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Abstract

This is the first work that incorporates recent advancements in “explainability” of machine learning (ML) to build a routing obfus-
cator called ObfusX. We adopt a recent metric—the SHAP value—which explains to what extent each layout feature can reveal
each unknown connection for a recent ML-based split manufacturing attack model. The unique benefits of SHAP-based analysis
include the ability to identify the best candidates for obfuscation, together with the dominant layout features which make them
vulnerable. As a result, ObfusX can achieve better hit rate (97% lower) while perturbing significantly fewer nets when obfuscating
using a via perturbation scheme, compared to prior work. When imposing the same wirelength limit using a wire lifting scheme,
ObfusX performs significantly better in performance metrics (e.g., 2.2 times more reduction on average in percentage of netlist

recovery).
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1. Introduction

Manufacturing outsourcing of Integrated Circuits has be-
come more common than ever before because of the high cost
of fabricating high-end chips. As a result, security issues in-
cluding design piracy and hardware Trojans injection may arise
when an untrusted foundry is involved in manufacturing. To al-
leviate these problems, split manufacturing [1, 2] is proposed as
a technique where the untrusted foundry only receives and fab-
ricates a partial layout up to a metal layer denoted by a “split
level.” However, this may still not prevent an attacker to extract
the full design, if the layout is not obfuscated or if the split level
is too high, as suggested by [1, 3,4, 5, 6, 7, 8].

Existing techniques on design obfuscation may be classi-
fied as two categories: placement-based and routing-based.
Placement-based techniques include pin swapping [1], cell in-
sertion [9], and cell location perturbation [3, 10]. Routing-
based techniques include routing blockage insertion [4], rout-
ing perturbation [11], and wire lifting [12]. The two techniques
may also be combined, as in [13].

The key idea of design obfuscation for split manufacturing
is to make an attack model fail to identify correct connections
above the split level. As for the attack models for split manu-
facturing, Rajendran et al. first proposed the proximity attack
[1]. Wang et al. proposed a more advanced network-flow-based
proximity attack [3], which employs the network flow model
that considers more heuristics for better attack performance.
Magaiia er al. proposed a congestion based attack [4], which
redefined proximity measures based on the observation that
placement and routing congestions are better indicators in large
commercial designs. Most recently, Zeng et al. proposed a ma-
chine learning (ML) attack model [5], trained with empirically-
selected layout features that reflect the hints from routing con-
ventions.
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In this paper, we propose a novel way to build an obfus-
cator for split manufacturing, based on recent advancements in
the area of “explainability” of ML. We adopt a recent explana-
tory metric, namely the SHapley Additive exPlanation (SHAP)
value [14], to analyze the ML attack model proposed in [5].
(The ML attack model is especially suitable for large commer-
cial designs while other attack models (e.g. [3]) would take pro-
hibitively long attack time.)

The SHAP-based analysis reveals to what extent each layout
feature contributes to correctly predicting each individual un-
known connection as seen by an untrusted foundry. We then
exploit this information to design a SHAP-guided obfuscator
against the ML attack model where only truly vulnerable con-
nections are identified and each is obfuscated by just the neces-
sary amount. This results in minimal perturbation to the layout
as measured by increase in wirelength and number of perturbed
nets. Our obfuscator (named ObfusX) is routing-based and is
performed by utilizing perturbation of vias, and by wire lifting
schemes. (Placement-based obfuscation was not found to be as
effective by our SHAP-based analysis.)

Overall, our contributions can be summarized as follows.

e This is the first work that shows how explainability in ma-
chine learning (ML) can be used for obfuscation; while we
focus on routing obfuscation for an ML-based split manu-
facturing attack, our approach is generalizable to build any
obfuscator as long as an ML attack model is available.

e We demonstrate the benefits of ObfusX in identifying and
focusing on the most vulnerable candidates and obfuscat-
ing each by just the right amount, thereby reducing the
obfuscation overhead, while having better performance.

e Our results are compared with two prominent prior works,
using not only the ML attack, but also an independent net-
work flow-based attack from a recent work.
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2. Preliminaries

To build an obfuscator, we use an explanatory model named
SHAP to break a ML-based attack. Here, we review the ML
attack model and then give a brief overview of SHAP analysis.

2.1. ML Attack Model for Split Manufacturing

Given a metal layer as the split level, the layout is partitioned
into public layers, v-pins (as termed in [5]) and private layers
from low to high levels. A split layer refers to the topmost metal
layer available to the attacker; public layers refer to all metal on
or below the split layer and via layers in between; private layers
are all metal layers above the split layer and the via layers in
between; v-pins are vias connecting public and private layers.
The attacker has access to the layout (cells, pins, wires, vias) in
public layers and all v-pins. The goal of the split manufacturing
attack is to predict the connectivity on private layers based on
the available layout on public layers.

Recently, a ML-based attack model was proposed for split
manufacturing in [5]. To build the ML model, for each pair
of v-pins in a design, first a vector of layout “features” was
extracted from the public layers. Using these features, the ML
model was built based on Bagging of 10 reduced error pruning
trees (REPTrees) in Weka [15]. The ML model mapped each
v-pin pair with feature vector x to a probability f(x) € [0, 1],
indicating how likely the v-pin pair is a “match” (i.e. actually
connected to each other on private layers).

For a pair of v-pins, the following features were extracted in
[5]. (We refer the reader to [5] for more details.)

e diffVpinX, diffVpinY: The x- and y-direction differ-
ences in the locations of the two underlying v-pins, re-
spectively.

e manhattanVpin: The Manhattan distance of the v-pins.

e diffPinX/Y, manhattanPin: These are similarly de-
fined but for pins (connected to the v-pin pair) at the place-
ment level.

e totalWireLength: Wirelengths of wires connected to
the v-pin pair on public layers.

e totalCellArea, diffCellArea: These are sum (or diff)
of the average area of output cells and that of input cells.

