Fast Computation of Zigzag Persistence

Tamal K. Dey &
Department of Computer Science, Purdue University, West Lafayette, IN, USA

Tao Hou &
School of Computing, DePaul University, Chicago, IL, USA

—— Abstract

Zigzag persistence is a powerful extension of the standard persistence which allows deletions of

simplices besides insertions. However, computing zigzag persistence usually takes considerably more
time than the standard persistence. We propose an algorithm called FASTZ1GZAG which narrows
this efficiency gap. Our main result is that an input simplex-wise zigzag filtration can be converted
to a cell-wise non-zigzag filtration of a A-complex with the same length, where the cells are copies
of the input simplices. This conversion step in FASTZIGZAG incurs very little cost. Furthermore, the
barcode of the original filtration can be easily read from the barcode of the new cell-wise filtration
because the conversion embodies a series of diamond switches known in topological data analysis.
This seemingly simple observation opens up the vast possibilities for improving the computation
of zigzag persistence because any efficient algorithm/software for standard persistence can now be
applied to computing zigzag persistence. Our experiment shows that this indeed achieves substantial
performance gain over the existing state-of-the-art softwares.

2012 ACM Subject Classification Theory of computation — Computational geometry; Mathematics
of computing — Algebraic topology

Keywords and phrases zigzag persistence, persistent homology, fast computation
Digital Object Identifier 10.4230/LIPIcs.ESA.2022.43
Supplementary Material Software (Source Code): https://github.com/taohou0l/fzz

Funding This research is partially supported by NSF grant CCF 2049010.

Acknowledgements We thank the Stanford Computer Graphics Laboratory and Ryan Holmes for
providing the triangular meshes used in the experiment of this paper.

1 Introduction

Standard persistent homology defined over a growing sequence of simplicial complexes is
a fundamental tool in topological data analysis (TDA). Since the advent of persistence
algorithm [18] and its algebraic understanding [30], various extensions of the basic concept
have been explored [6, 8, 12, 13]. Among these extensions, zigzag persistence introduced by
Carlsson and de Silva [6] is an important one. It empowered TDA to deal with filtrations where
both insertion and deletion of simplices are allowed. In practice, allowing deletion of simplices
does make the topological tool more powerful. For example, in dynamic networks [15, 21] a
sequence of graphs may not grow monotonically but can also shrink due to disappearance of
vertex connections. Furthermore, zigzag persistence seems to be naturally connected with
the computations involving multiparameter persistence, see e.g. [16, 17].

Zigzag persistence possesses some key differences from standard persistence. For example,
unlike standard (non-zigzag) modules which decompose into only finite and infinite intervals,
zigzag modules decompose into four types of intervals (see Definition 2). Existing algorithms
for computing zigzag persistence from a zigzag filtration [8, 22, 23, 24] are all based on
maintaining explicitly or implicitly a consistent basis throughout the filtration. This makes
these algorithms for zigzag persistence more involved and hence slower in practice than

© Tamal K. Dey and Tao Hou;
37 licensed under Creative Commons License CC-BY 4.0

30th Annual European Symposium on Algorithms (ESA 2022).
Editors: Shiri Chechik, Gonzalo Navarro, Eva Rotenberg, and Grzegorz Herman; Article No. 43; pp. 43:1-43:15

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


mailto:tamaldey@purdue.edu
mailto:taohou01@gmail.com
https://doi.org/10.4230/LIPIcs.ESA.2022.43
https://github.com/taohou01/fzz
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

43:2

Fast Computation of Zigzag Persistence

algorithms for the non-zigzag version though they have the same time complexity [25]. We
sidestep the bottleneck of maintaining an explicit basis and propose an algorithm called
FASTZ1GZAG, which converts the input zigzag filtration to a non-zigzag filtration with an
efficient strategy for mapping barcodes of the two bijectively. Then, we can apply any efficient
algorithm for standard persistence on the resulting non-zigzag filtration to compute the
barcode of the original filtration. Considering the abundance of optimizations [2, 3, 4, 5, 10, 11]
of standard persistence algorithms and a recent GPU acceleration [29], the conversion in
FASTZI1GZAG enables zigzag persistence computation to take advantage of any existing or
future improvements on standard persistence computation. Our implementation, which uses
the PHAT [4] software for computing standard persistence, shows substantial performance
gain over existing state-of-the-art softwares [26, 28] for computing zigzag persistence (see
Section 3.5). We make our software publicly available through: https://github.com/
taohou01/fzz.

To elaborate on the strategy of FASTZIGZAG, we first observe a special type of zigzag
filtrations called non-repetitive zigzag filtrations in which a simplex (or more generally, a
cell) is never added again once deleted. Such a filtration admits an up-down filtration as its
canonical form that can be obtained by a series of diamond switches [6, 7, 8]. The up-down
filtration can be further converted into a non-zigzag filtration again using diamond switches
as in the Mayer-Vietoris pyramid presented in [8]. Individual switches are atomic tools that
help us to show equivalence of barcodes, but we do not need to actually execute them in
computation. Instead, we go straight to the final form of the filtration quite easily and
efficiently. Finally, we observe that any zigzag filtration can be treated as a non-repetitive
cell-wise filtration of a A-complez [20] consisting of multisets of input simplices. This means
that each repeatedly added simplex is treated as a different cell in the A-complex, so that we
can apply our findings for non-repetitive filtrations to arbitrary filtrations. The conversions
described above are detailed in Section 3.

