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ABSTRACT
This paper focuses on a multi-agent zeroth-order online op-
timization problem in a federated learning setting for target
tracking. The agents only sense their current distances to their
targets and aim to maintain a minimum safe distance from
each other to prevent collisions. The coordination among
the agents and dissemination of collision-prevention infor-
mation is managed by a central server using the federated
learning paradigm. The proposed formulation leads to an
instance of distributed online nonconvex optimization prob-
lem that is solved via a group of communication-constrained
agents. To deal with the communication limitations of the
agents, an error feedback-based compression scheme is uti-
lized for agent-to-server communication. The proposed al-
gorithm is analyzed theoretically for the general class of dis-
tributed online nonconvex optimization problems. We pro-
vide non-asymptotic convergence rates that show the domi-
nant term is independent of the characteristics of the com-
pression scheme. Our theoretical results feature a new ap-
proach that employs significantly more relaxed assumptions
in comparison to standard literature. The performance of the
proposed solution is further analyzed numerically in terms of
tracking errors and collisions between agents in two relevant
applications.

Index Terms— communication efficiency, compression
schemes, federated learning, online optimization, zeroth-
order optimization

1. INTRODUCTION

As datasets and machine learning (ML) models continue to
grow in size and complexity, training ML models increasingly
requires carrying out the optimization process across multiple
devices. This is often the result of parallel processing needs
or the collaboration of multiple participants in the data ac-
quisition and optimization processes. The federated learning
(FL) paradigm [1, 2] addresses this by focusing on the latter
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scenario and training a global model through the cooperation
of multiple clients (or agents), managed by a central server.
However, FL is typically carried out by a large number of
communication-constrained agents, making the transmission
of model parameters to the central server a potential bottle-
neck that needs to be addressed for efficient model training.

In online learning (OL), where decisions are made in real-
time with limited information/feedback provided to the deci-
sion maker, limited communication resources become even a
more severe problem. To address this, first-order FL algo-
rithms like local stochastic gradient descent (SGD) use com-
pression techniques like quantization or sparsification [3–5]
to reduce the size of local gradients before transmission, but
this causes information loss which may impact the learning
performance adversely.

To counteract this loss in information, an error feedback
(EF) mechanism can be added. The EF mechanism works
by incorporating the error made by compression in the sub-
sequent steps, so that effectively, each gradient is fully uti-
lized, even if at later stages. Moreover, the EF mechanism
theoretically achieves the same rate of convergence as the no-
compression case, making compression come at no cost. [6].

An additional consideration that we may need to have in
practical scenarios is the potentially limited nature of avail-
able information. The zeroth-order (ZO) optimization setting
presents an example for such limitations. In an optimization
problem arising from a real-life scenario, the information to
be used in the optimization process may be the sensed values
of physical quantities such as sound or light intensity, or rel-
ative distance [7]. For instance, assuming that sensing agents
may only sense current distances to their targets and other
nearby agents, we can consider this to be a ZO setting [8] as
agents do not have access to higher-order information, such
as velocity or acceleration.

As an example of a practical scenario combining all of the
aforementioned considerations, consider delivery robots that
are loaded from the same region and aim to find their cus-
tomers. This situation may be viewed as a source localization
problem with multiple mobile agents. We adopt the terms
agent and source from the literature on this subject in the up-
coming discussion. If the customers are also moving, this
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becomes a target-tracking problem [9, 10]. In a multi-agent

Fig. 1: Illustration of agent-server communication. The
agents communicate compressed information to the server,
whereas the server transmits back the full information.

setting, collisions between these delivery robots may occur,
which can be solved by establishing communication between
the agents using the FL framework, somehow incorporating
the information of where nearby agents are. Supposing addi-
tionally that the robots are only capable of sensing their cur-
rent distances to their respective targets and to other nearby
robots moves our problem into the field of ZO optimization.
However, doing so would also result in an online optimiza-
tion scenario, seeing as the relative locations of the robots
with respect to one another would be continually changing,
producing a time-varying sequence of optimization problems
to solve. Finally, to overcome the inherent communication
bottleneck engendered by the online and FL settings, com-
pression schemes may be used along with the EF mechanism.
Our novel formulation of this target tracking problem is illus-
trated and explained in detail in Section 4.1.

1.1. Contribution

Motivated by the previous problem formulation, the purpose
of this work is to find an answer to the central question:

Is it possible to devise an algorithm for online, distributed
non-convex optimization problems with compressed exchange
of zeroth-order information, and with provable convergence
guarantees for both single-agent and multi-agent settings?

To address this question, we focus on a general stochas-
tic nonconvex optimization problem, taking into account the
following factors: i) access to the stochastic cost function is
limited to zeroth-order oracle, meaning only function values
at current locations and times are available, ii) due to commu-
nication constraints, only compressed or quantized gradients
are exchanged between the agents and the server, iii) multiple
agents use zeroth-order information to track their targets, and
iv) the objective functions are time-varying in nature, result-
ing in an online optimization problem.

We prove the existence of a first-order solution in Rd

that is ⇠-accurate with T = O

⇣
d�2ML(�+!̄)

⇠2

⌘
in the dom-

inant term, where �2, L, M , �, and !̄ denote the variance
of stochastic gradients, smoothness constant in Assumption

3, bound constant on the stochastic gradients’ second mo-
ment in Assumption 2, the difference between averages of
loss functions for the first and last iterates, and the summa-
tion of drift bounds from Assumption 4 respectively. Hence
the dominant term in the convergence error is not depen-
dent on the compression ratio. This is achieved while using
an EF mechanism and a ZO gradient estimator which uses
two function evaluations. In the derivation of this result,
we also relax the assumption of bounded second moment
commonly found in related literature [6]. Instead of assum-
ing that the second moment of the stochastic gradients are
upper-bounded by a constant term greater than or equal to
their variance, we adopt the relaxed assumptıon that it is
upper-bounded by the variance plus a term that is propor-
tional to the square of its expected value. In other words,
we relax the assumptions on the value of M in Assumption
2, whereas it is commonly assumed in other literature that
M = 0, uniformly. That is, our upper bound depends on
the current sample rather than a uniform bound. Whereas the
previous work deals with a single-agent scenario [11], we ex-
amine the effectiveness of the proposed approach in a multi-
agent target tracking scenario with limited communication
where collision avoidance is of paramount importance. The
problem of reducing collisions among agents is addressed
by incorporating the FL paradigm and a new regulariza-
tion term. This task is formulated as an online, distributed
nonconvex optimization problem that can be solved by a
multi-agent variation of the proposed scheme. Theoretical
analysis shows that a ⇠-accurate first-order solution in RNd

with T = O
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dominant term can be found in a scenario with N agents,
where Z2 and Q are constants that arise from Assumption 6,
which effectively places a bound on the norm of the gradients
of each client in terms of the average of these gradients over
all of the clients [12]. The results of the study are further
supported by experimental results

