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positive voltage is applied, electrons leave the OMIEC, and anions are injected to maintain electroneutrality. This doping process 
increases the conductivity of OMIECs by several orders of magnitude (Das et al., 2020). Conversely, a negative voltage reverts the 
charge carriers and deprives the high electronic conductivity. 

The mixed conduction of ionic and electronic charge carriers makes OMIECs-based devices ideal for sensing (Nambiar and Yeow, 
2011; Picca et al., 2020), information processing (Gkoupidenis et al., 2015; Yamamoto et al., 2022), energy storage (Olmo et al., 2022), 
electrochromics (Li et al., 2019), and bioelectronics (Zhang et al., 2022). For instance, OMIECs can be utilized as the channel material 
in organic electrochemical transistors (OECTs), as sketched in Fig. 1 (Rivnay et al., 2018; Hidalgo Castillo et al., 2022). In an OECT, 
there is a gate electrode immersed in the electrolyte, a source electrode, and a drain electrode connected to the source by the OMIEC 
channel. The gate voltage dictates the conduction state of the OMIEC channel, and the drain voltage provides a bias for current flow 
from the source electrode. When a proper gate voltage is applied against the grounded source electrode, the OMIEC channel is doped 
with a high electronic conductivity, which turns the transistor on and allows large current drainage. Conversely, a reverse voltage at 
the gate electrode turns the transistor off. The fast-responding, low-power-consuming, and biocompatible OECTs can be used in 
wearable sensors for sweat monitoring (Aerathupalathu Janardhanan et al., 2022) and brain-machine interfaces for transmitting and 
accepting neuron signals (Liang et al., 2021; Go et al., 2022). 

The dynamics of OMIECs during electrochemical processes need to be understood from both the mechanical and electrochemical 

Nomenclature 

U U U Upf Work due to mechanical, chemical, electrical, and phase field 
Bi Ti Body force, surface traction 

m Chemical (electrochemical) potential of species m 
rm Source intensity of species m 
jm Flux of species m 
V Electrostatic potential 
F Faraday constant 

el inel pl Deformation gradient and its elastic, inelastic, chemical, plastic components 
Green-Lagrangian strain 
Right Cauchy-Green deformation tensor 

C C C C Concentration of solvents, cations, anions, and holes 
Phase parameter (the volume fraction) of phase I 
Determinant of 

NK K-th component of the outward normal vector on the surface 
Q Space charge density 
zm Valence of charged species m 
DK K-th component of the nominal electrical displacement 
P First Piola-Kirchhoff stress, Cauchy stress, and mean stress 
W W Wpf Wm W W W Total free energy and contributions from the strain, phase field, mobile ions, solvent, hole, and the 

electrical field 
pl Inverse of pl 

F Yield Function 
G Lame constants 
I1 Cel First invariant of the elastic component of the right Cauchy-Green tensor 
Jel Determinant of the elastic deformation gradient 
f0 Free energy of the two unmixed phases 

i 0 Ni Chemical potential and number of monomers per chain in phase i 
m Flory parameter of mixing for mobile species m in OMIEC and the two OMIEC phases 

Coefficient of the interfacial energy 
a Characteristic chain length 

Difference of the interfacial energy PEDOT substrate PSS substrate 
sub Molar density of the substrate 
w X2 d Interaction potential and interaction length between the substrate and the OMIEC 

vm Molecular volume of the species m 
Dielectric constant 

l h w Length, thickness, and width of the OMIEC channel in the OECT  
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(1)  

where Bi t is the body force density and Ti t is the surface force density. The chemical work due to infinitesimal changes in the 
number of the mobile species m is 

(2)  

where rm is the source intensity, and jm is the surface flux. The superscript m represents one of the following mobile species: solvent, 
anion, cation, and hole. The electric work due to infinitesimal changes in the number of holes is 

(3)  

where F is the Faraday constant, r is the source intensity, and j is the surface flux. For a two-phase OMIEC, we define the volume 
fraction of phase I as the phase parameter , and the volume fraction of phase II is 1 . For example, in the blend of PEDOT:PSS 
polymers, the volume fraction is related to the concentration of the monomer EDOT in the PEDOT phase by C

C C v , 
where v is the volume of the EDOT monomer. The work due to infinitesimal changes in the phase parameter is 

(4)  

where r is the source intensity, and j is the surface flux. 
The material particle in the reference configuration resides at in the current configuration. Define the deformation gradient FiK 

as 

(5) 

As illustrated in Fig. 2, the deformation gradient is multiplicatively decomposed into an elastic component el and an inelastic part 
inel as follows (Simo and Hughes, 2006), 

(6)  

where F represents the deformation due to the insertion of the mobile species, and Fpl
K represents the plastic deformation. 