1.1 Related works

Zigzag persistence is essentially an A, -type quiver [14] in mathematics which is first introduced
to the TDA community by Carlsson and de Silva [6]. In their paper [6], Carlsson and de
Silva also study the Mayer-Vietoris diamond used in this paper and propose an algorithm
for computing zigzag barcodes from zigzag modules (i.e., an input is a sequence of vector
spaces connected by linear maps encoded as matrices). Carlsson et al. [8] then propose an
O(mn?) algorithm for computing zigzag barcodes from zigzag filtrations using a structure
called right filtration. In their paper [8], Carlsson et al. also extend the classical sublevelset
filtrations for functions on topological spaces by proposing levelset zigzag filtrations and show
the equivalence of levelset zigzag with the extended persistence proposed by Cohen-Steiner
et al. [12]. Maria and Outdot [22, 23] propose an alternative algorithm for computing zigzag
barcodes by attaching a reversed standard filtration to the end of the partial zigzag filtration
being scanned. Their algorithm maintains the barcode over the Surjective and Transposition
Diamond on the constructed zigzag filtration [22, 23]. Maria and Schreiber [24] propose
a Morse reduction preprocessing for zigzag filtrations which speeds up the zigzag barcode
computation. Carlsson et al. [9] discuss some matrix factorization techniques for computing
zigzag barcodes from zigzag modules, which, combined with a divide-and-conquer strategy,
lead to a parallel algorithm for computing zigzag persistence. Almost all algorithms reviewed
so far have a cubic time complexity. Milosavljevié et al. [25] establish an O(m*) theoretical
complexity for computing zigzag persistence from filtrations, where w < 2.37286 is the matrix
multiplication exponent [1]. Recently, Dey and Hou [15] propose near-linear algorithms for
computing zigzag persistence from the special cases of graph filtrations, with the help of
representatives defined for the intervals and some dynamic graph data structures.


https://github.com/taohou01/fzz
https://github.com/taohou01/fzz

T.K. Dey and T. Hou

(a) (b) (c) (d)

Figure 1 Examples of A-complexes with two triangles sharing 0, 1, 2, or 3 edges on their
boundaries.

2 Preliminaries

A-complex. In this paper, we build filtrations on A-complexes which are extensions of
simplicial complexes described in Hatcher [20]. These A-complexes are derived from a set of
standard simplices by identifying the boundary of each simplex with other simplices while
preserving the vertex orders. For distinction, building blocks of A-complexes (i.e., standard
simplices) are called cells. Motivated by a construction from the input simplicial complex
described in Algorithm 3.1, we use a more restricted version of A-complexes, where boundary
cells of each p-cell are identified with distinct (p — 1)-cells. Notice that this makes each
p-cell combinatorially equivalent to a p-simplex. Hence, the difference of the A-complexes in
this paper from the standard simplicial complexes is that common faces of two cells in the
A-complexes can have more relaxed forms. For example, in Figure 1, two “triangles” (2-cells)
in a A-complex having the same set of vertices can either share 0, 1, 2, or 3 edges in their
boundaries; note that the two triangles in Figure 1d form a 2-cycle.

Formally, we define A-complexes recursively similar to the classical definition of C'W-
complezes [20] though it need not be as general; see Hatcher’s book [20] for a more general
definition. Note that simplicial complexes are trivially A-complexes and therefore most
definitions in this section target A-complexes.

» Definition 1. A A-complex is defined recursively with dimension:

1. A 0-dimensional A-complex K° is a set of points, each called a 0-cell.

2. A p-dimensional A-complez KP, p > 1, is a quotient space of a (p — 1)-dimensional
A-complex KP~1 along with several standard p-simplices. The quotienting is realized by
an attaching map h : O(c) — KP~1 which identifies the boundary O(c) of each p-simplex o
with points in KP~! so that h is a homeomorphism onto its image. We term the standard
p-simplex o with boundary identified to KP~! as a p-cell in KP. Furthermore, we have
that the restriction of h to each proper face of o is a homeomorphism onto a cell in KP~!,

Notice that the original (more general) A-complexes [20] require specifying vertex orders
when identifying the cells. However, the restricted A-complexes defined above do not require
specifying such orders because we always identify the boundaries of cells by homeomorphisms
and hence the vertex orders for identification are implicitly derived from a vertex order of a
seeding cell.

Homology. Homology in this paper is defined on A-complexes, which is defined similarly
as for simplicial complexes [20]. All homology groups are taken with Zs-coefficients and
therefore vector spaces mentioned in this paper are also over Zo.

43:3

ESA 2022



43:4

Fast Computation of Zigzag Persistence

Zigzag filtration and barcode. A zigzag filtration (or simply filtration) is a sequence of
A-complexes

F Ky Ky - Ky,

in which each K; <> K;;1 is either a forward inclusion K; < K11 or a backward inclusion
K; < K;1. For computational purposes, we only consider cell-wise filtrations in this paper,
i.e., each inclusion K; <+ K;41 is an addition or deletion of a single cell; such an inclusion is
sometimes denoted as K; <>+ K, with ¢ indicating the cell being added or deleted.

We call F as non-repetitive if whenever a cell o is deleted from F, the cell o is never added
again. We call F an up-down filtration [8] if F can be separated into two parts such that
the first part contains only forward inclusions and the second part contains only backward
ones, i.e., F is of the form F : Ky — Ky — -+ — Ky <> Kyyq < -+ <= K. Usually in
this paper, filtrations start and end with empty complexes, e.g., Kg = K,,, = @ in F.

Applying the p-th homology functor on F induces a zigzag module:

Hp(F) : Hy(Ko) <> Hp(Ky) <> -+ <> Hp(Kp),

in which each H,(K;) <> H,(K;+1) is a linear map induced by inclusion. It is known [6, 19]
that H,(F) has a decomposition of the form H,(F) ~ @keAI[bk’dk], in which each Zx-d]
is a special type of zigzag module called interval module over the interval [by,dy]. The
(multi-)set of intervals denoted as Pers,(F) := {[bx,ds]| k € A} is an invariant of F and is
called the p-th barcode of F. Each interval in Pers,(F) is called a p-th persistence interval
and is also said to be in dimension p. Frequently in this paper, we consider the barcode of F
in all dimensions Pers, (F) := | ] - Pers,(F).

