.26

We next define a metric space. Consider the set of all infinite binary sequences: {0, 1}N. On

that set, we define the following metric:

d(x,y) = 2−max{n: xi=yi ∀i≤n}. (59)

Consider the sequence {σπ̃∗(k)}, where π̃∗(k) is the policy defined in (58) for a fixed k. Denote

by π̃∗(∞) the policy with introduction times

(
s̃
∗(∞)
1 = s∗1, . . . , s̃

∗(∞)
j = s∗j , s̃

∗(∞)
j+1 = s∗j+1, s̃

∗(∞)
j+2 = s∗j+1 + ∆s∗j+1, s̃

∗(∞)
j+3 = s∗j+1 + 2∆s∗j+1, . . . ,

s̃
∗(∞)
j+k+1 = s∗j+1 + k∆s∗j+1, . . .

)
,

i.e., that has periodic introduction intervals after time s∗j ad infinitum, and that has optimal prices.

We can see that for every ε > 0 there is an integer N such that k ≥ N implies that

d
(
σπ̃
∗(k)

,σπ̃
∗(∞))

< ε.

Therefore, the sequence {σπ̃∗(k)} converges to σπ̃
∗(∞) in the defined metric space; we write

lim
k→∞

σπ̃
∗(k) = σπ̃

∗(∞)
.

We next argue that the utility U is a continuous mapping from the set of infinite binary sequences

with the metric defined in (59), into R with the usual metric d(x, y) = |x−y|. Take two policies π1, π2

with corresponding introduction times and optimal prices given by their respective introduction

times. Take time ν to be the latest time such that the two policies are identical up to that time,
26For policy π with introduction times s, sj = t is equivalent to: (i) σπt = 1, and (ii)

∑t

i=1 σ
π
i = j.
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i.e., d(σπ1 ,σπ2) = 2−ν . Then we can bound the difference in the utilities as follows:

|U(π1)− U(π2)| ≤
∞∑

t=ν+1
δtd (1− F (p∗)) tp∗ + C

∞∑
t=ν+1

δt

= d (1− F (p∗)) p∗ ·
∞∑

t=ν+1
tδt + C

∞∑
t=ν+1

δt

= d (1− F (p∗)) p∗ · δ
ν+1

1− δ

(
ν + 1

1− δ

)
+ C

δν+1

1− δ

= δν+1

1− δ

(
d (1− F (p∗)) p∗

(
ν + 1

1− δ

)
+ C

)

where the last step follows after some algebra.27 This bound can become arbitrarily small by setting

a large enough ν, showing that U is uniformly continuous with the respect to the defined metric

spaces.28

Having argued that U is uniformly continuous and therefore continuous with respect to the

defined metric spaces, we can write that U(π̃∗(∞)) = limk→∞ U(π̃∗(k)). Because for each k, the

policy π̃∗(k) is optimal, π̃∗(∞) is also optimal. Policy π̃∗(∞) has periodic introductions starting at

its jth introduction, with s̃
∗(∞)
j+1 ≥ s̃

∗(∞)
1 + d− 1, and the statement follows.

Lemma 4. g(·) is an increasing function.
27We detail here the algebra for the last step:

∞∑
t=ν+1

tδt =
∞∑
t′=1

(t′ + ν)δt
′+ν

= δν

(
ν

∞∑
t′=1

δt
′

+
∞∑
t′=1

t′δt
′

)

= δν
(

νδ

1− δ + δ

(1− δ)2

)
= δν+1

1− δ

(
ν + 1

1− δ

)
28In fact, it can be shown that the defined metric space of infinite binary sequences is compact, and therefore the

concepts of continuity and uniform continuity are equivalent for mappings from that metric space.
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Proof. For F (θ∗(z)) < 1, we have

d

dz
(1− F (θ∗(z))) (zθ∗(z)− c) = −f(θ∗(z))dθ

∗(z)
dz

(zθ∗(z)− c) + (1− F (θ∗(z)))
(
θ∗(z) + z

dθ∗(z)
dz

)
= (1− F (θ∗(z))) θ∗(z) + dθ∗(z)

dz

[
(1− F (θ∗(z))) z − f(θ∗(z)) (zθ∗(z)− c)

]
= (1− F (θ∗(z))) θ∗(z), (60)

≥ 0,

where (60) follows because
[

(1− F (θ∗(z))) z − f(θ∗(z)) (zθ∗(z)− c)
]

= 0 by the definition of

θ∗(z) := v−1 ( c
z

)
. If F (θ∗(z)) = 1, then we have that (1 − F (θ∗(z))) (zθ∗(z)− c) = 0.

Overall, by the definition of function g in (49), it follows that

g′(z) = 1− δd
(1− δ)2 (1− F (p∗)) p∗ + δd + d(1− δ)− 1

(1− δ)2 (1− F (θ∗(z))) θ∗(z) > 0,

because29 δd + d(1− δ)− 1 > 0. Therefore g is increasing.

H Proof of Corollary 1

Proof. Using the notation in the proof of Theorem 2, and repeating (53), we write

U(π) = U(πsj ) +
∞∑

k=j+1
δsk (g(sk − sk−1)− C)

= U(πsj ) +
∞∑

k=j+1
δsk (h(sk − sk−1))

for a policy π with non-increasing introduction intervals, and for j such that sj+1 ≥ s1 + d− 1. We

apply this to policy π∗T : a policy with introduction times
(
s∗1, . . . , s

∗
j , s
∗
j + T, s∗j + 2T, . . .

)
, which

has introduction intervals of length T starting at time s∗j , where (s∗i ) are the introduction times of
29To see this, observe that

δd + d(1− δ)− 1 > 0 ⇐⇒ d >
1− δd
1− δ ⇐⇒ d > 1 + δ + δ2 + . . .+ δd−1,

which holds as long as 0 ≤ δ < 1 and integer d > 1.
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a policy that is optimal among the policies with non-increasing introduction intervals. We get

U(π∗T ) = U(π∗s∗j ) + δs
∗
j

∞∑
k=1

δkTh(T ) (61)

= U(π∗s∗j ) + δs
∗
j

δT

1− δT h(T ). (62)

By Theorem 2, there is an optimal policy with the following property: all introductions made

at or after time t = s1 + d − 1 are periodic, with each introduction a constant interval from its

previous introduction. Denoting its period by T ∗, it follows that T ∗ satisfies

T ∗ ∈ arg max
T∈N+

δT

1− δT h(T ). (63)

We note that δT

1−δT h(T ) is bounded, because function h(z) is bounded above by a linear function of

z for fixed δ, d, c, C and distribution F .

I Details of Characterizing the Optimal Period and of the Uniform

Distribution Example

We have
d

dz

(
δz

1− δz h(z)
)

= δz

(1− δz)2
(
log δ h(z) + (1− δz)h′(z)

)
and a turning point z∗ satisfies the necessary condition

log δ h(z∗) + (1− δz∗)h′(z∗) = 0. (64)

We calculate the second derivative to be

d2

dz2

(
δz

1− δz h(z)
)

=
δz
(
(1− δz) ((1− δz)h′′(z) + 2 log δ h′(z)) + (1 + δz) log2(δ)h(z)

)
(1− δz)3 , (65)
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hence at turning point z = z∗, using (64) to replace

(1 + δz) log2(δ)h(z) = − (1 + δz) (1− δz) log δ h′(z)

and simplifying, we have that

d2

dz2

(
δz

1− δz h(z)
)

= δz

1− δz
(
log δ h′(z) + h′′(z)

)
. (66)

We restrict to the uniform distribution on [0, 1]. When f is the density of the uniform distribution

on [0, 1], then ζ = 1, p∗ = 1/2, θ∗(z) = min
(

1
2
(
c
z + 1

)
, 1
)
, and explicitly,

hU [0,1](z) =


1−δd

(1−δ)2 · z4 + δd+d(1−δ)−1
(1−δ)2 · (z−c)2

4z − C if z > c

1−δd
(1−δ)2 · z4 − C if z ≤ c.

We can naturally extend h to take values on the positive reals. h(z) is upper bounded by a linear

function, implying δz

1−δz h(z) has a finite maximum at z∗. Note that for 0 ≤ δ < 1 and d > 1, we

have δd + d(1− δ)− 1 > 0.

There are potentially two local maxima of δz

1−δz h(z), one in z ≤ c and one in z > c, where the

local maximum can be a turning point or the left-hand boundary of the interval.

For z ≤ c, it is straightforward to see that the right-hand side of (66) is negative, since h′′ = 0.

Hence for z ≤ c a turning point is a local maximum. It is also possible to show that δz

1−δz h(z) can

decrease over the interval z ≤ c.

For z > c, analytical results are no longer straightforward. For example, showing a turning point

that is a local maximum analytically requires z >> c, since there can be a local minimum in z > c.

However, it is simple to numerically evaluate the function and describe its qualitative behavior.

Specific examples of parameter settings: We next provide some specific examples of parame-

ter settings for the different scenarios discussed for the uniform distribution on [0, 1] in Section 5.1.1.
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Figure 4: Examples that illustrate the behavior of the optimal periodicity T ∗ across different cases
for the parameters d, c, C, δ. The red vertical dashed line indicates the optimal period T ∗.
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• T ∗ = 1 (Figure 4, top row).

– Example with small c — almost all customers always upgrade: d = 50, c = 0.01, C =

0.2, 0 < δ < 1.

– Example with large c — no customer upgrades: d = 50, c = 7, C = 0.01, δ = 0.9. In this

case δz

1−δz h(z) decreases for z ≤ c, then increases after a local minimum, and has a local

maximum for z∗ = 14.6 (T ∗ = 15). The value at the local maximum however is less than

the value at z = 1.

• 1 < T ∗ ≤ c (Figure 4, middle row). No customer ever upgrades. For d = 50, c = 7, C = 2, δ =

0.8, the optimal period is T ∗ = 2.

• T ∗ > max(c, 1) (Figure 4, bottom row). Some customers upgrade.

– For d = 50, c = 1, C = 2, the optimal period increases with δ, from T ∗ = 2 for small δ to

T ∗ = 9 as δ approaches 1.

– For d = 50, c = C = 0.2, δ = 0.9, the optimal period is T ∗ = 3. Despite the small

provisioning cost C, the optimal period is not 1, i.e., it is best to not introduce in every

period.

• Two different values of the period that are local maxima, one smaller and the other larger

than the switching cost c, can yield near identical values of the function δz

1−δz h(z). Figure 5

illustrates.

– For d = 50, c = 7, C = 5, at δ = 0.82 the optimal strategy is to set T ∗ = 3, where no

customer upgrades.

– For d = 50, c = 7, C = 5, at δ = 0.83, the optimal period is T ∗ = 12, yielding θ∗ = 0.79,

where users with θ larger than 0.79 will upgrade.

At δ = 0.82, the difference in the value of the function δz

1−δz h(z) between the two policies

(introduce with period 3 or with period 12) is 1.3%, and at δ = 0.83 the difference is

0.1%.30

30The value of the function δz

1−δz h(z) is equal for the two policies (introduce with period 3 or with period 12) for δ
around 0.8293.
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Figure 5: The case when two different values of the period that are local maxima, one smaller and
the other larger than the switching cost c, can yield near identical values of the function δz

1−δz h(z).
The red vertical dashed line indicates the optimal period T ∗.

J Proof of Theorem 3

We first state and prove the following lemma.

Lemma 5. For any policy π with introduction times (s1, s2, . . . , ) that uses optimal pricing, for

j ≥ 1 we have

U(πsj+1) − U(πsj ) ≤ δsj+1 (g(sj+1 − sj) − C) . (67)

Proof. At time t ≥ sj+1, under policy πsj+1 , users who purchase technologies can be classified as

newly arrived, upgraders from technology sj , or those who stick with existing technology sj or

previous technologies. Only the first two types of customers generate more revenue at t compared

to policy πsj . The incremental revenue per customer for each of these two types is, respectively,

(1 − F (p∗)) (sj+1 − sj)p∗ and
(
1 − F

(
θ

(i)∗
j+1

)) (
(sj+1 − sj)θ(i)∗

j+1 − c
)
, where θ

(i)∗
j+1 is the optimal up-

grade threshold at time sj+1 for a user for whom technology j + 1 is the ith upgrade, i = 0, 1, . . . , n.

