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Rethinking Logic Minimization for Tabular
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Abstract—Tabular datasets can be viewed as logic functions
that can be simplified using two-level logic minimization to pro-
duce minimal logic formulas in disjunctive normal form (DNF),
which in turn can be readily viewed as an explainable decision
rule set for binary classification. However, there are two problems
with using logic minimization for tabular machine learning. First,
tabular datasets often contain overlapping examples that have
different class labels, which have to be resolved before logic
minimization can be applied since logic minimization assumes
consistent logic functions. Second, even without inconsistencies,
logic minimization alone generally produces complex models with
poor generalization because it exactly fits all data points, which
leads to detrimental overfitting. How best to remove training in-
stances to eliminate inconsistencies and overfitting is highly non-
trivial. In this paper, we propose a novel statistical framework
for removing these training samples so that logic minimization
can become an effective approach to tabular machine learning.
Using the proposed approach, we are able to obtain comparable
performance as gradient boosted and ensemble decision trees,
which have been the winning hypothesis classes in tabular learn-
ing competitions, but with human-understandable explanations
in the form of decision rules. To our knowledge, neither logic
minimization nor explainable decision rule methods have been
able to achieve state-of-the-art performance before in tabular
learning problems.

Impact Statement—Decision rule sets are an important hypoth-
esis class for tabular learning problems in which the ability
to provide human understandable explanations is of critical
importance. However, they are generally not the winning hypoth-
esis class in terms of accuracy. Black-box models like gradient
boosted and ensemble decision trees are generally the superior
models. In this paper, we revisit the use of logic minimization
to derive explainable decision rule sets from tabular datasets.
Logic minimization alone produces complex models with poor
generalization because it exactly fits all data points as provided.
We overcome this problem by removing instances that cause
inconsistencies and overfitting via a novel statistical framework.
The proposed approach makes possible the learning of decision
rules that achieve state-of-the-art classification performance in
tabular learning problems with explainable rule-based predic-
tions, which has not been achieved before.

Index Terms—Tabular machine learning, decision rule sets,
logic minimization, denoising
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IN machine learning domains like healthcare and criminal
justice where human lives may be deeply impacted, cre-

ating inherently interpretable models that can provide human
understandable explanations is critically important [1]. In these
domains, the datasets are often provided as tabular data with
naturally meaningful features. Due to their intrinsic explain-
ability, decision rule sets [2], [3], [4], [5] are often a popular
hypothesis class of choice in these applications. However, they
are not the winning class in these tabular learning problems
in terms of accuracy. For example, in Kaggle competitions,
gradient boosted and ensemble decision trees [6], [7], [8]
are generally the superior models. While these more complex
classifiers can provide some level of feature attributions to
predictions, their interpretability is limited compared to rule-
based sentences that decision rule sets provide, which can be
easily understood by humans.

In this paper, we explore the use of two-level logic
minimization as a means for deriving explainable decision
rule sets for tabular learning. An example of a decision rule
set with two conjunctive rules is as follows:

IF (systolic blood pressure > 120) OR
(age > 60 AND cholesterol = very high)

THEN presence of cardiovascular disease.

In this example, the model would predict someone to have
cardiovascular disease if the person has systolic blood pressure
above 120, or if the person is above 60 years of age and
has a very high level of cholesterol. The model not only
provides a prediction, but the corresponding matching rule also
provides an explanation that humans can easily understand1.
In particular, the explanations are stated directly in terms
of meaningful input features, which can be categorical (e.g.,
color equal to red, blue, or green) or numerical (e.g., age >

60) attributes, where the binary encoding of categorical and
numerical attributes is well-studied [4], [5].

When binary encoded, tabular datasets can be viewed as
logic functions to be minimized, and the minimized logic

1As discussed in Section V on related work, prior work on decision rule
sets has established the benefits of interpretability of decision rule sets for
tabular learning problems over black-box models (e.g., [1]), primarily because
the activated IF-THEN rule also provides an explanation in terms of human-
understandable features. Beyond what has already been studied in the literature
about the interpretability of decision rule sets, we do not make further claims
in this paper regarding the interpretability of decision rule sets. Instead, our
focus is on a new logic minimization approach for deriving decision rules
that can achieve state-of-the-art classification performance in tabular learning
problems, which neither logic minimization nor decision rule methods have
been able to achieve before. We believe advancing the start-of-the-art in both
logic minimization and decision rule learning for tabular machine learning is
of important significance.
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in disjunctive normal form (DNF) can be readily viewed
as an explainable decision rule set for binary classification.
However, tabular datasets often contain overlapping examples
that have different class labels, which have to be resolved
before logic minimization can be applied since logic minimiza-
tion assumes consistent logic functions. Such inconsistencies
can be resolved by taking the majority class such that the
largest consistent subset of non-overlapping training instances
is retained. Logic minimization can then be applied to the
derived incompletely-specified logic function to fit the data
points exactly with a minimal number of rules and a minimal
number of conditions in each rule with respect to the provided
incompletely specified logic function. However, in practice,
the logic minimized decision rule set derived this way tends
to perform poorly in test accuracy and contains complex rules.

Logic minimization (No-Denoise) 66.03

RIPPER 70.57

XGBoost 73.06

Logic minimization with Denoising 73.20

TABLE I
TEST ACCURACY (AS A PERCENTAGE) FOR THE CARDIOVASCULAR

DISEASE DATASET (cardio) [9].

Consider the cardiovascular disease dataset (cardio) from
the Kaggle competition [9]. This task predicts whether a
patient has cardiovascular disease or not based on the patient’s
basic information, the results of medical examinations, and the
extra information given by the patient. The performance of the
logic minimization derived classifier in the above manner is
shown in Table I with a test accuracy of only 66.03% (shown in
the row labeled “Logic minimization (No-Denoise)”), which is
quite poor in comparison for example to known decision rule
learners like RIPPER [2] that achieves 70.57% test accuracy or
a state-of-the-art non-explainable tabular learner like XGBoost
(gradient boosted decision tree) [6], which achieves 73.06%
test accuracy.

Our conjecture why logic minimization used in the above
manner is not effective in producing accurate classifiers is due
in part to the overfitting of the training data. In particular,
because logic minimization exactly fits all data points, noisy

data points (those whose label is not the Bayes-optimal choice)
can be quite problematic. These noisy data points can lead
to a model that both generalizes poorly and is larger than
would be needed. In addition, resolving inconsistencies by
means of the majority class is often not the best strategy. How
best to remove training instances to eliminate overfitting and
inconsistencies is highly non-trivial.

