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Abstract

This is the first work that incorporates recent advancements in “explainability” of machine learning (ML) to build a routing obfus-

cator called ObfusX. We adopt a recent metric—the SHAP value—which explains to what extent each layout feature can reveal

each unknown connection for a recent ML-based split manufacturing attack model. The unique benefits of SHAP-based analysis

include the ability to identify the best candidates for obfuscation, together with the dominant layout features which make them

vulnerable. As a result, ObfusX can achieve better hit rate (97% lower) while perturbing significantly fewer nets when obfuscating

using a via perturbation scheme, compared to prior work. When imposing the same wirelength limit using a wire lifting scheme,

ObfusX performs significantly better in performance metrics (e.g., 2.2 times more reduction on average in percentage of netlist

recovery).
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1. Introduction

Manufacturing outsourcing of Integrated Circuits has be-

come more common than ever before because of the high cost

of fabricating high-end chips. As a result, security issues in-

cluding design piracy and hardware Trojans injection may arise

when an untrusted foundry is involved in manufacturing. To al-

leviate these problems, split manufacturing [1, 2] is proposed as

a technique where the untrusted foundry only receives and fab-

ricates a partial layout up to a metal layer denoted by a “split

level.” However, this may still not prevent an attacker to extract

the full design, if the layout is not obfuscated or if the split level

is too high, as suggested by [1, 3, 4, 5, 6, 7, 8].

Existing techniques on design obfuscation may be classi-

fied as two categories: placement-based and routing-based.

Placement-based techniques include pin swapping [1], cell in-

sertion [9], and cell location perturbation [3, 10]. Routing-

based techniques include routing blockage insertion [4], rout-

ing perturbation [11], and wire lifting [12]. The two techniques

may also be combined, as in [13].

The key idea of design obfuscation for split manufacturing

is to make an attack model fail to identify correct connections

above the split level. As for the attack models for split manu-

facturing, Rajendran et al. first proposed the proximity attack

[1]. Wang et al. proposed a more advanced network-flow-based

proximity attack [3], which employs the network flow model

that considers more heuristics for better attack performance.

Magaña et al. proposed a congestion based attack [4], which

redefined proximity measures based on the observation that

placement and routing congestions are better indicators in large

commercial designs. Most recently, Zeng et al. proposed a ma-

chine learning (ML) attack model [5], trained with empirically-

selected layout features that reflect the hints from routing con-

ventions.

In this paper, we propose a novel way to build an obfus-

cator for split manufacturing, based on recent advancements in

the area of “explainability” of ML. We adopt a recent explana-

tory metric, namely the SHapley Additive exPlanation (SHAP)

value [14], to analyze the ML attack model proposed in [5].

(The ML attack model is especially suitable for large commer-

cial designs while other attack models (e.g. [3]) would take pro-

hibitively long attack time.)

The SHAP-based analysis reveals to what extent each layout

feature contributes to correctly predicting each individual un-

known connection as seen by an untrusted foundry. We then

exploit this information to design a SHAP-guided obfuscator

against the ML attack model where only truly vulnerable con-

nections are identified and each is obfuscated by just the neces-

sary amount. This results in minimal perturbation to the layout

as measured by increase in wirelength and number of perturbed

nets. Our obfuscator (named ObfusX) is routing-based and is

performed by utilizing perturbation of vias, and by wire lifting

schemes. (Placement-based obfuscation was not found to be as

effective by our SHAP-based analysis.)

Overall, our contributions can be summarized as follows.

• This is the first work that shows how explainability in ma-

chine learning (ML) can be used for obfuscation; while we

focus on routing obfuscation for an ML-based split manu-

facturing attack, our approach is generalizable to build any

obfuscator as long as an ML attack model is available.

• We demonstrate the benefits of ObfusX in identifying and

focusing on the most vulnerable candidates and obfuscat-

ing each by just the right amount, thereby reducing the

obfuscation overhead, while having better performance.

• Our results are compared with two prominent prior works,

using not only the ML attack, but also an independent net-

work flow-based attack from a recent work.
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2. Preliminaries

To build an obfuscator, we use an explanatory model named

SHAP to break a ML-based attack. Here, we review the ML

attack model and then give a brief overview of SHAP analysis.

2.1. ML Attack Model for Split Manufacturing

Given a metal layer as the split level, the layout is partitioned

into public layers, v-pins (as termed in [5]) and private layers

from low to high levels. A split layer refers to the topmost metal

layer available to the attacker; public layers refer to all metal on

or below the split layer and via layers in between; private layers

are all metal layers above the split layer and the via layers in

between; v-pins are vias connecting public and private layers.

The attacker has access to the layout (cells, pins, wires, vias) in

public layers and all v-pins. The goal of the split manufacturing

attack is to predict the connectivity on private layers based on

the available layout on public layers.

Recently, a ML-based attack model was proposed for split

manufacturing in [5]. To build the ML model, for each pair

of v-pins in a design, first a vector of layout “features” was

extracted from the public layers. Using these features, the ML

model was built based on Bagging of 10 reduced error pruning

trees (REPTrees) in Weka [15]. The ML model mapped each

v-pin pair with feature vector x to a probability f (x) ∈ [0, 1],

indicating how likely the v-pin pair is a “match” (i.e. actually

connected to each other on private layers).

For a pair of v-pins, the following features were extracted in

[5]. (We refer the reader to [5] for more details.)

• diffVpinX, diffVpinY: The x- and y-direction differ-

ences in the locations of the two underlying v-pins, re-

spectively.

• manhattanVpin: The Manhattan distance of the v-pins.

• diffPinX/Y, manhattanPin: These are similarly de-

fined but for pins (connected to the v-pin pair) at the place-

ment level.

• totalWireLength: Wirelengths of wires connected to

the v-pin pair on public layers.