But (
1 − F

(
θ

(i)∗
j+1

)) (
(sj+1 − sj)θ(i)∗

j+1 − c
)

≤
(
1 − F (θF OC

j+1 )
) (

(sj+1 − sj)θF OC
j+1 − c

)

where θF OC
j+1 := v−1

(
c

sj+1−sj

)
is the value of the threshold θ that maximizes (1 − F (θ)) ((sj+1 − sj)θ − c).
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Because g(sj+1 − sj) is defined in (49) to use θFOCj+1 , the result follows.

We now prove Theorem 3.

Proof. Consider a policy π with introduction times (s′1, . . . , s′j , s′j+1, . . . ), and the derived policy πs′j
with the last introduction at s′j . We have

U(π) = U(πs′j ) +

 ∞∑
i=j+1

U(πs′i)− U(πs′i−1
)

 ,
which, combined with Lemma 5, implies

U(π)− U(πs′j ) ≤
∞∑

i=j+1
δs
′
i
(
g(s′i − s′i−1)− C

)
(68)

=
∞∑

i=j+1
δs
′
ih(s′i − s′i−1). (69)

By the arguments in the proof of Theorem 2 and the proof of Corollary 1, the right-hand side is

maximized by having s′i − s′i−1 = T ∗ for i ≥ j + 1.

Let π̂ denote the policy with introduction times (ŝ1 = s1, ..., ŝj−1 = sj−1, ŝj = sj , ŝj+1 =

sj + T ∗, ŝj+2 = sj + 2T ∗, . . . , ŝj+m = t̃ = sj +mT ∗, . . . ), and optimal pricing. Then we have

U(π̂)− U(π̂ŝj+m) =
∞∑

i=j+m+1
δŝih(T ∗) (70)

= δŝj+m
∞∑
i=1

δiT
∗
h(T ∗) (71)

≥
∞∑

i=k+1
δs
′
ih(s′i − s′i−1) (72)

≥ U(π′)− U(π′s′
k
) (73)

for any policy π′ with introductions at times (s′1 = s1, . . . , s
′
j = sj , s

′
j+1, . . . , s

′
k = t̃, s′k+1, . . . ) and

optimal pricing that has its k-th introduction at t̃ for some k ≥ j. The first equality follows because

all customers present at time t ≥ t̃ have arrived within the last d periods, when all the introduction

times were periodic and hence non-increasing under π̂. The last inequality follows from (69).
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Consider a policy π with its first j introduction times fixed at given (s1, . . . , sj), and the rest

denoted by sj+1, . . .. For t ≥ sj + d− 1, policy πsj just depends upon sj (as under πsj new arrivals

are offered technology sj at price sjp∗, and no one upgrades). We have that (48) holds exactly, and

therefore
∞∑

t=sj+m
δt
(
U(π, t)− U(πsj , t)

)
=

∞∑
i=j+m+1

δsi (g(si − si−1)− C) . (74)

By the arguments in the proof of Theorem 2, π̂ maximizes the right-hand side. This implies that

π̂ ∈ arg max
π

∞∑
t=t̃

δtU(π, t),

where the supremum is taken over all policies π which have the first j introductions (s1, . . . , sj)

fixed.

K Details of the Experimental Setup for Experiments on Period-

icity

We describe in detail the schemes we use to generate introduction patterns.

• Random introduction intervals (Random): We generate 1000 random introduction patterns.

For each pattern, each introduction interval is drawn uniformly at random and i.i.d. from the

discrete uniform distribution whose support is the set {1, 2, . . . , 2d}.

• Periodic introductions (Per): All introduction intervals are set to be equal. For each d, we

produce periodic introduction patterns for all values of the period between 1 and 2d.

• Non-increasing introduction intervals (NI ): We randomly generate 1000 random introduction

patterns with introduction intervals that are non-increasing: si − si−1 ≥ si+1 − si, for i ≥

2. To do this we first sample the first interval first interval uniformly at random from

range [1, 2d]; we then sample independently sufficiently many intervals uniformly from the

range [1, first interval] and sort them in non-increasing order.31 We only retain introduction

patterns that are not periodic.
31We follow a similar process for sampling monotonic intervals for other schemes.
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• Non-decreasing introduction intervals (ND): We randomly generate 1000 random introduction

patterns with introduction intervals that are non-decreasing: si − si−1 ≤ si+1 − si, for i ≥ 2.

We only retain introduction patterns that are not periodic.

• Non-increasing introduction intervals in the warm-up; periodic introductions after (NI-Per):

We randomly generate 1000 introduction patterns with introduction intervals that are non-

increasing during the warm-up phase, and periodic after. Consistently with Theorem 2, pe-

riodic intervals are imposed starting with the first interval whose end falls at or after time

s1 + d − 1. We use this scheme as the benchmark against which we compare the utilities

achieved by the other schemes.

• Non-increasing introduction intervals in the warm-up; non-increasing introduction intervals

after (NI-NI ): We randomly generate 1000 introduction patterns with introduction intervals

that are non-increasing during the warm-up phase, and non-increasing also in the continuation.

We build two different patterns of non-increasing introduction intervals: one for the warm-up

and one for the continuation. That is, we allow the transition from the warm-up phase to the

continuation to violate the monotonicity of the introduction differences. We stop building the

warm-up when adding one more interval in the warm-up would result in reaching at or after

time s1 + d− 1 — we don’t add that last interval in the warm-up, and start the continuation

instead. We only retain introduction patterns that are not periodic after the warm-up phase.

• Non-decreasing introduction intervals in the warm-up; periodic introductions after (ND-Per):

We randomly generate 1000 introduction patterns with introduction intervals that are non-

decreasing during the warm-up phase, and periodic after. Consistently with Theorem 2,

periodic intervals are imposed starting with the first interval whose end falls at or after time

s1 + d− 1.

• Non-decreasing introduction intervals in the warm-up; non-decreasing introduction intervals

after (ND-ND): We randomly generate 1000 introduction patterns with introduction intervals

that are non-decreasing during the warm-up phase, and non-decreasing after. We build two

different patterns of non-decreasing introduction intervals: one for the warm-up and one for
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the continuation. That is, we allow the transition from the warm-up phase to the continuation

to violate the monotonicity of the introduction differences. We stop building the warm-up

when adding one more interval in the warm-up would result in reaching at or after time

s1 + d − 1 — we don’t add that last interval in the warm-up, and start the continuation

instead. We only retain introduction patterns that are not periodic after the warm-up phase.

• Introduction intervals from grid search (Grid): We pick a total of 2000 introduction patterns

over the space of all possible patterns; we next describe how. Having fixed s1 = 1, there

are 2H−1 possible introduction patterns until time H: in each period 2, 3, . . . ,H , one has the

choice of introducing or not introducing. To ensure numerical precision, we first focus only

on the first 53 periods following s1 = 1. We first pick 1000 integers, equally spaced, from the

set {0, 1, 2, . . . , 253 − 1}. These 1000 integers are the set

{⌈
n

999
(
253 − 1

)⌉
: n = 0, 1, . . . , 999

}
.

We convert each picked integer to two binary numbers; each binary number is a binary vector,

so that a “1” represents an introduction at that time, whereas a “0” means no introduction.

We next detail the two ways to produce a binary vector from a picked integer:

– Implement a binary vector that grows from right to left — i.e, the rightmost bit corre-

sponds to 20. We then add a 1 followed by as many 0’s as necessary in the beginning

(left) of each vector to ensure each vector has length 54, representing an introduction

pattern in the first 54 periods.

– Implement a binary vector that grows from left to right — i.e, the leftmost bit corresponds

to 20. We then add a 1 in the beginning (left), and as many 0’s as necessary at the end

(right) of each vector to ensure each vector has length 54, representing an introduction

pattern in the first 54 periods.

For each binary vector, we repeat the derived introduction pattern as many times as necessary

to reach to a specified multiple of the end of the horizon.

• Introduction intervals from grid search on the exponent (Log-Grid): We pick a total of 2000
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introduction patterns over the space of all possible patterns, this time doing a grid search on

the exponent. The process for Log-Grid mirrors the process described above for Grid, with

the only difference that the 1000 initially picked integers are the set

{⌈
2( n

999 ·53) − 1
⌉

: n = 0, 1, . . . , 999
}
.

L Linear Pricing in the Non-Discriminatory Pricing Setting

In this section we analyze a simple, natural pricing policy: charge a price which is linear in the

quality of the technology class. We show this has several nice properties. First, with linear pricing

all newly arriving customers will select the latest quality. Second, with linear pricing the optimal

policy has a periodic pattern of introductions. A particularly interesting special case is one where

the linear prices are chosen to be optimal for each technology class as if it were the only item

offered for sale, as per Myerson’s approach. Third, we show that if a periodic schedule is used, then

Myerson pricing is optimal in the limit, in the sense that Myerson pricing gets arbitrarily close to

the optimal policy after sufficient introductions.

Formally, we define linear pricing with base price p > 0 to be as follows: set the price at

introduction time sj to xj = sjp, with j = 1, 2, . . .. Assuming linear pricing with base price p > 0,

new customers prefer buying technology j ≥ 1 to buying nothing if sj(θ−p) ≥ 0, or θ ≥ p, so the set

of customers willing to buy each technology is the same. Customers prefer technology j ≥ 2 to j−1

if sj(θ − p) ≥ sj−1(θ − p), or θ ≥ p. Thus all new customers choose the latest technology. Existing

customers prefer to switch to the new technology at a time t = sj if sj(θ − p)− c ≥ sj−1(θ − p), or

θ ≥ p+ c/(sj − sj−1).

We next define p∗ as the price that maximizes the single-item expected revenue in one period:

p∗ := arg max
p

(1− F (p)) · p.

We refer to Myerson pricing as the special case of linear pricing with base price p∗. Myerson pricing,

which sells to the set of customers with θ ≥ p∗, is optimal for new customers.

Assuming a policy πp which follows linear pricing with base price p, we write down the revenue
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for the provider at time t with sj ≤ t < sj+1, j ≥ 2:

Revenue(πp, t) = min(t− sj + 1, d) (1− F (p)) sjp

+ max (d− (t− sj + 1), 0)
{(

1− F
(
p+ c

sj − sj−1

))
sjp

+
(
F

(
p+ c

sj − sj−1

)
− F (p)

)
sj−1p

}
. (75)

The first summand is the revenue from customers who arrive at or after period sj . These customers

buy technology j as long as θ ≥ p. The term (1− F (p)) sjp is the per-period expected revenue for

customers who arrive at or after sj , and within the last d− 1 periods before, or at, period t. There

are min(t− sj + 1, d) such terms.

The second summand is the revenue from customers who arrive before period sj . Some of them

switch to technology j at period sj ; these are the customers for whom θ ≥ p + c/(sj − sj−1) (first

term inside the curly brackets). Some of them stick to technology j− 1; these are the customers for

whom p ≤ θ < p+ c/(sj − sj−1) (second term inside the curly brackets). The same terms apply to

all customers who arrive in each of the periods before sj , and within the last d − 1 periods before

period t. There are d−min(t− sj + 1, d) = max (d− (t− sj + 1), 0) such periods.

For j = 1, we can write

Revenue(πp, t) = min(t− s1 + 1, d) (1− F (p)) s1p. (76)

For the special case of periods when an introduction occurs, i.e., t = sj for some j ≥ 1,

expression (75) becomes

Revenue(πp, sj) =



(1− F (p)) sjp+ (d− 1)
{(

1− F
(
p+ c

sj−sj−1

))
sjp

+
(
F
(
p+ c

sj−sj−1

)
− F (p)

)
sj−1p

}
, j ≥ 2

(1− F (p)) s1p, j = 1.

(77)
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L.1 Under linear pricing, periodic introductions are optimal

Our first result shows that there exists a policy that is optimal within the class of policies that use

linear pricing, which uses periodic introductions. As previously discussed, there is an asymmetry

with the first introduction because there are no existing customers, but after that the optimization

problem is invariant to being shifted by one introduction. Thus the proof inductively constructs a

periodic optimal policy from an arbitrary optimal policy.