To remedy these problems, we propose a statistical frame-
work for denoising (to be detailed later) the training dataset
by removing a subset of noisy data points, both for purpose
of eliminating overfitting and inconsistencies. Logic minimiza-
tion can then be applied to this edited dataset to produce simple
and accurate decision rules from the minimized DNF formula.
With the denoising preprocessing step, logic minimization
is able to produce a classifier that achieves 73.20% test

accuracy for the cardio dataset, as shown in Table I, which is
significantly better than logic minimization without denois-
ing, significantly better than known decision rule learners,
and comparable to state-of-art tabular learners like XGBoost.
As shown in the evaluation section, our logic minimization
approach with denoising is able to achieve accuracies within
just 0.7% on average over all datasets evaluated in comparison
with the state-of-the-art, but non-explainable tabular learners.
Thus, our approach is able to achieve comparable state-of-the-
art results while providing human understandable explanations
in the form of decision rules. To our knowledge, neither logic
minimization nor explainable decision rule methods have been
able to achieve state-of-the-art performance before in tabular
learning problems.

The remainder of the paper is organized as follows: Sec-
tion II formulates tabular learning as a logic minimization
problem. Section III introduces our denoising framework to
enable logic minimization to achieve state-of-the-art perfor-
mance. Section IV provides extensive evaluation of our pro-
posed approach. Section V outlines related work. Section VI
concludes the paper.

II. TABULAR LEARNING AS LOGIC MINIMIZATION

As discussed in the previous section, a tabular dataset can
be viewed as an incompletely specified logic function that can
be minimized into a DNF formula, which can then be readily
translated into independent unordered IF-THEN decision rules.
In this section, we first provide further details regarding the
binarization of tabular datasets into incompletely specified
logic functions. We then summarize the role of two-level logic
minimization as a decision rule learner.

A. Binarization of tabular data

Although binary features commonly appear in tabular
datasets, these datasets also generally include categorical and
numerical features, which are naturally used when the data
is collected. In this work, we assume all data are binary
encoded and thus categorical and numerical features need to
be first binarized using well established preprocessing steps
in the machine learning literature. In particular, we follow
exactly the same binarization approach used in some decision
ruler learners [4], [5], where we simply one-hot encode all
categorical features into binary vectors. For numerical features,
we adopt quantile discretization based on the distribution of
numerical values in the training data to get a set of thresholds
for each feature, where the original numerical value is one-hot-
encoded into a binary vector by comparing with the thresholds
(e.g., age  25, age  50, age  75) and encoded as 1 if less
than the threshold or 0 otherwise. This binarization approach
for numerical features has been widely used by decision rule
learners and shown to achieve better performance than directly
discretizing numerical values into intervals [4].

B. Logic minimization as a decision rule learner

Once binary encoded, the tabular dataset can be viewed
as an incompletely specified logic function. As noted ear-
lier, when an instance in the dataset has both positive and
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x1 x2 x3 x4 f(x)

0 0 1 0 1
0 1 0 1 0
0 1 1 0 0
0 1 1 1 1
1 1 1 0 1

TABLE II
A TOY EXAMPLE OF AN INCOMPLETELY SPECIFIED LOGIC FUNCTION,

WHERE x1 , x2 , x3 , AND x4 CORRESPOND TO AGE  50, SMOKER,
CHOLESTEROL  130, AND BLOOD PRESSURE  120, RESPECTIVELY,

AND f(x) REPRESENTS LOW HEART DISEASE RISK.

negative labels, the majority label can be taken to define the
incompletely specified logic function. In particular, a binary
encoded tabular dataset can be viewed as an incompletely
specified logic function f : {0, 1}m ! {0, 1, ⇤} that maps
an m-dimensional binary encoded vector x 2 {0, 1}m into
either 0, 1, or ⇤. The set of vectors {x 2 {0, 1}m : f(x) = 1}
is referred to as the ON-set, the set of vectors {x 2 {0, 1}m :
f(x) = 0} is referred to as the OFF-set, and the set of vectors
{x 2 {0, 1}m : f(x) = ⇤} is referred to as the DC-set (the
don’t care set). [10].

With respect to a binary encoded tabular dataset, all in-
stances x with a positive label would be included in the ON-
set (i.e., f(x) = 1), and all instances x with a negative label
would be included in the OFF-set (i.e., f(x) = 0). All other
input combinations x 2 {0, 1}m not specified in the encoded
dataset would belong to the DC-set (i.e., all input combinations
x not specified in the encoded dataset are implicitly defined
to be f(x) = ⇤).

Given an incompletely specified logic function, well estab-
lished two-level logic minimization algorithms can be em-
ployed to produce a minimized DNF formula as a disjunction
(OR) of conjunctive (AND) terms [10]. Modern two-level
logic minimization algorithms are able to guarantee a prime
and irredundant cover for a given incompletely specified logic
function, which means no conjunctive (AND) term can be
made simpler by removing a feature (i.e., the conjunctive term
is a prime), and no conjunctive term can be removed to further
simplify the DNF formula (i.e., the cover is irredundant).
In terms of the corresponding decision rule set, it means no
rules can be further simplified or removed from the rule set.
However, as noted earlier, logic minimization alone can lead to
models with poor generalization due to the presence of noisy
instances in the training data that leads to detrimental overfit-
ting. This problem can be remedied by first removing these
noisy data points through a denoising process, as described in
Section III.

C. An example rule set from logic minimization

Consider a toy example shown in Table II, corresponding
to a truth table derived from a binary-encoded tabular dataset.
Logic minimization can be applied to this incompletely spec-
ified logic function to produce the following DNF formula:

f(x) = x1 _ ¬x2 _ (x3 ^ x4).

This minimized DNF formula corresponds to the following
decision rule set:

IF (age  50) OR
(NOT smoker) OR
(cholesterol  130 AND blood pressure  120)

THEN low heart disease risk.

Overall, given a binary-encoded tabular dataset as an incom-
pletely specified logic function, logic minimization produces
a decision rule set in DNF as a classifier.

III. DENOISING FORMULATION

We now present a formal model in which the denoising
process can be analyzed and understood.

Consider a binary classification task in which data points lie
in an instance space X and the possible labels are Y = {0, 1}.
There is an unknown distribution P over X ⇥ Y from which
all instances and labels—past, present, and future—are drawn.

The distribution P over (X,Y ) pairs can as usual be broken
into two parts: the marginal distribution of X , denoted µ, and
the conditional probability distribution of Y given X ,

⌘(x) = Pr(Y = 1|X = x).