• totalCellArea, diffCellArea: These are sum (or diff)

of the average area of output cells and that of input cells.

2.2. SHAP Tree Explainer for Machine Learning

In this work, we adopt a recently proposed explanatory

model named SHAP [14], which explains predictions from a

ML model. Let f (xi) denote the ML prediction output of the

i-th testing sample with feature vector xi. SHAP decomposes

the model output as

f (xi) = E[ f (x)] +

M
∑

j=1

ci, j, (1)

where E[ f (x)] is the expected prediction based on all train-

ing data, and ci, j is the contribution of the j-th feature of the
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Figure 1: Flow chart of ObfusX.

i-th testing sample, which can be positive, negative, or zero.

Each ci, j indicates to what extent the j-th feature deviates the

i-th sample’s prediction from the average. The SHAP value is

proposed as an excellent candidate to compute the ci, js in (1).

SHAP values show how each feature contributes to the model

output for each testing sample.

A recent extension [16], referred to as SHAP tree explainer,

shows that the exact evaluation of SHAP values can be done

in polynomial time exclusively for tree-based models (which is

compatible with the aforementioned ML attack model). The

SHAP tree explainer does not assume feature independence, as

feature interactions are already captured in the underlying trees.

In this paper, we will use the SHAP tree explainer to analyze the

vulnerability of individual v-pin pairs to the attack and use it to

guide the obfuscation.

3. Overview of ObfusX

The core idea of a SHAP-guided obfuscation is to perturb the

design, such that a ML attack model would perform worse. As

we will show in experiments, such obfuscation also performs

well under an independent, non-ML, attack model [3]. This is

because both attack models are based on a similar set of design

conventions in routing tools that aim to optimize the wirelength,

delay, etc. A flow chart of the overall process of ObfusX is

shown in Figure 1.

The upper panel shows how the ML model is developed. To

generate the training set and testing set for a design to obfuscate

(i.e., “target design”), we generate data samples by extracting

layout features from routed designs, with the same split layer

applied as will be used in manufacturing. All data samples from

the target design are allocated in the testing set, which we will
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Figure 2: SHAP force plots of two actually-connected v-pin pairs. The pink/blue bars (to the left/right of output values, respectively) quantify to what extend each

layout feature positively/negatively contributes to the ML attack that predicts their connectivity. The top contributing features (longest pink bars) may vary from

one v-pin pair to another. For example, diffVpinY is the most contributing feature in predicting (a) (longest pink bar) while it is actually the most negatively

contributing feature to predicting (b) (longest blue bar).

use to monitor the progress and performance of obfuscation.

Other designs in the same benchmark suite as the target design

are used to generate the training set that will be used to train the

attack model. As mentioned in Section 2, ObfusX uses the ML

predictor in [5]. With a trained attack model, it predicts how

likely each pair of (two) v-pins in the target design could be a

match (i.e., are actually connected), which can be interpreted as

the vulnerability of the pair to the ML attack.

To develop ObfusX, as shown in the lower panel, the ML

prediction for a v-pin pair is fed to the SHAP tree explainer,

which generates a set of SHAP values to explain the prediction.

Each SHAP value corresponds to an extracted feature and

quantifies to what extent that feature contributes to the ML pre-

dictor for that specific v-pin pair. These SHAP values are next

analyzed across all actually-connected v-pin pairs to identify

the most vulnerable ones to the ML attack, along with the lay-

out features that contribute the most to their individual vulner-

abilities.

Next, the output of SHAP analysis guides the actual obfusca-

tion which is done iteratively. ObfusX utilizes two layout per-

turbation techniques—via perturbation and wire lifting—each

of which effectively change the routing and locations of a vul-

nerable v-pin pair. At each iteration, the most vulnerable v-

pin pair is obfuscated if its obfuscation does not violate routing

feasibility. Next, the feature vector of the obfuscated pair is up-

dated and consequently its vulnerability is re-evaluated by the

attack model (given that the layout has been slightly perturbed).

ObfusX then proceeds to obfuscate the next vulnerable pair, un-

til there is no more vulnerable pair, or a budget of wirelength

(WL) overhead is reached.

4. SHAP Analysis for One V-pin Pair

Before discussing the details of ObfusX, we first explain how

SHAP-based analysis is performed for a single pair of con-

nected v-pins. This helps us to illustrate the true benefits of such

analysis in building ObfusX. Consider two connected v-pins

from the design superblue1 with split layer M6. The ML at-

tack model, predicts this pair to be connected with probability

0.96 (which is a relatively high prediction indicating a success-

ful attack if there is no obfuscation).

Figure 2(a) shows the force plot generated by SHAP analysis

performed on the ML prediction for this pair. The color and

length of pink/blue bars show the sign and magnitude of ci, js

in Equation (1), respectively. For the pair in Figure 2(a), the

analysis breaks down the prediction output of 0.96 as sum of a

base value of 0.5 and a total deviation of +0.46. The pink/blue

bars correspond to the features which positively/negatively con-

tribute to the model output (i.e., with a positive/negative “force”

pushing towards this 0.96 prediction). The length of the bars

indicate the degree of contribution such that the sum of the

lengths of pink bars (with positive sign) and blue bars (with

negative sign) adds up to +0.46.

More specifically, for pair (a), among all its features,

diffVpinY has the highest SHAP value of around +0.4 (cor-

responding to the length of its pink bar). Figure 2(b) shows

the force plot for a second pair (b). For pair (b), we observe a

different feature, i.e., manhattanVpin is dominant. Moreover,

diffVpinY, which was the top feature in (a), has a negative

SHAP value in (b), indicating it actually contributes negatively

to the prediction of pair (b).

The above example yields the following two key observa-

tions to illustrate the unique benefits of SHAP analysis for ob-

fuscation:

1. The vulnerable v-pin pairs can be identified as the ones

which have few features with large positive SHAP values.