Proposition 1. Assuming linear pricing, periodic introductions are optimal after the first intro-

duction. In particular, this applies to Myerson pricing.

The proof is given in Appendix M.

We remark that the optimal policy could be to not offer a service (πM = ((0, 0)). However, a suffi-

cient condition to prefer to first introduce the service at a time t = s is δsC < Revenue((0, 0), (s, sp)),

which implies

C <
1
δs

{
δs (1− F (p)) sp+

s+d−2∑
t=s+1

δt(t− s+ 1) (1− F (p)) sp+
∞∑

t=s+d−1
δtd (1− F (p)) sp

}

= 1
δs
δs
(

1 + 2δ + 3δ2 + . . .+ (d− 1)δd−2 + dδd−1

1− δ

)
(1− F (p)) sp

=
(

1 + 2δ + 3δ2 + . . .+ (d− 1)δd−2 + dδd−1

1− δ

)
(1− F (p)) sp.

Hence, given a base price level p, for finite C and δ < 1, it is always optimal to introduce at some

time s. The optimal policy depends upon C and δ (as well as c). However, the dependence upon

C, ceteris paribus, essentially constrains the periodicity and the time of the first introduction. In

the rest of Section 6 we show that Myerson pricing guarantees a bounded approximation ratio to

both revenue and cost for the infinite-horizon problem, having fixed the introduction times.

L.2 Under periodic introductions, Myerson pricing is optimal for one-period

revenue in the limit of many introductions

We have shown that under Myerson pricing, periodic introductions are optimal. In the rest of

Section 6 we will show the near-optimality of Myerson pricing even with arbitrary introduction
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times. Together, these results yield the insight that a simple policy combining Myerson pricing

with periodic introductions is effective.

Before we show this, we first argue for the efficacy of Myerson pricing from a different angle:

Myerson pricing is effective when introductions are periodic. Under periodic introduction times, an

alternate pricing scheme may have revenue gains over Myerson pricing early in the horizon; however

such gains vanish after sufficiently many introductions.

In particular, shading prices down from the Myerson levels doesn’t gain much additional rev-

enue. Informally, we have an incentive to increase the first introduction price, sacrificing short-term

revenue; but shade down subsequent prices, giving extra incentive for existing customers to switch.

However, the latter effect diminishes with time, as we now prove formally.

Proposition 2. Let π be a policy with periodic introductions and πM be a policy that uses the same

introduction times as π, but Myerson pricing. Then we have

lim
j→∞

Revenue(π, sj)
Revenue(πM , sj)

≤ 1.

Proof. Fix the periodicity of introductions τ > 0 and the introduction times. Using the alternative

expression (78), the revenue of policy πM , which uses Myerson pricing, at period sj can be written

as

Revenue(πM , sj) = d (1− F (p∗)) sjp∗ − (d− 1)
(
F

(
p∗ + c

τ

)
− F (p∗)

)
τp∗,

for j ≥ 2. Note that the first term is linear in sj , while the second term is constant with respect to

sj . By the optimality of p∗, an upper bound on the possible revenue of any policy at time period

sj is d (1− F (p∗)) sjp∗, so

lim
j→∞

Revenue(π, sj)
Revenue(πM , sj)

≤ lim
j→∞

d (1− F (p∗)) sjp∗
d (1− F (p∗)) sjp∗ − (d− 1)

(
F
(
p∗ + c

τ

)
− F (p∗)

)
τp∗

= 1.

The key insight is that the potential gains from alternate prices can be bounded in terms of
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the length of the periodicity used by policy π, independent of introduction index j. As a result,

assuming periodic introductions, the potential additional revenue of any pricing policy over the

Myerson policy decays to zero as the introduction time increases.

In particular, the potential additional revenue earned by shading prices down from the Myerson

prices decays to zero as the introduction time increases. Among the class of policies which use

multiples of a fixed base rate (i.e., they charge xj = (1 − h)sjp∗, with 0 ≤ h < 1) and introduce

periodically, Myerson pricing gets arbitrarily close to the optimal policy for one-period revenue,

after sufficient introductions.

M Proof of Proposition 1

Proof. Let π∗p = ((s0 = 0, x0 = 0), (s1 = s∗1, x1 = s∗1p), (s2 = s∗2, x2 = s∗2p), (s3 = s∗3, x3 = s∗3p), . . .)

denote a policy which is optimal among those policies using linear pricing with base price p. We

first show that such a policy exists.

For an arbitrary policy using linear pricing with base price p,

πp =
(
(s0 = 0, x0 = 0), (s1, x1 = s1p), (s2, x2 = s2p), (s3, x3 = s3p), . . .

)
,

we have that

U(πp) = Revenue(πp)− Cost(πp) =
∞∑
t=s1

δt (Revenue(πp, t)− Cost(πp, t)) ,

i.e., revenue accumulated less costs incurred during period s1 and subsequent periods. Optimal

policy π∗p must optimize U(πp).
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For policy πp, we can write Equation (75) as

Revenue(πp, t) = min(t− sj + 1, d) (1− F (p)) sjp

+ (d−min(t− sj + 1, d))
{

(1− F (p)) sjp

−
(
F

(
p+ c

sj − sj−1

)
− F (p)

)
(sj − sj−1)p

}

=d (1− F (p)) sjp− (d−min(t− sj + 1, d))
(
F

(
p+ c

sj − sj−1

)
− F (p)

)
(sj − sj−1)p.

(78)

Notice that the first term of Equation (78) depends only on the introduction times through sj , while

the second term only depends on the introduction times through sj and the difference sj − sj−1.

Therefore, we can represent the problem of choosing introduction times as a Markov Decision

Process whose states are a pair consisting of the current time and the previous introduction time,

while the actions are to either introduce or not in the current period. As this MDP has a countably

infinite set of states and a finite set of actions, it has a (deterministic) optimal policy (Puterman,

2014, Thm 6.2.10). Since the state transitions are deterministic, such an optimal policy for the

MDP induces an optimal policy for our problem.

Given the structure of expression (78), we show how to take any optimal policy π∗p and construct

a slightly different policy that is also optimal. As a first step, we define policy mapping Tk(·), where

k is a positive integer.

Definition 3. Fix a positive integer k. Given a policy πp =
(
(s0 = 0, x0 = 0), (s1, x1 = s1p), (s2, x2 =

s2p), (s3, x3 = s3p), . . .
)

that uses linear pricing with base price p, and introduces at times (s1, s2, s3, . . .),

we define Tk(πp) to be the following policy:

Tk(πp) :=
(
(s′0 = 0, x′0 = 0), (s′1 = s1 + k, x′1 = s′1p),

(s′2 = s2 + k, x′2 = s′2p), (s′3 = s3 + k, x′3 = s′3p), . . .
)
.

Since mapping Tk(πp) delays each introduction by the same constant, it affects the timing and
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revenue from the first term of expression (78): introduction times have been changed, which changes

the prices customers pay. But it only changes the timing from the second term of expression (78):

the loss due to customers not switching to a newly introduced technology only depends on the

differences in introduction times, which we have not changed, although we have shifted the periods

in which these losses occur later.
We first write

U(πp) =
∞∑
t=s1

δt (Revenue(πp, t)− Cost(πp, t))

= δs1 (1− F (p)) s1p+
s1+d−2∑
t=s1+1

δt(t− s1 + 1) (1− F (p)) s1p+
s2−1∑

t=s1+d−1

δtd (1− F (p)) s1p (79)

+δs2
{
d (1− F (p)) s2p− (d− 1)

(
F
(
p+ c

s2 − s1

)
− F (p)

)
(s2 − s1)p

}
(80)

+
s3−1∑
t=s2+1

δtd (1− F (p)) s2p−
s2+d−2∑
t=s2+1

δt (d− (t− s2 + 1))
(
F
(
p+ c

s2 − s1

)
− F (p)

)
(s2 − s1)p(81)

+δs3
{
d (1− F (p)) s3p− (d− 1)

(
F
(
p+ c

s3 − s2

)
− F (p)

)
(s3 − s2)p

}
+

s4−1∑
t=s3+1

δtd (1− F (p)) s3p−
s3+d−2∑
t=s3+1

δt (d− (t− s3 + 1))
(
F
(
p+ c

s3 − s2

)
− F (p)

)
(s3 − s2)p

+ . . .

−C (δs1 + δs2 + δs3 + . . .) . (82)

Line (79) corresponds to the revenue accumulated during periods s1, . . . , s2−1. The term δs1 (1− F (p)) s1p

is the revenue from customers who arrive in period s1 and buy technology class 1. The term∑s1+d−2
t=s1+1 δ

t(t− s1 + 1) (1− F (p)) s1p is the revenue accumulated during periods s1 +1, . . . , s1 +d−2

from both new and existing customers. Notice that the mass of existing customers builds up dur-

ing this time, as a unit mass of new customers arrives in each period, while customers who buy

the technology do not leave the system yet. The term ∑s2−1
t=s1+d−1 δ

td (1− F (p)) s1p is the revenue

accumulated during periods s1 + d − 1, . . . , s2 − 1 from both new and existing customers. Notice

that during these periods, and for the continuation of the infinite horizon, the expected mass of

customers who yield revenue remains stable.

Lines (80), (81) correspond to the revenue accumulated during periods s2, . . . , s3− 1. In partic-

ular, the term in line (80) corresponds to the revenue accumulated during the period of the second

introduction, as per Equation (78) for sj = 2; and the term in line (81) corresponds to the revenue
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accumulated during the non-introduction periods s2 + 1, . . . , s3 − 1. Line (82) accounts for the

provisioning costs from the introductions.
We then write the utility of policy Tk(πp), for a fixed positive integer k:

U(Tk(πp)) =
∞∑
t=s1

δt (Revenue(Tk(πp), t)− Cost(Tk(πp), t))

= δs1+k (1− F (p)) (s1 + k)p+
s1+k+d−2∑
t=s1+k+1

δt(t− (s1 + k) + 1) (1− F (p)) (s1 + k)p+
s2+k−1∑

t=s1+k+d−1

δtd (1− F (p)) (s1 + k)p

+δs2+k
{
d (1− F (p)) (s2 + k) p− (d− 1)

(
F
(
p+ c

s2 − s1

)
− F (p)

)
(s2 − s1)p

}
+

s3+k−1∑
t=s2+k+1

δtd (1− F (p)) (s2 + k) p

−
s2+k+d−2∑
t=s2+k+1

δt (d− (t− (s2 + k) + 1))
(
F
(
p+ c

s2 − s1

)
− F (p)

)
(s2 − s1)p

+δs3+k
{
d (1− F (p)) (s3 + k) p− (d− 1)

(
F
(
p+ c

s3 − s2

)
− F (p)

)
(s3 − s2)p

}
+

s4+k−1∑
t=s3+k+1

δtd (1− F (p)) (s3 + k) p

−
s3+k+d−2∑
t=s3+k+1

δt (d− (t− (s3 + k) + 1))
(
F
(
p+ c

s3 − s2

)
− F (p)

)
(s3 − s2)p

+ . . .

−C
(
δs1+k + δs2+k + δs3+k + . . .

)
. (83)
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Thus we have

U(Tk(πp)) =δkU(πp)

+ δs1+k(1− F (p))kp+
s1+k+d−2∑
t=s1+k+1

δt(t− (s1 + k) + 1)(1− F (p))kp

+
s2+k−1∑

t=s1+k+d−1
δtd(1− F (p))kp

+ δs2+kd (1− F (p)) kp+
s3+k−1∑
s2+k+1

δtd (1− F (p)) kp

+ δs3+kd (1− F (p)) kp+
s4+k−1∑
s3+k+1

δtd (1− F (p)) kp

+ . . .

=δk
[
U(πp) + δs1

(
1 + 2δ + 3δ2 + . . .+ (d− 1)δd−2

)
(1− F (p)) kp+

∞∑
s1+d−1

δtd (1− F (p)) kp
]

=δk
[
U(πp) +

(
δs1
(
1 + 2δ + 3δ2 + . . .+ (d− 1)δd−2

)
+ d

δs1+d−1

1− δ

)
(1− F (p)) kp

]
.