Our preliminary work on single-agent convergence anal-
ysis and experiments was accepted to and will be presented at
2023 IEEE International Conference on Acoustics, Speech,
and Signal Processing [13]. The current work presents a sig-
nificantly more thorough analysis of the subject, with an ad-
ditional part detailing the multi-agent algorithm and its anal-
ysis, presented in Theorem 2. The complete proofs of the
two theorems are also provided. The experimental section is
ameliorated with more descriptive results, and an additional
experiment involving an area coverage problem.

1.2. Related Work

Communication-efficient FL. FedAvg is the seminal FL pa-
per in which the central server takes the average of the lo-
cal gradients transmitted by the clients and distributes the up-
dated parameters to corresponding clients [1]. The crux of



this work is the locality of data, in that data is acquired and
trained on locally by a multitude of clients, without ever trans-
porting it to a central server. Several difficulties, including
privacy concerns [14], heterogeneity of client data [15], and
high communication costs in agent-to-server links [16] arise
in relation to this paradigm. Variations of FedAvg have been
developed to mitigate these problems. For instance, to deal
with high communication costs, [17, 18] propose a sparsifi-
cation algorithm in communication for time-varying decen-
tralized learning and optimization. Reference [19] proposes
utilizing adaptive learning rate for aggregation, which is rele-
vant to both the client data heterogeneity and communication
efficiency issues. Reference [20] suggests using a novel ag-
gregation technique which first quantizes gradients, and then
skips communicating less impactful quantized gradients in fa-
vor of reusing previous ones. Reference [21] proposes using
a momentum-based global update at the server, which pro-
motes communication efficiency through variance reduction.
Reference [22] proposes a derivative-free federated ZO opti-
mization (FedZO) algorithm, and to improve its communica-
tion efficiency over wireless networks, they propose an over-
air computation assisted variant. Reference [23] proposes a
multiple local update strategy and a decentralized ZO algo-
rithm to improve the communication efficiency and conver-
gence rate in the decentralized FL scenario, in which there is
no access to first-order derivatives. Reference [24] promotes
the use of multiple gossip steps for communication efficiency.
Various compression schemes such as Top-k [6], Rand-k [5],
Biased and Unbiased Dropout-p [4], Quantized SGD (QSGD)
[3], and their variants/generalizations are used to achieve the
communication efficiency of FL algorithms. Compression
schemes can be divided into contractive and non-contractive
methods. With contractive compression schemes, which are
our focus in this work, it is common to introduce an EF mech-
anism to compensate for the error due to compression by ac-
cumulating compression error in memory and adding it back
as feedback for subsequent rounds. In [6], it is shown that
such a method used in conjunction with SGD has a compara-
ble rate of convergence to non-compressed SGD. In this study,
we relax the assumption of having stochastic-first order oracle
with bounded noise required in [6] by meticulously character-
izing the impact of such relaxation on convergence. Further-
more, instead of the single-agent case as investigated in [6],
we consider multiple agents with the additional contingency
of preventing their collisions, which make the theoretical side
more challenging.

Multi-agent target tracking. In our setting, agents are
limited to ZO information, since they are assumed to only be
able to sense their distance to their targets and other nearby
agents. As a result of this consideration, our method is appli-
cable to different practical scenarios such as [25,26]. In these
kinds of scenarios, gradients of the loss function can still be
estimated by finite differences [27] but doing so in a multi-
agent setting under communication constraints still remains

an open challenge. Reference [11] describes a setup compa-
rable to online optimization employing ZO oracles, applied
to a target tracking problem. In that work, the authors focus
on the case where there is a single source pursued by a single
agent, which we generalize to the multi-agent setting as part
of our contribution. We further investigate an effective ap-
proach via nonconvex regularization for collision avoidance.
The � parameter we refer to as the regularization parameter
is in essence similar to the penalty and augmented Lagrangian
methods used in functional constrained optimization [28,29].
However, these methods aim to adaptively tune the � parame-
ter on-the-go, which is out of the scope of our work. It should
be noted also that this line of research is very relevant to the
area of safe reinforcement learning, see e.g. [30–33].

In [34], a cooperative, mobile multi-agent source local-
ization problem is tackled via using a distributed algorithm.
Compared to our setting, the agents sense first-order informa-
tion and their neighboring agents benefit from collaboration
between agents to avoid collision. Reference [35] deals
with a source localization problem in a single-agent and
single-source setting, where the source is stationary or near-
stationary. Reference [36] studies the problem of OL using
ZO information with convex cost functions. They extend the
problem out of the conventional Euclidean setting onto Rie-
mannian manifolds. In [37] a ZO source localization problem
is considered using distance information, where the agents
are essentially multiple sensors of known position. Refer-
ences [38] and [39] deal with an online optimization problem
using a decentralized network of multiple agents which have
access to ZO information, and propose the usage of local
information and information from neighboring agents in the
network. In [38], an iterative algorithm with guarantees is
proposed for time-varying online loss functions. The theoret-
ical result there is established by assuming a certain bounded
drift in time assumption which is standard in the literature,
see, e.g., [11].