2. The top feature may vary across individual pairs, implying

a different degree or scheme of obfuscation is needed for

each.

5. Details of ObfusX

The goal of SHAP-guided obfuscation is to alter the SHAP

values such that there will not be any dominant feature with a

high positive SHAP. It could mean that obfuscation makes orig-

inally dominant features to have a lower positive SHAP value

or a negative one.

Our SHAP analysis of design superblue1 with split layer

M6, shows that for about half of the connected v-pin pairs,

the SHAP value of diffVpinY is consistently dominant (fol-

lowed by that of manhattanVpin). However for the other

half of pairs, the distribution of SHAP values over features be-

comes fuzzy, which suggests that no single feature dominates

the model. Such pairs (which do not have any dominant fea-

ture) do not need to be obfuscated.
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Figure 3: Contributions of top two features, shown as a distribution for all con-

nected v-pin pairs, before (blue) and after (red) obfuscation. ObfusX flattens

the distribution and reduces the top contributions.

For the two dominant features (diffVpinY and

manhattanVpin) in the above example, Figure 3 shows

the distribution of the combined contribution (i.e., sum of

SHAP values) of these two top features, before and after

obfuscation. This is when using ObfusX with via pertur-

bation (which will be discussed in detail in Section 5.1).

The before-obfuscation distribution is shown in blue and the

after-obfuscation one is shown in red. As can be seen, ObfusX

flattens the distribution and shifts it to the left (so it decreases

the top contributions, making some less positive and some even

negative).

Similar to the example of superblue1 with split layer M6,

SHAP-based analysis with the rest of the designs showed that

diffVpinY and manhattanVpin are always the top two con-

tributing features for many of the vulnerable nets when the split

layer is even. (For odd split layers diffVpinY is replaced with

diffVpinX because wires are preferred to route vertically on

even layers and horizontally on odd layers.) The nets which did

not have a dominant feature simply won’t need to be obfuscated

with SHAP-guided analysis. Therefore, these two features are

the only ones which are utilized by ObfusX.

We note, these two dominant features are related to routing

which explains our choice to obfuscate the design with routing-

based techniques, i.e., via perturbation and wire lifting. How-

ever, we note, our general approach is not restricted to routing.

5.1. ObfusX with Via Perturbation

The procedure for via perturbation only considers perturb-

ing v-pin pairs which are determined to be “essential”. Essen-

tial v-pin pairs are a subset of all connected v-pin pairs, after

disregarding trivial cases, e.g., when some v-pins connect to

each other using the public layer, hence are easily identifiable

by the attacker. ObfusX also ensures feasibility of the routing

throughout the process without any area overhead. We first in-

troduce the following which will be used when explaining the

algorithm.

5.1.1. Terminology

We introduce the following terminology as shown in Fig-

ure 4(a), where the split layer is M4. Wires in all metal layers

are shown as horizontal lines and vias as vertical lines.

A driving pin is a pin that drives other components in the net.

It can be the output pin of a logic cell or that of a primary input.

A v-pin group consists of v-pins in the same net that con-

nect to each other using public layers. The v-pins in the same

group can be easily identified by an attacker because they are

connected in public layers that are available to the attacker.

A driving v-pin group is a v-pin group that connects to a driv-

ing pin using public layers.

A non-driving v-pin group is a v-pin group that does not con-

nect to any driving pin in public layers.

An essential v-pin pair (v, v′) consists of a pair of v-pins,

where v is in a non-driving v-pin group G, and v′ is in a driving

v-pin group G′. If G′ has more than one v-pin, v′ is the closest

v-pin to v in G′.

5.1.2. Algorithm

We propose an algorithm that perturbs the locations of v-pins

based on SHAP values of the top features manhattanVpin and

diffVpinR where R is X for odd split layers and Y for even

split layers. This is done iteratively, one v-pin at a time. We first

calculate the SHAP values S (i, j) for all essential v-pin pairs

i and all features j. Then for each essential v-pin pair i, we

take the maximum of the SHAP values over all features j, i.e.,

S max(i) = max j S (i, j). We only perturb v-pins that satisfy the

following criteria:

• The v-pin belongs to an essential v-pin pair p = (v, v′),

with v and v′ in the same net. This is to avoid duplicated or

invalid perturbations, e.g. perturbing the same v-pin later

when a different v-pin pair is being considered.

• S max(p) = S (p, manhattanVpin) or S max(p) =

S (p, diffVpinR). This ensures the essential v-pin pair p

is vulnerable, i.e., likely predictable with the top features.

• S (p, diffVpinR) ≥ S (p, diffVpinR’), where R’ ∈

{X,Y} is the routing direction other than R. This condition

ensures the effectiveness of perturbing v or v′ in R direc-

tion.

• If there are more than one non-driving v-pin group in the

net of v and v′, then v′ in the driving v-pin group is not el-

igible for perturbation and only v may be perturbed. Oth-

erwise, perturbing v′ may affect multiple essential v-pin

pairs.