A classifier h : X ! Y has error rate, or risk, err(h) =
P (h(X) 6= Y ). The lowest achievable risk is that of the Bayes-

optimal classifier

g
⇤(x) =

⇢
1 if ⌘(x) � 1/2
0 otherwise

Notice that if ⌘(x) = 1/2, then either prediction is optimal.
The risk of g

⇤, that is, R⇤ = err(g⇤), is called the Bayes

risk. In many applications, a significant part of the instance
space has ⌘ bounded away from 0 and 1 and thus R

⇤
> 0.

A. Lack of consistency of learning decision rules by logic

minimization

Given a data set D = {(x1, y1), . . . , (xn, yn)}, logic min-
imization will find a DNF formula that exactly fits all these
points. In cases where there is even a little bit of stochasticity
in the labels—that is, R⇤

> 0—this can be problematic.
To see this, consider a situation where X is finite and ⌘(x) 62

{0, 1} (that is, there is some stochasticity in x’s label) for all
x. Thus any point x can potentially occur in the data set with
both labels. Given a sufficiently large data set, this will happen
with every point.

For this reason, logic minimization alone is not a consis-
tent method for learning a classifier: it is not guaranteed to
converge to g

⇤ as the size of the training set grows. More
generally, stochasticity in the labels can lead to the selection of
a model that both generalizes poorly and is larger than would
be needed for, say, the Bayes-optimal labeling. In particular,
the problem is the presence of noise in the data set, where a
point (x, y) is said to be noisy if y 6= g

⇤(x) and ⌘(x) 6= 1/2:
i.e., y is not the Bayes-optimal label for x.
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B. Preprocessing as a denoising step

Our proposed preprocessing step has the effect of denoising
the labels in the training set. We now establish this formally.

Given training data D = {(x1, y1), . . . , (xn, yn)}, we fit a
classifier gn to D and then define an edited training set

D
0 = {(x, y) 2 D : y = gn(x)}. (1)

That is, the edited training set will contain the instances whose
labels agree with the predicted labels of the classifier. Finally,
we apply logic minimization to the edited data to get a set of
decision rules.

In the original data D, the labels yi can disagree with the
Bayes-optimal predictions g

⇤(xi) on as many as half of the
points, since ⌘(xi) can be arbitrarily close to 1/2. We will
now see that for the edited data, the fraction is much smaller.

In interpreting the following lemma, recall that when
⌘(x) = 1/2, either prediction (0 or 1) is Bayes-optimal. This
leads to some messiness when stating results; to avoid it, we
assume that none of the xi has ⌘(xi) exactly 1/2. This holds
with probability one if the decision boundary has measure
zero, i.e. µ({x : ⌘(x) = 1/2}) = 0.

Lemma 1. Fix any x1, . . . , xn 2 X . Assume that ⌘(xi) 6= 1/2
for all of these points. Suppose each label yi is drawn

according to the conditional probability distribution ⌘(xi),
and let D = {(x1, y1), . . . , (xn, yn)}. Let gn be any classifier

learned from D, and let ✏n denote the fraction of the points

{xi} for which gn(xi) 6= g
⇤(xi). Finally, define the edited

data set D
0 ⇢ D as in (1) above. Then:

(a) |{(x, y) 2 D
0 : y 6= g

⇤(x)}|  ✏nn.

(b) E[|D0|] � n(1/2 � ✏n), where the expectation is over

the randomness in the labels yi.

Proof: Let B denote the set of “bad” data points xi on
which gn disagrees with g

⇤:

B = {xi : 1  i  n, gn(xi) 6= g
⇤(xi)}.

We are given that |B| = ✏nn.
For part (a), note that any xi that makes it into D

0 has
yi = gn(xi). Therefore, the only way that yi could differ
from g

⇤(xi) is if xi 2 B.
For part (b), if a data point (xi, yi) satisfies both gn(xi) =

g
⇤(xi) and yi = g

⇤(xi), then yi = gn(xi) and thus the point
is included in D

0. Hence

|D0| � n� {1  i  n : gn(xi) 6= g
⇤(xi)}

� {1  i  n : yi 6= g
⇤(xi)}.

The first set in this expression is B. The second set has
expected size at most n/2, since for any i, Pr(yi 6= g

⇤(xi)) =
min(⌘(xi), 1�⌘(xi))  1/2. Thus E[|D0|] � n� |B|�n/2 =
n(1/2� ✏n).

In short, D
0 contains roughly at least half the original

training points, and the fraction of faulty (non-Bayes-optimal)
labels in it is at most ✏n/(1/2� ✏n) ⇡ 2✏n.

Lemma 1 works for any choice of intermediate classifier
gn. We suggest taking gn from a family of classifiers that is
strongly consistent, that is, for which err(gn) ! R

⇤ almost
surely as n ! 1. Under this condition, the error ✏n defined

in the lemma goes to zero. Strong consistency is known to
hold for the adaptive nearest neighbor rule [11], for boosted
decision trees [12], [13], and for support vector machines with
the Gaussian kernel [14].

C. Localization properties of the preprocessing

In data drawn from the underlying distribution P , as many
as half the points x could have labels that disagree with the
Bayes-optimal prediction g

⇤(x), due to the stochasticity in the
conditional probability distributions ⌘(·). The preprocessing
step selects a subset D

0 ⇢ D that is not too much smaller
than D and in which at most an O(✏n) fraction of the labels
are noisy.

However, even a small amount of noise can be troublesome
if it is scattered throughout the instance space. This is because
logic minimization searches for logical rules (conjunctions)
that perfectly agree with the data, and even one noisy label
could falsely invalidate a good rule.

We now show that if estimator gn is an adaptive nearest

neighbor rule [11], then any noisy points in D
0 are localized:

they are not spread throughout X , but lie in a region around
the decision boundary, and this region shrinks as the size of
the training set, n, is increased.

We begin with a brief overview of the adaptive nearest
neighbor classifier. In contrast with k-nearest neighbor, which
makes a prediction on a query point x by looking at its k

nearest neighbors in the training set, the adaptive rule does
not use a predefined choice of k. Instead, it grows k until
the resulting set of training labels has a significant majority,
and then predicts accordingly. If a significant majority is
never achieved, then it outputs “?” (don’t know). The tradeoff
between accuracy and level of abstention is managed through
a single confidence parameter 0 < � < 1. The smaller this
parameter, the higher the required level of significance; this
results in more don’t-knows as well as higher accuracy when
a prediction is actually made.