(84)

This is because shifting the introductions k periods later discounts all revenue and costs by δk,

and the remaining terms capture the changes to the first term of (78), with the t = s1 + k, s1 +

k + 1, . . . , s1 + k + d − 2 terms handled differently from the rest, due to the expected mass of

revenue-generating customers still building up at those times.

Every policy using linear pricing with base price p, whose first introduction is s∗2, can be written

as Tk=s∗2−s∗1(πp) for some policy πp that uses linear pricing with base price p, and whose first

introduction is s∗1.32 Thus by Equation (84) and the optimality of π∗p, Ts∗2−s∗1(π∗p) is optimal among

all policies using linear pricing with base price p whose first introduction time is s∗2.

We now define policy mapping Sk(·), where k is a positive integer.

Definition 4. Fix a positive integer k. Given a policy πp =
(
(s0 = 0, x0 = 0), (s1, x1 = s1p), (s2, x2 =

s2p), (s3, x3 = s3p), . . .
)

that uses linear pricing with base price p, and introduces at times (s1, s2, s3, . . .),
32We detail this construction, for completeness. We take all considered policies to use linear pricing with base

price p. Start with policy π′p that introduces at times (s′1 = s∗2, s
′
2, s
′
3, . . .). Then policy πp that introduces at times

(s1 = s∗1, s2 = s′2 − (s∗2 − s∗1), s3 = s′3 − (s∗2 − s∗1), . . .) satisfies that Ts∗2−s∗1 (πp) = π′p.
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we define Sk(πp) to be the following policy:

Sk(πp) :=
(
(s′0 = 0, x′0 = 0), (s′1 = s1, x

′
1 = s′1p), (s′2 = s1 + k, x′2 = s′2p),

(s′3 = s2 + k, x′3 = s′3p), (s′4 = s3 + k, x′4 = s′4p), . . .
)
.

That is, Sk(πp) uses the same introductions as Tk(πp), but additionally introduces in period s1.

Since π∗p = ((s0 = 0, x0 = 0), (s1 = s∗1, x1 = s∗1p), (s2 = s∗2, x2 = s∗2p), (s3 = s∗3, x3 = s∗3p), . . .) is

an optimal policy among those policies using linear pricing with base price p, it follows that policy

Sk=s∗2−s∗1(π∗p) :=
(
(0, 0), (s∗1, s∗1p), (s∗2, s∗2p), (s∗2 + (s∗2 − s∗1), (s∗2 + (s∗2 − s∗1)) p),

(s∗3 + (s∗2 − s∗1), (s∗3 + (s∗2 − s∗1)) p), . . .
)

is also optimal. We prove this by contradiction.

Assume Ss∗2−s∗1(π∗p) is not optimal. Then U(π∗p) > U(Ss∗2−s∗1(π∗p)). Because U(π∗p, t) = U
(
Ss∗2−s∗1(π∗p), t

)
for t = s∗1, . . . , s

∗
2, it then follows that policy π∗p is superior when looking at the sum of discounted

utilities starting at time s∗2:

∞∑
t=s∗2

δtU(π∗p, t) >
∞∑
t=s∗2

δtU
(
Ss∗2−s∗1(π∗p), t

)
. (85)

We can subtract from both sides of the inequality the revenues accumulated at time s∗2 or after from

customers who arrive in periods s∗1, s∗1 + 1, . . . , s∗2− 1. By Equation (75), these terms can be written

as

s∗2+d−2∑
t=s∗2

δt (d− (t− s∗2 + 1))
{(

1− F
(
p+ c

s∗2 − s∗1

))
s∗2p+

(
F

(
p+ c

s∗2 − s∗1

)
− F (p)

)
s∗1p

}
. (86)

These terms will be equal for both policies π∗p and Ss∗2−s∗1(π∗p), because the two policies are identical

for the customers who arrive in periods s∗1, s∗1 + 1, . . . , s∗2 − 1.

After subtracting expression (86) from both sides of inequality (85), we recognize the right-hand

side as the utility of policy Ts∗2−s∗1(π∗p), which first introduces at time s∗2. So we have shown that

the policy whose first introduction is at s∗2 and from then on follows policy π∗p, has greater utility
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than policy Ts∗2−s∗1(π∗p). This means that Ts∗2−s∗1(π∗p) is not optimal among all policies using linear

pricing with base price p and whose first introduction time is s∗2. This is a contradiction.

Since Ss∗2−s∗1 preserves optimality, any number of applications of it does so as well. Since each

application shifts the schedule of introductions by s∗2 − s∗1, a simple induction argument shows that

S(j)
s∗2−s

∗
1
(π∗p), i.e., applying the Ss∗2−s∗1 operator j times, results in an optimal policy whose j + 1

introductions after the first each come after s∗2 − s∗1 periods from the previous introduction. That

is, it is periodic with period length s∗2 − s∗1 for the j + 1 introductions after the first.

This allows us to define a sequence of optimal policies {π∗(j)p }, such that the jth element of

the sequence, π∗(j)p := S(j)
s∗2−s

∗
1
(π∗p), is periodic through the j + 1th introduction after the first. This

sequence converges to the infinitely periodic policy with first introduction s∗1 and period s∗2−s∗1, in the

metric space defined in the proof of Theorem 2 in Appendix G. Similarly to the proof of Theorem 2,

we can show that U is a continuous mapping with respect to the defined metric spaces. As U is

continuous and each policy in the sequence is optimal, the periodic policy with first introduction s∗1

and period s∗2 − s∗1 is also optimal.

N Details of Optimal Pricing Results for a Single Period in the

Non-Discriminatory Pricing Setting

Lemma 6. Let introduction times s and time t be given with sj ≤ t < sj+1 for some introduction

j ≥ 1, and πM be a policy that uses introduction times s and Myerson pricing. Then

πM ∈ arg max
π∈Π(s)

∫ min(t−sj+1,d)∑
`=1

xq`(π,t,θ)

 f(θ)dθ.

Proof. All the terms in this sum correspond to customers who arrived at the time of or after the

most recent introduction, and therefore none of them faced a switching cost when deciding which

technology to adopt. In the spirit of Myerson’s argument, we know that the optimal policy would

be to offer all such customers only the latest technology at the Myerson price. But we know from

Section L that all these customers will choose the latest technology regardless for any linear pricing

scheme. Thus, the given policy is optimal.
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Lemma 7. Let introduction times s and time t be given with sj ≤ t < sj+d−1 for some introduction

j ≥ 1. There exists a policy π′ ∈ Π(s) that maximizes

∫  d∑
`=t−sj+2

xq`(π,t,θ)

 f(θ)dθ

among all policies π ∈ Π(s), and that uses pricing xi = sip
∗ for i < j and max(sj−1p

∗, sjp
∗ − c) ≤

xj ≤ sjp∗.

Proof. For j = 1, q`(π, t, θ) = 0 for ` ≥ t− s1 + 2, regardless of the choice of π, so optimality holds

vacuously.

Fix j ≥ 2. We first focus on finding an optimal setting of prices for the expected revenue in

period t that comes from the existing customer who is in her period ` at time t,

∫
xq`(π,t,θ)f(θ)dθ,

where t− sj + 2 ≤ ` ≤ d. (This customer arrived in the system at time t− `+ 1.)

In the spirit of Myerson’s argument, we know that all allocation rules achievable by pricing

are incentive compatible and thus monotone, so we can optimize over them instead. In particular,

with a finite menu of technology classes, the monotone allocation function is piecewise constant:

customers who do not buy get an allocation of 0, those who do get some technology class i. By

monotonicity, we just need to choose the thresholds θ1, . . . , θj where the transitions occur. Fixing

these, we get an allocation function:

a(θ) =



0 if θ < θ1

i if θi ≤ θ < θi+1, 1 ≤ i ≤ j − 1

j if θj ≤ θ.

(87)

Fix a and the resulting policy π′(a), and let Iθj (θ) = 1 if θ ≥ θj be an indicator for agents who

do switch (and thus pay the cost of c). Then the payment the provider gets from a customer of
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type θ who is in her period ` at time t is

xq`(π′(a),t,θ) = sa(θ)θ −
∫ θ

0
sa(θ′)dθ

′ − Iθj (θ)c. (88)

This makes the expected revenue
∫
xq`(π′(a),t,θ)f(θ)dθ equal to

∫ θ1

0
xq`(π′(a),t,θ)f(θ)dθ +

j−1∑
i=1

∫ θi+1

θi

xq`(π′(a),t,θ)f(θ)dθ +
∫ ∞
θj

xq`(π′(a),t,θ)f(θ)dθ

=
j−1∑
i=1

∫ θi+1

θi

(
siθ − si(θ − θi)−

i−1∑
i′=1

si′(θi′+1 − θi′)
)
f(θ)dθ

+
∫ ∞
θj

sjθ − sj(θ − θj)− j−1∑
i′=1

si′(θi′+1 − θi′)− c

 f(θ)dθ

=
j−1∑
i=1

∫ θi+1

θi

siθif(θ)dθ −
j−1∑
i=1

∫ ∞
θi+1

(si(θi+1 − θi)) f(θ)dθ +
∫ ∞
θj

(sjθj − c) f(θ)dθ

=

j−1∑
i=1

(F (θi+1)− F (θi)) siθi − (1− F (θi+1)) si(θi+1 − θi)

+ (1− F (θj)) (sjθj − c)

=

j−1∑
i=1

(1− F (θi)) siθi − (1− F (θi+1)) siθi+1

+ (1− F (θj)) (sjθj − c)

=

j−1∑
i=1

(1− F (θi)) (si − si−1)θi

+ (1− F (θj)) ((sj − sj−1)θj − c) . (89)

Each summand in the summation of terms i = 1, . . . , j − 1, is, up to a constant multiplier,

exactly what p∗ is defined to optimize, so it is optimal to set θi = p∗ for i < j. This implies that it

is optimal to set xi = sip
∗ for i < j.

The term after the summation can be optimized using a first order condition. Taking the

derivative with respect to θj yields

(−f(θj)) ((sj − sj−1)θj − c) + (1− F (θj)) (sj − sj−1),

or

(sj − sj−1) (1− F (θj)− f(θj)θj) + f(θj)c. (90)
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The first order condition can then be rewritten as

(sj − sj−1)
(
θj −

1− F (θj)
f(θj)

)
= c. (91)

By the definition of p∗, the left hand side of Equation (91) is exactly 0 for θj = p∗, and is increasing

in θj by Assumption 2. Thus the optimal solution satisfies θj ≥ p∗ and so our separate optimization

of each θi does produce a monotone allocation rule.

We wish to turn θj ≥ p∗ into a lower bound on xj . The threshold θj at which customers switch

to technology j solves sjθj − xj − c = sj−1θj − xj−1, therefore we have

xj = xj−1 + (sj − sj−1)θj − c. (92)

We observe that for xj−1 = sj−1p
∗, θ ≥ p∗ implies xj ≥ sjp∗ − c.

Furthermore, a customer can only switch to technology j if she has already bought technology

j − 1, so any choice with xj < sj−1p
∗ is dominated by xj = sj−1p

∗, because in the latter case,

customers that switch to the new technology pay strictly more than in the former case. Therefore,

we have xj ≥ sj−1p
∗.

To obtain an upper bound on xj , we rewrite the first order condition in (91) as

θj = 1− F (θj)
f(θj)

+ c

sj − sj−1

≤ 1− F (p∗)
f(p∗) + c

sj − sj−1

= p∗ + c

sj − sj−1
,

where the inequality follows because θj ≥ p∗ and by Assumption 2. We observe that, by Equa-

tion (92), and for xj−1 = sj−1p
∗, θ ≤ p∗ + c

sj−sj−1
implies xj ≤ sjp∗.

Note that nothing in the above analysis is specific to the choice of `, the tenure of the customer

at time t, as long as t − sj + 2 ≤ ` ≤ d. Therefore, there exists a policy π′ ∈ Π(s) that maximizes∫
xq`(π,t,θ)f(θ)dθ for each ` such that t − sj + 2 ≤ ` ≤ d, and that uses pricing xi = sip

∗ for i < j

and max(sj−1p
∗, sjp

∗ − c) ≤ xj ≤ sjp∗. The result follows.
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Lemma 6 and Lemma 7 show that the policy that maximizes revenue from customers who arrived

at or after the most recent introduction, and the policy that does for those who arrived before the

most recent introduction, agree that Myerson pricing should be used for all but the most recent

introduction, but disagree on what the price of the most recent introduction should be. As a step

towards showing that the optimal prices for the combined revenue share this structure (intuitively

with a compromise over what the price of the most recent introduction should be), we first give an

explicit characterization of the revenue from such policies.