2.2. SHAP Tree Explainer for Machine Learning

In this work, we adopt a recently proposed explanatory
model named SHAP [14], which explains predictions from a
ML model. Let f(x;) denote the ML prediction output of the
i-th testing sample with feature vector x;. SHAP decomposes
the model output as

M
Fx) = BIF 001+ ) cij, (1
j=1

where E[f(x)] is the expected prediction based on all train-
ing data, and ¢;; is the contribution of the j-th feature of the
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Figure 1: Flow chart of ObfusX.

i-th testing sample, which can be positive, negative, or zero.
Each ¢; ; indicates to what extent the j-th feature deviates the
i-th sample’s prediction from the average. The SHAP value is
proposed as an excellent candidate to compute the ¢; ;s in (1).
SHAP values show how each feature contributes to the model
output for each testing sample.

A recent extension [16], referred to as SHAP tree explainer,
shows that the exact evaluation of SHAP values can be done
in polynomial time exclusively for tree-based models (which is
compatible with the aforementioned ML attack model). The
SHAP tree explainer does not assume feature independence, as
feature interactions are already captured in the underlying trees.
In this paper, we will use the SHAP tree explainer to analyze the
vulnerability of individual v-pin pairs to the attack and use it to
guide the obfuscation.

3. Overview of ObfusX

The core idea of a SHAP-guided obfuscation is to perturb the
design, such that a ML attack model would perform worse. As
we will show in experiments, such obfuscation also performs
well under an independent, non-ML, attack model [3]. This is
because both attack models are based on a similar set of design
conventions in routing tools that aim to optimize the wirelength,
delay, etc. A flow chart of the overall process of ObfusX is
shown in Figure 1.

The upper panel shows how the ML model is developed. To
generate the training set and testing set for a design to obfuscate
(i.e., “target design”), we generate data samples by extracting
layout features from routed designs, with the same split layer
applied as will be used in manufacturing. All data samples from
the target design are allocated in the testing set, which we will
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Figure 2: SHAP force plots of two actually-connected v-pin pairs. The pink/blue bars (to the left/right of output values, respectively) quantify to what extend each
layout feature positively/negatively contributes to the ML attack that predicts their connectivity. The top contributing features (longest pink bars) may vary from
one v-pin pair to another. For example, diffVpinY is the most contributing feature in predicting (a) (longest pink bar) while it is actually the most negatively

contributing feature to predicting (b) (longest blue bar).

use to monitor the progress and performance of obfuscation.
Other designs in the same benchmark suite as the target design
are used to generate the training set that will be used to train the
attack model. As mentioned in Section 2, ObfusX uses the ML
predictor in [5]. With a trained attack model, it predicts how
likely each pair of (two) v-pins in the target design could be a
match (i.e., are actually connected), which can be interpreted as
the vulnerability of the pair to the ML attack.

To develop ObfusX, as shown in the lower panel, the ML
prediction for a v-pin pair is fed to the SHAP tree explainer,
which generates a set of SHAP values to explain the prediction.

Each SHAP value corresponds to an extracted feature and
quantifies to what extent that feature contributes to the ML pre-
dictor for that specific v-pin pair. These SHAP values are next
analyzed across all actually-connected v-pin pairs to identify
the most vulnerable ones to the ML attack, along with the lay-
out features that contribute the most to their individual vulner-
abilities.

Next, the output of SHAP analysis guides the actual obfusca-
tion which is done iteratively. ObfusX utilizes two layout per-
turbation techniques—via perturbation and wire lifting—each
of which effectively change the routing and locations of a vul-
nerable v-pin pair. At each iteration, the most vulnerable v-
pin pair is obfuscated if its obfuscation does not violate routing
feasibility. Next, the feature vector of the obfuscated pair is up-
dated and consequently its vulnerability is re-evaluated by the
attack model (given that the layout has been slightly perturbed).
ObfusX then proceeds to obfuscate the next vulnerable pair, un-
til there is no more vulnerable pair, or a budget of wirelength
(WL) overhead is reached.

4. SHAP Analysis for One V-pin Pair

Before discussing the details of ObfusX, we first explain how
SHAP-based analysis is performed for a single pair of con-
nected v-pins. This helps us to illustrate the true benefits of such
analysis in building ObfusX. Consider two connected v-pins
from the design superbluel with split layer M6. The ML at-
tack model, predicts this pair to be connected with probability
0.96 (which is a relatively high prediction indicating a success-
ful attack if there is no obfuscation).

Figure 2(a) shows the force plot generated by SHAP analysis
performed on the ML prediction for this pair. The color and

length of pink/blue bars show the sign and magnitude of c¢; ;s
in Equation (1), respectively. For the pair in Figure 2(a), the
analysis breaks down the prediction output of 0.96 as sum of a
base value of 0.5 and a total deviation of +0.46. The pink/blue
bars correspond to the features which positively/negatively con-
tribute to the model output (i.e., with a positive/negative “force”
pushing towards this 0.96 prediction). The length of the bars
indicate the degree of contribution such that the sum of the
lengths of pink bars (with positive sign) and blue bars (with
negative sign) adds up to +0.46.

More specifically, for pair (a), among all its features,
diffVpinY has the highest SHAP value of around +0.4 (cor-
responding to the length of its pink bar). Figure 2(b) shows
the force plot for a second pair (b). For pair (b), we observe a
different feature, i.e., manhattanVpin is dominant. Moreover,
diffVpinY, which was the top feature in (a), has a negative
SHAP value in (b), indicating it actually contributes negatively
to the prediction of pair (b).