The elastic strain is defined by the elastic component of the right Cauchy-Green deformation tensor Cel Fel
i Fel

i as 

(7) 

Assuming incompressibility it yields (Zhao et al., 2011) 

(8)  

where vm is the volume of the mobile species, and C C C represent the solvent concentration, cation concentration, and anion 
concentration in the OMIECs, respectively. Assuming isotropic deformation of the host upon the insertion of the mobile species, one 
has 

(9) 

The conservation of all species, including the solvent, charge carriers, and matrix molecules, is given by 

(10a)  

in the volume and 
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(10b)  

on the surface, where Cm is the concentration of individual mobile species m, and NK is the surface normal. The superscript  (  ) 
represents the value of the quantity at the outward (inward) side of the surface. In particular, the conservation of the host molecule 
(phase parameter ) in the volume is given by 

(11) 

The space charge density Q is given by 

 

 

(12)  

where r is the number of injected holes, zm is the charge per mobile species, z0 and C0 are the valence and concentration of the fixed 
charges. For solvent, z 0. For simplicity, we take z z 1 and z 1. The Poisson s equation is 

 (13a)  

in the volume and 

(13b)  

on the surface, where DK t is the electrical displacement. 
Consider the free energy as a function of the elastic deformation, electrical displacement, concentration of all species, phase 

parameter, and the gradient of the phase parameter, W W el Cm . We take the variation of the free energy as the change of 
the free energy related to the infinitesimally small changes, 

(14) 

Note that Cm in Eq. (14) also includes C . The second law of thermodynamics requires that 

(15)  

2.2. Governing equations 

Using Eqs. (1) (14), (15) is expanded as follows. The detailed derivation is attached in Appendix A. 

(16)  

where 

(16a)  
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(16b)  

(16c)  

(16d) 

Note that pl represents the inverse of pl, and 1
3 is the inverse of . Each of the terms in Eq. (16) governs a unique 

process. Only when the system is at equilibrium, the equality holds. Inequality holds due to the inelastic deformation of the host 
materials, the kinetics of mass transport, and the irreversible phase separation which make the increase in free energy less than the 
work done to the system. 

We shall now examine each of the terms in Eq. (16) and reveal their significance. Intensive quantities are defined to denote the 
governing equations for the equilibrium state and kinetic processes. T in Eq. (16) describes the mechanical processes. To ensure that 
the sum is no greater than zero for all admissible xi, the coefficients in the first two terms in T must vanish. Define the first Piola- 
Kirchhoff stress and Cauchy stress as follows. 

(17a)  

(17b) 

Then, the first two terms in T yield mechanical equilibrium in the volume and on the surface in the reference configuration, 

(18a)  

(18b) 

Note that we recovered the classical mechanical equilibrium equation and the traction boundary condition. The third term in T
describes the plastic dissipation. Using Eqs. (6) and (18), 

(19)  

where KL PiLFiK is the Mandel stress (Lubliner, 2008). To enforce inequality, the flow rule must satisfy the following, 

(20) 
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As an example, we choose the associated plastic flow rule as follows (Anand et al., 2012; Di Leo et al., 2015), 

(21a)  

where the plastic multiplier and the yield function satisfy the Kuhn-Tucker conditions (Simo, 1992; Simo and Hughes, 2006), 

(21b) 

The yield function for plastic deformation is written in terms of the yield stress and the deviatoric part of as 

(21c) 

The terms in T in Eq. (16) describe the transport of all mobile species. From Eq. (17b), the mean stress can be defined as follows. 