In the terminology above, the adaptive nearest neighbor
classifier produces predictions gn(x) 2 {0, 1, ?}. Our editing
rule will discard any point (xi, yi) with gn(xi) 6= yi; this
includes any point with gn(xi) = ?.

What are the points on which gn will fail to predict the
correct label (or abstain)? It turns out that these are guaranteed
to be near the decision boundary, that is, to have ⌘(x) close
to 1/2. The following result is a corollary of the convergence
guarantees of the adaptive nearest neighbor estimator, Theo-
rem 2 of [11].

Lemma 2. Suppose X ⇢ Rd
and ⌘ is ↵-Holder continuous.

Let gn denote the adaptive nearest neighbor classifier with

confidence parameter 0 < � < 1. Let D
0

be the edited training

set, as defined as in Lemma 1. Then with probability at least

1 � � (over the randomness in the original data set), every

point in D
0

with yi 6= g
⇤(xi) has

����⌘(x)�
1

2

���� 
✓
C

n
log

n

�

◆�

for some constant C and � = ↵/(d+ 2↵).
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Proof: We begin by defining a notion of closeness to
the decision boundary. For any ⌧ � 0, the ⌧ -width decision
boundary is the set

BD(⌧) = {x 2 X : |⌘(x)� 1/2|  ⌧}.

Thus BD(0) is the exact decision boundary, the set of points
with ⌘(x) = 1/2.

The adaptive nearest neighbor work introduced a notion of
margin at each point x 2 X , called the “advantage” at x and
denoted adv(x) [11]. This is a value in the range [0, 1] and
corresponds to the statistical ease of estimating the Bayes-
optimal prediction at x. Roughly speaking, points with low
advantage are those near the decision boundary. Under Holder
smoothness conditions on ⌘, it can be shown by following
Lemma 18 of [15] that for any q 2 [0, 1],

adv(x) < q =) x 2 BD(Lq�)

for some L > 0 and � = ↵/(d+ 2↵).
The key convergence guarantee (Theorem 2 of [11]) of the

nearest neighbor estimator gn is that with probability > 1��,
it will correctly classify all points with significant advantage:

adv(x) � C

n
log

n

�
=) gn(x) = g

⇤(x).

The statement then follows by tracing the proof of Lemma 1
and observing that any mistake in D

0 is also a point on which
gn disagrees with g

⇤.

D. Details of the denoising step

In the above section, the definition of an edited training set
is given by Equation 1. We further elaborate on this denoising
step in the pseudocode shown in Algorithm 1.

Algorithm 1 Denoising algorithm
Input: Original dataset D = {(x1, y1), (x2, y2), ..., (xn, yn)},
a classifier gn
Output: Denoised dataset D0 ✓ D

1: D
0 = ;

2: for i = 1 . . . n do
3: if yi = gn(xi) then
4: D

0 = D
0 [ (xi, yi)

5: end if
6: end for
7: return D

0

The denoised datasets generated using Algorithm 1 are
guaranteed to be functions (there is only one unique output
label for each input combination) even though the original
dataset may be a relation (each input combination may have
multiple output labels). This point can be easily derived from
the fact that all classifiers gn used for denoising are functions
and thus the label that corresponds to the prediction of a
classifier gn(xi) is unique for input xi. i.e., if xi = xj ,
then gn(xi) = gn(xj). On the other hand, as noted before,
in the original dataset, the same xi may have both positive
and negative labels. In that case, to derive an incompletely
specified logic function, one of the labels has to be taken, for
example by taking the majority label.

IV. EXPERIMENTAL EVALUATION

A. Evaluation setup

Datasets. We performed numerical evaluations on seven pub-
licly available tabular datasets, most of which have more
than 10,000 instances and comprise categorical and numerical
attributes for each instance before binarization. Among them,
four are from Kaggle (churn, airline, market, and cardio),
two (adult and chess) are from the UCI Machine Learning
Repository [16] and the last one (retention) is from the AIX360
package [17]. For all datasets, we adopted the preprocessing
approach discussed in Section II to encode categorical and
numerical attributes into binarized features. A fixed number of
ten thresholds is used for all numerical features unless there
exists less than ten unique values in the feature column, in
which case we used the unique values as thresholds. All results
in this section were obtained using the nested five-fold cross-
validation that selects the best parameters for optimizing the
models’ performances on each partition.

Denoising and logic minimization. As discussed in Sec-
tion III, we first perform a denoising step to remove noisy
training samples. In particular, we experimented with three
strongly consistent classifiers that are known to theoreti-
cally converge to a Bayes-optimal classifier to perform the
denoising, namely adaptive nearest neighbor (AKNN) [11],
support vector machines with the Gaussian kernel (SVM) [18],
and gradient boosted decision trees (XGBoost) [6]. We then
applied logic minimization to the denoised training datasets to
derive the decision rules in disjunctive normal form.

For logic minimization, we used the ESPRESSO mini-
mizer [19], which is a widely used computer program that
efficiently solves the two-level logic minimization problem
with iterative improvements. In our experiments, the deci-
sion rule set models derived by applying ESPRESSO to the
denoised datasets are named “Denoise-A”, “Denoise-S” and
“Denoise-X” for AKNN, SVM, and XGBoost, respectively.
We also included the results of using ESPRESSO directly on
the original noisy datasets, which is named “No-Denoise”.

Baselines and parameter tuning. Apart from the baseline
models that we used to remove the noisy training sam-
ples in the datasets, we also included five other classifiers:
RIPPER [2], CG [5], random forest (RF) [8], decision tree
(CART) [20], and a deep neural network (DNN). The first
two are representatives of the state-of-the-art decision rule
learners, while the next two are popular machine models used
on tabular datasets. We also included a neural network as
another black-box model for comparison. In particular, we
used a 6-layer deep fully-connected neural network, with 64
neurons per layer and ReLU activation in the intermediate
layers. Overall, we consider three explainable models (CART,
RIPPER, and CG) and five non-explainable models (AKNN2,
RF, SVM, XGBoost, and DNN) in our evaluations. In par-
ticular, decision trees were constructed using the CART [20]

2Although k-nearest neighbor is often considered as an explainable model,
it is much more difficult to explain the predictions for AKNN because it
potentially requires a large number of nearest neighbors (possibly hundreds)
to reach sufficient confidence, in which case the explanation is not at all
apparent.
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algorithm, RIPPER is an old variant of the sequential covering
algorithm that greedily mines rule set from the dataset, and CG
formulates the problem of learning a set of decision rule set
as a mixed-integer programming problem with a loss function
that captures the interpretability and accuracy of the decision
rule set at the same time. Since CG cannot implicitly learn
the negations of the input binarized features, the negations of
the input features were appended to the datasets for CG only
so that we can get the best models from it.