» Definition 2 (Open and closed birth/death). For a zigzag filtration F : @ = Ky > K1 <
- Ky = @, the start of any interval in Pers,(F) is called a birth index in F and the
end of any interval is called a death index. Moreover, a birth index b is said to be closed
if Kp—1 — Ky is a forward inclusion; otherwise, b is open. Symmetrically, a death indez
d is said to be closed if K4 < Kgy1 is a backward inclusion; otherwise, d is open. The
types of the birth/death ends classify intervals in Pers,(F) into four types: closed-closed,
closed-open, open-closed, and open-open.

» Remark 3. If F is a levelset zigzag filtration [8], then the open and closed ends defined
above are the same as for levelset zigzag.

» Remark 4. An inclusion K; <> K;y1 in a cell-wise filtration either provides i + 1 as a birth
index or provides i as a death index (but cannot provide both).

Mayer-Vietoris diamond. The algorithm in this paper draws upon the Mayer-Vietoris
diamond proposed by Carlsson and de Silva [6] (see also [7, 8]), which relates barcodes of
two filtrations differing by a local change:

» Definition 5 (Mayer-Vietoris diamond [6]). Two cell-wise filtrations F and F' are related
by a Mayer-Vietoris diamond if they are of the following forms (where o # T):

T oy Ki -
</’ \
KO<_>"'<_>KJ'*1 Y KJ+1<—><—>Km (1)
\ /
F' Kj



T.K. Dey and T. Hou

In the above diagram, F and F' differ only in the complexes at index j and F' is derived
from F by switching the addition of o and deletion of T. We also say that F' is derived from
F by an outward switch and F is derived from F' by an inward switch.

» Remark 6. In Equation (1), we only provide a specific form of Mayer-Vietoris diamond
which is sufficient for our purposes; see [6, 8] for a more general form. According to [6],
the diamond in Equation (1) is a Mayer-Vietoris diamond because K; = K;_1 U K1 and
KJ/ = Kjfl N KjJrl.

We then have the following fact:
» Theorem 7 (Diamond Principle [6]). Given two cell-wise filtrations F,F' related by a

Magyer-Vietoris diamond as in Equation (1), there is a bijection from Pers,(F) to Pers,(F’)
as follows:

Pers..(F) Pers. (F')
b,j—1];b<j—1 — b, 4]

[b,jl;b<j—1 = (b — 1]

[, dl; d =5 +1 = [+ 1,d
+ld;d=j+1 — [jd

[7,7] of dimension p  —  [4, 7] of dimension p — 1
[b,d]; all other cases +— [b,d]

Note that the bijection preserves the dimension of the intervals except for [j, 7]
» Remark 8. In the above bijection, only an interval containing some but not all of {j —

1,4,7 4+ 1} maps to a different interval or different dimension.

3 FAsTZiGzAG algorithm

In this section, we show that computing barcodes for an arbitrary zigzag filtration of simplicial
complexes can be reduced to computing barcodes for a certain non-zigzag filtration of A-
complexes. The resulting algorithm called FASTZIGZAG is more efficient considering that
standard (non-zigzag) persistence admits faster algorithms [2, 3, 4, 5, 10, 11, 29] in practice.
We confirm the efficiency with experiments in Section 3.5.

3.1 Overview

Given a simplex-wise zigzag filtration

F:io=Ko+Zs K1 <% .. . ¢ K, =@

of simplicial complexes as input, the FASTZ1GZAG algorithm has the following main procedure:

1. Convert F into a non-repetitive zigzag filtration of A-complexes.

2. Convert the non-repetitive filtration to an up-down filtration.

3. Convert the up-down filtration to a non-zigzag filtration with the help of an extended
persistence filtration.

4. Compute the standard persistence barcode, which is then converted to the barcode for
the input filtration based on rules given in Proposition 15 and 19.

43:5

ESA 2022



43:6

Fast Computation of Zigzag Persistence

C1

Figure 2 The A-complex resulting from performing an inward switch around K for the example
shown in Figure 5.

Step 1 is achieved by simply treating each repeatedly added simplex in F as a new cell
in the converted filtration (see also [25]). Throughout the section, we denote the converted
non-repetitive, cell-wise filtration as

Fio=Ko<Zs K1 <2 .. ¢ K, = 0.

Notice that each K; in F is homeomorphic to K; in F, and hence Pers, (F) = Pers, (F).
However, we get an important difference between F and F by treating the simplicial complexes
as A-complexes. For example, in Figure 5 presented later in this section, the first addition
of edge ¢ in F corresponds to a cell ¢y in F and its second addition in F corresponds to a
cell ¢;. Performing an inward switch around K, (switching <2 and Lil—>) turns K4 into a
A-complex as shown in Figure 2. However, we cannot perform such a switch in F which
consists of simplicial complexes, because diamond switches require the switched simplices or
cells to be different (see Definition 5).

In Section 3.2 and 3.3, we provide details for Step 2 and 3 as well as propositions for
converting barcodes mentioned in Step 4. We summarize the filtration converting process in
Section 3.4 by providing pseudocodes (Algorithm 3.1) and examples (Figure 5 and 6).