The above example yields the following two key observa-
tions to illustrate the unique benefits of SHAP analysis for ob-
fuscation:

1. The vulnerable v-pin pairs can be identified as the ones
which have few features with large positive SHAP values.

2. The top feature may vary across individual pairs, implying
a different degree or scheme of obfuscation is needed for
each.

5. Details of ObfusX

The goal of SHAP-guided obfuscation is to alter the SHAP
values such that there will not be any dominant feature with a
high positive SHAP. It could mean that obfuscation makes orig-
inally dominant features to have a lower positive SHAP value
or a negative one.

Our SHAP analysis of design superbluel with split layer
M6, shows that for about half of the connected v-pin pairs,
the SHAP value of diffVpinY is consistently dominant (fol-
lowed by that of manhattanVpin). However for the other
half of pairs, the distribution of SHAP values over features be-
comes fuzzy, which suggests that no single feature dominates
the model. Such pairs (which do not have any dominant fea-
ture) do not need to be obfuscated.
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Figure 3: Contributions of top two features, shown as a distribution for all con-
nected v-pin pairs, before (blue) and after (red) obfuscation. ObfusX flattens
the distribution and reduces the top contributions.

For the two dominant features (diffVpinY and
manhattanVpin) in the above example, Figure 3 shows
the distribution of the combined contribution (i.e., sum of
SHAP values) of these two top features, before and after
obfuscation. This is when using ObfusX with via pertur-
bation (which will be discussed in detail in Section 5.1).
The before-obfuscation distribution is shown in blue and the
after-obfuscation one is shown in red. As can be seen, ObfusX
flattens the distribution and shifts it to the left (so it decreases
the top contributions, making some less positive and some even
negative).

Similar to the example of superbluel with split layer M6,
SHAP-based analysis with the rest of the designs showed that
diffVpinY and manhattanVpin are always the top two con-
tributing features for many of the vulnerable nets when the split
layer is even. (For odd split layers diffVpinY is replaced with
diffVpinX because wires are preferred to route vertically on
even layers and horizontally on odd layers.) The nets which did
not have a dominant feature simply won’t need to be obfuscated
with SHAP-guided analysis. Therefore, these two features are
the only ones which are utilized by ObfusX.

We note, these two dominant features are related to routing
which explains our choice to obfuscate the design with routing-
based techniques, i.e., via perturbation and wire lifting. How-
ever, we note, our general approach is not restricted to routing.

5.1. ObfusX with Via Perturbation

The procedure for via perturbation only considers perturb-
ing v-pin pairs which are determined to be “essential”. Essen-
tial v-pin pairs are a subset of all connected v-pin pairs, after
disregarding trivial cases, e.g., when some v-pins connect to
each other using the public layer, hence are easily identifiable
by the attacker. ObfusX also ensures feasibility of the routing
throughout the process without any area overhead. We first in-
troduce the following which will be used when explaining the
algorithm.

5.1.1. Terminology

We introduce the following terminology as shown in Fig-
ure 4(a), where the split layer is M4. Wires in all metal layers
are shown as horizontal lines and vias as vertical lines.

A driving pin is a pin that drives other components in the net.
It can be the output pin of a logic cell or that of a primary input.

A v-pin group consists of v-pins in the same net that con-
nect to each other using public layers. The v-pins in the same
group can be easily identified by an attacker because they are
connected in public layers that are available to the attacker.

A driving v-pin group is a v-pin group that connects to a driv-
ing pin using public layers.

A non-driving v-pin group is a v-pin group that does not con-
nect to any driving pin in public layers.

An essential v-pin pair (v,v") consists of a pair of v-pins,
where v is in a non-driving v-pin group G, and V' is in a driving
v-pin group G’. If G’ has more than one v-pin, v’ is the closest
v-pin to vin G’.

5.1.2. Algorithm

We propose an algorithm that perturbs the locations of v-pins
based on SHAP values of the top features manhattanVpin and
diffVpinR where R is X for odd split layers and Y for even
split layers. This is done iteratively, one v-pin at a time. We first
calculate the SHAP values S (i, j) for all essential v-pin pairs
i and all features j. Then for each essential v-pin pair i, we
take the maximum of the SHAP values over all features j, i.e.,
S max() = max; S (i, j). We only perturb v-pins that satisfy the
following criteria:

e The v-pin belongs to an essential v-pin pair p = (v,V'),
with v and V' in the same net. This is to avoid duplicated or
invalid perturbations, e.g. perturbing the same v-pin later
when a different v-pin pair is being considered.

o Snmax(p) = S(p, manhattanVpin) or Shyx(p) =
S (p, diffVpinR). This ensures the essential v-pin pair p
is vulnerable, i.e., likely predictable with the top features.

o S(p, diffVpinR) > S(p, diffVpinR’), where R’ €
{X, Y} is the routing direction other than R. This condition
ensures the effectiveness of perturbing v or v/ in R direc-
tion.

e If there are more than one non-driving v-pin group in the
net of v and v/, then v’ in the driving v-pin group is not el-
igible for perturbation and only v may be perturbed. Oth-
erwise, perturbing v/ may affect multiple essential v-pin
pairs.