(22) 

Define the partial molar volume of a mobile species in a stressed solid as follows, 

(23) 

Then, the electrochemical potential of the mobile species is defined as follows to satisfy the inequality for all admissible rm, 

(24a)  

(24b) 

Now, the only non-vanishing terms are the volume integral on the flux. To maintain the inequality for all possible Jm
K , the following 

kinetics equations are chosen for convenience, 

(25a)  

(25b)  

where is the mobility of the mobile species. 
The terms in T in Eq. (16) describe the electrostatic field. Define the electrical field as 

(26) 

Since the voltage and electrical displacement evaluated on both sides of the surface are the same, the surface integral vanishes. 
The terms in Tpf in Eq. (16) describe the phase field in the OMIEC. Similarly, we define the chemical potential of the OMIEC 

material as 

(27) 

And the inequality is enforced by taking that 

(28)  

where is the mobility of the OMIEC molecules. 
The mobilities of the mobile species and the phase parameter are linked to the diffusivities and deformation gradient as follows 

(Hong et al., 2008) 

(29)  

where Dm is the diffusivity, R is the gas constant, and T is the temperature. 
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2.3. Explicit forms of the free energy 

The free energy W consists of six components, including contributions from the elastic deformation of the polymer Wel, the matrix 
material and two-phase interfaces Wpf , mobile ions Wm, solvent W , holes W , and the electrical field W . 

(30) 

Implied by the experimental measurement of the tensile stress-strain curves (Lang et al., 2009), we choose the Neo-Hookean 
hyperelastic constitutive relation for the elastic deformation and a perfectly plastic model. The elastic free energy is expressed as 

(31)  

where G and are the Lame constants, I1 is the first invariant of the elastic component of the right Cauchy-Green deformation tensor 
Cel, and Jel el . 

Following Cahn and Hilliard (1958), Cahn (1965), and Velazquez Sanchez (2002), we express the free energy of the polymer and 
the two-phase interfaces in terms of both the phase parameter and its gradient 

(32)  

where f0 is the free energy of the mixture without the interfacial energy, 2 is the excess free energy associated with the 
interface, and w X2 is the interaction energy of the polymer with the substrate. Following Flory (1942), we take 

(33)  

where i 0 and Ni are the chemical potential and the number of monomers per chain in the phase I or II, respectively. is the Flory 
parameter of mixing. 

The coefficient is related to the interaction length a, , and by 

(34) 

At a vertical distance of X2 from the substrate, the coefficient w X2 is related to the molar density of the substrate sub, interaction 
length d, and the difference in the interfacial energies PEDOT substrate PSS substrate by 

(35) 

In Flory s theory (Flory, 1942), the free energy of solvent in the electrolyte Ws electrolyte is expressed in terms of its concentration Cs 

and the molar volume vm as 

(36)  

where m is summed over all ions. Note that we take the assumption that the partial molar volume equals the molar volume. The free 
energy of each ion in the electrolyte Wm electrolyte is expressed in terms of its concentration Cm and the volume vm as 

(37) 

Note that we ignored the insignificant enthalpy of mixing in the electrolyte. In the OMIEC, both the salt and the solvents are guest 
species. The free energy of solvents and ions in OMIEC, Wm OMIEC, is expressed in terms of its concentration Cm, the volume vm, and 
Flory parameter of mixing m as 

 

(38) 

The free energy of holes in OMIEC, W , is expressed in terms of its concentration C and the reference concentration C 0 as 

(39) 

We write the free energy associated with electrical polarization as (Xiao and Bhattacharya, 2008; Hong et al., 2010; Mozaffari et al., 
2022) 
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(49) 

Note that the last term is evaluated in the electrolyte and others are evaluated in the OMIEC. 

3. A model of organic electrochemical transistors 

3.1. Geometry, variable domains, and boundary conditions 

We implement the theory into a finite element model and study the mechanics and electrochemistry of an OECT. The OECT is 
represented by a two-domain model as shown in Fig. 3. The gate electrode is on the top of the electrolyte, and the source and drain 
electrodes are at two sides of the channel in the lower domain. The electrolyte domain contains the variables of the concentrations of 
solvent C , cations C , anions C , and the electrostatic potential V, which are solved using the transport kinetics for the mobile species 
(Eqs. (10), (25), (29), (42), (43)) and the electrostatics (Eqs. (12), (13), (26), (47)). For simplicity, we assume that anions are restrained 
in the electrolyte and cations are the messenger between the electrolyte and the OMIEC. The OMIEC in the channel domain hosts 
variables of the concentrations of solvent C , cations C , holes C , the electrical potential V, the displacement , and the phase 
parameter , which are solved using the transport kinetics for the mobile species (Eqs. (10), (26), (29), (42), (44), (45)), evolution of 
the phase parameter (Eqs. (11), (28), (29), (46)), electrostatics (Eqs. (12), (13), (26), (47)), and the mechanics equations (Eqs. (5), (6), 
(9), (18), (21), (41)). A detailed description of the initial-boundary value problem is shown in Appendix C. To avoid the accumulation 
of holes in the PSS-rich region due to the accumulation of negative charges and ensure that the holes only appear in the PEDOT phase 
and cations in the PSS phase (Rebetez et al., 2022), the space charge concentration in Eq. (12) is modified as follows 