The procedures of SHAP-guided via perturbation are sum-

marized in Algorithm 1. We maintain a list L of essential v-

pin pairs p = (v, v′) sorted in decreasing order of S max(p). As

shown in Algorithm 1 (lines 6–7), in each iteration, we select

p from the top of the list, and apply trial perturbing moves (a

series of “dry runs” that do not actually perturb) to each eligi-

ble v-pin in pair p within a predefined small radius r (detailed

in Algorithm 2) to find the most efficient move (v∗, δ∗) which

means to move v-pin v∗ by amount δ∗. Efficiency of a move is

defined in terms of the decrease in the model output −∆ f (x) ≡

f (xbefore)− f (xafter) and the extra WL ∆WL ≡ WLafter−WLbefore

(as an integer).
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Figure 4: (a) Illustration of terminology. (b–d) Rip up and reroute for v-pin pair (v, v′) when v is perturbed. (b) Original wires and vias of the net containing v and v′;

the gray segments are to be removed. (c) The new location of v after perturbation is identified. The unconnected parts (including both endpoints of v and rerouting
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Algorithm 1: Via-Perturbation (L, R, r, N, W)

Input: L: list of all essential v-pin pairs, R: perturbing

direction, which is X for odd split layer and Y for

even split layer, r: radius for trial perturbing, N:

maximum number of iterations, W: wirelength

budget

1 for iter ← 1 to N do

2 w← total wirelength of the layout

3 if L is empty or w ≥ W then

4 break

5 end

6 for p in L in descending order of S max(p) do

7 (v∗, δ∗, )← Trial-Perturb (p, R, r, False)

// Algo. 2

8 if v∗ , null then

// take the actual move

9 Ripup-and-Reroute (v∗, R, δ∗, False)

// Algo. 3

10 Update the feature vector and SHAP values

of p.

11 Re-check the eligibility of both v-pins in p,

and remove p from L if neither v-pin is

eligible.

12 Re-sort L by S max.

13 break // only move one v-pin at a

time

14 else

15 Remove p from L.

16 end

17 end

18 end

Specifically, to quantify the efficiency of a move, we define

its gain as

gain =



























−∆ f (x)/∆WL, if ∆ f (x) < 0 and ∆WL ≥ 1

1 − ∆ f (x), if ∆ f (x) < 0 and ∆WL ≤ 0

0, if ∆ f (x) ≥ 0 or not feasible

, (2)

which prioritizes moves that lead to a decrease in model out-

put at no or low extra cost of WL. The trial perturbing is nec-

essary as it would be difficult to estimate the routing feasibility

and extra WL without any trials due to complex layout conges-

tion. After the trial perturbing, if there is no feasible move, we

remove pair p from L (line 15), and proceed to the next v-pin

pair in L; if there is any feasible move (lines 8–12), we take the

actual move that has the highest gain, update the feature vec-

tor and the SHAP values (as in Figure 1), re-check the v-pin

eligibility, and go to the next iteration.

Please note, the above gain function depends on the change in

model output and is not driven by the SHAP values. However,

as explained in the flowchart of ObfusX (Figure 1), valuner-

able v-pins are identified only using the SHAP values (if the

two dominant features are diffVpinX/Y and manhattanVpin).

SHAP values are also used to identify the order of obfuscation

of the vulnerable v-pins. After obfuscation of each v-pin pair,

the feature values will be updated and the next vulnerable pair

will be identified. This process may result in a v-pin pair to

be obfuscated more than once if it later is found to be vulner-

able (e.g., after some other pairs are obfuscated). This overall

process results in the SHAP values to be altered after obfusca-

tion, and in particular the SHAP values of v-pins with dominant

features (diffVpinX/Y and manhattanVpin) will be significantly

reduced after obfuscation. Please refer to example of Figure 3.

5.1.3. Rip-up and Reroute Procedure

To apply a perturbing move to a v-pin v, we rip up and reroute

the wires connecting v to the other components. To facilitate

the rerouting procedure, we rip up v and all wires connecting

to v that do not result in more than two connected components,

while not touching any other v-pins, as shown in Figure 4(b).

Then we move v to the new location and identify the uncon-

nected parts (i.e. both endpoints of v and the other connected

components of the net, referred to as “rerouting goals”) in the

public and private portions, respectively, as in Figure 4(c). Fi-

nally, we use A* search algorithm to reconnect the unconnected

parts of the net in the public portion using public layers, and

then reconnect for the private portion using private layers, as

shown in Figure 4(d). Specifically, the routing graph G(V, E)

for A* search is built in three dimensions. The vertices are

valid routing grids in all metal layers, and the edges are in x,

y and z directions, corresponding to potential wires (in x and y

directions) and vias (in z direction) where the routing resources

permit. Summarized in Algorithm 3, this rip-up and reroute

procedure ensures a feasible route (if possible) and optimizes

the WL.
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Algorithm 2: Trial-Perturb (p, R, r, li f t)

Input: p: essential v-pin pair to be perturbed, R:

perturbing direction, r: radius for trial

perturbing, N: maximum number of iterations,

li f t: whether to apply weight penalties (only

used in wire lifting)

Output: v∗: best v-pin to move, δ∗: amount to move,

maxGain: max possible gain

1 w← total wirelength of the layout

2 v∗ ← null, δ∗ ← null

3 maxGain← 0

4 for eligible v in v-pin pair p do

5 for δ← −r to r do

6 gain← Ripup-and-Reroute (v, R, δ, li f t)

// move v in R-dir by δ

7 if gain > maxGain then

8 v∗ ← v, δ∗ ← δ

9 maxGain← gain

10 end

11 end

12 end

13 return (v∗, δ∗,maxGain)

Algorithm 3: Ripup-and-Reroute (v, R, δ, li f t)

1 Rip up v and any wire connecting to v that does not

result in more than two connected components or touch

other v-pins. (Figure 4(b)).

2 Move v in R direction by amount δ.

3 Identify unconnected parts for rerouting (Figure 4(c)).

4 Build/update the routing graph, where a vertex = a

routing grid, an edge = a connection between grids if

routing resources permit, edge weight = wirelength

5 if li f t then

6 Multiply by a large number (e.g. 1000) all edge

weights for metal wires (not including vias) below

the split layer

7 end

8 reroute using A* search algorithm (Figure 4(d)).

9 Calculate gain according to (2).

10 return gain

5.2. ObfusX with Wire Lifting

Wire lifting is the second routing-based technique in ObfusX.

It moves wires from the public layers to private layers, and

therefore creates more v-pins, which can make the attack more

difficult.