The procedures of SHAP-guided via perturbation are sum-
marized in Algorithm 1. We maintain a list £ of essential v-
pin pairs p = (v,V’) sorted in decreasing order of S .x(p). As
shown in Algorithm 1 (lines 6-7), in each iteration, we select
p from the top of the list, and apply trial perturbing moves (a
series of “dry runs” that do not actually perturb) to each eligi-
ble v-pin in pair p within a predefined small radius r (detailed
in Algorithm 2) to find the most efficient move (v*, 6*) which
means to move v-pin v* by amount ¢*. Efficiency of a move is
defined in terms of the decrease in the model output —Af(x) =
S (Xbefore) = f (Xatier) and the extra WL AWL = W Lygier = W Lefore
(as an integer).
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Algorithm 1: Via-PerTURBATION (L, R, 7, N, W)
Input: £: list of all essential v-pin pairs, R: perturbing
direction, which is X for odd split layer and Y for
even split layer, r: radius for trial perturbing, N:
maximum number of iterations, W: wirelength
budget

1 for iter — 1to N do

2 w « total wirelength of the layout

3 if L is empty or w > W then

4 | break
5 end
6 for p in L in descending order of S nax(p) do
7 (v*, 6%, ) « TrRiAL-PERTURB (p, R, r, False)
// Algo. 2
8 if v* # null then
// take the actual move
9 Ripup-aND-REROUTE (V*, R, 6%, False)
// Algo. 3

10 Update the feature vector and SHAP values
of p.

1 Re-check the eligibility of both v-pins in p,
and remove p from £ if neither v-pin is
eligible.

12 Re-sort L by S ax-

13 break // only move one v-pin at a
time

14 else

15 ‘ Remove p from L.

16 end

17 end

18 end

Specifically, to quantify the efficiency of a move, we define
its gain as

—Af(x)/AWL, ifAf(x)<0and AWL>1
gain =41 — Af(x), if Af(x) <O0Oand AWL <0, (2)
0, if Af(x) > 0 or not feasible

which prioritizes moves that lead to a decrease in model out-
put at no or low extra cost of WL. The trial perturbing is nec-
essary as it would be difficult to estimate the routing feasibility
and extra WL without any trials due to complex layout conges-

tion. After the trial perturbing, if there is no feasible move, we
remove pair p from L (line 15), and proceed to the next v-pin
pair in £; if there is any feasible move (lines 8—12), we take the
actual move that has the highest gain, update the feature vec-
tor and the SHAP values (as in Figure 1), re-check the v-pin
eligibility, and go to the next iteration.

Please note, the above gain function depends on the change in
model output and is not driven by the SHAP values. However,
as explained in the flowchart of ObfusX (Figure 1), valuner-
able v-pins are identified only using the SHAP values (if the
two dominant features are diffVpinX/Y and manhattanVpin).
SHAP values are also used to identify the order of obfuscation
of the vulnerable v-pins. After obfuscation of each v-pin pair,
the feature values will be updated and the next vulnerable pair
will be identified. This process may result in a v-pin pair to
be obfuscated more than once if it later is found to be vulner-
able (e.g., after some other pairs are obfuscated). This overall
process results in the SHAP values to be altered after obfusca-
tion, and in particular the SHAP values of v-pins with dominant
features (diff VpinX/Y and manhattanVpin) will be significantly
reduced after obfuscation. Please refer to example of Figure 3.

5.1.3. Rip-up and Reroute Procedure

To apply a perturbing move to a v-pin v, we rip up and reroute
the wires connecting v to the other components. To facilitate
the rerouting procedure, we rip up v and all wires connecting
to v that do not result in more than two connected components,
while not touching any other v-pins, as shown in Figure 4(b).
Then we move v to the new location and identify the uncon-
nected parts (i.e. both endpoints of v and the other connected
components of the net, referred to as “rerouting goals™) in the
public and private portions, respectively, as in Figure 4(c). Fi-
nally, we use A* search algorithm to reconnect the unconnected
parts of the net in the public portion using public layers, and
then reconnect for the private portion using private layers, as
shown in Figure 4(d). Specifically, the routing graph G(V, E)
for A* search is built in three dimensions. The vertices are
valid routing grids in all metal layers, and the edges are in x,
y and z directions, corresponding to potential wires (in x and y
directions) and vias (in z direction) where the routing resources
permit. Summarized in Algorithm 3, this rip-up and reroute
procedure ensures a feasible route (if possible) and optimizes
the WL.



Algorithm 2: TrRiaL-PERTURB (p, R, r, lifT)

Input: p: essential v-pin pair to be perturbed, R:
perturbing direction, r: radius for trial
perturbing, N: maximum number of iterations,
lift: whether to apply weight penalties (only
used in wire lifting)

Output: v*: best v-pin to move, §*: amount to move,

maxGain: max possible gain
1 w « total wirelength of the layout
2 v « null, 5" <« null
3 maxGain < 0
4 for eligible v in v-pin pair p do

5 for 6 «— —rtordo
6 gain < Ripur-AND-REROUTE (v, R, 6, lift)
// move v in R-dir by 9§

7 if gain > maxGain then

8 Vie— v, 0" <0

9 maxGain < gain

10 end

11 end
12 end

13 return (v*, 6", maxGain)

Algorithm 3: Ripup-AND-REROUTE (v, R, 6, lif1)

1 Rip up v and any wire connecting to v that does not
result in more than two connected components or touch
other v-pins. (Figure 4(b)).

2 Move v in R direction by amount 6.

3 Identify unconnected parts for rerouting (Figure 4(c)).

4 Build/update the routing graph, where a vertex = a
routing grid, an edge = a connection between grids if
routing resources permit, edge weight = wirelength

5 if lift then

6 Multiply by a large number (e.g. 1000) all edge

weights for metal wires (not including vias) below
the split layer

7 end
8 reroute using A* search algorithm (Figure 4(d)).
9 Calculate gain according to (2).