As a further step toward our goal of providing an upper bound to the optimal revenue, we

consider an expansion of the set of policies to allow separate prices to be offered to customers,

depending on whether they were already existing customers at the time of the most recent intro-

duction. Such a discriminatory strategy would offer a discount to the customers who arrived before

the most recent introduction, as an incentive to upgrade. Assuming sj ≤ t < sj + d − 1 so that

both types of customers exist33, the (expected) revenue of such a discriminatory strategy employing

policy πn for customers arriving since the most recent introduction, and policy πe for customers

who arrived before it, at time t, is

RevenueD(πn, πe, t) =
∫ (

xq1(πn,t,θ) + . . .+ xqt−sj+1(πn,t,θ) + xqt−sj+2(πe,t,θ) + . . .+ xqd(πe,t,θ)
)
f(θ)dθ.

The following lemma gives our characterization of the revenue of both types of policies.

Lemma 8. Let introduction times s and time t be given with sj ≤ t < sj+1 for some introduction j ≥

1. Consider policy π ∈ Π(s) that uses prices xi = sip
∗ for i < j and xj = x, with max(sj−1p

∗, sjp
∗−

c) ≤ x ≤ sjp∗. Then

Revenue(π, t) =



max(d− (t− sj + 1), 0)
{

(1− F (p∗)) sj−1p
∗ +

(
1− F

(
x−sj−1p∗+c
sj−sj−1

))
(x− sj−1p

∗)
}

+(min(t− sj + 1, d))
(
1− F

(
x
sj

))
x, j ≥ 2

(min(t− s1 + 1, d))
(
1− F

(
x
s1

))
x, j = 1.

(93)
33A customer who arrives right before time sj , i.e., at time sj − 1, stays in the system until period sj + d − 2.

Therefore, during times t such that sj ≤ t < sj + d − 1, both customers who have arrived since the most recent
introduction, and customers who arrived before the most recent introduction exist in the system.
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Consider also a discriminatory strategy that uses policies πn, πe ∈ Π(s) with prices xi = sip
∗ for

i < j, xj = xn for customers who arrive at or after introduction j, and xj = xe for customers who

arrive before introduction j, with max(sj−1p
∗, sjp

∗ − c) ≤ xn, xe ≤ sjp∗. Then

RevenueD(πn, πe, t) =



max(d− (t− sj + 1), 0)
{

(1− F (p∗)) sj−1p
∗ +

(
1− F

(
xe−sj−1p∗+c
sj−sj−1

))
(xe − sj−1p

∗)
}

+(min(t− sj + 1, d))
(
1− F

(
xn
sj

))
xn, j ≥ 2

(min(t− s1 + 1, d))
(
1− F

(
xn
s1

))
xn, j = 1.

(94)

Proof. For j ≥ 2, we show that

Revenue(π, t) = min(t− sj + 1, d)
(

1− F
(
x

sj

))
x

+ max(d− (t− sj + 1), 0) ·
[(

1− F
(
x− sj−1p

∗ + c

sj − sj−1

))
x

+
(
F

(
x− sj−1p

∗ + c

sj − sj−1

)
− F (p∗)

)
sj−1p

∗
]
. (95)

We first explain the summand in the first row of Equation (95). This summand corresponds to

revenue from customers who arrive at or after period sj . The term
(
1− F

(
x
sj

))
x is the expected

revenue accumulated at time t from a customer who arrives at or after period sj and buys the new

technology class as long as θsj−x ≥ 0⇐⇒ θ ≥ x
sj

. Notice that this customer would buy technology

class k < j instead of technology class j if sk(θ − p∗) ≥ 0⇐⇒ θ ≥ p∗ and θsj − x < sk(θ − p∗)⇐⇒

θ < x−skp∗
sj−sk . Since x−skp∗

sj−sk ≤
sjp
∗−skp∗
sj−sk = p∗, the two cannot happen at the same time. We record this

revenue term for all customers who arrive at or after sj , and within the last d − 1 periods before,

or at, period t. There are min(t− sj + 1, d) such terms.

We next explain the summand in the second and third rows of Equation (95). This summand

corresponds to revenue from customers who arrive before period sj . The term

(
1− F

(
x− sj−1p

∗ + c

sj − sj−1

))
x

is the expected revenue accumulated at time t from a customer who arrives before period sj and
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switches to the new technology class introduced at time sj , because θsj − x− c ≥ sj−1(θ− p∗)⇐⇒

θ ≥ x−sj−1p∗+c
sj−sj−1

. Notice that x−sj−1p∗+c
sj−sj−1

≥ sjp
∗−c−sj−1p∗+c
sj−sj−1

= p∗, therefore as long as θ ≥ x−sj−1p∗+c
sj−sj−1

,

this customer buys technology class j−1 when she arrives and doesn’t opt out, because θ ≥ p∗ ⇐⇒

sj−1(θ − p∗) ≥ 0.

The term (
F

(
x− sj−1p

∗ + c

sj − sj−1

)
− F (p∗)

)
sj−1p

∗

is the expected revenue accumulated at time t from a customer who arrives before period sj , and

does not switch to the new technology class j at time sj , because θsj−x−c < sj−1(θ−p∗)⇐⇒ θ <

x−sj−1p∗+c
sj−sj−1

, while she buys technology class j − 1 when she arrives, because sj−1(θ − p∗) ≥ 0 ⇐⇒

θ ≥ p∗.

We record these revenue terms for all customers who arrive in each of the periods before sj , and

within the last d−1 periods before period t. There are d−min(t−sj+1, d) = max(d−(t−sj+1), 0)

such periods.

By rewriting

(
1− F

(
x− sj−1p

∗ + c

sj − sj−1

))
x+

(
F

(
x− sj−1p

∗ + c

sj − sj−1

)
− F (p∗)

)
sj−1p

∗

=
(

1− F
(
x− sj−1p

∗ + c

sj − sj−1

))
(x− sj−1p

∗) + (1− F (p∗)) sj−1p
∗,

the result in Equation (93) for j ≥ 2 follows. The result for the j ≥ 1 case follows by only taking

into account the summand in the first row of Equation (95).

The results for RevenueD(πn, πe, t) follow analogously. A similar argument shows that, for j ≥ 2,

RevenueD(πn, πe, t) = min(t− sj + 1, d)
(

1− F
(
xn
sj

))
xn

+ max(d− (t− sj + 1), 0) ·
[(

1− F
(
xe − sj−1p

∗ + c

sj − sj−1

))
xe

+
(
F

(
xe − sj−1p

∗ + c

sj − sj−1

)
− F (p∗)

)
sj−1p

∗
]
,(96)

from which the result in Equation (94) for j ≥ 2 follows. The result for the j ≥ 1 case follows by
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only taking into account the summand in the first row of Equation (96).

Theorem 4. Let introduction times s and time t be given with sj ≤ t < sj+1 for some introduction

j ≥ 1. There exists a policy π′ ∈ Π(s) that maximizes Revenue(π, t) among all policies π ∈ Π(s),

and that uses pricing xi = sip
∗ for i < j and max(sj−1p

∗, sjp
∗ − c) ≤ xj ≤ sjp

∗. Furthermore, the

price xj of this policy π′ can be determined as the maximizer x∗ of (93).

Proof. By definition, we have

Revenue(π, t) =
∫ (

xq1(π,t,θ) + xq2(π,t,θ) + . . .+ xqd(π,t,θ)
)
f(θ)dθ.

For j = 1, all the non-zero terms correspond to customers who arrived since the most recent

introduction. Therefore, by Lemma 6, the given form is optimal. Similarly, if j ≥ 2 and t ≥

sj + d − 1, then again all the non-zero terms correspond to customers who arrived since the most

recent introduction, and the given form is optimal.

Fix j ≥ 2 and take t such that sj ≤ t < sj+d−1. The essence of our proof is that our assumption

makes both the sum of terms representing revenue from customers who arrived since the most

recent introduction (i.e., terms covered by Lemma 6) and the sum of terms representing revenue

from customers who arrived before the most recent introduction (i.e., terms covered by Lemma 7)

quasiconcave. While the sum of two quasiconcave functions is not necessarily quasiconcave, for

univariate quasiconcave functions it holds that if there is an interval that contains the maxima of

both functions, then their sum is also maximized in that interval.

We begin with the terms from Lemma 7. Fix ` with t − sj + 2 ≤ ` ≤ d and consider the

term
∫
xq`(π,t,θ)f(θ)dθ. Let policy π′ have pricing xi = sip

∗ for i < j and xj = x. In the proof of

Lemma 7, we argued that the threshold θj at which customers switch to technology j solves

sjθj − xj − c = sj−1θj − xj−1, (97)

from which it follows that

θj = xj − xj−1 + c

sj − sj−1
. (98)
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We rewrite Equation (89) in the proof of Lemma 7, using (97) and (98), as follows:

∫
xq`(π′,t,θ)f(θ)dθ = (1− F (p∗)) sj−1p

∗ +
(

1− F
(
x− sj−1p

∗ + c

sj − sj−1

))
(x− sj−1p

∗), (99)

and therefore

∫  d∑
i=t−sj+2

xqi(π,t,θ)

 f(θ)dθ

= (d− (t− sj + 1)) ·
{

(1− F (p∗)) sj−1p
∗ +

(
1− F

(
x− sj−1p

∗ + c

sj − sj−1

))
(x− sj−1p

∗)
}
.

(100)

By Lemma 7, the maximizing x is at least max(sj−1p
∗, sjp

∗ − c) and at most sjp∗. Furthermore,

Assumption 2 is equivalent to the log-concavity of 1 − F (x) as a function of x, because in general

log-concavity of a function g is equivalent to g′/g being monotonically decreasing (Bagnoli and

Bergstrom, 1989, Remark 1). In turn, term
(
1− F

(
x−sj−1p∗+c
sj−sj−1

))
is log-concave as a function of

x, and so is term
(
1− F

(
x−sj−1p∗+c
sj−sj−1

))
(x − sj−1p

∗) as product of log-concave functions. Because

log-concavity implies quasiconcavity, the latter term is quasiconcave on [sj−1p
∗,∞), and so is the

entire right-hand side of (100), because a non-decreasing function of a quasiconcave function remains

quasiconcave.

We next turn to the terms covered by Lemma 6, i.e.,

∫ t−sj+1∑
i=1

xqi(π,t,θ)

 f(θ)dθ.

Note that each term
∫
xq`(π,t,θ)f(θ)dθ, with 1 ≤ ` ≤ t− sj + 1, is identical to term

∫
xq`(π,t,θ)f(θ)dθ,

with t − sj + 2 ≤ ` ≤ d, if c = 0. Our analysis above only assumed that c ≥ 0. Thus the same

analysis, mutatis mutandis, shows that the desired properties hold for the sum of those terms as

well.

Therefore both terms ∫ t−sj+1∑
i=1

xqi(π,t,θ)

 f(θ)dθ
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and ∫  d∑
i=t−sj+2

xqi(π,t,θ)

 f(θ)dθ

are quasiconcave and, by Lemma 6 and Lemma 7, have their maxima on the interval

[max(sj−1p
∗, sjp

∗ − c), sjp∗] ,

meaning their combined maximum is on this interval as well. For the final part of the theorem,

note that this means we are optimizing over policies of the form contemplated by Lemma 8.

O Details of Performance Guarantees of Myerson Pricing in the

Non-Discriminatory Pricing Setting

Before stating our approximation ratio, we first give a lemma which shows that the single period

where Myerson pricing performs worst relative to optimal pricing is one of the introduction periods.

Lemma 9. Let introduction times s and time t be given with sj ≤ t < sj+1 for some introduction

j ≥ 1. Let π∗t maximize (93) for period t, π∗j do so for period sj, and πM use Myerson pricing.

Then
Revenue(π∗t , t)
Revenue(πM , t)

≤
Revenue(π∗j , sj)
Revenue(πM , sj)

.