5.2.1. Wire lifting as rip up and rerouting

To unify our two obfuscation techniques, we propose our

wire lifting as a special case of rip-up and rerouting, so that

a similar flow to via perturbing can be followed. In wire lifting,

instead of exploring the v-pins on the split layers, we explore

vias on a focused layer that is one or more layers below the split

layer. The proposed wire lifting is a two-stage process. In the

first stage, we iteratively apply trial rerouting to a via v on the

focused layer with the same rip up and reroute procedure to v

as in Section 5.1.3, except that (a) to save WL, we do not move

the location of v after ripping up, and (b) when rerouting with

A* search, we put a higher weight on wires in public layers, so

that the use of public wires is discouraged and thus extra v-pins

can be created.

5.2.2. Two modes of wire lifting

To make the attack more difficult, wire lifting can be done

in either of two ways: (a) to lift wires in a single net, such that

newly created v-pins (in the same net) are likely to be perceived

by the attacker as “not connected,” or (b) to lift wires in two dif-

ferent nets, such that newly created v-pins in different nets are

likely to be perceived as “connected.” Accordingly, wire lifting

in ObfusX can work in two modes: “same net” and “different

nets.”

In “same net” mode, we try to find the wire that, when lifted

above the split layer, would create an essential v-pin pair p′

in the same net on the split layer whose model output is low

(i.e., it is mistakenly perceived as “not likely to be connected”

above split layer), at the cost of no or little wirelength overhead.

For each possible essential v-pin pairs p on the focused layer,

we follow the trial rerouting procedure to explore the gain of

lifting this pair. If the trial rerouting creates a new essential

v-pin pair, we evaluate the gain of this move with (2), where

−∆ f (x) ≡ f (xbefore) − f (xafter) = 1 − f (xafter), i.e., the model

output before the move is defined as 1 because the pair is known

to be connected if the vias were not lifted. We record the move

and gain in a list of candidate moves, and revert the changes

to explore the move with the next essential v-pin pair. After

going through all pairs p, we go to the second stage, where we

commit the moves to the layout in this list in decreasing order

of their gains.

In “different nets” mode, we try to find a pair of vias be-

low the split layer that satisfy all of the following criteria: (a)

they belongs to different nets, (b) at least one of the two nets is

fully below the split layer, (c) one via is connected to a driving

pin, and the other is not, and (d) both vias can be lifted to the

split layer. The goal is to create a “deceptive” essential v-pin

pair with a high model output (i.e., it is mistakenly perceived as

“very likely to be connected” above split layer) with no or lit-

tle wirelength overhead. The procedure is similar to the “same

net” mode, except that (a) in “different nets” mode we explore

moves with each pair of vias that satisfies the above criteria in-

stead of each single via (each move essentially consists lifting

two vias to the split layer); (b) if any of these two vias cannot be

lifted to the split layer due to routing infeasibility, the “decep-

tive” pair cannot be created and therefore this pair would not be

considered; and (c) the calculation of gain is slightly different,

which is given by

gaindiff =



























f (xafter)/∆WL, if f (xafter) > 0 and ∆WL ≥ 1

1 + f (xafter), if f (xafter) > 0 and ∆WL ≤ 0

0, if ∆ f (xafter) = 0 or not feasible

.

(3)
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Compared to (2), all −∆ f (x) is replaced by ∆ f (x) ≡

f (xafter) − f (xbefore) = f (x) − 0 = f (xafter). This is to reflect

that we are dealing with vias in different nets, hence a higher

model output f (xafter) is better, as opposed to the case in the

“same net” mode. Before lifting, the two vias are known to be

not connected, hence f (xbefore) being 0.

5.2.3. Lifting different layers of wires

In [11] and [17], wire lifting was performed only for vias on

one layer immediate below the split layer. This can be effective

when the WL overhead budget is tight. However, limiting the

number of layers as such means that wires in nets that only oc-

cupy lower layers are never considered to be lifted. Therefore,

it is desired to consider more layers of wires to be lifted. In this

paper, we consider lifting wires in different layers, from one

layer below the split layer down to the bottom-most via layers.

5.2.4. The order of committing moves

There are at least two orders of committing moves. Order

A is to commit valid moves as soon as we find a valid move,

which is adopted in [17]. In this paper, we propose order B—

first store all valid moves in a list and then commit the moves

in decreasing order of their gain. Each order has its own pros

and cons. With order A, we cannot find the optimal order of ex-

ploring (and committing) the moves beforehand, because it is

hard to get a good estimate of the WL cost without performing

the time-consuming trial routing. In [17], the order to explore

is determined by the model output before move, without con-

sidering the WL cost. The proposed order B can result in much

better tradeoff between obfuscation performance and WL over-

head, because Order B considered the WL cost. However, we

should note that with order B, the moves are not guaranteed to

be committed as stored in the list, because earlier commits may

results in changes in routing resources which is not updated in

the list. In contrast, with order A, the routing resources are

always up-to-date since we explore the next move after com-

mitting the previous one, and therefore the trial routing always

renders accurate lifting feasibility and routes.

In summary, the procedure of wire lifting is shown as Algo-

rithm 4 where the proposed order B is adopted. Note that in

lines 4 and 16, since we do not perturb the location of focused

vias, the radius in trial perturbing or rerouting is set to 0 and the

direction can be arbitrary.

6. Experimental Results

We obtained the source code of the ML attack from [5], used

the shap library for Python for SHAP analysis, and imple-

mented all procedures of ObfusX in C++. Experiments were

done on a Linux workstation with an Intel 16-core 3.60 GHz

CPU and 64 GB memory.