 (50)  

where Cfix is the concentration of fixed negative charges in the pure PSS. Therefore, in the PSS-rich region with small , the contri
bution from cations 1 C to the space charge dominates and the contribution from the holes C is negligible. 

The initial and boundary conditions of the model are prescribed as follows. To avoid singularity in the electrochemical potential of 
species, the initial value of the solvent, cations, and holes in the OMIEC is set as a small value, as listed in Table 1. The OMIEC domain is 
roller-constrained (with freedom of motion in the vertical direction due to the swelling of OMIEC but not in the horizontal direction) in 
all the boundaries except that in contact with the electrolyte, and the rigid motion is suppressed. The top surface is assigned as the gate 
electrode with C C 0, C C 0, C C 0, and V VG. The source electrode on the lower left corner is with C C 0 and V 0, and 
the drain electrode on the lower right corner is with C ChD and V V . The electrostatic potential V and the electrochemical 
potentials of solvents and cations are continuous across the interface between the OMIEC and the electrolyte. The parameters used in 
the initial and boundary conditions are listed in Table 1. 

The parameters for the free energy due to mechanical deformation are listed in Table 2. To improve the convergence, we adopted a 
linear hardening law with a tangent modulus of 2% of the shear modulus. The parameters for the free energy of mobile species and the 
electrical field are listed in Table 3. The diffusivities are listed in Table 4. We assume that the PEDOT phase conducts only holes and the 
PSS phase conducts only ions. This is realized by a phase parameter-dependent diffusivity, as shown in Table 4. We use the experi
mental measurements of an OECT from Tang et al. (Tang et al., 2021) as the benchmark. The size of the channel is as follows due to the 
computational cost: length l 120nm, thickness h 60nm, and width (out-of-plane direction) w 20mm. 

Table 1 
Parameters for the initial and boundary conditions.  

Parameter Description Value Refs. 

Csinit Initial value of solvent in OMIEC 1 mol 3 

Ccinit Initial value of cation in OMIEC 1 mol 3 

C 0 Concentration of solvent at the gate electrode 1 v Table 3 
C 0 Concentration of cations and anions at the 

gate electrode 
200 mol 3 

Cfix Concentration of fixed charges in OMIEC 4000 mol 3 Szymanski et al., 2017; Tybrandt et al., 2017; Volkov et al., 2017; 
Kaphle et al., 2020 

C 0 Concentration of holes at the source electrode 4000 mol 3 Szymanski et al., 2017; Tybrandt et al., 2017; Volkov et al., 2017; 
Kaphle et al., 2020 

Chinit Initial condition for concentration of holes 1 mol 3 

ChD Concentration of holes at the drain electrode 
C 0

F VS VD

RT
mol 3 
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3.2. Implementation of the finite element model 

When the polymer chains of PEDOT: PSS diffuse, the holes in PEDOT and ions in PSS are also in motion. We idealize and describe 
this process using a source term in the diffusion equations of ions and holes in the OMIEC 

(51a)  

(51b) 

The weak form is obtained for the transport equations by multiplying the differential form with a test function C
m 

and integrate 
over the volume, 

(52)  

where m represents the solvent, cation, anion, hole, and phase parameter. We solve the weak form of all the transport equations by 
COMSOL Multiphysics. The electrostatic field, the displacement field, and the electromechanical coupling are solved by the embedded 
modules in COMSOL. Third-order shape function is employed for the displacement field, while second-order shape functions are used 
for all other fields. The built-in time-dependent solver MUMPS (MUltifrontal Massively Parallel sparse direct Solver) is used to solve 

Table 2 
Parameters for the free energy due to mechanical deformation.  

Parameter Description Value Refs. 