10 return gain

5.2. ObfusX with Wire Lifting

Wire lifting is the second routing-based technique in ObfusX.
It moves wires from the public layers to private layers, and
therefore creates more v-pins, which can make the attack more
difficult.

5.2.1. Wire lifting as rip up and rerouting

To unify our two obfuscation techniques, we propose our
wire lifting as a special case of rip-up and rerouting, so that
a similar flow to via perturbing can be followed. In wire lifting,
instead of exploring the v-pins on the split layers, we explore
vias on a focused layer that is one or more layers below the split

layer. The proposed wire lifting is a two-stage process. In the
first stage, we iteratively apply trial rerouting to a via v on the
focused layer with the same rip up and reroute procedure to v
as in Section 5.1.3, except that (a) to save WL, we do not move
the location of v after ripping up, and (b) when rerouting with
A* search, we put a higher weight on wires in public layers, so
that the use of public wires is discouraged and thus extra v-pins
can be created.

5.2.2. Two modes of wire lifting

To make the attack more difficult, wire lifting can be done
in either of two ways: (a) to lift wires in a single net, such that
newly created v-pins (in the same net) are likely to be perceived
by the attacker as “not connected,” or (b) to lift wires in two dif-
ferent nets, such that newly created v-pins in different nets are
likely to be perceived as “connected.” Accordingly, wire lifting
in ObfusX can work in two modes: “same net” and “different
nets.”

In “same net” mode, we try to find the wire that, when lifted
above the split layer, would create an essential v-pin pair p’
in the same net on the split layer whose model output is low
(i.e., it is mistakenly perceived as “not likely to be connected”
above split layer), at the cost of no or little wirelength overhead.
For each possible essential v-pin pairs p on the focused layer,
we follow the trial rerouting procedure to explore the gain of
lifting this pair. If the trial rerouting creates a new essential
v-pin pair, we evaluate the gain of this move with (2), where
=Af(X) = f(Xpefore) = f(Xatter) = 1 — f(Xafter), 1.€., the model
output before the move is defined as 1 because the pair is known
to be connected if the vias were not lifted. We record the move
and gain in a list of candidate moves, and revert the changes
to explore the move with the next essential v-pin pair. After
going through all pairs p, we go to the second stage, where we
commit the moves to the layout in this list in decreasing order
of their gains.

In “different nets” mode, we try to find a pair of vias be-
low the split layer that satisfy all of the following criteria: (a)
they belongs to different nets, (b) at least one of the two nets is
fully below the split layer, (c) one via is connected to a driving
pin, and the other is not, and (d) both vias can be lifted to the
split layer. The goal is to create a “deceptive” essential v-pin
pair with a high model output (i.e., it is mistakenly perceived as
“very likely to be connected” above split layer) with no or lit-
tle wirelength overhead. The procedure is similar to the “same
net” mode, except that (a) in “different nets” mode we explore
moves with each pair of vias that satisfies the above criteria in-
stead of each single via (each move essentially consists lifting
two vias to the split layer); (b) if any of these two vias cannot be
lifted to the split layer due to routing infeasibility, the “decep-
tive” pair cannot be created and therefore this pair would not be
considered; and (c) the calculation of gain is slightly different,
which is given by

f(Xafter)/AWL, if f(Xafter) >0and AWL > 1
1+ f(Xatter), if f(Xatter) > 0and AWL <0

0, if Af(Xaer) = O or not feasible
3

gaingig =



Compared to (2), all —Af(x) is replaced by Af(x) =
f(xafter) - f(Xbefore) = f(X) -0 = f(xafler)- This is to reflect
that we are dealing with vias in different nets, hence a higher
model output f(Xaser) 1S better, as opposed to the case in the
“same net” mode. Before lifting, the two vias are known to be
not connected, hence f(Xpefore) being 0.

5.2.3. Lifting different layers of wires

In [11] and [17], wire lifting was performed only for vias on
one layer immediate below the split layer. This can be effective
when the WL overhead budget is tight. However, limiting the
number of layers as such means that wires in nets that only oc-
cupy lower layers are never considered to be lifted. Therefore,
it is desired to consider more layers of wires to be lifted. In this
paper, we consider lifting wires in different layers, from one
layer below the split layer down to the bottom-most via layers.

5.2.4. The order of committing moves

There are at least two orders of committing moves. Order
A is to commit valid moves as soon as we find a valid move,
which is adopted in [17]. In this paper, we propose order B—
first store all valid moves in a list and then commit the moves
in decreasing order of their gain. Each order has its own pros
and cons. With order A, we cannot find the optimal order of ex-
ploring (and committing) the moves beforehand, because it is
hard to get a good estimate of the WL cost without performing
the time-consuming trial routing. In [17], the order to explore
is determined by the model output before move, without con-
sidering the WL cost. The proposed order B can result in much
better tradeoff between obfuscation performance and WL over-
head, because Order B considered the WL cost. However, we
should note that with order B, the moves are not guaranteed to
be committed as stored in the list, because earlier commits may
results in changes in routing resources which is not updated in
the list. In contrast, with order A, the routing resources are
always up-to-date since we explore the next move after com-
mitting the previous one, and therefore the trial routing always
renders accurate lifting feasibility and routes.

In summary, the procedure of wire lifting is shown as Algo-
rithm 4 where the proposed order B is adopted. Note that in
lines 4 and 16, since we do not perturb the location of focused
vias, the radius in trial perturbing or rerouting is set to O and the
direction can be arbitrary.

6. Experimental Results

We obtained the source code of the ML attack from [5], used
the shap library for Python for SHAP analysis, and imple-
mented all procedures of ObfusX in C++. Experiments were
done on a Linux workstation with an Intel 16-core 3.60 GHz
CPU and 64 GB memory.