6.1. Via Perturbation with ObfusX

We first show in Table 1 the performance of via perturbation

with ObfusX using five designs in ISPD’11 benchmark suite

Algorithm 4: Wire-Lifting (l, N, W)

Input: l: the focused layer, N: maximum number of

moves, W: wirelength budget

1 L ← essential v-pin pairs as if l were the split layer

2 G = [ ] // keep track of candidate vias and

gains

3 for p in L do

4 (v∗, ,maxGain)← Trial-Perturb (p, X, 0, True)

5 if v∗ , null then

6 G.append((v∗,maxGain))

7 end

8 end

9 Sort G in decreasing order of maxGain

10 n← 0 // keep track of number of moves

11 for (v∗, maxGain) in G do

12 w← total wirelength in the layout

13 if n ≥ N or w ≥ W then

14 break

15 end

16 Ripup-and-Reroute (v∗, X, 0, True) // commit

the moves

17 n← n + 1

18 end

[18] that are also used in [4, 12, 5]. We obtain routed overflow-

free designs from [5], to which we apply the proposed SHAP-

based via perturbation. As stated in Algorithm 1, parameter r

controls the radius of perturbation when calling the trial-perturb

function. Higher r results in a higher runtime because it defines

a larger space during via perturbation. In our experiments we

used r = 3 units of the grid size to reach a suitable tradeoff be-

tween runtime and quality of solution. This value of r in prac-

tice is significantly smaller than the size of the 3D routing grid

of the ISPD’11 benchmarks which is in order of 100x100x9.

It defines a small search neighborhood compared to the total

search space, yet it still allows obtaining a reasonable tradeoff

between runtime and solution quality as we demonstrate in our

experiments.

We compare the performance and the cost of obfuscation

with the via perturbation technique proposed in [5]. This is

based on the same ML attack model. Note that the popular net-

work flow attack model [3] takes prohibitively long time to run

on these designs and hence is not applicable here. We also do

not explicitly compare with a routing congestion-based attack

model such as [4] because the work [5] reports results that it is

superior to [4].

We use the following metrics to evaluate the performance and

the cost of an obfuscation.

• Hit Rate (HR) at X%: For a v-pin v, we first identify

the top X% of other v-pins u which have the highest ML

model output for essential v-pin pair (v, u). These v-pins

are predicted by ML to most likely be the match for v. We

call it a “hit” of v if its real matching v-pin is among the

v-pins identified above. We then report the average per-
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Figure 5: Comparison of tradeoff in HR vs WL in superblue1.

centage of hits of all v-pins v in the design. We report this

metric with X = 0.01 and 0.1. (As a point of reference, X

= 0.1 results in up to 89 v-pins identified on split layer M6,

or up to 200 v-pins on split layer M4 in these designs. The

total number of v-pins is quite large as reported in the first

column of the table.) A lower HR means better defense.

• WL overhead (∆WL%): percentage of increase in WL af-

ter the obfuscation. Lower is better.

• Perturbed Nets (PN%): number of perturbed nets divided

by total number of nets that contain any v-pin. Lower is

better.

• Perturbed V-pins (PV%): number of perturbed v-pins di-

vided by the number of v-pins in the design. Lower is

better.

• Total runtime of obfuscation using one CPU core (tCPU).

Note that the functions of standard cells are not available in

ISPD’11 benchmark. Therefore metrics related to circuit out-

puts (e.g. Hamming distance (HD), output error rate (OER))

are not applicable.

Several observations can be made from the results in Table 1.

First, the HR of the ML model for 0.01% and 0.1% v-pin lists

drops drastically after obfuscation; for ObfusX it drops from

28% and 67% to 4% and 13%, respectively, better than the HR

reductions with in [5]. Second, the WL overhead of ObfusX

is less than 1/5 of that with [5]. Third, with ObfusX, only

around 30% of v-pins and 60% of nets (that contain v-pins) are

finally perturbed, compared to nearly-all nets and v-pins when

perturbed with [5].

To observe the tradeoff between performance and cost of ob-

fuscation, we plot in Figure 5 the curves of HR and WL over-

head with ObfusX and [5], respectively. Compared to [5], Ob-

fusX achieves 87% and 97% lower HR in 0.1% and 0.01% v-pin

lists, respectively, for the same WL overhead of 0.5%, or is 3–

5× more efficient in WL overhead for the same reduction of

HR.

6.2. Wire Lifting with ObfusX

We show in Table 2 the performance and cost of wire lift-

ing with ObfusX (r = 5 µm) on ISCAS’85 benchmark designs,

which are often used in related work, and compare them with

[11]. The layouts are obtained from the authors of [11]. The

lifting layer are limited to one layer below the split level. The

route changes are committed in order A (by model output). Em-

pirically, this is a good setting in general when WL budget is

small. Detailed discussion can be found later in Section 6.3.

For this benchmark, we use the network flow attack model

[3] which is obtained from the authors. Note that this is not a

ML-based attack model and is not used to build ObfusX. Since

the split layer for each design is not explicitly reported in [11],

we tried to identify it by matching the number of nets on private

layers with the number reported in [11]. ObfusX was applied

on six designs for which we were able to identify the split layer,

with WL budget equal to the reported WL overhead in [11].

The obfuscated layouts are converted to Verilog and their func-

tional equivalency with original designs is verified with Synop-

sys Formality. For these designs, we use the following metrics

to evaluate the performance and cost of an obfuscation.

• Percentage of Netlist Recovery (PNR) given in [12]: per-

centage of correctly reconstructed nets. This quantifies

how well the attack can recover the whole design. Lower

is better.

• Output Error Rate (OER): probability that there is any er-

ror bit in outputs of the reconstructed circuit. Higher is

better.

• Hamming Distance (HD) between outputs of the original

and the reconstructed circuits. Closer to 50% is better.

• WL overhead (∆WL%): percentage of increase in WL af-

ter the obfuscation. Lower is better.