G Shear modulus 230 MPa 

Lang et al., 2009 
Poisson s ratio 0.32 
Lame constant 409 MPa 

Y Yield strength 17 MPa  

Table 3 
Parameters for the free energy of mobile species and the electrical field.  

Parameter Description Value Refs. 

N1, N2 Number of monomers per PEDOT/PSS chain 70, 2300 Xia and Ouyang, 2012 
Flory parameter of mixing 0.5 Gennes, 1979 

a Characteristic chain length 0 442 N1 N2 1 nm Gennes, 1979 
Difference of surface energy between PEDOT-substrate and PSS-substrate 5 mN 1 Saito et al., 2020 

sub Molar density of substrate 2 2 3

60 mo 1 
SiO2 

d Interaction length 0 353 nm Palumbiny et al., 2015 
Dielectric constant 81 Volkov et al., 2017 

v vc Molar volume of solvent and cation 18 mo 1

0 997 3 

Water 

v Molar volume of anion 287 075 mo 1

1 33 3 

TFS

m Flory parameter of mixing for hydration 0.17 Bie mann et al., 2018  

Table 4 
Diffusivities.  

Parameter Types of species Value Refs. 

D OMIEC chains 5 10 17 2 1 Richards and Jones, 1999 
Ds electrolyte Solvent in electrolyte 10 8 2 1 Tybrandt et al., 2017 
Ds OMIEC Solvent in OMIEC 10 14 2 1 Tybrandt et al., 2017 
Dm electrolyte Ions in electrolyte 10 8 2 1 Tybrandt et al., 2017 
Dc OMIEC Cations in OMIEC 10 14 10 8 1 2 1 Tybrandt et al., 2017 
D Holes in OMIEC 

10 8

 
0 5 2

2 0 12
2 1 

Tybrandt et al. 2017  
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extent and significance of the coupling terms need to be discussed in the context. For instance, we showed in an earlier experiment that 
external pressure largely influences the doping kinetics of PProDOT in solid-state electrochromic devices (Wang et al., 2022). In the 
following, we explore the significance of the electromechanical coupling and the stress-transport coupling in OECTs. According to Eq. 
(41), the electromechanical coupling is manifested by the Maxwell stress. And the stress-transport coupling is represented by 

vm in the chemical potential of the mobile species, as shown in Eq. (44). By eliminating the Maxwell stress and the vm term in the 
chemical potential of the mobile species, we compare the mechanical and the electrochemical responses in Fig. 12. The compressive 
stresses in the OMIEC lift the chemical potential of the solvents and cations. Therefore, the solvent and cation concentrations in the 
OMIEC are lower with the stress-transport ( m) coupling, as indicated by the swelling ratio in Fig. 12(a) and (b). At the initialized 
state, the mean compressive stress is highest for the model without m coupling due to the high swelling ratio. At the first doped 
state when the cations are expelled to the electrolyte, the swelling ratio slightly decreases and elastic unloading occurs, which reduces 
the stress level as shown in Fig. 12(b). The model without considering the stress-transport coupling shows a relatively smaller mean 
compressive stress field due to the extensive elastic unloading primarily by the solvent concentration change in the channel. The 
inhomogeneous stress profile in Fig. 12(b) is correlated to its phase distribution. When the stress-transport coupling is turned off, the 
solvent transport is only driven by the entropy and enthalpy of mixing within the channel and its distribution is homogeneous. 
Therefore, the PSS-rich regions experience larger compressive stress due to the cation accumulation. As for the transfer curves of the 
OECT, the model without m coupling shows a higher peak current at the ON state. Notably, the model without the Maxwell stress 
shows little difference in both the mechanical and electrochemical responses from the fully coupled model. Therefore, the Maxwell 
stress can be eliminated in future models without sacrificing the accuracy of the predicted mechanical and electrochemical perfor
mance of the OECT. 