Online optimization and online target tracking. In the
general online optimization setting, we focus on literature
within or similar to the online convex optimization frame-
work, which we can consider as a sequential decision mak-
ing game in the presence of time-varying loss functions [40].
In [41], a distributed online optimization problem with mul-
tiple agents is considered, and the local loss function of each
agent is convex and time-varying. The authors propose a ran-
domized gradient-free distributed projected gradient descent
procedure, where agents estimate the gradient of their local
loss functions in a random direction using information from
a locally-built ZO oracle. In [42], a similar setting is con-
sidered, and a multi-agent distributed optimization problem
is studied in continuous-time, with time-varying convex loss
functions. Reference [11] deals with a setting where zeroth-
order oracles are used for optimization in the presence of
time-varying cost functions. Besides the general online opti-
mization setting, there is an abundance of literature focusing



on the online optimization aspect of the target tracking prob-
lem. A large number of them also involve a swarm of mul-
tiple agents working in coordination. Usually, literature on
this area tends to consider the problem in the context of un-
manned aerial vehicles (UAV), or unmanned surface vehicles
(USV). As pointed out in [43], the approaches to the prob-
lem may be separated into three broad categories: those using
filtering based, control theory based and machine learning
based approaches. For instance, [43] examines the problem
within the domain of reinforcement learning by formulating it
as a constrained Markov decision process, with application to
autonomous target tracking using a swarm of UAVs. The au-
thors provide an algorithm with provable guarantees. In [44],
the authors again consider a multi-agent multi-target pursuit
evasion scenario, where they propose the usage of a recurrent
neural net work for target trajectory prediction, in conjunction
with a multi-agent deep deterministic policy gradient formu-
lation for decision making. Reference [45] deals with a robust
formulation of a similar scenario in the domain of supervised
learning, using a game theoretic approach. Reference [46]
deals with a multi-target following scenario with considera-
tion of external threats. The authors treat the problem as an
online path planning problem and adopt a control-theoretic
approach. In [47], an online adaptive Kalman filter is ussed
in a target tracking problem where the sensor signals of the
agents are assumed to have unknown noise statistics, to for-
mulate a solution that is robust to noise. Lastly, [48] consid-
ers a decentralized control problem involving multiple agents
with multiple control objectives, among which target tracking
is one. The authors make use of a scheme based on adap-
tive dynamic programming, and feedback from a critic neural
network which approximates the control objectives in online
fashion.

1.3. Novelty w.r.t. Existing Works

Our work is focused on a nonconvex online distributed opti-
mization problem with compressed exchange of zeroth-order
information, along with the error feedback mechanism. Al-
though these concepts were investigated individually in prior
works [6, 11, 22, 27, 34] to the best of our knowledge, we are
the first to combine them in a single framework and propose
an algorithm with its theoretical analysis and convergence
guarantee.

Furthermore, we may compare our theoretical results in
Section 3 with the result of the analysis in [49], which de-
rives an upper bound for the offline, first-order case with
contractive compressors and the error feedback mechanism
for the optimization of a smooth, nonconvex function in the
FL paradigm. Their result establishes, in this setting, an it-
eration complexity of O(1/N⇠2) to produce a ⇠�accurate
first-order solution. Our result agrees with this result on
the ⇠�dependency. However, the analysis in this result is
obtained in an offline setting with access to the first-order

derivatives and is hence able to derive a convergence rate
that is inversely proportional to the number of agents N .
As opposed to that setting, we consider a more challeng-
ing online setting in which agents lack access to first-order
derivatives but have access to finite differences. Thus, the
convergence rate we establish is independent of N . More-
over, reference [49] assumes a uniform bound on the second
moment of the gradients. We adopt a more relaxed version
of this assumption, which does not assume a uniform bound
on the second moment (Assumption 2), and this makes our
analysis more involved. We make a similar relaxation of a
standard assumption used in distributed optimization [50–56]
in the same vein, by lifting the assumption of a uniform bound
(Assumption 6).

The rest of the paper is organized as follows: In Section
2, we present the related background on stochastic gradient
descent in zeroth-order oracle setting and necessary assump-
tions for our theoretical analysis. In Section 3, we propose the
EF-ZO-SGD and FED-EF-ZO-SGD algorithms and present
two theorems for their convergence along with sketches of
proofs. Experimental results for two different settings are pre-
sented in Section 4 followed by the conclusion in Section 5.
The complete proofs of the theorems along with the state-
ments of relevant lemmas are presented in the Appendix.

2. PRELIMINARIES AND BACKGROUND

We start by providing a description of the problem in the
single-agent setting. We deal with a sequence of time-varying
optimization problems: minx2Rd `t(x), t 2 Z+. Each `t :
Rd

! R is a continuous loss function and `t(x) := Ez[˜̀t(x)].
We denote ˜̀

t(x) := `t(x, z) where z is a random variable rep-
resenting data points coming from the unknown distribution
Pz , so z ⇠ Pz . In our application, the target tracking prob-
lem, it is the position vector of targets. We aim to find a se-
quence of solutions {xt}

T
t=1 such that 1

T

PT
t=1 kr`t(xt)k2 

⇠ for some small ⇠ > 0. Suppose that, at time t, we have
somehow generated a (possibly non-optimal) solution xt to
the problem minx2Rd `t(x). As we are motivated by online
and time-critical missions, we would like to generate a solu-
tion xt+1 to the problem minx2Rd `t+1(x) applying a simple
update rule which is similar to SGD to xt:

xt+1 = xt � ⌘tr˜̀
t(xt), (1)

where ⌘t is the step size or learning rate adopted at time t.
As discussed in Section 1, we cannot directly apply such an
update since we are in the ZO setting, that is, we only have
access to evaluation of ˜̀

t and not to its gradient or stochas-
tic gradient. To overcome this limitation, we resort to a ZO
estimator of the gradient:

g̃µ,t(xt) :=
˜̀
t(xt + µut)� ˜̀

t(xt)

µ
ut, (2)



where µ 2 R is the so-called smoothing parameter, and each
ut ⇠ N (0, Id). Note that g̃µ,t can be thought of as an approx-
imation to the stochastic gradient of a Gaussian smoothing of
˜̀
t, i.e., ˜̀µ,t(x) := Eu[˜̀t(x + µu)]. A final modification to

the update rule arises due to the aforementioned communica-
tion constraints. We apply compression to the ZO estimator
and use the resulting quantity in the update rule. To miti-
gate the negative effect of compression on the convergence of
the method, we employ the error feedback mechanism. Es-
sentially, this serves in each time step to partially recover in-
formation discarded in the previous compression steps. The
details of our approach may be seen in EF-ZO-SGD.