• Total runtime of obfuscation using one CPU core (tCPU).

We derive OER and HD from 100,000 runs of Monte Carlo

simulations with ModelSim. OER, HD, and the WL overhead

of [11] are quoted from [11]. PNR of the original design and

[11] are derived by definition, based on the design layouts and

the reported numbers in [11]. Although we made our best ef-

fort to conduct a fair comparison, we cannot obtain the same

version of layout and program that produces the exact results

of [11]. (They are similar on average, though.) Instead, we ob-

tain the most recent and publicly available version of layout and

program as released by the authors of [11] and run our experi-

ments before and after obfuscation. With this in mind, we keep

the results from our experiments and their results from [11], and

compare the changes before and after obfuscation in [11] and

in our experiments.

As can be seen in Table 2, with a computing time of less than

five minutes, ObfusX can reach 100% for OER, and achieve

better obfuscation in the reduction of PNR (11% vs 5% on av-

erage, or 2.2× better) and the increase in HD (24.6% vs 18.6%

on average, or 32% better), with the same or less WL overhead

compared to [11]. Note that the reported results of [11] come

from a (best) combination of three obfuscation techniques in-

cluding wire lifting and via perturbation for matching and non-

matching v-pins, whereas in our results wire lifting is applied

alone. In fact, our wire lifting and via perturbation techniques
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Table 1: Results of via perturbation with ObfusX on the ISPD’11 benchmark suite

Split
Design (#v-pins)

No obfuscation [5] ObfusX

layer
HR @ HR @ ∆WL% PN% / PV% tCPU (h) HR @ ∆WL% PN% / PV% tCPU (h)

0.01% / 0.1% 0.01% / 0.1% 0.01% / 0.1%

M6

sb1 (44486) 23.79 / 63.33 2.19 / 11.58 3.03 99.83 / 99.58 3.86 0.52 / 6.12 0.55 66.57 / 36.01 3.28

sb5 (60034) 29.47 / 63.96 5.75 / 20.38 4.09 96.81 / 91.75 7.13 4.34 / 15.46 0.67 55.62 / 30.08 5.30

sb10 (89846) 31.84 / 64.34 10.24 / 28.31 4.52 92.45 / 79.77 7.75 9.37 / 23.93 0.71 46.49 / 23.96 8.05

sb12 (80816) 33.01 / 75.58 8.23 / 24.78 3.31 97.70 / 90.12 6.46 4.32 / 11.67 0.64 73.87 / 37.12 5.45

sb18 (36026) 20.06 / 66.11 4.27 / 16.55 2.64 98.91 / 94.35 2.88 2.16 / 8.68 0.67 63.02 / 34.27 2.06

Average 27.63 / 66.66 6.14 / 20.32 3.52 97.14 / 91.11 5.62 4.14 / 13.17 0.65 61.11 / 32.29 4.83

M4

sb1 (150510) 49.82 / 68.33 6.46 / 25.37 9.50 99.79 / 93.91 9.00 1.70 / 24.08 2.14 65.23 / 35.26 18.90

sb5 (179844) 38.78 / 60.40 7.54 / 23.84 9.86 96.94 / 87.87 11.48 3.03 / 23.35 1.87 51.43 / 28.09 18.41

sb10 (200896) 33.50 / 60.21 13.16 / 37.36 8.53 91.38 / 73.21 15.05 9.81 / 36.54 1.31 38.81 / 19.55 17.19

sb12 (173294) 47.07 / 71.52 9.01 / 22.40 7.61 98.61 / 92.32 13.48 4.42 / 17.39 1.12 65.32 / 32.81 18.09

sb18 (86658) 29.83 / 59.89 5.15 / 17.89 6.43 99.37 / 95.29 4.26 1.87 / 10.95 1.53 57.00 / 30.80 7.18

Average 39.80 / 64.07 8.26 / 25.37 8.39 97.22 / 88.52 10.65 4.17 / 22.46 1.59 55.56 / 29.30 15.95

Table 2: Results of wire lifting with ObfusX with the ISCAS’85 benchmark suite

Design #Nets
No obfuscation, from [11] Obfuscated, quoted from [11]

PNR% OER% HD% PNR% OER% HD% ∆WL%

c880 252 100.0 0.0 0.0 91.7 99.9 18.0 4.3

c2670 607 95.8 99.9 7.0 87.1 100.0 14.0 4.4

c3540 638 97.2 95.4 18.2 93.5 100.0 33.4 2.5

c5315 997 98.7 98.7 4.3 95.0 100.0 18.1 1.7

c6288 1921 99.8 36.8 3.0 98.6 100.0 42.1 1.8

c7552 1041 99.6 69.5 1.6 95.3 100.0 20.3 2.2

Avg. 98.5 66.7 5.7 93.5 100.0 24.3 2.8

Comparing to “No obfus.” -5.0 +33.3 +18.6

Design #Nets
No obfuscation, from our experiments Obfuscated with ObfusX

PNR% OER% HD% PNR% OER% HD% ∆WL% tCPU (min)

c880 252 99.2 50.0 1.9 85.3 100.0 24.6 3.4 1.2

c2670 607 95.8 100.0 5.8 77.9 100.0 23.3 3.2 2.4

c3540 638 98.6 79.2 9.5 87.0 100.0 37.4 2.5 4.7

c5315 997 97.5 99.5 10.4 89.6 100.0 23.7 1.7 4.4

c6288 1921 100.0 0.0 0.0 96.8 100.0 46.6 1.8 3.5

c7552 1041 99.1 98.9 4.5 87.0 100.0 24.4 2.2 4.7

Avg. 98.4 71.3 5.4 87.3 100.0 30.0 2.5 3.5

Comparing to “No obfus.” -11.1 +28.7 +24.6

are orthogonal to each other. Therefore, they may be combined

for potentially better performance.