3.2 Conversion to up-down filtration

» Proposition 9. For the filtration .7:", there is a cell-wise up-down filtration
U: D=Ly —L)— - =L, L1424 Loy =0
derived from F by a sequence of inward switches. Note that m = 2n

Proof. Let K; P Ki+1 be the first deletion in F and Kj LN Kj+1 be the first addition
after that. That is, F is of the form

Git1 Gj—2 A Gj—1 A

PPN ~ &i A ~ Gi A
.FZKo‘%"';)Ki(—’KiJrl R ’Kjfl ’KJ‘—])KJJrlHHKm

. ~ . oy A A . 6’ j—1 6- j . .
Since F is non-repetitive, we have 6;_1 # ;. So we can switch " and — (which is
an inward switch) to derive a filtration

A, A G; N &’i+1 5']‘72 A &j 2 r 5']'71 A, A~
Koy—= oK +—Kup+—— K1 K «+—— Kji1 & K.
. . . . . . 6'72
We then continue performing such inward switches (e.g., the next switch is on +—— and
G;

——) to derive a filtration

0j—2 N Oj—1

!
K;

PN N PN & bi-s A . N
]-":K0<—>-~-<—>Ki<—J>K{+1<—>--~<’—>K§_1 > Kjp1 ¢ K.

Note that from F to F’, the up-down “prefix” grows longer. We can repeat the above
operations on the newly derived F’ until the entire filtration turns into an up-down one. <



T.K. Dey and T. Hou

Throughout the section, let

U: @=L ", I 2, — o
be the up-down filtration for F as described in Proposition 9, where m = 2n. We also let
K=1L,.

In a cell-wise filtration, for a cell o, let its addition (insertion) be denoted as o and
its deletion (removal) be denoted as to. From the proof of Proposition 9, we observe the
following: during the transition from F to U, for any two additions Jo and |o’ in F (and
similarly for deletions), if Jo is before [o’ in F, then Jo is also before Lo’ in Y. We then
have the following fact:

» Fact 10. Given the filtration F, to derive U, one only needs to scan F and list all the
additions first and then the deletions, following the order in F.

» Remark 11. Figure 3 gives an example of F and its corresponding U, where the additions
and deletions in F and U follow the same order.

» Definition 12 (Creator and destroyer). For any interval [b,d] € Pers, (F), if Kp_y s K}
is forward (resp. backward), we call |61 (resp. 16p—1) the creator of [b,d]. Similarly, if

Ky <24 Kay1 is forward (resp. backward), we call 164 (resp. 164) the destroyer of [b,d].

By inspecting the interval mapping in the Diamond Principle, we have the following fact:

» Proposition 13. For two cell-wise filtrations L, L’ related by a Mayer-Vietoris diamond,
any two intervals of Pers, (L) and Pers, (L") mapped by the Diamond Principle have the same
set of creator and destroyer, though the creator and destroyer may swap. This observation
combined with Proposition 9 implies that there is a bijection from Pers,(U) to Pers,(F) s.t.
every two corresponding intervals have the same set of creator and destroyer.

» Remark 14. The only time when the creator and destroyer swap in a Mayer-Vietoris
diamond is when the interval [j, j] for the upper filtration in Equation (1) turns into the
same interval (of one dimension lower) for the lower filtration.

Consider the example in Figure 3 for an illustration of Proposition 13. In the example,
[1,2] € Pers;(F) corresponds to [1,4] € Pers;(U), where their creator is Ja and their
destroyer is td. Moreover, [4,6] € Persy(F) corresponds to [4,5] € Pers; (U). The creator of
[4,6] € Perso(F) is Te and the destroyer is |c. Meanwhile, [4,5] € Pers; (i) has the same set
of creator and destroyer but the roles swap.

For any |o or 1o in F, let idz(Jo) or id #(To) denote the index (position) of the addition
or deletion. For example, for an addition K; AN IAQ_H in F, id£({6;) = i. Proposition 13
indicates the following explicit mapping from Pers, (i) to Pers,(F):

» Proposition 15. There is a bijection from Pers,(U) to Pers,(F) which maps each [b,d] €
Pers, (U) by the following rule:

Type Condition Type Interval in Pers, (F) Dim
closed-open - —  closed-open [ld]_-(J/Tb 1) +1,ids({7a } P
open-closed - —  open-closed [1d]_-(T7'b 1) +1,id £ (T7a) } P

idz({m—1) < idz(t74) +—  closed-closed [1d]_-(¢7'b 1) +1,id £ (17a) } P
closed-closed
idg({mp—1) > idx(t1q) = open-open [1d]_-(TTd) +1,id (-1 } p—1

43:7

ESA 2022



43:8 Fast Computation of Zigzag Persistence

Figure 3 An example of filtration F and its corresponding up-down filtration /. For brevity, F
does not start and end with empty complexes (which can be treated as a truncated case).

» Remark 16. Notice that Pers, (i) contains no open-open intervals. However, a closed-closed
interval [b, d] € Pers, (i) turns into an open-open interval in Pers, ;(F) when id #{m—1) >
id#(174). Such a change happens when a closed-closed interval turns into a single point
interval [j, j] during the sequence of outward switches, after which the closed-closed interval
[4,4] becomes an open-open interval [f, j] with a dimension shift (see Theorem 7).

» Remark 17. Although it may take O(m?) diamond switches to go from F to U or from U
to F as indicated in Proposition 9, we observe that these switches do not need to be actually
executed in the algorithm. To convert the intervals in Pers, (i) to those in Pers*(]} ), we only
need to follow the mapping in Proposition 15, which takes constant time per interval.

We can take the example in Figure 3 for the mapping in Proposition 15. The interval
[4,5] € Pers;(U) is a closed-closed one whose creator is Jc and destroyer is Te. We have that
id#({c) = 6 > id(Te) = 3. So the corresponding interval in Persy(F) is

[id]ﬁ‘(Te) +1, id}:(ic)] = [4,6].

3.3 Conversion to non-zigzag filtration

We first convert the up-down filtration I to an extended persistence [12] filtration &, which is
then easily converted to an (absolute) non-zigzag filtration using the “coning” technique [12].