As stated before, all classifiers were trained with the best
parameters according to the nested five-fold cross-validation.
Specifically, we varied the minimum number of samples per
leaf for CART and RF, the regularization term for XGBoost,
the regularization parameter C for SVM, the parameter A

corresponding to the confidence parameter � as stated in the
AKNN paper, and the learning rate for DNN. For rule learners,
we tuned the parameters used in the actual implementations
that control the complexity of the decision rule set: the
maximum number of conditions and the maximum number of
rules for RIPPER; the cost of each clause and the cost of each
condition for CG. Since there is no parameter to be tuned for
ESPRESSO, the results of No-Denoise were obtained on the
same training and test datasets used by other methods without
any parameter tuning. Also, the parameters tuned for Denoise-
A, Denoise-S and Denoise-X are exactly the same as the
parameters tuned for AKNN, SVM and XGBoost, respectively.

We used the sklearn implementations [21] for RF, CART,
and SVM. The implementations of other models are publicly
available on GitHub3.

B. Classification results on popular tabular datasets

Denoised datasets statistics. The sizes (total number of data
points) of the training sets and the percentages of noisy
instances in the training set removed by the denoising methods,
i.e., AKNN, SVM, and XGBoost, are shown in Table III. The
standard benchmarks shown are generally considered to be
large and sufficiently representative, with some benchmarks
containing up to 56,000 instances. The percentages of the
removed instances reflect how noisy each classifier thinks
about the datasets, which spans a wide range from 0.10%
to 25.72%. Among the seven datasets, chess, retention, and
airline comprise the least amount of noise whereas cardio has
around a quarter of data points being noisy, which, as we will
see later, matches the performance of logic minimization when
no denoising is applied. In general, the number of removed
noisy instances is relatively limited compared with the size of
the dataset, which matches our theoretical expectation.

Improvements over standard logic minimization. As seen
in the first four rows of Table IV, logic minimization with
denoising techniques (Denoise-A, Denoise-S, and Denoise-X)
always achieve significant improvements over standard logic
minimization (No-Denoise), where the latter on average shows
the weakest competitiveness among all models due to the lack
of consistency as a classifier. In particular, logic minimization

3Here are the GitHub links: CG (https://github.com/Trusted-AI/AIX360);
AKNN (https://github.com/b-akshay/aknn-classifier); RIPPER (https://github.
com/imoscovitz/wittgenstein).

with denoising yields an improvement in test accuracy by
as much as 9% (adult, churn) comparing to its No-Denoise
counterpart when a clear degree of noisiness (e.g., > 13%)
is present in the dataset, which validates that preprocessing
the dataset by removing the noisy data points is an effective
method to enhance logic minimization as a machine learning
model. On the other hand, No-Denoise outperforms or is on
par with all other explainable models (CART, RIPPER, and
CG) and AKNN on the chess, retention, and airline datasets,
indicating that logic minimization without any preprocessing
might be a good choice for the datasets that come with low
stochasticity. In both scenarios, we can always expect a per-
formance gain by denoising the datasets first before applying
logic minimization, with logic minimization benefiting more
substantially from noise removal when the noise percentage is
higher.

As already shown in Tables III and IV, denoising noisy
datasets can significantly improve the performance of models
derived from logic minimization. We further show this in
Figure 1, where we see four quadrants depicted. In the upper-
right quadrant, we see that a large reduction in the denoised
dataset generally correlates with a significant improvement in
test accuracy. This is because a large reduction implies that the
dataset is noisy, which causes detrimental overfitting problems
for the logic minimizer. Therefore, logic minimization gains
significant improvements by first denoising the dataset. On
the other hand, we see in the lower-left quadrant that a small
reduction in the denoised dataset generally correlates with a
more modest improvement in test accuracy. This demonstrates
a clear positive correlation between the noise ratio and the
corresponding accuracy improvement after denoising.

An overall better explainable model. The benefit of decision
rule set in DNF is that the user can always extract satisfied
rules to reason a decision. In comparison with other explain-
able models, our paradigm generates explainable decision rule
sets that achieve superior predictive performance, as can be
seen in Table IV (rows 2-7). The accuracies across all datasets
of Denoise-A, Denoise-S, and Denoise-X are as much as 11%
better than CART, RIPPER, and CG.

Competitive compared to non-explainable models. Not
only are the decision rule sets from logic minimization on
denoised datasets dominant over other explainable models,
but they are also very competitive even when compared with
non-explainable models. As can be seen by comparing the
logic minimization models (rows 2-4) and the non-explainable
models (rows 8-12) in Table IV, ESPRESSO applied on the
denoised datasets are very closed to the performances of the
non-explainable models with the maximum difference less
than 1.5%, while still being completely explainable. This is
significant because it has been generally thought that explain-
able models are not competitive with non-explainable models,
but our results show otherwise.

Decision rule set without loss of performance. Lastly, we
compare the performance of the ESPRESSO models with
their corresponding classifiers that were used to remove the
noisy data points in the training dataset, and the difference
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adult chess retention churn airline market cardio

Size 24,130 22,445 8,000 5,626 20,715 36,169 56,000

Denoise-A 13.26% 2.34% 3.24% 11.77% 1.81% 6.38% 24.52%
Denoise-S 13.82% 0.10% 3.43% 18.04% 1.56% 6.18% 25.72%
Denoise-X 14.26% 3.30% 4.29% 17.00% 4.97% 9.52% 24.08%

mean 13.78% 1.91% 3.65% 15.60% 2.78% 7.36% 24.77%

TABLE III
THE NUMBER OF TRAINING INSTANCES FOR EACH DATASET (SIZE) AND THE PERCENTAGE OF THE NOISY INSTANCES REMOVED BY EACH CLASSIFIER

FOR EACH DATASET. THE RESULTS ARE AVERAGED OVER FIVE PARTITIONS. THE LAST ROW (MEAN) IS THE AVERAGE PERCENTAGE OF REMOVED NOISY
INSTANCES FOR EACH DATASET.
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Fig. 1. The percentage of the noisy instances removed by each classifier (X-axis) vs. the test accuracy improvement by applying logic minimization to the
denoised dataset compared with the No-Denoise results (Y-axis).

can be seen in Table V. Both Denoise-S and Denoise-X only
decreased by less than 1%, providing further evidence that
logic minimization applied to the denoised dataset can achieve
comparable performance as the corresponding denoising clas-
sifier. Moreover, Denoise-A actually outperformed AKNN by
more than 1%, further indicating that logic minimization can
potentially generalize better on the datasets that have low
stochasticity. The last row in the table shows that the difference
between logic minimization after the denoising process is very
close to the state-of-the-art non-explainable models with only
less than 0.7% discrepancy in the average test accuracy.