In the multi-agent setting, we generalize the problem as
follows: There are now N sequences of continuous loss func-
tions where t 2 Z+ and each `t : RNd

! R, which we
denote `1t , . . . , `

N
t , belonging to agents 1 through N . Similar

to the previous part, `it(x) := Ez[˜̀it(x)], ˜̀i
t(x) := `it(x, z)

and z ⇠ Pz . We name these the local loss functions, since
they represent the loss of each specific agent. The objective is
to find a sequence of solutions {x1:N

t }
T
t=1 ⇢ RNd that min-

imizes the global loss function ¯̀̃
t =

1
N

PN
i=1

˜̀i
t. Akin to the

single-agent setting, each agent computes a compressed ver-
sion of the ZO estimator, corrected to some extent by feed-
back of the error generated due to compression in the previous
steps. The result of this computation is then transmitted to the
central server, where they are aggregated and used to update
the locations of each agent. The full algorithm entailed by
this approach can be seen in FED-EF-ZO-SGD.

Next, we state the assumptions adopted in the forthcom-
ing analyses of the single- and multi-agent settings.

Assumption 1. (Unbiased Stochastic Zeroth-Order Oracle)
For any t 2 Z+, i 2 {1, . . . , N} and x 2 Rd, we have

Ez

h
˜̀i
t(x)

i
= `it(x). (3)

Although we do not explicitly utilize the stochastic gra-
dient r˜̀

t in the forthcoming algorithm, our analysis still re-
quires a certain regulatory assumption on it.

Assumption 2. (Bounded Stochastic Gradients) For any t 2
Z+, i 2 {1, . . . , N} and x 2 Rd, there exist �,M > 0 such
that

Ez

h
kr˜̀i

t(x)k
2
i
 �2 +Mkr`it(x)k

2. (4)

We note that this assumption is significantly more relaxed
compared to the assumption typically used in stochastic op-
timization [57] and EF-based compression [6]. In particu-
lar, [6] requires M = 0 which effectively imposes a uni-
form bound on the gradient of `t. As part of our contribution,
we carry out the analysis under the relaxed assumption stated
above.

Assumption 3. (L-smoothness) Each ˜̀i
t(x) is continuously

differentiable and L-smooth over x on Rd, that is, there exists

an L � 0 such that for all x, y 2 Rd, t 2 Z+ and i 2

{1, . . . , N}, we have

kr˜̀i
t(x)�r˜̀i

t(y)k  Lkx� yk. (5)

We denote this by ˜̀i
t(x) 2 C1,1

L (Rd). Note that this assump-
tion implies `it(x) 2 C1,1

L (Rd).

Assumption 4. (Bounded Drift in Time) There exist N
bounded sequences {!1

t }
T
t=1, . . . , {!

N
t }

T
t=1 such that for

all t 2 Z+ and i 2 {1, . . . , N}, |`it(x) � `it+1(x)|  !i
t for

any x 2 Rd. Note that in the case where `it+1 = `it, this
assumption holds with !i

t = 0.

Assumption 4 is standard in the literature on time-varying
optimization [11, 58]. Since we work in the online optimiza-
tion setting where our loss function is time-varying, this as-
sumption upper-bounds the change in the loss function uni-
formly with a different constant value at each time step.

The next assumption has to do with the aforementioned
compression of the gradient estimator gµ,t. We assume that
the schemes used for the compression satisfy the following
assumption.

Assumption 5. (Contractive Compression [6]) The compres-
sion function C is a contraction mapping, that is,

EC
⇥
kC(x)� xk2 | x

⇤
 (1� �) kxk2 (6)

for all x 2 Rd where 0 < �  1, and the expectation is over
the randomness generated by compression C.

One can see that � effectively controls the scale of the
compression. � = 1 corresponds to the case of no compres-
sion and the amount of compression increases as � ! 0.

The compression operators we use in the numerical ex-
periments are as follows:

• topk: We fix a parameter k 2 {0, . . . , d}. topk : Rd
!

Rd is defined as:

(topk(x))i :=

(
(x)⇡(i) i  k,

0 otherwise.
(7)

where ⇡(i) is a permutation of {1, . . . , d} such that
(|x|)⇡(i) � (|x|)⇡(i+1) for every i 2 {1, . . . , d�1} [5].
In other words, topk preserves the k elements of x that
are largest in magnitude, and assigns 0 to the rest.

• randk: We fix a parameter k 2 {0, . . . , d}. randk :
Rd

⇥ ⌦k ! Rd is defined as:

(randk(x,!0))i :=

(
xi i 2 !0,

0 otherwise.
(8)

where ⌦k = {! : ! ✓ {1, . . . , d}, |!| = k} and !0

is chosen uniformly at random from ⌦k [5]. In other
words, randk preserves k random elements of x, and
assigns 0 to the rest.



• dropout-bp: We fix a parameter p 2 [0, 1]. dropout-bp :

Rd
! Rd is defined as:

(dropout-bp(x))i :=

(
(x)i ui  p,

0 otherwise.
(9)

where each ui ⇠ U [0, 1]. Note that dropout-bp(x) is
a biased estimator of x.

• dropout-up: We fix a parameter p 2 [0, 1]. dropout-up :

Rd
! Rd is defined as:

(dropout-up(x))i :=

(
1
p (x)i ui  p,

0 otherwise.
(10)

where each ui ⇠ U [0, 1]. Note that dropout-up(x) is
an unbiased estimator of x.

• qsgdb: We fix a parameter b 2 N and perform b-bit ran-
dom quantization (where 2b is the quantization level):

qsgdb(x) =
sign(x)kxk2

2bw


2b

|x|

kxk2
+ u

�
(11)

where w = 1 + min(
p
d/2b, d/22b), u ⇠ (U [0, 1])d,

and qsgdb(0) = 0 [3].

It is worth noting that all of these compression schemes
respect Assumption 5, with the sole exception of dropout-up.