We were not able to make a fair comparison with another re-

lated work [12] because the original layouts of [12] are likely to

be very different from ours and were not made available. (The

layouts in [12] are generated using all 10 metal layers, whereas

our layouts from [11] only occupy 5–9 lower metal layers.)

In summary, for obfuscation with via perturbation, ObfusX

is able to achieve a lower hit rate (indicating better obfuscation)

while perturbing significantly fewer nets and vias in the design,

with significantly lower wirelength. When the same wirelength

limit is imposed during wire lifting, ObfusX performs signifi-

cantly better in performance metrics (PNR and HD with equally

good OER).

6.3. Comparison of wire lifting with different settings

Using the same six ISCAS’85 designs, we compare the re-

sults of wire lifting with different settings as described in Sec-

tion 5.2, including

• lifting one, two, and three layers of vias below the split

layer (denoted 1L, 2L and 3L, respectively);

• committing in order A (by model output, denoted mo) and

order B (by gain, denoted gain), in “same net” mode;

• lifting in “same net” mode (denoted gain) and “different

nets” mode (denoted diff), committed in order B.

The naming of settings is a combination of (1L, 2L, 3L) and

(mo, gain, diff). Please note the work [17] corresponds to the

1Lmo case.

To ease comparison, we use the following metric to quantize

the obfuscation performance.

Per f = (1 − PNR) ·min(HD, 1 − HD). (4)

This unified performance metric has a higher (better) value

when PNR is lower and HD is closer to 50%. We do not include
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OER because it is very close to 100% most of the time. We plot

the performance and increase in via count verses the WL over-

head budget (in percentage) for each design in Figure 6.

We can make the following observations from these results.

1. For 1L* settings (* serves as a wildcard), the performance

is good for small WL budget—by limiting the layer of

lifted wires, it tends to obfuscate many different nets with

small WL overhead. However, the performance and via

count saturates after a certain WL overhead budget—these

settings only discover nets that extend to the metal layer

immediately below the split layer, thus the lifting options

exhaust earlier than 2L* and 3L* settings. Specifically, the

1Ldiff setting saturates even earlier than other 1L* set-

tings because in “different nets” mode, a move involves

two vias in different nets, and both vias need to be feasible

to reroute above the split layer in order to be considered

a valid move, whereas in the “same net” mode, only one

via is involved in a move. This stricter condition further

reduces the number of potential lifting options.

2. In terms of the tradeoff between obfuscation per-

formance and WL overhead (as the slopes in Fig-

ure 6(a)(c)(e)(g)(i)(k)), 2L* settings are generally worse

than others. This is because the focused layer (two layers

below the split layer) has the same preferred routing direc-

tion as the split layer. Vias on the focused layer are more

likely to share similar properties to the vias on the split

layer (for example, one of the coordinates of via locations

could be the same). This can make the attack relatively

easier than other focused layers (as in 1L* and 3L* set-

tings).

3. The *gain settings have better tradeoffs between ob-

fuscation performance and WL overhead than *mo set-

tings. These two groups differ in the order of committing

changes, as detailed in 5.2.2. As expected, *gain settings

win as they prioritize moves with higher gain, which im-

plicitly consider the WL cost whereas *mo settings do not.

4. The *diff settings generally have better tradeoffs be-

tween obfuscation performance and WL overhead than

*gain settings. This two groups correspond to the “dif-

ferent nets” mode and “same net” mode, respectively. The

better tradeoffs are attributed to the much more lifting op-

tions to explore from pairs of vias from different nets than

from the same net. Therefore, the best move in the *diff

mode can be potentially superior to that in the *gain.

5. Moving to Figure 6(b)(d)(f)(h)(j)(l), the via count grows

almost linearly with the WL overhead budgets, with sim-

ilar slopes among different settings (except for 1L* set-

tings where the growth terminates after a point due to lim-

ited valid options to lift (see observation 1). This is be-

cause our WL estimation includes the estimated length of

vias, therefore the number of vias cannot grow unlimitedly

given a WL overhead budget. The linearity of growing

also means the proportion of WL in metal layers and vias

remains steady regardless of the WL overhead budget.

6. A closer look at the slopes in via vs WL overhead bud-

get plots reveals that settings 3Ldiff and 3Lgain leads to

(a) c880, Perf. vs WL budget (b) c880, ∆Via vs WL budget

(c) c2670, Perf. vs WL budget (d) c2670, ∆Via vs WL budget

(e) c3540, Perf. vs WL budget (f) c3540, ∆Via vs WL budget

(g) c5315, Perf. vs WL budget (h) c5315, ∆Via vs WL budget

(i) c6288, Perf. vs WL budget (j) c6288, ∆Via vs WL budget

(k) c7552, Perf. vs WL budget (l) c7552, ∆Via vs WL budget

Figure 6: Performance (Perf.) and increase in via count (∆Via, in percentage)

verses WL budget (%) of wire lifting with ObfusX for six designs in ISCAS’85

benchmark suite.
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generally more new vias on split layer per unit WL over-

head than 1L* and 2L*, and 3Lmo settings. This is because

with the most nets being considered in 3L settings, we has

the most valid moves to consider. Also when we commit

by gain as in both *diff and *gain settings, we commit

better moves as we take the WL cost into consideration.

7. Conclusions

We presented ObfusX, a routing obfuscator for split manu-

facturing which incorporated SHAP-based analysis to explain

a machine learning attack. The unique benefits of ObfusX are

in its ability to identify the best candidate nets for obfuscation

together with the layout features which make them most vulner-

able when subjected to an attack. As a result, it achieves bet-

ter performance than prior work while perturbing significantly

fewer nets and with significantly lower wirelength during via

perturbation. It also achieves significantly better performance

than prior work if the same wirelength limit was imposed dur-

ing wire lifting.
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