6.1. Via Perturbation with ObfusX

We first show in Table 1 the performance of via perturbation
with ObfusX using five designs in ISPD’11 benchmark suite

Algorithm 4: Wire-LirtinG (I, N, W)
Input: /: the focused layer, N: maximum number of
moves, W: wirelength budget
1 L « essential v-pin pairs as if [/ were the split layer
2 G=[] // keep track of candidate vias and
gains
3 for pin £ do
4 v*, _,maxGain) < TrRIAL-PERTURB (p, X, 0, True)
5 if v* # null then
6 | G.append((v*, maxGain))
7
8
9

end

end

Sort G in decreasing order of maxGain
10n<0 // keep track of number of moves
1 for (v¥, maxGain) in G do
12 w « total wirelength in the layout
13 if n > N or w > W then
14 | break
15 end
16 Ripur-aND-REROUTE (V*, X, 0, True)
the moves
17 ne—n+1
18 end

// commit

[18] that are also used in [4, 12, 5]. We obtain routed overflow-
free designs from [5], to which we apply the proposed SHAP-
based via perturbation. As stated in Algorithm 1, parameter r
controls the radius of perturbation when calling the trial-perturb
function. Higher r results in a higher runtime because it defines
a larger space during via perturbation. In our experiments we
used r = 3 units of the grid size to reach a suitable tradeoff be-
tween runtime and quality of solution. This value of r in prac-
tice is significantly smaller than the size of the 3D routing grid
of the ISPD’11 benchmarks which is in order of 100x100x9.
It defines a small search neighborhood compared to the total
search space, yet it still allows obtaining a reasonable tradeoff
between runtime and solution quality as we demonstrate in our
experiments.

We compare the performance and the cost of obfuscation
with the via perturbation technique proposed in [5]. This is
based on the same ML attack model. Note that the popular net-
work flow attack model [3] takes prohibitively long time to run
on these designs and hence is not applicable here. We also do
not explicitly compare with a routing congestion-based attack
model such as [4] because the work [5] reports results that it is
superior to [4].

We use the following metrics to evaluate the performance and
the cost of an obfuscation.

e Hit Rate (HR) at X%: For a v-pin v, we first identify
the top X% of other v-pins u which have the highest ML
model output for essential v-pin pair (v, u). These v-pins
are predicted by ML to most likely be the match for v. We
call it a “hit” of v if its real matching v-pin is among the
v-pins identified above. We then report the average per-
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Figure 5: Comparison of tradeoff in HR vs WL in superbluel.

centage of hits of all v-pins v in the design. We report this
metric with X = 0.01 and 0.1. (As a point of reference, X
= 0.1 results in up to 89 v-pins identified on split layer M6,
or up to 200 v-pins on split layer M4 in these designs. The
total number of v-pins is quite large as reported in the first
column of the table.) A lower HR means better defense.

e WL overhead (AWL%): percentage of increase in WL af-
ter the obfuscation. Lower is better.

e Perturbed Nets (PN%): number of perturbed nets divided
by total number of nets that contain any v-pin. Lower is
better.

o Perturbed V-pins (PV%): number of perturbed v-pins di-
vided by the number of v-pins in the design. Lower is
better.

e Total runtime of obfuscation using one CPU core (fcpy).

Note that the functions of standard cells are not available in
ISPD’11 benchmark. Therefore metrics related to circuit out-
puts (e.g. Hamming distance (HD), output error rate (OER))
are not applicable.

Several observations can be made from the results in Table 1.
First, the HR of the ML model for 0.01% and 0.1% v-pin lists
drops drastically after obfuscation; for ObfusX it drops from
28% and 67% to 4% and 13%, respectively, better than the HR
reductions with in [5]. Second, the WL overhead of ObfusX
is less than 1/5 of that with [5]. Third, with ObfusX, only
around 30% of v-pins and 60% of nets (that contain v-pins) are
finally perturbed, compared to nearly-all nets and v-pins when
perturbed with [5].

To observe the tradeoff between performance and cost of ob-
fuscation, we plot in Figure 5 the curves of HR and WL over-
head with ObfusX and [5], respectively. Compared to [5], Ob-
fusX achieves 87% and 97% lower HR in 0.1% and 0.01% v-pin
lists, respectively, for the same WL overhead of 0.5%, or is 3—
5% more efficient in WL overhead for the same reduction of
HR.

6.2. Wire Lifting with ObfusX

We show in Table 2 the performance and cost of wire lift-
ing with ObfusX (r = 5 um) on ISCAS’85 benchmark designs,
which are often used in related work, and compare them with
[11]. The layouts are obtained from the authors of [11]. The

lifting layer are limited to one layer below the split level. The
route changes are committed in order A (by model output). Em-
pirically, this is a good setting in general when WL budget is
small. Detailed discussion can be found later in Section 6.3.

For this benchmark, we use the network flow attack model
[3] which is obtained from the authors. Note that this is not a
ML-based attack model and is not used to build ObfusX. Since
the split layer for each design is not explicitly reported in [11],
we tried to identify it by matching the number of nets on private
layers with the number reported in [11]. ObfusX was applied
on six designs for which we were able to identify the split layer,
with WL budget equal to the reported WL overhead in [11].
The obfuscated layouts are converted to Verilog and their func-
tional equivalency with original designs is verified with Synop-
sys Formality. For these designs, we use the following metrics
to evaluate the performance and cost of an obfuscation.

e Percentage of Netlist Recovery (PNR) given in [12]: per-
centage of correctly reconstructed nets. This quantifies
how well the attack can recover the whole design. Lower
is better.

e Output Error Rate (OER): probability that there is any er-
ror bit in outputs of the reconstructed circuit. Higher is
better.

e Hamming Distance (HD) between outputs of the original
and the reconstructed circuits. Closer to 50% is better.

e WL overhead (AWL%): percentage of increase in WL af-
ter the obfuscation. Lower is better.

o Total runtime of obfuscation using one CPU core (fcpy).