Similarly let π∗t,n and π∗t,e maximize (94) for period t, and π∗j,n and π∗j,e do so for period sj. Then

RevenueD(π∗t,n, π∗t,e, t)
Revenue(πM , t)

≤
RevenueD(π∗j,n, π∗j,e, sj)

Revenue(πM , sj)
.

Proof. If j = 1 or t ≥ sj + d− 1, then Myerson pricing is trivially optimal and both ratios are 1.

For j ≥ 2 and t < sj+d−1 , let x∗t be the price for the jth introduction used by policy π∗t , and x∗j
be the price for the jth introduction used by policy π∗j . For brevity, let g(x) = (1− F (p∗)) sj−1p

∗+(
1− F

(
x−sj−1p∗+c
sj−sj−1

))
(x− sj−1p

∗) and h(x) =
(
1− F

(
x
sj

))
x. Then
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Revenue(π∗t , t)
Revenue(πM , t)

= (d− (t− sj + 1))g(x∗t ) + (t− sj + 1)h(x∗t )
(d− (t− sj + 1))g(sjp∗) + (t− sj + 1)h(sjp∗)

=
d−(t−sj+1)

d−1 ((d− 1)g(x∗t ) + h(x∗t )) +
(
t− sj + 1− d−(t−sj+1)

d−1

)
h(x∗t )

d−(t−sj+1)
d−1 ((d− 1)g(sjp∗) + h(sjp∗)) +

(
t− sj + 1− d−(t−sj+1)

d−1

)
h(sjp∗)

≤ (d− 1)g(x∗t ) + h(x∗t )
(d− 1)g(sjp∗) + h(sjp∗)

= Revenue(π∗t , sj)
Revenue(πM , sj)

≤
Revenue(π∗j , sj)
Revenue(πM , sj)

The first inequality follows because the term
(
t− sj + 1− d−(t−sj+1)

d−1

)
is non-negative for sj ≤ t <

sj + d− 1, and sjp∗ optimizes h, which allows us to rewrite the ratio without the second summand

of the numerator and the denominator. The third equality follows from Lemma 8. The second

inequality follows because π∗j is defined to optimize revenue at sj .

The same argument applies, mutatis mutandis, to discriminatory pricing.

Lemma 9 allows us to focus on a special case of Equations (93) and (94), where t = sj . As our

subsequent results all focus on this special case, we give it its own notation.

Definition 5. We define

Revj(x) :=



(d− 1)
{

(1− F (p∗)) sj−1p
∗ +

(
1− F

(
x−sj−1p∗+c
sj−sj−1

))
(x− sj−1p

∗)
}

+
(
1− F

(
x
sj

))
x, j ≥ 2(

1− F
(
x
s1

))
x, j = 1.

(101)
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and

RevDj(xn, xe) :=



(d− 1)
{

(1− F (p∗)) sj−1p
∗ +

(
1− F

(
xe−sj−1p∗+c
sj−sj−1

))
(xe − sj−1p

∗)
}

+
(
1− F

(
xn
sj

))
xn, j ≥ 2(

1− F
(
xn
s1

))
xn, j = 1.

(102)

We remark that the revenue under Myerson pricing at introduction period sj is given by Equa-

tion (77) (for p = p∗) and Equation (101) (for x = sjp
∗), which are equivalent: Revenue(πM , sj) =

Revj(sjp∗), where we let πM be the policy that uses Myerson pricing and introduction times s.

We can now state a corollary making the approximation ratio precise.

Corollary 3. Let introduction times s be given. Let πM ∈ Π(s) be a policy that uses Myerson

pricing and uses introduction times s. Then, for every policy π ∈ Π(s), we have that πM is a(
maxj

Revj(x∗j )
Revj(sjp∗) , 1

)
approximation to the revenue of and cost of π respectively, where x∗j is the

value x that maximizes Revj(x). Similarly, for every pair of policies πn, πe ∈ Π(s), we have that

πM is a
(

maxj
RevDj(x∗j,n,x

∗
j,e)

Revj(sjp∗) , 1
)

approximation to the revenue of and cost of discriminatory policy

(πn, πe), where x∗j,n and x∗j,e are the values of xn and xe respectively that maximize RevDj(xn, xe).

Furthermore, denoting by π∗M the policy that is optimal among those that use Myerson pricing and

periodic introductions (after the first introduction), we have U(πM ) ≤ U(π∗M ).

Proof. Since π, πM ∈ Π(s), they have the same cost. For revenue, we can write

Revenue(π)
Revenue(πM ) ≤

∑
t δ
t maxπ∈Π(s) Revenue(π, t)∑
t δ
tRevenue(πM , t)

≤ max
t

maxπ∈Π(s) Revenue(π, t)
Revenue(πM , t)

≤ max
j

maxπ∈Π(s) Revenue(π, sj)
Revenue(πM , sj)

= max
j

Revj(x∗j )
Revj(sjp∗)

The first line follows from Observation 3, the third by Lemma 9, and the fourth by Theorem 4 and

by the observation that Revenue(πM , sj) = Revj(sjp∗). The proof for the discriminatory case is the

same, mutatis mutandis. The last part of the statement follows directly from Proposition 1.
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P Details of Bounding the Competitive Ratio of Myerson Pricing

in the Non-Discriminatory Pricing Setting

Corollary 3 implies that we can bound our approximation ratio by bounding the competitive ratio

of Rev or RevD. In the remainder of the section we provide two such bounds in terms of the

distribution F . Our first bound is directly in terms of F but worsens with increasing customer

lifetime d, while our second bound requires the derivative of F and an additional optimization to

make the bound concrete, but improves with increasing d.

Proposition 3. Let introduction number j ≥ 2 be given. Let x∗j be the value that maximizes Revj(x)

and x∗j,n = sjp
∗, x∗j,e be the values that maximize RevDj(xn, xe). It holds that

Revj(x∗j )
Revj(sjp∗)

≤
RevDj(x∗j,n, x∗j,e)

Revj(sjp∗)
≤ 1+(d− 1)(sj − sj−1)

(d− 1)sj−1 + sj
·
F
(
p∗ + c

sj−sj−1

)
−max

(
F (p∗), F

(
c

sj−sj−1

))
1− F (p∗) .

(103)

For the first introduction, we can write

Rev1(x∗1)
Rev1(sjp∗)

=
RevD1(x∗1,n, x∗1,e)

Rev1(sjp∗)
= 1.

Proof. The result for the first introduction is trivial.
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For j ≥ 2, we have

Revj(x∗j )
Revj(sjp∗)

≤
RevDj(sjp∗, x∗j,e)

Revj(sjp∗)

= 1 +
RevDj(sjp∗, x∗j,e)−Revj(sjp∗)

Revj(sjp∗)

= 1 +
(d− 1)

[(
1− F

(
x∗j,e−sj−1p∗+c

sj−sj−1

))
(x∗j,e − sj−1p

∗)−
(
1− F

(
p∗ + c

sj−sj−1

))
(sj − sj−1)p∗

]
Revj(sjp∗)

≤ 1 +
(d− 1)

(
F
(
p∗ + c

sj−sj−1

)
− F

(
x∗j,e−sj−1p∗+c

sj−sj−1

))
(sj − sj−1)p∗

Revj(sjp∗)

≤ 1 +
(d− 1)

(
F
(
p∗ + c

sj−sj−1

)
− F

(
x∗j,e−sj−1p∗+c

sj−sj−1

))
(sj − sj−1)p∗

(d− 1) (1− F (p∗)) sj−1p∗ + (1− F (p∗)) sjp∗

= 1 + (d− 1)(sj − sj−1)
(d− 1)sj−1 + sj

·
F
(
p∗ + c

sj−sj−1

)
− F

(
x∗j,e−sj−1p∗+c

sj−sj−1

)
1− F (p∗)

≤ 1 + (d− 1)(sj − sj−1)
(d− 1)sj−1 + sj

·
F
(
p∗ + c

sj−sj−1

)
− F

(
max(sj−1p∗,sjp∗−c)−sj−1p∗+c

sj−sj−1

)
1− F (p∗)

≤ 1 + (d− 1)(sj − sj−1)
(d− 1)sj−1 + sj

·
F
(
p∗ + c

sj−sj−1

)
−max

(
F (p∗), F

(
c

sj−sj−1

))
1− F (p∗) .

The first inequality follows because sjp∗ is the optimal price for new customers and we define x∗e
to be optimal for existing ones, the second equality follows from the definitions in (101) and (102),

the second inequality because x∗j,e ≤ sjp
∗ by Lemma 7, the third inequality because, by (101),

Revj(sjp∗) ≥ (d − 1) (1− F (p∗)) sj−1p
∗ + (1− F (p∗)) sjp∗, and the fourth inequality follows from

the lower bound on x∗j,e by Lemma 7.

Several remarks are in order. First, the bound of Proposition 3 deteriorates with increasing

customer lifetime d.34 Second, the right-hand side of Equation (103) can be simplified by observing

that

F
(
p∗ + c

sj−sj−1

)
−max

(
F (p∗), F

(
c

sj−sj−1

))
1− F (p∗) ≤ 1− F (p∗)

1− F (p∗) = 1.

34Formally, if we define g(d) = (d−1)(sj−sj−1)
(d−1)sj−1+sj

, we have g′(d) = sj(sj−sj−1)

((d−1)sj−1+sj)2 > 0.
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Third, the right-hand side of Equation (103) is close to 1 for large or small c. This is aligned with

intuition. For switching cost c close to zero, an existing customer is likely to behave as if she were

a new customer, and chooses her preferred quality among the available ones, thus Myerson pricing

is close to optimal. For large c, a customer is not likely to switch to a new technology, and again

Myerson pricing is close to optimal.

Fourth, for a loose upper bound, the right-hand side of Equation (103) can be bounded by

≤ 1 + (d− 1)(sj − sj−1)
sj

·
F
(
p∗ + c

sj−sj−1

)
−max

(
F (p∗), F

(
c

sj−sj−1

))
1− F (p∗)

≤ 1 + (d− 1) ·
F
(
p∗ + c

sj−sj−1

)
−max

(
F (p∗), F

(
c

sj−sj−1

))
1− F (p∗) .

Fifth, a tighter bound to the right-hand side of Equation (103) can be obtained if an upper bound

in the time difference between consecutive introductions can be assumed. For example, assuming

periodic introductions every d− 1 periods, with s0 = 0 and sj = j · (d− 1), we can write

(d− 1)(sj − sj−1)
(d− 1)sj−1 + sj

= (d− 1)2

(d− 1)(j − 1)(d− 1) + j(d− 1) = d− 1
d(j − 1) + 1 ,

which shows that Myerson pricing gets arbitrarily close to the optimal policy after sufficient intro-

ductions. Note that this is consistent with Proposition 2 and the discussion in Section L.2.

As a corollary to Proposition 3, we propose the following result, which provides an upper bound

for the competitive ratio of Myerson pricing that does not deteriorate with the customer lifetime d.

Corollary 4. Let introduction number j ≥ 2 be given. Let x∗j be the value that maximizes Revj(x)

and x∗j,n = sjp
∗, x∗j,e be the values that maximize RevDj(xn, xe). It holds that

Revj(x∗j )
Revj(sjp∗)

≤
RevDj(x∗j,n, x∗j,e)

Revj(sjp∗)
< 1 + c

d(j − 2) + 1 ·
f(p̂)

p∗f(p∗) , (104)

for some p̂ ∈
(
max

(
p∗, c

sj−sj−1

)
, p∗ + c

sj−sj−1

)
.
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Proof. If p∗ ≥ c
sj−sj−1

, we have

Revj(x∗j )
Revj(sjp∗)

≤
RevDj(x∗j,n, x∗j,e)

Revj(sjp∗)
≤ 1 + (d− 1)(sj − sj−1)

(d− 1)sj−1 + sj
·
F
(
p∗ + c

sj−sj−1

)
− F (p∗)

1− F (p∗)

= 1 + (d− 1)(sj − sj−1)
(d− 1)sj−1 + sj

· f(p̂) · c

sj − sj−1
· 1

1− F (p∗)

= 1 + c(d− 1)
(d− 1)sj−1 + sj

· f(p̂)
p∗f(p∗)

< 1 + c

d(j − 2) + 1 ·
f(p̂)

p∗f(p∗) ,

where the second line follows by the mean value theorem on function F with p̂ ∈
(
p∗, p∗ + c

sj−sj−1

)
,

the third line follows by the definition of p∗, and the fourth line is using that introductions are at

least d−1 periods apart (after the first introduction), thus sj−1 > (j−2)(d−1) and sj > (j−1)(d−1).