C. A denoising example

In this section, we provide some intuition behind what
denoising is doing by means of an example. Consider again
the cardiovascular disease dataset (cardio) from the Kaggle
competition [9], where the classification task is to predict
the presence of cardiovascular disease based on the patient’s
information. This is a large training dataset comprising
56,000 data points. As shown in Table III, this is a noisy
dataset, where the denoisers removed on average 24.77%
of the dataset. This correlates with the significant accuracy

improvements between the logic minimization results with
denoising vs. no-denoising, with an average improvement
of about 7% in accuracy (see Table IV). In the case of
no-denoising, one of the decision rules derived by logic
minimization is as follows:

IF (height > 170 cm) AND
(weight  58 kg) AND
(systolic blood pressure > 130) AND
(systolic blood pressure  140)

THEN presence of cardiovascular disease.

However, this rule only applies to 14 patients in the origi-
nal dataset, which is a relatively small number of cases in
comparison to the complete training dataset of 56,000 cases
(under 0.03% of the cases). This causes logic minimization to
introduce many more rules that are more complex than would
be needed just to exactly fit the given dataset.

On the other hand, after denoising the dataset (using SVM
with a Gaussian kernel in this example), the above decision
rule simplifies to just the following:
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Model adult chess retention churn airline market cardio mean

Explainable Models & Logic Minimization + Denoising

No-Denoise 74.69 95.35 93.31 70.61 92.05 85.13 66.03 82.45
±0.35 ±0.32 ±0.36 ±1.33 ±0.14 ±0.28 ±0.17

Our Approach
Denoise-A

82.55 95.32 93.31 79.51 93.30 89.24 72.53 86.54
±0.49 ±0.36 ±0.44 ±1.17 ±0.47 ±0.09 ±0.36

Our Approach
Denoise-S

83.62 96.43 94.29 79.58 94.45 90.04 73.20 87.37
±0.30 ±0.26 ±0.16 ±1.39 ±0.48 ±0.14 ±0.43

Our Approach
Denoise-X

83.33 95.80 93.96 76.93 93.37 89.27 73.03 86.53
±0.14 ±0.31 ±0.17 ±0.88 ±0.36 ±0.04 ±0.41

CART 82.46 85.51 89.79 78.81 91.07 89.58 72.40 84.23
±0.35 ±0.40 ±0.65 ±0.61 ±0.43 ±0.18 ±0.33

RIPPER 82.37 85.80 88.82 78.27 93.04 89.45 70.57 84.05
±0.56 ±0.39 ±0.36 ±0.93 ±0.43 ±0.27 ±0.30

CG 82.60 81.75 90.77 79.21 92.73 89.77 71.46 84.04
±0.47 ±0.50 ±0.57 ±1.07 ±0.36 ±0.10 ±0.16

Non-Explainable Models

AKNN 82.94 91.09 91.49 79.15 91.72 89.38 71.69 85.35
±0.45 ±0.43 ±0.41 ±1.05 ±0.45 ±0.11 ±0.32

RF 83.95 92.49 93.52 80.20 94.69 89.97 73.50 86.90
±0.55 ±0.42 ±0.42 ±0.82 ±0.42 ±0.16 ±0.42

SVM 84.40 97.56 94.31 80.15 95.59 90.42 73.38 87.97
±0.36 ±0.35 ±0.38 ±0.99 ±0.29 ±0.14 ±0.44

XGBoost 84.50 95.49 94.30 78.30 95.89 90.28 73.06 87.40
±0.19 ±0.36 ±0.28 ±1.00 ±0.24 ±0.08 ±0.35

DNN 84.61 96.65 93.81 75.43 94.75 90.11 73.38 86.96
±0.33 ±0.65 ±0.53 ±1.83 ±0.53 ±0.15 ±0.34

TABLE IV
TEST ACCURACY (AS A PERCENTAGE) FOR ALL CLASSIFIERS WITH STANDARD DEVIATION. THE BEST ACCURACIES AMONG ALL CLASSIFIERS AND

EXPLAINABLE CLASSIFIERS ARE MARKED WITH orange AND blue BACKGROUND, RESPECTIVELY.

IF systolic blood pressure > 130
THEN presence of cardiovascular disease.

This new rule covers 15,740 data points in the original dataset.
Our denoising step removed 2,603 of these data points as
noise (about 16.5% of these data points). In particular, without
denoising, the original rule involving height, weight, and an
upper limit on the systolic blood pressure was needed to cover
relatively rare cases of patients without cardiovascular disease
that had systolic blood pressure above 130, for example with
weight above 58 kg or height shorter than 170 cm. These rare
anomalous cases detract from the general trend that patients
with systolic blood pressure above 130 overwhelmingly have
cardiovascular disease. This is an example of denoising that
led to significant simplification of rules and much better
generalization, as evidenced by the significant improvements
in test accuracy.

D. Synthetic data experiments to quantify the impact of de-

noising

Quantifying the impact of noise on logic minimization. To
quantitatively evaluate the impact of noisy data points on logic
minimization, we manually generated synthetic noisy datasets

based on pre-defined DNF rules. In particular, we consider the
input space comprising 16 binarized features, which leads to
about 64,000 combinations. Then we randomly generated 5
rules as the pre-defined rules, each of which is a conjunction
of 3 randomly chosen features. To generate a synthetic dataset,
we randomly sampled p “ground-truth” data points and labeled
them according to the pre-defined rules. Besides the ground-
truth data points, we further added q noisy data points into
the synthetic dataset, so that the combined dataset contains
p+q = 10, 000 data points. To generate the noisy data points,
we randomly sampled q new combinations and purposely
mislabeled them with the label opposite to the pre-defined
rules. For example, if we want to inject q = 3, 000 noisy data
points, we would randomly sample p = 7, 000 ground-truth
data points for a total of 10, 000 data points in the synthetic
dataset.