Our final assumption concerns only the analysis of the
multi-agent case:

Assumption 6. (Bounded Gradients) For any x1:N
t 2 RNd,

there exist Z,Q > 0 such that

Ez

⇥
kr`it(x

1:N
t )k2

⇤
 Z2 +Qkr¯̀

t(x
1:N
t )k2 (12)

for all i 2 {1, . . . , N}, where r¯̀
t(x1:N

t ) = 1
N

PN
i=1 r`it(x

1:N
t ).

We note that this is a relaxation of the standard assump-
tion capturing the effect of data heterogeneity, commonly
employed in the analyses of decentralized optimization algo-
rithms [12,59,60] and in the analysis of FedAvg-like methods
in particular [50–56]. The standard assumption poses a uni-
form bound: Ez1:T

⇥
kr`it(x

1:N
t )�r¯̀

t(x1:N
t )k2

⇤
 Z2.

In [61], it is argued that this form usually holds in practice,
and may even be considered too pessimistic. However, one
can easily come up with a counterexample where it does not,
e.g., with `it(x) = (ix)2 for all t 2 Z+. We note that this
relaxation of the assumption is akin to the one adopted with
Assumption 2.

3. PROPOSED METHOD

In this section, we present our EF-ZO-SGD and FED-EF-ZO-
SGD algorithms along with their convergence results and pro-
vide sketches of the proofs for these results. The complete
proofs may be found in Appendix.

3.1. EF-ZO-SGD

We now present EF-ZO-SGD, an algorithm which uses com-
pression along with the EF mechanism in addition to the ZO
estimator in (2) to achieve a communication-efficient method
of approaching the presented problem in the single-agent sce-
nario. The complete algorithm is demonstrated in EF-ZO-
SGD. Given an initial solution x0 2 Rd, which for our prob-
lem represents the initial position of the agent, the algorithm
works iteratively to construct subsequent solutions to the se-
quence of optimization problems. It first samples a random
vector in Rd from the standard Gaussian distribution and uses
this to construct a ZO estimator to the gradient (steps 3 and 4).
Then, the error feedback vector, which keeps track of infor-
mation discarded during compression in previous communi-
cation rounds (step 7) is added to this ZO estimator to produce
the augmented estimator (step 5). In this manner, information
previously lost to compression is re-utilized. The augmented
estimator is the quantity used in the update rule to produce the
subsequent solution (step 6), and it is further used to update
the error feedback vector (step 7). This process is repeated for
t = 1, ..., T to produce solutions to all terms of the sequence
of optimization problems.

Algorithm 1 EF-ZO-SGD
Input: Number of time steps T 2 Z+, smoothing parame-

ter µ 2 R, initial agent position x0 2 Rd, learning rate ⌘ 2 R,
sequence of target positions {zt}Tt=1 ⇢ Rd.

Output: Sequence of optimal agent positions {xt}
T
t=1 ⇢

Rd.

1: e0 = 0
2: for t = 1, . . . , T do
3: ut ⇠ N (0, Id)

4: g̃µ,t(xt) =
˜̀
t(xt + µut)� ˜̀

t(xt)

µ
ut

5: pt = g̃µ,t(xt) + et
6: xt+1 = xt � ⌘C(pt)
7: et+1 = pt � C(pt)
8: end for

The convergence properties of EF-ZO-SGD are analyzed
next. For the convergence of EF-ZO-SGD in a single-agent
setting, we establish Theorem 1.

Note that although the EF-ZO-SGD algorithm can be
thought of as a SGD-type scheme, the analysis – due the in-
teraction of EF and ZO estimation – is involved. In the proof,
we leverage a new intertwined perturbation analysis, wherein
we analyze the convergence of a virtual solution sequence to
the smoothed functions `µ,t and tie that to the performance of
the real iterates xt to `t, while utilizing the relaxed bounded
stochastic gradient assumption.

Theorem 1. Suppose Assumptions 1–2 hold. Consider EF-

ZO-SGD algorithm. Then, if ⌘ =
1

�
p
(d+ 4)MTL

and µ =



1

(d+ 4)
p
T
, it holds that

1

T

TX
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⇥
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where x⇤
T+1 2 argminx2Rd `T+1(x),� = `1(x1)�`T+1(x⇤

T+1),
!̄ =

PT
t=1 !t, and E[ · ] denotes Ez1:T [ · ]. Furthermore, the

number of time steps T to obtain a ⇠-accurate first order
solution is

T = O

✓
d�2L�M

⇠2
+

dL�

�2⇠
+

!̄�2dML

⇠2

◆
. (14)

Sketch of proof. We begin by defining the perturbed quantity
x̃t := xt � ⌘et. Then, using assumptions 3 and 4, we obtain
the inequality

`µ,t+1(x̃t+1)  `µ,t(x̃t)� ⌘hg̃µ,t(xt),r`µ,t(x̃t)i

+
L⌘2

2
kg̃µ,t(xt)k

2 + !t.
(15)

Taking expectations and performing algebraic manipulations
produce the main inequality with the four terms:

⌘

2
kr`µ,t(xt)k

2

| {z }
Term I

 [`µ,t(x̃t)� `µ,t+1(x̃t+1)]| {z }
Term II

+

L⌘2

2
Eut,zt

⇥
kg̃µ,t(xt)k

2
⇤

| {z }
Term III

+
L2⌘3

2
ketk

2

| {z }
Term IV

+!t.
(16)

We can upper-bound Term II by means of a telescoping
sum. Then, using assumptions 5 and 2, Term I can be lower-
bounded and Terms III and IV can be upper-bounded by
quantities involving Ez1:T [kr`t(xt)k2]. Rearranging this, in-
serting the values for ⌘ and µ and introducing ⇠ to obtain an
expression for the time complexity lead directly to the result.
The complete proof may be found in the Appendix. ⌅

We further note that (14) demonstrates that the dominant
term in the complexity is independent of the compression pa-
rameter �. Therefore, for long sequences of time-varying op-
timization problems where T is very large, the contribution
of compression to the convergence error is negligible. Also
notable is the fact that the complexity scales with dimension
d. While this dependence is undesirable, in the worst case, it
is unavoidable even without compression as shown in [62].