Inspired by the Mayer-Vietoris pyramid in [8], we relate Pers, (i) to the barcode of the
filtration &£ defined as:

E:@=Lo— - L,=(K,Ly) — (K,Lyp_1) = -~ = (K,L,) = (K,K)

where L, = K = (K, Ly, = @). When denoting the persistence intervals of £, we let the
increasing index for the first half of £ continue to the second half, i.e., (f( , Lon—1) has index
n+1 and (K, L,) has index 2n. Then, it can be verified that an interval [b, d] € Pers, (€) for
b < n < d starts with the complex L, and ends with (K, L3n—aq).

» Remark 18. A filtration in extended persistence [12] is originally defined for a PL function
f, where the first half is the lower-star filtration of f and the second half (the relative part) is
derived from the upper-star filtration of f. The filtration £ defined above is a generalization
of the one in [12].

» Proposition 19. There is a bijection from Pers,(E) to Pers.(U) which maps each [b,d] €
Pers.(E) of dimension p by the following rule:



T.K. Dey and T. Hou

Type Condition Type Interv. in Pers,(U{) Dim
Ord d<n —  closed-open [b, d] P
Rel b>n —  open-closed [Bn —d,3n — 1] p—1
Ext b<n<d + closed-closed [b,3n —d—1] P

» Remark 20. The types “Ord”, “Rel”, and “Ext” for intervals in Pers,(€) are as defined
in [12], which stand for intervals from the ordinary sub-barcode, the relative sub-barcode,
and the extended sub-barcode.

» Remark 21. The above proposition can also be stated by associating the creators and
destroyers as in Proposition 13 and 15. The association of additions in the first half of &/ and
€ is straightforward and the deletion of a o in U is associated with the addition of o (to the
second complex in the pair) in €. Then, corresponding intervals in Pers,(€) and Pers, (i)
in the above proposition also have the same set of creators and destroyers. Combined with
Proposition 13, we further have that intervals in Pers,(F) and Pers,(€) can be associated by
a bijection where corresponding intervals have the same pairs of simplices though they may
switch roles of being creators and destroyers.

Proof. We can build a Mayer-Vietoris pyramid relating the second half of £ and the second
half of U similar to the one in [8]. A pyramid for n = 4 is shown in Figure 4, where the
second half of £ is along the left side of the triangle and the second half of I is along the
bottom. In Figure 4, we represent the second half of £ and U in a slightly different way
considering that Ly = K and Ls = &. Also, each vertical arrow indicates the addition of a
simplex in the second complex of the pair and each horizontal arrow indicates the deletion of
a simplex in the first complex.

To see the correctness of the mapping, we first note that each square in the pyramid is a
(more general version of) Mayer-Vietoris diamond as defined in [8]. Then, the mapping stated
in the proposition can be verified using the Diamond Principle (Theorem 7). However, there
is a quicker way to verify the mapping by observing the following: corresponding intervals
in Pers,(€) and Pers, (i) have the same set of creator and destroyer if we ignore whether
it is the addition or deletion of a simplex. For example, an interval in Pers, (&) may be
created by the addition of a simplex o in the first half of £ and destroyed by the addition of
another simplex ¢’ in the second half of £. Then, its corresponding interval in Pers, (i) is
also created by the addition of ¢ in the first half but destroyed by the deletion of ¢’ in the
second half. Note that the dimension change for the case b > n is caused by the swap of
creator and destroyer. <

By Proposition 15 and 19, we only need to compute Pers, (€) in order to compute Pers, (F).
The barcode of £ can be computed using the “coning” technique [12], which converts £ into
an (absolute) non-zigzag filtration &. Specifically, let w be a vertex different from all vertices
in K. For a p-cell o of K’, we let w - o denote the cone of o, which is a (p + 1)-cell having
cells {o} U{w -7 |7 € 0o} in its boundary. The cone w - L; of a complex L; consists of three
parts: the vertex w, L;, and cones of all cells of L;. The filtration € is then defined as [12]:

é:LOU{w}<—>-~-<—>LnU{w}:IA(Uw-Lgn<—>IA(Uw-L2n,1‘—>-~-%I§'Uw~Ln

N

We have that Pers,(€) equals Pers,(£) discarding the only infinite interval [12]. Note that if
a cell o is added (to the second complex) from (K, L;) to (K, L;—1) in &, then the cone w - &
is added from K Uw-L; to KUw-L;_1 in &.

43:9

ESA 2022



43:10

Fast Computation of Zigzag Persistence

(La, La)

T4

T4

(L4, Ls) «—— (Ls, Ls)
T5 5

T4 75
& (La, Lg) +—— (Ls, L) «—— (L¢, Le)

Te6 Te T6 T

T T T
(L, L7) +——— (Ls, Ly) «—— (Lg, L) +—— (Lz, Ly)

7 T7 7 T T7 T

T T T T
(L4, Lg) — (Ls, Lg) — (Lg, Lg) — (L7, Ls) — (Ls, Lg)

u

Figure 4 A Mayer-Vietoris pyramid relating the second half of £ and U for n = 4.

3.4 Summary of filtration conversion

We summarize the filtration conversion process described in this section in Algorithm 3.1, in
which we assume that each simplex in F is given by its set of vertices. The converted standard
filiration & is represented by its boundary matrix D, whose columns (and equivalently the
chains they represent) are treated as sets of identifiers of the boundary cells. Algorithm 3.1
also maintains the following data structures:

cid denotes the map from a simplex o to the identifier of the most recent copy of cell

corresponding to o.

del_1list denotes the list of cell identifiers deleted in the input filtration.

cone_ id denotes the map from the identifier of a cell to that of its coned cell.