In Figure 2, we show the impact of noise on logic min-
imization. In particular, as shown in Figure 2(a), we varied
the number of noisy data points in the synthetic dataset from
q = 0 to q = 3, 000 on the X-axis (with a corresponding
p = 10, 000 to p = 7, 000 ground-truth data points). On the
Y-axis, Figure 2(a) shows the corresponding test accuracies
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adult chess retention churn airline market cardio mean

Diff(AKNN) �0.39 4.23 1.82 0.36 1.58 �0.14 0.84 1.19
Diff(SVM) �0.78 �1.13 �0.02 �0.57 �1.14 �0.38 �0.18 �0.60

Diff(XGBoost) �1.17 0.31 �0.34 �1.37 �2.52 �1.01 �0.03 �0.88

Diff(Best) �0.88 �1.13 �0.02 �0.62 �1.44 �0.38 �0.30 �0.68

TABLE V
THE DIFFERENCE IN TEST ACCURACY (AS A PERCENTAGE) BETWEEN THE CLASSIFIERS USED TO REMOVE NOISY INSTANCES AND THEIR

CORRESPONDING LOGIC MINIMIZATION RESULTS. IN THE FIRST THREE ROWS, Diff(g) = Acc(DENOISE-g)� Acc(g), WHERE g IS A CLASSIFIER AND
Acc(·) IS THE TEST ACCURACY FOR THE INPUT CLASSIFIER. IN THE LAST ROW, Diff (BEST) GIVES THE DIFFERENCE BETWEEN THE BEST LOGIC

MINIMIZATION RESULT AND THE BEST RESULT AMONG ALL CLASSIFIERS FOR EACH DATASET. POSITIVE NUMBERS MEAN THE DENOISED LOGIC
MINIMIZATION RESULTS ARE BETTER THAN THEIR CORRESPONDING DENOISING CLASSIFIERS AND NEGATIVE NUMBERS MEAN THE OTHER WAY

AROUND.

Fig. 2. The impact of noise on logic minimization on synthetic data. (a) The impact on test accuracy with increasing noise. (b) The impact on model
complexity with increasing noise.

of both No-Denoise and Denoise-S with the parameter C for
SVM fixed to be 1.

The test accuracies are based on sampling another 10, 000
test instances labeled according to the pre-defined rules. As
expected, as we increase the noise percentage from 0% to 30%,
the test accuracy of No-Denoise decreases linearly, while the
performance of Denoise-S remains relatively the same near
100%. This shows that No-Denoise poorly generalizes with
increasing amount of noise, whereas Denoise-S is robust to
noisy samples.

In Figure 2(b), we show the complexities of the decision
rule sets derived from both No-Denoise and Denoise-S, where
the complexity of the rule set is calculated by summing the
number of features across all rules and the number of rules. As
we increase the noise percentage on the X-axis, the complexity
of the derived rule set from No-Denoise increases dramatically
due to the overfitting of the noisy samples. On the other hand,
the rule set complexity of Denoise-S remains at a minimum
level, verifying that a classifier with provable Bayes-optimal
convergence properties can successfully remove most of the
noise in the training set so that logic minimization can uncover
the underlying distribution, which in this case is the predefined
rules.

Quantifying the performance of denoisers. We next evaluate
the effectiveness of different denoisers in identifying noise in
datasets. To quantitatively evaluate this, we again manually
produced synthetic noisy datasets using the same randomly

generated 5 rules as the pre-defined rules, as in the previous
section. In this experiment, we again generated synthetic
datasets with 10,000 data points, but this time, we randomly
sampled 9,000 “ground-truth” data points labeled according
to the pre-defined rules. We then injected two types of noisy
points into the dataset. The first type of noise (Noise 1) is the
same type of noise in the previous section: we randomly sam-
pled new combinations and purposely mislabeled them with
the label opposite to the pre-defined rules. We also injected a
second type of noise (Noise 2): we randomly selected some
combinations among the 9,000 ground-truth combinations and
assigned the opposite labels to them. In other words, these
combinations have both positive and negative labels in the
synthetic dataset. We added in total 1,000 noisy points to the
datasets with different ratios of the two types. We then applied
the denoisers to the datasets consisting of 9,000 + 1,000 =
10,000 points and let them identify the noisy data points. The
results are shown in Table VI.

In particular, in all cases with different compositions of
noise types, SVM always perfectly removes all noisy points
without mistakenly removing any correct data, which is con-
sistent with the results shown in Table IV where Denoise-S
always achieves the best accuracy. With respect to XGB and
AKNN, both are able to correctly identify most of the noisy
data points, with XGB successfully finding about 79-99% of
the noisy points, and AKNN successfully finding about 90-
95% of the noisy points. Although XGB incorrectly removes
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Noise 1 Noise 2 Denoiser FP TP1 TP2 Total

XGB 15 490 412 917
500 500 SVM 0 500 500 1000

AKNN 150 487 464 1101

XGB 14 791 0 805
1000 0 SVM 0 1000 0 1000

AKNN 169 910 0 1079

XGB 13 0 987 1000
0 1000 SVM 0 0 1000 1000

AKNN 152 0 980 1132

TABLE VI
DENOISING STATISTICS ON SYNTHETIC DATASETS WITH FIVE RULES, EACH AS A CONJUNCTION OF THREE RANDOMLY CHOSEN FEATURES. NOISE 1 AND

NOISE 2 CORRESPOND TO THE AMOUNTS OF THE FIRST AND SECOND TYPES OF NOISE, RESPECTIVELY. FP AND TP STAND FOR FALSE POSITIVE AND
TRUE POSITIVE, WHERE FP IS THE NUMBER OF POINTS THAT ARE NOT NOISE BUT REMOVED BY THE DENOISERS, WHILE TP1 AND TP2 ARE THE

NUMBER OF NOISE 1 AND NOISE 2 POINTS IDENTIFIED BY THE DENOISERS, RESPECTIVELY. TOTAL IS THE TOTAL NUMBER OF INSTANCES REMOVED BY
THE DENOISERS.

about 0.1-0.2% of the correct data out of the 9,000 points,
and AKNN incorrectly removes about 1.5% of the correct
data, the percentage of incorrectly removed data points is
negligibly small in both cases relative to the total number
of clean points. Overall, the amount of correctly identified
noise is substantially greater than the missed and incorrectly-
removed points, which meets our expectation: the denoisers
remove almost all noisy points and not too many of the clean
points.

E. The impact of denoising on other explainable models

Throughout the main paper, we extensively discussed the
importance of denoising when logic minimization is used to
derive decision rule sets from tabular datasets since logic
minimization exactly fits all data points. In this section, we
also evaluate how denoising affects other models. The results
are summarized in Table VII.