We derive OER and HD from 100,000 runs of Monte Carlo
simulations with ModelSim. OER, HD, and the WL overhead
of [11] are quoted from [11]. PNR of the original design and
[11] are derived by definition, based on the design layouts and
the reported numbers in [11]. Although we made our best ef-
fort to conduct a fair comparison, we cannot obtain the same
version of layout and program that produces the exact results
of [11]. (They are similar on average, though.) Instead, we ob-
tain the most recent and publicly available version of layout and
program as released by the authors of [11] and run our experi-
ments before and after obfuscation. With this in mind, we keep
the results from our experiments and their results from [11], and
compare the changes before and after obfuscation in [11] and
in our experiments.

As can be seen in Table 2, with a computing time of less than
five minutes, ObfusX can reach 100% for OER, and achieve
better obfuscation in the reduction of PNR (11% vs 5% on av-
erage, or 2.2x better) and the increase in HD (24.6% vs 18.6%
on average, or 32% better), with the same or less WL overhead
compared to [11]. Note that the reported results of [11] come
from a (best) combination of three obfuscation techniques in-
cluding wire lifting and via perturbation for matching and non-
matching v-pins, whereas in our results wire lifting is applied
alone. In fact, our wire lifting and via perturbation techniques



Table 1: Results of via perturbation with ObfusX on the ISPD’11 benchmark suite

Split No obfuscation [5] ObfusX
laper Design (#v-pins) HR @ HR@ AWL% PN% /PV%  tcpy (h) HR@ AWL% PN% /PV% tcpy (h)
y 0.01%/0.1% | 0.01%/0.1% 0.01% /0.1%
sbl (44486) 23.79/63.33 2.19/11.58 3.03  99.83/99.58 3.86 0.52/6.12 0.55 66.57/36.01 3.28
sb5 (60034) 29.47/63.96 5.75/20.38 4.09 96.81/91.75 7.13 4.34/15.46 0.67 55.62/30.08 5.30
M6 sb10 (89846) 31.84/64.34 10.24 /28.31 452 92.45/79.77 7.75 9.37/23.93 0.71  46.49/23.96 8.05
sb12 (80816) 33.01/75.58 8.23/24.78 331  97.70/90.12 6.46 4.32/11.67 0.64 73.87/37.12 5.45
sb18 (36026) 20.06/66.11 4.27/16.55 2.64 98.91/94.35 2.88 2.16/8.68 0.67 63.02/34.27 2.06
Average \ 27.63 / 66.66 \ 6.14/20.32 3,52  97.14/91.11 5.62 \ 4.14/13.17 0.65 61.11/32.29 4.83
sbl (150510) 49.82 / 68.33 6.46 /25.37 9.50  99.79/93.91 9.00 1.70 /24.08 2.14  65.23/35.26 18.90
sb5 (179844) 38.78 / 60.40 7.54/23.84 9.86 96.94/87.87 11.48 3.03/23.35 1.87 51.43/28.09 18.41
M4 sb10 (200896) 33.50/60.21 13.16/37.36 853 91.38/73.21 15.05 9.81/36.54 1.31 38.81/19.55 17.19
sb12 (173294) 47.07/71.52 9.01/22.40 7.61  98.61/92.32 13.48 4.42/17.39 1.12 65.32/32.81 18.09
sb18 (86658) 29.83/59.89 5.15/17.89 643  99.37/95.29 4.26 1.87/10.95 1.53  57.00/30.80 7.18
Average ‘ 39.80/64.07 ‘ 8.26 /25.37 839 97.22/88.52 10.65 ‘ 4.17/22.46 1.59  55.56/29.30 15.95
Table 2: Results of wire lifting with ObfusX with the ISCAS’85 benchmark suite
Desien #Net No obfuscation, from [11] Obfuscated, quoted from [11]
csig S | PNR% OER% HD% | PNR% OER% HD% AWL%
c880 252 100.0 0.0 0.0 91.7 99.9 18.0 4.3
c2670 607 95.8 99.9 7.0 87.1 100.0 14.0 44
¢3540 638 97.2 95.4 18.2 93.5 100.0 334 2.5
c5315 997 98.7 98.7 4.3 95.0 100.0 18.1 1.7
c6288 1921 99.8 36.8 3.0 98.6 100.0 42.1 1.8
c7552 1041 99.6 69.5 1.6 95.3 100.0 20.3 2.2
Avg. 98.5 66.7 5.7 93.5 100.0 24.3 2.8
Comparing to “No obfus.” -5.0 +333  +18.6
Desien #Nets No obfuscation, from our experiments Obfuscated with ObfusX
s1g PNR% OER% HD% | PNR% OER% HD% AWL% tcpy (min)
c880 252 99.2 50.0 1.9 85.3 100.0 24.6 34 1.2
c2670 607 95.8 100.0 5.8 77.9 100.0 23.3 3.2 24
c3540 638 98.6 79.2 9.5 87.0 100.0 37.4 2.5 4.7
c5315 997 97.5 99.5 10.4 89.6 100.0 23.7 1.7 44
c6288 1921 100.0 0.0 0.0 96.8 100.0 46.6 1.8 35
c7552 1041 99.1 98.9 4.5 87.0 100.0 24.4 2.2 4.7
Avg. 98.4 71.3 54 87.3 100.0 30.0 2.5 35
Comparing to “No obfus.” -11.1 +28.7  +24.6

are orthogonal to each other. Therefore, they may be combined
for potentially better performance.