Algorithm 2 FED-EF-ZO-SGD
Input: Number of time steps T 2 Z+, number of agents

N 2 Z+, smoothing parameter µ 2 R, initial agent positions
x1:N
0 2 RNd, learning rate ⌘ 2 R, sequence of target

positions
�
z1:Nt

 T

t=1
⇢ RNd.

Output: Sequence of optimal target positions�
x1:N
t

 T

t=1
⇢ RNd.

1: for i = 1, . . . , N do
2: ei0 = 0
3: end for
4: for t = 1, . . . , T do

Runs on each agent:
5: for i = 1, . . . , N do
6: ui

t ⇠ N (0, INd)

7: g̃iµ,t(x
1:N
t ) =

˜̀i
t(x

1:N
t + µui

t)� ˜̀i
t(x

1:N
t )

µ
ui
t

8: pit = g̃iµ,t(x
1:N
t ) + eit

9: eit+1 = pit � C(pit)
10: transmit_to_server

�
C(pit)

�

11: end for
Runs on the server:

12: Gt =
1
N

PN
i=1 C(p

i
t)

13: x1:N
t+1 = x1:N

t � ⌘Gt

14: transmit_to_clients
�
x1:N
t+1

�

15: end for

We may discuss the implication of our results to the set-
ting of learning parameters of an overparameterized model,
e.g., a deep learning predictor. It has been argued, see,
e.g. [63, 64], such models typically satisfy a so-called strong
growth condition which implies � = 0 in Assumption 2. That
is, as the EF-ZO-SGD algorithm converges to a stationary so-
lution, it enters into a virtuous cycle wherein the noise in the
stochastic gradient reduces. As our analysis demonstrates, in
such settings we can modify ⌘ and µ accordingly (in particu-
lar set ⌘ independent of T) to improve the complexity of the
proposed algorithm to T = O( 1⇠ ).

3.2. FED-EF-ZO-SGD

FED-EF-ZO-SGD algorithm is a generalization of EF-ZO-
SGD to multi-agent and multi-target setting. In addition to
the compression, EF mechanism, and ZO estimator, agents
are coordinated with the central server and their compressed
gradients are averaged in the server as in [1]. The complete
algorithm is shown in FED-EF-ZO-SGD. Given an initial so-
lution x1:N

0 2 RNd, which in our problem represents the
concatenation of the initial position of the agents, the FED-
EF-ZO-SGD algorithm works iteratively on both the agent
side and the server side to generate the consecutive solutions
to the sequence of optimization problems. The agent side is
similar to EF-ZO-SGD except for the content of the solution



vectors. In our setting, without loss of generality, we consider
agents which can sense the position of nearby agents called
"neighbors" and merge the position vectors with their current
position to obtain x1:N

t . Entries that correspond to the other
agents which are not neighbors are set to 0. The same algo-
rithm can be implemented for the agents having no knowledge
of the nearby agents’ positions. For every agent, the algorithm
first samples a random vector in RNd from the standard Gaus-
sian distribution and the entries that do not correspond to ith

agent’s position are set to 0 (step 6). Thus, only ith agents
position vector is perturbed to approximate the noisy gradient
with finite differences (step 7). Steps 8 and 9 are the same
as EF-ZO-SGD. Lastly, each agent sends its compressed aug-
mented estimator to the central server. After the server col-
lects all the estimators from every agent, it takes their average
(step 12). Then, this average is used in the update (step 13)
and the new positions are transmitted to the agents. This pro-
cedure is followed for t = 1, ..., T to produce solutions to all
terms of the sequence of optimization problems.

Now, we proceed with the analysis extended to the multi-
agent case, which involves FED-EF-ZO-SGD. We state the
following theorem:

Theorem 2. Suppose Assumptions 1–6 hold. Consider FED-

EF-ZO-SGD algorithm. Then, if ⌘ =
1

�
p
(d+ 4)MQTL

and µ =
1

(d+ 4)
p
T
, it holds that
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where ¯̀
t(x) = 1

N

PN
i=1 `

i
t(x), !̄ :=

PT
t=1 !t, x⇤

T+1 =
mini2{1,...,N} argminx `iT+1(x),� = ¯̀

1(x1:N
1 )�¯̀

T+1(x⇤
T+1),

and E[ · ] denotes Ez1:N
1:T

[ · ]. Furthermore, the number of time
steps T to obtain a ⇠-accurate first order solution is

T =

O

 
�2dMQ

�
�2 + !̄2

�
+M

�
�2 + Z4

�

⇠2
+

L
5
3

⇠
2
3

+
1

�2⇠

!
.

(18)

Sketch of proof. The general outline of the proof is very sim-
ilar to that of the single-agent case. We define and work with
the perturbed quantity x̃1:N

t := x1:N
t � ⌘ēt, where ēt :=

1

N

PN
i=1 e

i
t. Additionally, our global loss function in this sce-

nario is ¯̀̃t
�
x1:N
t

�
=

1

N

PN
i=1

˜̀i
t

�
x1:N
t

�
. Using Assumptions

3 and 4, we obtain

¯̀
µ,t+1

�
x̃1:N
t+1

�
 ¯̀

µ,t

�
x̃1:N
t

�

� ⌘
⌦
¯̃gµ,t

�
x1:N
t

�
,r¯̀

µ,t

�
x̃1:N
t

�↵

+
L⌘2

2

��¯̃gµ,t
�
x1:N
t

���2 + !t,

(19)

where !t = max{w1
t , ..., w

N
t }. Taking expectations and al-

gebraic manipulations lead to the main inequality with four
terms:

⌘

2

��r¯̀
µ,t

�
x1:N
t

���2

| {z }
Term I


⇥
¯̀
µ,t

�
x̃1:N
t

�
� ¯̀

µ,t+1

�
x̃1:N
t+1

�⇤
| {z }

Term II

+
L⌘2

2
Eu1:N

t ,z1:N
t

h��¯̃gµ,t
�
x1:N
t

���2
i

| {z }
Term III

+
L2⌘3

2
kētk

2

| {z }
Term IV

+!t.