Subroutine CELLBOUNDARY in Line 8 converts boundary simplices of ¢; to a column of
cell identifiers based on the map cid. Subroutine CONEDCELLBOUNDARY in Line 16 returns
boundary column for the cone of the cell identified by del id.

We provide an example of the up-down cell-wise filtration U/ built from a given simplex-
wise filtration F in Figure 5. In the example, edge ¢ and triangle ¢ are repeatedly added
twice in F, and therefore each correspond to two copies of cells in /. We provide another
example of a complete conversion from a given zigzag filtration to a non-zigzag filtration in
Figure 6.

With the CONVERTFILT subroutine, Algorithm 3.2 provides a concise summary of
FAsTZ1GZAG. Given that for a filtration F of length m, CONVERTFILT takes O(m) time and
CONVERTBARCODE takes O(1) time per bar, we now have the following conclusion:

» Theorem 22. Given a simplex-wise zigzag filtration F with length m, FASTZIGZAG
computes Pers, (F) in time T(m) + O(m), where T(m) is the time used for computing the
barcode of a mon-zigzag cell-wise filtration with length m.

» Remark 23. Theoretically, T'(m) = O(m*) [25], where w < 2.37286 is the matrix multiplic-
ation exponent [1]. So the theoretical complexity of FASTZIGZAG is O(m*).



T.K. Dey and T. Hou

Algorithm 3.1 Pseudocode for converting input filtration.

procedure CONVERTFILT(F)
initialize boundary matrix D, cell-id map cid, deleted cell list del_1ist as empty
append an empty column to D representing vertex w for coning

1:

2

3

4 id« 1 > variable keeping track of id for cells
5: for each K; <2 K;,1 in F do

6 if 0; is being inserted then

7 cidlo;] = id > get a new cell as a copy of simplex o;
8 col < CELLBOUNDARY(0;, cid)

9: append col to D

10: id<id+1

11: else

12: append cid[o;] to del_1list

13: initialize map cone_id as empty > cone_ id tracks id for coned cells
14: for each del_id in del_1list (accessed reversely) do

15: cone id[del id]+ id > get a new coned cell
16: col «+ CoNEDCELLBOUNDARY(del_id, D, cone_id)

17: append col to D

18: id+id+1

19: return D

Ky K, Ky P Ky Ky K5 Kg
T
77777777777777 c t t c c t
3 @ 3 & N EECSOBESS :
1 1 ol T i T
Co to C1 t1 to Co

Figure 5 An example of an up-down cell-wise filtration I/ built from a given simplex-wise filtration
F. For brevity, F does not start and end with empty complexes. The final conversion to £ is not
shown for this example due to page-width constraint. A complete conversion for a smaller example
is shown in Figure 6.

Algorithm 3.2 Pseudocode for FASTZIGZAG.

1: procedure FASTZIGZAG(F)

2 D < CONVERTFILT(F)

3 B <+ COMPUTEBARCODE(D)
4 B’ <~ CONVERTBARCODE(B)
5 return B’

43:11

ESA 2022



43:12

Fast Computation of Zigzag Persistence

Ko K3 Ky K5 ' Ke Ky Ksg
. €o 3 3
F vo v T v VI U g U1 U v o
""""""" P
— — — —
Lo L3 Ly Ls Le L~ Lg
€o 3 €o 3
U ; v : \/
. €1 .
VVVVVVVVVVVVVV 806’1 E[)E’l 'U] 1;0
"L U {w} L3 U{w} "Ly U{w} 'KUw-Ly KUw-L¢ ‘KUw-Ly ‘KUw-Ly
3 : €0 3 eo Cw v1 o Vo v f o
(C:’ . . — o @ . .
1 E : @ : @ : @
W W W w :
T e e wvy wor wer weo
;} tH

Figure 6 An example of converting a zigzag filtration F to a non-zigzag filtration.

3.5 Experiments

We implement the FASTZI1GZAG algorithm described in this section and compare the perform-
ance with DIONYSUS2 [26] (implementing the algorithm in [8]) and GupHI! [28] (implementing
the algorithm in [22, 24]). When implementing FASTZIGZAG, we utilize the PHAT [4] software
for computing non-zigzag persistence. Our implementation is publicly available through:
https://github.com/taochoull/fzz.

To test the performance, we generate eleven simplex-wise filtrations of similar lengths
(5~6 millions; see Table 1). The reason for using filtrations of similar lengths is to test the
impact of repetitiveness on the performance for different algorithms, where repetitiveness
is the average times a simplex is repeatedly added in a filtration (e.g., repetitiveness being
1 means that the filtration is non-repetitive). We utilize three different approaches for
generating the filtrations:

The two non-repetitive filtrations (No. 1 and 2) are generated by first taking a simplicial

complex with vertices in R3, and then taking the height function h along a certain axis.

After this, we build an up-down filtration for the complex where the first half is the

lower-star filtration of h and the second half is the (reversed) upper-star filtration of

h. We then randomly perform outward switches on the up-down filtration to derive a

non-repetitive filtration. Note that the simplicial complex is derived from a triangular

mesh supplemented by a Vietoris-Rips complex on the vertices; one triangular mesh

(Dragon) is downloaded from the Stanford Computer Graphics Laboratory.

Filtration No. 3 — 8 are generated from a sequence of edge additions and deletions, for

which we then take the clique complex (up to a certain dimension) for each edge set in

the sequence. The edge sequence is derived by randomly adding and deleting edges for a

set of points.

The remaining filtrations (No. 9 — 11) are the oscillating Rips zigzag [27] generated from

point clouds of size 2000 — 4000 sampled from some triangular meshes (Space Shuttle

from an online repository?; Bunny and Dragon from the Stanford Computer Graphics

Laboratory).