If p∗ < c
sj−sj−1

, then we have

Revj(x∗j )
Revj(sjp∗)

≤
RevDj(x∗j,n, x∗j,e)

Revj(sjp∗)
≤ 1 + (d− 1)(sj − sj−1)

(d− 1)sj−1 + sj
·
F
(
p∗ + c

sj−sj−1

)
− F

(
c

sj−sj−1

)
1− F (p∗)

= 1 + (d− 1)(sj − sj−1)
(d− 1)sj−1 + sj

· f(p̂) · p∗
1− F (p∗)

< 1 + (d− 1)(sj − sj−1)
(d− 1)sj−1 + sj

· f(p̂) · c

sj − sj−1
· 1

1− F (p∗)

≤ 1 + c

d(j − 2) + 1 ·
f(p̂)

p∗f(p∗) ,

where the second line follows by the mean value theorem on function F with p̂ ∈
(

c
sj−sj−1

, p∗ + c
sj−sj−1

)
,

and in the third line we have used p∗ < c
sj−sj−1

.

Putting together Corollary 3 and Proposition 3, we can state the main performance guarantee

attained by our analysis for Myerson pricing in the following theorem.35

Theorem 5. Let introduction times s be given. Let πM ∈ Π(s) be a policy that uses Myerson

pricing and uses introduction times s. Then, for every policy π ∈ Π(s), we have that πM is a

max
j≥2

1 + (d− 1)(sj − sj−1)
(d− 1)sj−1 + sj

·
F
(
p∗ + c

sj−sj−1

)
−max

(
F (p∗), F

(
c

sj−sj−1

))
1− F (p∗) , 1


35We can similarly state a performance guarantee by putting together Corollary 3 and Corollary 4.
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approximation to the revenue of and cost of π respectively. Similarly, for every pair of policies

πn, πe ∈ Π(s), we have that πM is a

max
j≥2

1 + (d− 1)(sj − sj−1)
(d− 1)sj−1 + sj

·
F
(
p∗ + c

sj−sj−1

)
−max

(
F (p∗), F

(
c

sj−sj−1

))
1− F (p∗) , 1


approximation to the revenue of and cost of discriminatory policy (πn, πe). Furthermore, denoting

by π∗M the policy that is optimal among those that use Myerson pricing and periodic introductions

(after the first introduction), we have U(πM ) ≤ U(π∗M ).

Q Numerical Illustrations for Myerson Pricing in the Non-Discriminatory

Pricing Setting

We now illustrate our results with a variety of distributions for customer type θ. We show that

our bounds for Myerson pricing from Section 6 can provide strong guarantees for natural families

of distributions. We also show numerically that in reality Myerson pricing is often some orders of

magnitude closer to optimal than our bounds suggest.

We first examine our analytical bounds for Myerson pricing from Proposition 3 and show that,

after sufficiently many introductions, they are tight not only for small and large values of the

switching cost c, but also for intermediate ones, for a variety of distributions for customer type θ.

We then run simulations and, for fixed introduction times, calculate the gain ratio of the op-

timal total revenue (estimated by a best-response updating algorithm we propose in Section Q.2),

throughout the horizon, over Myerson total revenue:

optimal revenue− Revenue(πM )
Revenue(πM ) .

We show that the gain ratio is small for a variety of distributions for customer type θ, thus showing

that Myerson pricing is near optimal in many cases. We also look at the gain ratio of the optimal

revenue for a single introduction period36, which was proposed in Theorem 4, over the Myerson
36Remember from Section 6 and in particular Observation 3 that the optimal revenue for a single introduction

period is an upper bound of the real revenue in that period under the optimal policy, having fixed introduction times.
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revenue in that introduction period, reporting the maximum gain ratio over all introductions,

max
j

Revj(x∗)− Revenue(πM , sj)
Revenue(πM , sj)

.

Finally, we also run numerical experiments for the setting with discriminatory pricing, which

separates customers depending on whether they were already existing customers at the time of the

most recent introduction. Again, we show that Myerson pricing is close to optimal.

Q.1 Examining our analytical bounds

Although the bound of Proposition 3 deteriorates with the length d of customer lifetime, we show

that it is a meaningful upper bound after sufficiently many introductions, even for quite a long

customer lifetime. Figure 6 shows the upper bound on the gain ratio Revj(x∗j )−Revj(sjp∗)
Revj(sjp∗) from Propo-

sition 3, which is

(d− 1)(sj − sj−1)
(d− 1)sj−1 + sj

·
F
(
p∗ + c

sj−sj−1

)
−max

(
F (p∗), F

(
c

sj−sj−1

))
1− F (p∗) ,

against the switching cost c, for customer lifetime d = 14. We show the upper bound for the

uniform distribution on [0, 1], the beta distribution (p.d.f. f(x) = Γ(α+β)
Γ(α)Γ(β)x

α−1(1 − x)β−1) with

shape parameters α = β = 2, and the gamma distribution (p.d.f. f(x) = 1
Γ(k)θkx

k−1e−
x
θ ) with

shape parameter k = 2 and scale parameter θ = 0.25. The figure illustrates that Myerson pricing is

close to optimal for large or small switching costs, while it raises the possibility that there is room

for substantial improvement over the Myerson pricing for intermediate switching costs.37

We also note that, rather than applying the general bound from Proposition 3, we can directly

calculate the left-hand side of Equation (103) in Proposition 3, and subtract 1 to recover the gain

ratio Revj(x∗j )−Revj(sjp∗)
Revj(sjp∗) . Figure 7 plots the gain ratio for customer lifetime d = 14, for the uniform

distribution on [0, 1], the beta distribution with shape parameters α = β = 2, and the gamma

distribution with shape parameter k = 2 and scale parameter θ = 0.25. As explained before,

the optimal revenue for a single introduction period is an upper bound on the real revenue in
37We note that it is also possible to derive bounds for specific distributions from first principles. For example, we

can derive a bound of (d− 1)2/(2d) for the case of the uniform distribution on [0, 1].
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Figure 6: The right-hand side of Equation (103) in Proposition 3, reduced by 1, against the switching
cost c, for customer lifetime d = 14, for selected pairs of introduction times sj−1, sj , for the uniform
distribution on [0, 1], the beta distribution with shape parameters α = β = 2, and the gamma
distribution with shape parameter k = 2 and scale parameter θ = 0.25. The right subfigure zooms
in, plotting the upper bound for the same introduction times as the left subfigure except for the
early introduction times.

that period under the optimal pricing policy, and therefore the gain ratio Revj(x∗j )−Revj(sjp∗)
Revj(sjp∗) is an

upper bound to the gain ratio in that period under the optimal pricing policy for the real problem.

The gains over Myerson pricing are less than 25% after sufficiently many introductions, even for

intermediate switching costs — a bound substantially tighter than the one given by the right-hand

side of Equation (103) in Proposition 3. We note that this bound is calculated using quite a long38

customer lifetime d = 14, and that the gain ratio bound is smaller for shorter customer lifetimes.

We can apply this approach to the exponential distribution to show that, for that distribution,

Myerson pricing is in fact optimal. This can be verified by observing that Rev′j(sjp∗) = 0.

Q.2 Numerical experiments

We now turn from analyzing a single introduction time in isolation to analyzing a full policy. To

do so, we run 100 simulations for each combination of distribution f , customer lifetime d, switching

cost c, and discount rate δ. In each simulation, a set of 50 introduction times is randomly generated,
38Remember that one period in our model corresponds in practice to the time interval after which the provider

would revisit the decision of launching a new technology class or not.

109



0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

One-period gain ratio, d=14

c

G
ai

n 
ra

tio

Unif(0,1), sj−1=1,  sj=14
Beta(2,2), sj−1=1,  sj=14
Gamma(2,0.25), sj−1=1, sj=14
Unif(0,1), sj−1=11,  sj=24
Beta(2,2), sj−1=11,  sj=24
Gamma(2,0.25), sj−1=11, sj=24
Unif(0,1), sj−1=31,  sj=44
Beta(2,2), sj−1=31,  sj=44
Gamma(2,0.25), sj−1=31, sj=44
Unif(0,1), sj−1=51,  sj=64
Beta(2,2), sj−1=51,  sj=64
Gamma(2,0.25), sj−1=51, sj=64

0 2 4 6 8 10

0.
00

0.
05

0.
10

0.
15

0.
20

One-period gain ratio, d=14

c

G
ai

n 
ra

tio

Unif(0,1), sj−1=11,  sj=24
Beta(2,2), sj−1=11,  sj=24
Gamma(2,0.25), sj−1=11, sj=24
Unif(0,1), sj−1=31,  sj=44
Beta(2,2), sj−1=31,  sj=44
Gamma(2,0.25), sj−1=31, sj=44
Unif(0,1), sj−1=51,  sj=64
Beta(2,2), sj−1=51,  sj=64
Gamma(2,0.25), sj−1=51, sj=64

Figure 7: The left-hand side of Equation (103) in Proposition 3, reduced by 1, against the switching
cost c, for customer lifetime d = 14, for selected pairs of introduction times sj−1, sj , for the uniform
distribution on [0, 1], the beta distribution with shape parameters α = β = 2, and the gamma
distribution with shape parameter k = 2 and scale parameter θ = 0.25. The right subfigure zooms
in, plotting the gain ratio for the same introduction times as the left subfigure except for the early
introduction times.

with introductions up to 15 periods apart.

We calculate the optimal pricing given the set of introduction times using the following best-

response updating algorithm: initialize prices, then optimize the price of each introduction given

the prices for the preceding and the subsequent introduction in the previous iteration, and proceed

through all the introductions (looping back to the first introduction after the last introduction has

been optimized). Stop when no introduction can have an improvement ratio above 10−30. Because

of the arguments in Rosen (1965), there is a unique revenue maximizing price vector, and if our

proposed updating algorithm converges (which it always did), it converges to the unique optimal

pricing.

Figure 8 plots the average of the gain ratio of the optimal total revenue over Myerson total

revenue,
optimal revenue− Revenue(πM )

Revenue(πM ) ,

over 100 simulations, against the switching cost c, for different values of the customer lifetime d and

the discount rate δ, for the uniform distribution on [0, 1].
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Figure 8: The average of the gain ratio of optimal total revenue over Myerson total revenue, over 100
simulations, against the switching cost c, for customer lifetime d = 2, 6, 10, 14, and for discount rate
δ = 0.1, 0.3, 0.5, 0.7, 0.9, for the uniform distribution on [0, 1]. The whiskers indicate the minimum
and maximum gain ratio over 100 simulations for each setting.

Holding the switching cost c constant, the higher the δ, the larger the gain ratio of the optimal

total revenue over the Myerson total revenue. The near-optimality of Myerson pricing, that is, is

more pronounced as the provider becomes less patient. Note that these are ratios and that the

absolute gain is small for small δ.

Holding the discount rate δ fixed, for switching cost c close to zero, an existing customer is likely

to behave as if she were a new customer, and chooses her preferred quality among the available ones,
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Figure 9: The average of the gain ratio of optimal total revenue over Myerson total revenue, over
100 simulations, against the switching cost c for customer lifetime d = 2, 6, 10, 14, for discount rate
δ = 0.9, for the uniform distribution on [0, 1]. The whiskers indicate the minimum and maximum
gain ratio over 100 simulations for each setting.

thus Myerson pricing is close to optimal. For large c, a customer is not likely to switch to a new

technology, and again Myerson pricing is close to optimal. Therefore, the gain ratio of the optimal

total revenue over the Myerson total revenue becomes smaller as the switching cost becomes very

large or very small.

Figure 9 shows that the gain ratio of the optimal total revenue over the Myerson total revenue

increases with higher customer lifetime d, yet stays small even for quite long customer lifetimes,

and even for intermediate switching costs. We note that the gain ratio is in the order of 0.01 for

d = 14 in the worst case for the switching cost.