We were not able to make a fair comparison with another re-
lated work [12] because the original layouts of [12] are likely to
be very different from ours and were not made available. (The
layouts in [12] are generated using all 10 metal layers, whereas
our layouts from [11] only occupy 5-9 lower metal layers.)

In summary, for obfuscation with via perturbation, ObfusX
is able to achieve a lower hit rate (indicating better obfuscation)
while perturbing significantly fewer nets and vias in the design,
with significantly lower wirelength. When the same wirelength
limit is imposed during wire lifting, ObfusX performs signifi-
cantly better in performance metrics (PNR and HD with equally
good OER).

6.3. Comparison of wire lifting with different settings

Using the same six ISCAS’85 designs, we compare the re-
sults of wire lifting with different settings as described in Sec-

tion 5.2, including

e lifting one, two, and three layers of vias below the split
layer (denoted 1L, 2L and 3L, respectively);

e committing in order A (by model output, denoted mo) and
order B (by gain, denoted gain), in “same net” mode;

o lifting in “same net” mode (denoted gain) and “different
nets” mode (denoted diff), committed in order B.

The naming of settings is a combination of (1L, 2L, 3L) and
(mo, gain, diff). Please note the work [17] corresponds to the
1Lmo case.

To ease comparison, we use the following metric to quantize
the obfuscation performance.

“

This unified performance metric has a higher (better) value
when PNR is lower and HD is closer to 50%. We do not include

Perf = (1 — PNR) - min(HD, | — HD).



OER because it is very close to 100% most of the time. We plot
the performance and increase in via count verses the WL over-
head budget (in percentage) for each design in Figure 6.

We can make the following observations from these results.

1. For 1Lx* settings (* serves as a wildcard), the performance

is good for small WL budget—by limiting the layer of
lifted wires, it tends to obfuscate many different nets with
small WL overhead. However, the performance and via
count saturates after a certain WL overhead budget—these
settings only discover nets that extend to the metal layer
immediately below the split layer, thus the lifting options
exhaust earlier than 2L* and 3L* settings. Specifically, the
1Ldiff setting saturates even earlier than other 1L* set-
tings because in “different nets” mode, a move involves
two vias in different nets, and both vias need to be feasible
to reroute above the split layer in order to be considered
a valid move, whereas in the “same net” mode, only one
via is involved in a move. This stricter condition further
reduces the number of potential lifting options.

. In terms of the tradeoff between obfuscation per-
formance and WL overhead (as the slopes in Fig-
ure 6(a)(c)(e)(g)(i)(k)), 2L* settings are generally worse
than others. This is because the focused layer (two layers
below the split layer) has the same preferred routing direc-
tion as the split layer. Vias on the focused layer are more
likely to share similar properties to the vias on the split
layer (for example, one of the coordinates of via locations
could be the same). This can make the attack relatively
easier than other focused layers (as in 1L* and 3L* set-
tings).

. The *gain settings have better tradeoffs between ob-
fuscation performance and WL overhead than *mo set-
tings. These two groups differ in the order of committing
changes, as detailed in 5.2.2. As expected, *gain settings
win as they prioritize moves with higher gain, which im-
plicitly consider the WL cost whereas *mo settings do not.
. The =xdiff settings generally have better tradeoffs be-
tween obfuscation performance and WL overhead than
xgain settings. This two groups correspond to the “dif-
ferent nets” mode and “same net” mode, respectively. The
better tradeoffs are attributed to the much more lifting op-
tions to explore from pairs of vias from different nets than
from the same net. Therefore, the best move in the xdiff
mode can be potentially superior to that in the *gain.

. Moving to Figure 6(b)(d)(f)(h)(G)(1), the via count grows
almost linearly with the WL overhead budgets, with sim-
ilar slopes among different settings (except for 1Lx* set-
tings where the growth terminates after a point due to lim-
ited valid options to lift (see observation 1). This is be-
cause our WL estimation includes the estimated length of
vias, therefore the number of vias cannot grow unlimitedly
given a WL overhead budget. The linearity of growing
also means the proportion of WL in metal layers and vias
remains steady regardless of the WL overhead budget.

min(HD, 1-HD) = (L-PNR)

(1-PNR)

HD *

min(HD, 1-HD) = (L-PNR) min(HD, 1-HD) * (1-PNR) min(HD, 1-HD) * (1-PNR)

min{HD, 1-HD) = (1-PNR)
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Figure 6: Performance (Perf.) and increase in via count (AVia, in percentage)
verses WL budget (%) of wire lifting with ObfusX for six designs in ISCAS’85
benchmark suite.
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6. A closer look at the slopes in via vs WL overhead bud-
get plots reveals that settings 3Ldiff and 3Lgain leads to



generally more new vias on split layer per unit WL over-
head than 1L* and 2L*, and 3Lmo settings. This is because
with the most nets being considered in 3L settings, we has
the most valid moves to consider. Also when we commit
by gain as in both *diff and *gain settings, we commit
better moves as we take the WL cost into consideration.

7. Conclusions

We presented ObfusX, a routing obfuscator for split manu-
facturing which incorporated SHAP-based analysis to explain
a machine learning attack. The unique benefits of ObfusX are
in its ability to identify the best candidate nets for obfuscation
together with the layout features which make them most vulner-
able when subjected to an attack. As a result, it achieves bet-
ter performance than prior work while perturbing significantly
fewer nets and with significantly lower wirelength during via
perturbation. It also achieves significantly better performance
than prior work if the same wirelength limit was imposed dur-
ing wire lifting.
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