1 The code is shared by personal communication.
2 Ryan Holmes: http://www.holmes3d.net/graphics/offfiles/


https://github.com/taohou01/fzz
http://www.holmes3d.net/graphics/offfiles/

T.K. Dey and T. Hou

Table 1 lists running time of the three algorithms on all filtrations, where the length,
maximum dimension (D), repetitiveness (Rep), and maximum complex size (MaxK) are also
provided for each filtration. From Table 1, we observe that FASTZIGZAG (Trzyz) consistently
achieves the best running time across all inputs, with significant speedups (see column “SU”
in Table 1). The speedup is calculated as the min-time of D1ONYSUS2 and GUDHI divided by
the time of FASTZ1GZAG. Notice that since GUDHI only takes a sequence of edge additions
and deletions as input (and builds clique complexes on-the-fly), we do not run GUDHI on the
first two inputs in Table 1, which are only given as simplex-wise filtrations. We also observe
that the speedup of FASTZIGZAG tends to be less prominent as the repetitiveness increases.
This is because higher repetitiveness leads to smaller max/average complex size in the input
zigzag filtration, so that algorithms directly working on the input filtration could have less
processing time [8, 22, 24]. On the other hand, the complex size in the converted non-zigzag
filtration that FASTZ1GZAG works on is always increasing.

Table 1 Running time of D1ONYSUS2, GUDHI, and FASTZIGZAG on different filtrations of similar
lengths with various repetitiveness. All tests were run on a desktop with Intel(R) Core(TM) i5-9500
CPU @ 3.00GHz, 16GB memory, and Linux OS.

No Length D Rep MaxK Tpioz TGupmr Trzz SU
1 5,260,700 5 1.0 883,350 2h02m46.0s — 8.9s 873
2 5,264,620 4 1.0 1,570,326 19m36.6s — 11.0s 107
3 5,639,494 &5 1.3 1,671,047 3h05m00.0s 45m47.0s 3m20.8s 13.7
4 5,660,248 4 2.0 1,385,979 2h59mb57.0s 29m46.7s 4m59.5s 6.0
5 5,327,422 4 3.5 760,098 43m54.8s 10m35.2s 3m32.1s 3.0
6 5,309,918 3 5.1 523,685 5h46m03.0s 1h32m37.0s 19m30.2s 4.7
7 5,357,346 3 7.3 368,830 3h37mb4.0s 57m28.4s 30m25.2s 1.9
8 6,058,860 4 9.1 331,211 53m21.2s Tm19.0s 3mé4 .4s 2.0
9 5,135,720 3 21.9 11,859 23.8s 15.6s 8.6s 1.9
10 5,110,976 3 27.7 11,435 36.2s 39.9s 8.5s 4.3
11 5,811,310 4 44.2 7,782 38.5s 36.9s 23.9s 1.5

Table 2 lists the memory consumption of the three algorithms. We observe that FASTZ1G-
ZAG tends to consume more memory than the other two on the non-repetitive filtrations (No.
1 and 2) and the random clique filtrations (No. 3 — 8). However, FASTZIGZAG is consistently
achieving the best memory footprint on the oscillating Rips filtrations (No. 9 — 11) despite
the high repetitiveness.

4 Conclusions

In this paper, we propose a zigzag persistence algorithm called FASTZIGZAG by first treating
repeatedly added simplices in an input zigzag filtration as distinct copies and then converting
the input filtration to a non-zigzag filtration. The barcode of the converted non-zigzag
filtration can then be easily mapped back to barcode of the input zigzag filtration. The
efficiency of our algorithm is confirmed by experiments. This research also brings forth the
following open questions:

43:13

ESA 2022



43:14

Fast Computation of Zigzag Persistence

—— References

1

Table 2 Memory consumption (in gigabytes) of the three algorithms on all filtrations.

No. Length Rep MaxK  Mbpio2 Maguom  Mrzz
1 5,260,700 1.0 883,350 3.23 - 0.59
2 5,254,620 1.0 1,570,326 3.93 - 0.61
3 5,539,494 1.3 1,671,047 15.52 13.49 9.76
4 5,660,248 2.0 1,385,979 7.64 8.43 11.04
5 5,327,422 3.5 760,098 3.27 3.40 6.22
6 5,309,918 5.1 523,685 4.94 5.27 10.23
7 5,357,346 7.3 368,830 4.03 3.91 8.19
8 6,058,860 9.1 331,211 2.12 1.48 3.68
9 5,135,720 21.9 11,859 0.92 0.47 0.50
10 5,110,976 27.7 11,435 0.88 0.48 0.47
11 5,811,310 44.2 7,782 0.95 0.60 0.51

Parallel versions [9, 29] of the algorithms for computing standard and zigzag exist. While
the computation of standard persistence in our FASTZIGZAG algorithm can directly utilize
the existing parallelization techniques, we ask if the conversions done in FASTZIGZAG can
be efficiently parallelized. Such an extension can provide further speedups by harnessing
multi-cores.

While persistence intervals are important topological descriptors, their representatives
also reveal critical information (e.g., a recently proposed algorithm [16] for updating
zigzag barcodes over local changes uses representatives explicitly). Can the FASTZIGZAG
algorithm be adapted so that representatives for the input zigzag filtration are recovered
from representatives for the converted non-zigzag filtration?

Josh Alman and Virginia Vassilevska Williams. A refined laser method and faster matrix
multiplication. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 522-539. SIAM, 2021.

Ulrich Bauer. Ripser: Efficient computation of vietoris—rips persistence barcodes. Journal of
Applied and Computational Topology, 5(3):391-423, 2021.

Ulrich Bauer, Michael Kerber, and Jan Reininghaus. Clear and compress: Computing persistent
homology in chunks. In Topological methods in data analysis and visualization III, pages
103-117. Springer, 2014.