(20)

Term II may be upper-bounded by means of a telescoping
sum. Term I may be lower-bounded and Terms III and IV
upper-bounded by quantities involving Ez1:N

1:T
[kr¯̀

t(x1:N
t )k2],

using assumptions 5, 2 and 6. Rearranging this, inserting the
values for ⌘ and µ and introducing ⇠ to obtain an expression
for the time complexity lead directly to the result. The com-
plete proof may be found in the Appendix. ⌅

Much like in the single-agent analysis, we note that the
dominant term in the complexity is independent of the com-
pression ratio �.

4. EXPERIMENTAL RESULTS

In this section, we explore two applications of the proposed
method to multi-agent target tracking under communication
constraints. The first application deals with the main focus of
the work, i.e., multi-agent target tracking. The second is an
alternative view of the problem involving an area-coverage
problem. Our code used for the experiments is available on-
line with the simulation video [65].

4.1. Target Tracking

We begin with the application of our proposed FED-EF-ZO-
SGD multi-agent target tracking scenario detailed in the pre-
vious sections. In all experiments, we instantiate a central
server, N agents {Ai}

N
i=1 and N sources {Si}

N
i=1. The ini-

tial location of each agent is chosen uniformly at random
from [�100, 100]2 and each source from [200, 400]2. Hence,



d = 2, i.e., we consider the target tracking problem on a
2�dimensional plane, which is reasonable for the motivating
example of delivery robots. Also, we instantiate the agents
and sources in two separate clusters, with some initial dis-
tance between them. Each agent Ai aims to track source Si

and each Si actively evades its tracker with maximum speed.
This setting generalizes that of [11] to a scenario with mul-
tiple agents and sources. We use xi

t, zit to denote the posi-
tions of Ai and Si at time step t. Each Si aims to maxi-
mize its distance to Ai, by setting its velocity at each step to
⇣it = �(zit � xi

t)/kz
i
t � xi

tk, i.e., moving directly away from
Ai with speed � = 0.1. An illustration of the movements of

Fig. 2: Illustration of 5 agents tracking 5 sources. Sources
evade the agents by moving directly away from them.

agents and sources is given in Fig. 2.
As explained in the previous sections, an additional con-

tingency we introduce to the above setting is the requirement
of a collision avoidance mechanism to prevent agents from
unsafe maneuvers. To this end, we propose a two-level ap-
proach: i) on the local level within each agent, by means of
local neighbor detection leveraging a judicious regularization
term, and ii) coordination via the FL paradigm. With regard
to i), at every step of the simulation, we calculate the set of
neighbors of each Ai as Di

t := {j 6= i : kxi
t � xj

tk  r},
where we set r = 10. These neighbor sets determine the local
loss function `it of Ai at time step t, which we define as:

`it(x
1:N
t , zit) =

1

2
kxi

t � zitk
2
� �

X

j2Di
t

⇣
kxi

t � xj
tk

2
� r2

⌘
,

(21)
where x1:N

t = [(x1
t )

T
· · · (xN

t )T ]T 2 R(Nd) and � is the pre-
determined regularization parameter. We note that the time-
varying nature of these neighbor sets introduce time-variance
to the loss functions, which is exactly the setting we examine
in the theoretical analysis. We divide the local loss function
into two terms in order to simplify the notation in the subse-
quent calculation of the local ZO gradient estimator giµ,t:

`it(x
1:N
t , zit) = sit(x

i
t, z

i
t)�

X

j2Di
t

ri,jt (xi
t, x

j
t ), (22)

where the loss due to source sit is given by sit(x
i
t, z

i
t) =

1
2kx

i
t�zitk

2 and the loss due to regularization between agents

Ai and Aj , ri,jt , by ri,jt (xi
t, x

j
t ) = �(kxi

t � xj
tk

2
� r2). In

terms of the scenario, one could see the regularization term
as agents being able to sense other agents within a radius r
around its position. With regard to ii), collision avoidance
is ensured by means of federated aggregation of the local
gradient estimators. The global loss function at t is defined
as ¯̀

t(x1:N
t , z1:Nt ) = 1

N

PN
i=1 `

i
t(x

1:N
t , zit), where z1:Nt is

defined similarly to x1:N
t .

Defining the neighborhood of two agents Ai and Aj in
the above manner results in a symmetric relation. To make
the setting more interesting, we also introduce the concept of
neighbor dropout which aims to capture practical considera-
tions such as imperfection in communication links and sens-
ing capabilities. At each t, if Ai is to be added to D

j
t , a ran-

dom number X is sampled from U [0, 1]. If X > p, i is added
to D

j
t , otherwise, it is dropped out. This leads to a more re-

alistic scenario and opens up room for more meaningful col-
laboration between agents by breaking the symmetricity of
the relation. If, for example, Ai is a neighbor of Aj but fails
to detect it, we would expect Aj to compensate for this. Or
worse, if both Ai and Aj fail to detect each other, we would
expect Ak such that k 2 D

i
t \D

j
t to compensate for these de-

tection failures. With the local loss function defined in (21),
every agent Ai calculates a ZO gradient estimator giµ,t. Fol-
lowing the setup in [11], we slightly modify the computation
of the ZO estimator, by introducing a small change in the ar-
gument of the first function evaluation. Let

`it+(x
1:N
t , zit) :=

1

2
kxi

t + µui,i
t � (zit + 0.5⇣it)k

2

��
X

j2Di
t

⇣
kxi

t + µui,j
t � (xj

t + 0.5⇠jt )k
2
� r2

⌘
,

(23)

where ui,j
t for all j 2 D

i
t are drawn from N (0, Id) at time t

and ⇣it , ⇠
i
t denote the velocities of agent Ai and source Si at

time t, respectively. Similar to `it and (22), we divide `it+ into
two terms:

`it+(x
1:N
t , zit) = sit+(x

i
t, z

i
t)�

X

j2Di
t

ri,jt+ (x
i
t, x

j
t ) (24)

where ri,jt+ (x
i
t, x

j
t ) = �(kxi

t + µui,j
t � (xj

t + 0.5⇠jt )k
2
� r2)

and sit+(x
i
t, z

i
t) =

1
2kx

i
t + µui,i

t � (zit + 0.5⇣it)k
2.