5. Conclusions 

In this work, we formulate a continuum theory of organic mixed ionic-electronic conductors of phase separation following the 
framework considering the thermodynamics laws, mass conservation, and the electrostatic field. We implement the theory into a finite 
element model and study the mechanics and the electrochemistry of the OMIEC in an organic electrochemical transistor. The 
computational modeling successfully captures several experimental observations such as the phase separation, mechanical swelling, 
conductivity variation, and capacitive current in a representative two-phase OMIEC. The model also replicates the transfer curves of an 
organic electrochemical transistor and predicts the failure of the device upon large-scale phase separation. We show that the defor
mation of the OMIEC influences phase evolution and leads to different phase behaviors and electrochemical performances in con
strained/free/stretched OECTs. We also evaluate the extent of the electromechanical coupling and the stress-transport interaction in an 
OECT and show that the Maxwell stress is negligible. This work provides a theoretical basis for understanding the mechanics and 
electrochemistry of the current state-of-the-art two-phase OMIECs. 
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Appendix A 

In this Appendix we show the detailed derivation for Eq. (16). We will evaluate each of the variation terms in Eq. (15) and simplify 
the terms related to the four types of works. First, the terms related to mechanical work are evaluated. From Eqs. (6) and (9), one has 

(A1)  
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(A2) 

Using Eqs. (A1) and (A2), we have 

4
4

 

 

(A3) 

Using Eq. (10a), 
 

(A4) 

Combining Eqs. (14), (A3), and (A4), the terms related to mechanical energy in Eq. (15) reads the following. 
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(A5) 

For the terms related to all mobile species, 

(A6) 

Combining Eqs. (14), (A6), and (10b), the terms related to the energies of all mobile species in Eq. (15) reads the following. 

(A7) 

For the terms related to the electrical field, one obtains the following using Eqs. (12) and (13), 
 
 

 

(A8) 

Combining Eqs. (14), (A8) and (10b), the terms related to the energy of the electrostatic field in Eq. (15) reads the following. 

  

(A9) 

The variation of the energy for the two-phase interface is 
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6
(A10) 

Combining Eqs. (14) and (A10), the terms related to the energy of the two-phase interface in Eq. (15) reads the following. 

(A11) 

Combining equations (A5, A7, A9, A11) and (15), we obtain equation (16). 

Appendix B 

In this Appendix, we derive the stress expression in Eq. (41) using Eqs. (17), (31), (40). First, we examine the contribution of elastic 
deformation to stress. 

The Maxwell stress is evaluated in the following. 
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Therefore, 

Appendix C 

In this Appendix, we summarize the governing equations of the theory for describing the mechanical response, mass/charge 
transport, and electrostatics in the OECT model, as well as the initial and boundary conditions in the numerical modeling. The system 
consists of the OMIEC (volume OMIEC enclosed by surface SOMIEC) and a liquid electrolyte (volume liquid enclosed by surface Sliquid). 

The mechanics equations solve the displacement field via the linear momentum balance equation: 

(C1a)  

(C1b)  

where 

(C2a)  

(C2b)  

(C2c)  

(C2d)  

(C2e) 

G represents the shear modulus, Lame parameter, the dielectric constant, vm the volume of the mobile species m. The summation 
in Eq. (C2e) is over all the mobile ions and solvent in the solid. The initial and boundary conditions for the displacement in the model 
are prescribed in Fig. 3. 

The yield condition and the plastic flow rule are the following. 

(C3a)  

(C3b)  

(C3c)  

(C3d) 

The governing equations for transport of the mobile species solve the concentration field C , C , C , and C : 

7 (C4a)  
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7 (C4b)  

7 (C4c)  

  

(C4d)  

7 (C4e)  

7 (C5a)  

7 (C5b)  

7 (C5c)  

(C5d)  

7 (C5e)  

7 (C6a)  

7 (C6b)  

7 (C6c)  

7 (C6d)  

(C7a)  

(C7b)  

(C7c)  

(C7d) 

Specifically, we prescribed the following boundary and initial conditions in the model as shown in Fig. 3. 

(C8a)  

(C8b)  

7 (C8c)  

(C8d) 
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7 (C8e)  

(C8f) 

The governing equations for the electrical field solve the electrostatic potential V: 

 7 (C9a)  

7 (C9b)  

where 

(C10a)  

(C10b) 

Specifically, we prescribed the following boundary and initial conditions in the model as shown in Fig. 3. 

(C11a)  

3 8 (C11b)  

2 (C11c)  

(C11d) 

The governing equations for the phase field solve the phase parameter : 

(C12a)  

(C12b)  

(C12c)  

(C12d) 

Specifically, we prescribed the following boundary and initial conditions in the model as shown in Fig. 3. 

(C13a)  

(C13b)  

where the random function has two variables X1 X2 . 
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