Ulrich Bauer, Michael Kerber, Jan Reininghaus, and Hubert Wagner. Phat — persistent
homology algorithms toolbox. Journal of Symbolic Computation, 78:76-90, 2017.
Jean-Daniel Boissonnat, Tamal K. Dey, and Clément Maria. The compressed annotation
matrix: An efficient data structure for computing persistent cohomology. Algorithmica,
73(3):607-619, 2015. doi:10.1007/s00453-015-9999-4.

Gunnar Carlsson and Vin de Silva. Zigzag persistence. Foundations of Computational
Mathematics, 10(4):367-405, 2010.

Gunnar Carlsson, Vin de Silva, Sara Kalisnik, and Dmitriy Morozov. Parametrized homology
via zigzag persistence. Algebraic & Geometric Topology, 19(2):657-700, 2019.


https://doi.org/10.1007/s00453-015-9999-4

T.K. Dey and T. Hou

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Gunnar Carlsson, Vin de Silva, and Dmitriy Morozov. Zigzag persistent homology and real-
valued functions. In Proceedings of the Twenty-Fifth Annual Symposium on Computational
Geometry, pages 247-256, 2009.

Gunnar Carlsson, Anjan Dwaraknath, and Bradley J. Nelson. Persistent and zigzag homology:
A matrix factorization viewpoint. arXiv preprint, 2019. arXiv:1911.10693.

Chao Chen and Michael Kerber. Persistent homology computation with a twist. In Proceedings
27th European Workshop on Computational Geometry, volume 11, pages 197-200, 2011.
Chao Chen and Michael Kerber. An output-sensitive algorithm for persistent homology.

Comput. Geom.: Theory and Applications, 46(4):435-447, 2013. doi:10.1016/j.comgeo.2012.

02.010.

David Cohen-Steiner, Herbert Edelsbrunner, and John Harer. Extending persistence using
Poincaré and Lefschetz duality. Foundations of Computational Mathematics, 9(1):79-103,
2009.

Vin de Silva, Dmitriy Morozov, and Mikael Vejdemo-Johansson. Dualities in persistent
(co)homology. Inverse Problems, 27(12):124003, 2011.

Harm Derksen and Jerzy Weyman. Quiver representations. Notices of the AMS, 52(2):200-206,
2005.

Tamal K. Dey and Tao Hou. Computing zigzag persistence on graphs in near-linear time.
In 87th International Symposium on Computational Geometry, SoCG 2021, volume 189 of
LIPIcs, pages 30:1-30:15. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2021.

Tamal K. Dey and Tao Hou. Updating zigzag persistence and maintaining representatives
over changing filtrations. arXiv preprint, 2021. arXiv:2112.02352.

Tamal K. Dey, Woojin Kim, and Facundo Mémoli. Computing generalized rank invariant
for 2-parameter persistence modules via zigzag persistence and its applications. In 38th
International Symposium on Computational Geometry, SoCG 2022, volume 224 of LIPIcs,
pages 34:1-34:17, 2022.

Herbert Edelsbrunner, David Letscher, and Afra Zomorodian. Topological persistence and
simplification. In Proceedings 41st Annual Symposium on Foundations of Computer Science,
pages 454-463. IEEE, 2000.

Peter Gabriel. Unzerlegbare Darstellungen 1. Manuscripta Mathematica, 6(1):71-103, 1972.
Allen Hatcher. Algebraic Topology. Cambridge University Press, 2002.

Petter Holme and Jari Saraméki. Temporal networks. Physics Reports, 519(3):97-125, 2012.
Clément Maria and Steve Y. Oudot. Zigzag persistence via reflections and transpositions.
In Proceedings of the Twenty-Sizth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 181-199. STAM, 2014.

Clément Maria and Steve Y. Oudot. Computing zigzag persistent cohomology. arXiv preprint,
2016. arXiv:1608.06039.

Clément Maria and Hannah Schreiber. Discrete morse theory for computing zigzag persistence.
In Workshop on Algorithms and Data Structures, pages 538—552. Springer, 2019.

Nikola Milosavljevié¢, Dmitriy Morozov, and Primoz Skraba. Zigzag persistent homology in
matrix multiplication time. In Proceedings of the Twenty-Seventh Annual Symposium on
Computational Geometry, pages 216-225, 2011.

Dmitriy Morozov. Dionysus2. URL: https://www.mrzv.org/software/dionysus2/.

Steve Y. Oudot and Donald R. Sheehy. Zigzag zoology: Rips zigzags for homology inference.
Foundations of Computational Mathematics, 15(5):1151-1186, 2015.

The GUDHI Project. GUDHI User and Reference Manual. GUDHI Editorial Board, 2015.
URL: http://gudhi.gforge.inria.fr/doc/latest/.

Simon Zhang, Mengbai Xiao, and Hao Wang. GPU-accelerated computation of Vietoris-Rips
persistence barcodes. In 36th International Symposium on Computational Geometry (SoCG
2020). Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik, 2020.

Afra Zomorodian and Gunnar Carlsson. Computing persistent homology. Discrete & Compu-
tational Geometry, 33(2):249-274, 2005.

43:15

ESA 2022


http://arxiv.org/abs/1911.10693
https://doi.org/10.1016/j.comgeo.2012.02.010
https://doi.org/10.1016/j.comgeo.2012.02.010
http://arxiv.org/abs/2112.02352
http://arxiv.org/abs/1608.06039
https://www.mrzv.org/software/dionysus2/
http://gudhi.gforge.inria.fr/doc/latest/

	1 Introduction
	1.1 Related works

	2 Preliminaries
	3 FASTZIGZAG algorithm
	3.1 Overview
	3.2 Conversion to up-down filtration
	3.3 Conversion to non-zigzag filtration
	3.4 Summary of filtration conversion
	3.5 Experiments

	4 Conclusions