We also look at the full histogram of the total revenue gain ratio over 100 simulations for different

values of d, c and δ, along with the histogram of the gain ratio of the optimal revenue for a single

introduction period over the Myerson revenue in that period, for the introduction that attains the

maximum gain ratio, maxj
Revj(x∗

j )−Revenue(πM ,sj)
Revenue(πM ,sj) , over 100 simulations. In Figure 10 we show

the histograms for a reasonably high value for the customer lifetime d, and we note that the gain

ratio values are smaller for shorter customer lifetimes. Figure 10 shows the effect of varying the

112



• • •

• •

Figure 10: Histograms of the gain ratio of optimal total revenue over Myerson total revenue, over
100 simulations, for the uniform distribution on [0, 1], for customer lifetime d = 14, switching cost
c = 0.5, and discount rate δ = 0.1, 0.3, 0.5, 0.7, 0.9. Also, a histogram of the gain ratio of the optimal
revenue for a single introduction period over Myerson revenue, for the introduction that attains the
maximum gain ratio, over 100 simulations.

discount rate δ in detail. The overall trend is consistent with the averages, so the main additional

takeaway from the full histogram is that in most instances Myerson pricing is essentially optimal.

The histogram of the gain ratio of the optimal revenue for a single introduction period shows that

this relaxation is often loose by an order of magnitude or more. We note that our worst case

analytical bounds for the uniform distribution on [0, 1] are loose even relative to this relaxation.

Figure 11 shows again that in most instances Myerson pricing is essentially optimal, if instead we

vary the switching cost c.

Figures 12 and 13 show experiments for the beta distribution, while Figures 14 and 15 show

experiments for the gamma distribution. The results for the beta and gamma distributions are

consistent with our results for the uniform distribution.

We present experiments for the discriminatory setting in Appendix R. Both in the non-discriminatory
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Figure 11: Histograms of the gain ratio of optimal total revenue over Myerson total revenue, over
100 simulations, for the uniform distribution on [0, 1], for customer lifetime d = 14, discount rate
δ = 0.5, and for switching cost c = 0.1, 0.5, 2, 4, 6, 8.

and in the discriminatory setting, the experiments show that the gain ratio of optimal total rev-

enue over Myerson total revenue is several orders of magnitude smaller than our theoretical bounds

suggest.

R Numerical Experiments for Myerson Pricing in the Discrimina-

tory Pricing Setting

We focus on the total revenue under a discriminatory strategy that offers separate prices to cus-

tomers, depending on whether they were already existing customers at the time of the most recent

introduction. In particular, at time t such that sj ≤ t < sj+1 for some introduction j ≥ 1, the

provider offers technology class j at price xj,n to customers who arrived at time sj or after, and at

price xj,e to customers who arrived before time sj . As argued in Appendix N, the optimal revenue

in this discriminatory setting is an upper bound of the optimal revenue in the non-discriminatory
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Figure 12: The average of the gain ratio of optimal total revenue over Myerson total revenue, over
100 simulations, against the switching cost c, for customer lifetime d = 2, 6, 10, 14, and for discount
rate δ = 0.1, 0.3, 0.5, 0.7, 0.9, for the beta distribution with shape parameters α = β = 2. The
whiskers indicate the minimum and maximum gain ratio over 100 simulations for each setting.

setting.

Before presenting numerical experiments for the setting with discriminatory pricing, we first

look at the corresponding revenue optimization problem. Fix introduction times s0 = 0, s1, . . . and
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Figure 13: The average of the gain ratio of optimal total revenue over Myerson total revenue, over
100 simulations, against the switching cost c for customer lifetime d = 2, 6, 10, 14, for discount rate
δ = 0.9, for the beta distribution with shape parameters α = β = 2. The whiskers indicate the
minimum and maximum gain ratio over 100 simulations for each setting.

introduction index j. We write down all the terms of total revenue that include xj,n or xj+1,e:

sj+1−1∑
t=sj

δt · min(t − sj + 1, d)
(

1 − F

(
xj,n

sj

))
· xj,n

+
sj+2−1∑
t=sj+1

δt · max(d − (t − sj+1 + 1), 0)
{(

1 − F

(
max

(
xj+1,e − xj,n + c

sj+1 − sj
,
xj,n

sj

)))
· xj+1,e

+
(

F

(
xj+1,e − xj,n + c

sj+1 − sj

)
− F

(
xj,n

sj

))
· xj,n · 1xj,n

sj
≤ xj+1,e−xj,n+c

sj+1−sj

}
,

(105)

where the first summand is the revenue accumulated in periods sj , . . . , sj+1 − 1 from customers

who arrive at or after period sj and buy technology class j, and the second summad is the revenue

accumulated in periods sj+1, . . . , sj+2 − 1 from customers who arrive before period sj+1. In the

second summand, the first term inside the curly brackets is the revenue from customers who switch

to technology class j +1 in period sj+1, and the second term inside the curly brackets is the revenue

from customers who do not switch to technology class j + 1 in period sj+1.
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Figure 14: The average of the gain ratio of optimal total revenue over Myerson total revenue,
over 100 simulations, against the switching cost c, for customer lifetime d = 2, 6, 10, 14, and for
discount rate δ = 0.1, 0.3, 0.5, 0.7, 0.9, for the gamma distribution with shape parameter k = 2 and
scale parameter θ = 0.25. The whiskers indicate the minimum and maximum gain ratio over 100
simulations for each setting.

Assuming xj,n

sj
≤ xj+1,e−xj,n+c

sj+1−sj
, the second summand of (105) can be rewritten as

sj+2−1∑
t=sj+1

δt·max(d−(t−sj+1+1), 0)
{(

1 − F

(
xj,n

sj

))
· xj,n +

(
1 − F

(
xj+1,e − xj,n + c

sj+1 − sj

))
· (xj+1,e − xj,n)

}
.

(106)
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Figure 15: The average of the gain ratio of optimal total revenue over Myerson total revenue, over
100 simulations, against the switching cost c for customer lifetime d = 2, 6, 10, 14, for discount rate
δ = 0.9, for the gamma distribution with shape parameter k = 2 and scale parameter θ = 0.25. The
whiskers indicate the minimum and maximum gain ratio over 100 simulations for each setting.

Notice that the Myerson pricing xj,n = sjp∗ optimizes the first summand of (105), as well as

the first term inside the curly brackets in (106). So overall, an optimal setting for the total revenue

in the discriminatory setting is to set xj,n to the Myerson pricing, and then optimize the term(
1 − F

(
xj+1,e−xj,n+c

sj+1−sj

))
· (xj+1,e − xj,n) over xj+1,e. This matches exactly the prices xj,n, xj+1,e

that would be set by optimizing RevDj and RevDj+1 in (102). Therefore, optimizing the total

revenue throughout the horizon in the discriminatory setting can be conveniently decomposed into

optimizing the revenue RevDj per introduction period, for all introductions j.

Numerical experiments. Figure 16 plots the average of the gain ratio of the optimal total

revenue over Myerson total revenue,

optimal discriminatory revenue − Revenue(πM )
Revenue(πM )

,

against the switching cost c, for different values of the customer lifetime d and the discount rate δ,

for the uniform distribution on [0, 1]. The same patterns are observed as in the non-discriminatory
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Figure 16: The average of the gain ratio of optimal total revenue in the discriminatory setting over
Myerson total revenue, over 100 simulations, against the switching cost c, for customer lifetime
d = 2, 6, 10, 14, and for discount rate δ = 0.1, 0.3, 0.5, 0.7, 0.9, for the uniform distribution on [0, 1].
The whiskers indicate the minimum and maximum gain ratio over 100 simulations for each setting.

setting, with the difference that the values of the gain ratio are now generally larger by one order

of magnitude or more.

Figure 17 shows that the gain ratio of the optimal total revenue over the Myerson total revenue

increases with higher customer lifetime d, yet stays small even for quite long customer lifetimes,

and even for intermediate switching costs. We note that the gain ratio is less than 0.1 for d = 14 in

the worst case for the switching cost.
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Figure 17: The average of the gain ratio of optimal total revenue in the discriminatory setting
over Myerson total revenue, over 100 simulations, against the switching cost c for customer lifetime
d = 2, 6, 10, 14, for discount rate δ = 0.9, for the uniform distribution on [0, 1]. The whiskers
indicate the minimum and maximum gain ratio over 100 simulations for each setting.

We again also look at the full histogram of the total revenue gain ratio in the discriminatory

setting over 100 simulations for different values of d, c and δ, along with the histogram of the gain

ratio of the optimal revenue for a single introduction period over the Myerson revenue in that period,

for the introduction that attains the maximum gain ratio, maxj
RevDj(sjp∗,x∗

e)−Revenue(πM ,sj)
Revenue(πM ,sj) , in the

discriminatory setting, over 100 simulations. In Figure 18 we show the histograms for a reasonably

high value for the customer lifetime d, and we note that the gain ratio values for lower values

of d are smaller. Figure 18 shows the effect of varying the discount rate δ in detail. Similarly

to the non-discriminatory setting, the overall trend is consistent with the averages, so the main

additional takeaway from the full histogram is that in most instances Myerson pricing is essentially

optimal. Notice that the values of the gain ratio as indicated in the histograms are larger in the

discriminatory setting than in the non-discriminatory setting. Figure 19 shows again that in most

instances Myerson pricing is essentially optimal, if instead we vary the switching cost c.

Figures 20 and 21 show experiments for the beta distribution, while Figures 22 and 23 show

experiments for the gamma distribution, in the discriminatory setting. The results are consistent
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Figure 18: Histograms of the gain ratio of optimal total revenue over Myerson total revenue in
the discriminatory setting, over 100 simulations, for the uniform distribution on [0, 1], for customer
lifetime d = 14, switching cost c = 0.5, and for discount rate δ = 0.1, 0.3, 0.5, 0.7, 0.9. Also, a
histogram of the gain ratio of the optimal revenue for a single introduction period over Myerson
revenue, for the introduction that attains the maximum gain ratio, in the discriminatory setting,
over 100 simulations.

with our results for the uniform distribution, and the values of the gain ratio in the discriminatory

setting are again larger than the values of the gain ratio in the non-discriminatory setting, but still

small in absolute terms.
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Figure 19: Histograms of the gain ratio of optimal total revenue over Myerson total revenue in
the discriminatory setting, over 100 simulations, for the uniform distribution on [0, 1], for customer
lifetime d = 14, discount rate δ = 0.5, and for switching cost c = 0.1, 0.5, 2, 4, 6, 8.
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Figure 20: The average of the gain ratio of optimal total revenue in the discriminatory setting over
Myerson total revenue, over 100 simulations, against the switching cost c, for customer lifetime
d = 2, 6, 10, 14, and for discount rate δ = 0.1, 0.3, 0.5, 0.7, 0.9, for the beta distribution with shape
parameters α = β = 2. The whiskers indicate the minimum and maximum gain ratio over 100
simulations for each setting.

123



•

•

•

•

•

•
•

•

•

•

Figure 21: The average of the gain ratio of optimal total revenue in the discriminatory setting
over Myerson total revenue, over 100 simulations, against the switching cost c for customer lifetime
d = 2, 6, 10, 14, for discount rate δ = 0.9, for the beta distribution with shape parameters α = β = 2.
The whiskers indicate the minimum and maximum gain ratio over 100 simulations for each setting.
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Figure 22: The average of the gain ratio of optimal total revenue in the discriminatory setting
over Myerson total revenue, over 100 simulations, against the switching cost c, for customer lifetime
d = 2, 6, 10, 14, and for discount rate δ = 0.1, 0.3, 0.5, 0.7, 0.9, for the gamma distribution with shape
parameter k = 2 and scale parameter θ = 0.25. The whiskers indicate the minimum and maximum
gain ratio over 100 simulations for each setting.
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Figure 23: The average of the gain ratio of optimal total revenue in the discriminatory setting
over Myerson total revenue, over 100 simulations, against the switching cost c for customer lifetime
d = 2, 6, 10, 14, for discount rate δ = 0.9, for the gamma distribution with shape parameter k = 2
and scale parameter θ = 0.25. The whiskers indicate the minimum and maximum gain ratio over
100 simulations for each setting.
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