The average improvements of applying logic minimization
to the denoised datasets are significant, over 4%. This is shown
under the column labeled ESPRESSO. It can be seen that
denoising also generally improves the test accuracies of CART,
RIPPER, and CG. However, the improvements are relatively
small in comparison with logic minimization, under 0.25%,
1.5%, and 0.5% for CART, RIPPER, and CG, respectively.
The reason why the improvements are much smaller with these
methods may be due to the fact that these learners are already
somewhat noise-tolerant: they tend to underfit data in favor
of simple models and are therefore less affected by noisy
points, but this comes at the price of inferior performance.
Furthermore, we observe that denoising can have a small
negative impact on the performances of SVM and XGBoost,
which is not suprising as both SVM and XGBoost already
have good generalization capabilities without denoising. On
the other hand, because logic minimization tends to overfit, it
can greatly benefit from our denoising framework, as shown
in Table VII.

V. RELATED WORK

SAT-based logic minimization has been proposed be-
fore [22], [23] to derive minimized DNF formula that translate

to decision sets. However, these methods assume there is no

inconsistency in the training data, meaning that there are no
overlapping examples that have different class labels. They re-
solve inconsistencies by taking the majority class such that the
largest consistent subset of non-overlapping training instances
is retained. In turn, these SAT-based methods act as a logic
minimizer to exactly fit the resulting dataset. As explained
throughout this paper, logic minimization performed this way
(corresponding to the “No-Denoise” case in our paper) often
fail to produce accurate decision models because the resulting
dataset often still contains noisy points that lead to detrimen-
tal overfitting and poor generalization. How best to remove
training instances to create a consistent dataset is highly
non-trivial, which is precisely our key contribution: a novel
theoretically-grounded denoising framework that substantially
improves the performance of two-level logic minimization in
the learning of accurate decision sets, not simply the use of
logic minimization (whether ESPRESSO [10] or a SAT-based
approach) to derive decision sets.

The consistency of learning algorithms is a central question
in statistics and machine learning. For parametric classifiers,
such as linear separators, the desired outcome is convergence
to the best model in the function class as the number of train-
ing points grows. This typically depends upon the boundedness
of some complexity measure such as VC dimension [24] and
holds broadly. However, such function classes might not be
rich enough to capture all the intricacies of the underlying
classification task. For nonparametric models, it is possible to
hope for better: convergence to the Bayes-optimal model. This
has been established for various popular methods, including k-
nearest neighbor (with suitably growing k) [25], [26], boosting
with certain base classes [12], and families of kernel machines
including the support vector machine with RBF kernel [14].

There is also existing literature devoted to label noise, focus-
ing mainly on unreliable or erroneous labels. [27] provides an
extensive analysis of label noise and the potential problems
that they can cause in classification problems and reviews
the existing literature on algorithms for filtering erroneously
labeled instances. For example, [28] proposes to use SVM
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ESPRESSO CART RIPPER CG SVM XGBoost

Denoise-A 4.09 �0.09 1.09 0.07 �2.10 �0.60
Denoise-S 4.92 0.21 1.42 0.48 �1.43 �0.50
Denoise-X 4.08 �0.25 1.31 0.28 �0.67 �0.25

TABLE VII
AVERAGE IMPROVEMENT IN TEST ACCURACY BY DERIVING OTHER MODELS ON THE DENOISED DATASETS.

as the filterng method to identify misclassified instances in a
breast cancer survivability dataset. [29] proposes to use neural
networks to detect misclassification patterns in the training
data. [30] introduces a model-agnostic denoising framework
that identifies the noisy samples using the out-of-sample
predicted probabilities of the training instances by a user-
specified classifier. However, these works either do not provide
insights into why their choice of classifiers will work in the
given scenarios or do not provide guidance regarding the
choice of a user-specified classifier. In contrast, our denoising
framework takes a different view of the problem by assuming
that the true labels of the training instances are Bayes-
optimal labels. This assumption provides us with guidance
on what classifiers to select to give an accurate estimate of
the underlying true labels, which is grounded in theory, as
discussed in Section III. That is, our denoising framework can
in theory correctly identify all noisy instances since we use
classifiers with provable Bayes optimal convergence properties
to identify noise in the dataset. This is not case for example in
prior works like [29], [30]. To our knowledge, our work is the
first to synthesize the ideas of logic minimization, convergence
to the Bayes-optimal model for ensuring consistency, and
label noise removal to simultaneously achieve state-of-the-art
classification performance in tabular learning problems with
explainable rule-based predictions.

Finally, the learning of rule sets has received considerable
attention due to their ability to provide human-understandable
explanations. Contrary to greedy rule mining methods devel-
oped before [2], [31], recently proposed methods [3], [4],
[5] explicitly consider the trade-off between the explanation
complexity and the predictive performance and aim to get the
best training accuracy under a certain complexity constraint.
However, there is still a noticeable performance discrepancy
between decision rule sets and black-box models such as
random forest [8] and gradient boosted trees [6] even if there
is no constraint on the complexity of the rule set. Although our
work also generates human-understandable IF-THEN rules,
and therefore falls into the same category of decision rule
set learning, we show that our method significantly improves
on modern decision rule learners and bridges the gap with
black-box models.

VI. CONCLUSION

In this paper, we explore the use of two-level logic mini-
mization as a machine learning paradigm for tabular data sets.
Although tabular data sets can be viewed as logic functions
that can be simplified with two-level logic minimization to
derive minimal logic formulas in disjunctive normal form
(DNF), this has not been a successful approach in the past,

leading to complex models with poor generalizations. Our
conjecture is that these problems are caused by the presence
of noisy instances in the training data. Because logic mini-
mization exactly fits all data points, these noisy instances can
lead to detrimental overfitting problems, leading to models
that both generalize poorly and are far more complex than
necessary. We propose a statistical framework for denoising
the training data, corresponding to the removal of noisy data
points that have anomalous labels or are close to the decision
boundary. This denoising approach allows logic minimization
to be effective in deriving simple DNF formulas that have
good generalization properties. The DNF formulas can in turn
be readily converted to explainable decision rules. Using this
approach, we are able to obtain comparable performance as
gradient boosted and ensemble decision trees, which have
been the winning hypothesis classes in tabular data learning
competitions, but with human understandable explanations in
the form of decision rules. We hope our successful results
will open the door to further fruitful research in the under-
explored area of logic minimization as a viable machine
learning direction.
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