Now, we define giµ,t = [(gi,1µ,t)
T
· · · (gi,Nµ,t )

T ]T 2 R(Nd)

where

gi,jµ,t =

8
>>>>>><

>>>>>>:

sit+(x
i
t, z

i
t)� sit(x

i
t, z

i
t)

µ
ui,i
t j = i,

�
ri,jt+ (x

i
t, x

j
t , ⇠

j
t )� ri,jt (xi

t, x
j
t )

µ
ui,j
t j 2 D

i
t,

0 2 Rd otherwise.
(25)

In practice, it usually holds that for any i 2 {1, . . . , N},
|D

i
t| ⌧ N , which results in a sparse giµ,t. Each agent then



(a) Tracking error vs iterations (b) Number of collisions vs iterations

(c) Effect of varying N on tracking error (d) Effect of varying � on number of collisions

Fig. 3: Results of FED-EF-ZO-SGD via the proposed scheme: (a) shows the average tracking error over 100 runs of the simu-
lation with different compression schemes and EF combinations in the FL paradigm, with SGDm being the non-FL benchmark
algorithm, in which SGD with momentum is run locally on each agent with no communication, and FedAvg with 1�bit QSGD
compression and error feedback term being the FL benchmark algorithm. The difference of this benchmark algorithm with FED-
EF-ZO-SGD is the fact that FedAvg uses first-order information. (b) shows collision numbers for the same experiment. (c)
shows the average tracking errors over 100 runs of the simulation with varying number of agents N , using the best-performing
model of QSGD1b-EF (1-bit QSGD with error feedback term). The learning rate ⌘ is set proportionally to

p
N . (d) shows the

average numbers of collisions over 100 runs of the simulation for varying values of the regularization parameter �, using the
best-performing model of QSGD1b-EF.

transmits its local ZO gradient estimator giµ,t to the server.
In scenarios with compression, each agent applies compres-
sion before transmission and transmits C(giµ,t + eit) (see step
10 in FED-EF-ZO-SGD). The possible compression schemes
that are used in the experiments are the ones that are de-
tailed in Section 2. The server collects all of the transmit-
ted (and possibly compressed) local gradient estimators and
averages them, producing the aggregated global gradient es-

timator Gt of ¯̀
t: Gt =

1

N

PN
i=1 C(g

i
µ,t + eit). Then, to keep

the speed of the agents bounded in order to maintain a practi-
cally plausible simulation, the server normalizes Gt and then

computes its estimation to the optimal position of every agent
by x1:N

t+1 = x1:N
t � ⌘Gt where ⌘ is the learning rate. With this

formulation, ⌘ determines the speed of the agents in the prac-
tical sense, since kGtk = 1, therefore it only plays a role in
determining the directions of the agents. The subsequent po-
sitions of agents are transmitted to the agents, without com-
pression, and agents move to these positions. This process is
illustrated on Fig. 1. To gauge the performance of the model
with respect to the number of collisions, we keep track of the
number of collisions between agents by checking whether the
position of any two agents Ai and Aj are close in Euclidean
norm, the measure of closeness depends on the radii of the



agents in the simulation. In all experiments, we set the col-
lision radius R = 3, i.e., we increment the collision counter
whenever kxi

t � xj
tk  3 for any two agents Ai and Aj such

that i 6= j.
We conduct 3 types of experiments and depict the results

on the 4 plots of Fig. 3: In Fig. 3 (a) and Fig. 3 (b) we test the
FED-EF-ZO-SGD algorithms’ performance in terms of loss
and number of collisions with various compression schemes.
Fig. 3 (c) compares the convergence of FED-EF-ZO-SGD for
different numbers of agents N while scaling the learning rate
in proportion with

p
N , since the application bears theoretical

resemblance to mini-batch SGD. Fig. 3 (d) demonstrates the
effect of varying the regularization parameter � on the number
of collisions. Unless otherwise stated, the parameters used in
the experiments are K = 0.5 for TopK and RandK, p = 0.5
for Dropout, ⌘ = 1, � = 0.1, pN = 0.5, d = 2, N = 20,
r = 10 and steps = 1000. 100 instances of the simula-
tion are run for each experiment, with the same fixed random
seeds across different methods. In the first experiment, we
also run SGD with momentum (SGDm) locally on each agent
with no communication, i.e., without the FL paradigm as a
benchmark algorithm. Additionally, a benchmark algorithm
within the FL paradigm, we also look at the performance of
FedAvg with 1-bit QSGD and error feedback mechanism, its
key difference from FED-EF-ZO-SGD being that it uses first-
order information.

As Fig. 3 (a) demonstrates, the variant that leverages
EF along with the QSGD compression scheme with 1�bit
quantization (QSGD1b-EF) enjoys the fastest convergence
and even outperforms the setting with no compression (No-
Comp). This might be explained by the inherent noise in-
troduced by quantization helping convergence. TopK with
error feedback (TopK-EF), 1�bit QSGD without error feed-
back (QSGD1b) and TopK without error feedback (TopK)
perform virtually on par with the no compression setting.
It is interesting to note that TopK seems to slightly outper-
form TopK-EF. These are followed in performance by RandK
with error feedback (RandK-EF), and then RandK without
error feedback (RandK). These are finally followed by Unbi-
ased Dropout (Dropout-U) and Biased Dropout (Dropout-B),
which perform equally well, but with a large gap to the best
performers. It is expected for RandK-EF, RandK, Dropout-U
and Dropout-B to take longer to converge, due to the high
compression error that they inject in the communicated gra-
dient estimators. Although, it appears that the error feedback
helps the convergence of RandK significantly. We note that
all of QSGD1b-EF, No-Comp, QSGD1b, TopK and TopK-EF
converge within 1000 iterations, with RandK-EF also coming
very close. The non-FL benchmark algorithm SGDm out-
performs all FL-based methods in terms of iterations needed
for convergence, however the rate of convergence appears to
be of the same order, and the results are comparable. The
first-order FL benchmark algorithm FO-QSGD1b-EF enjoys
slightly faster convergence than FED-EF-ZO-SGD, but the

performance difference is marginal.
To evaluate the effectiveness of collaboration, we com-

pare the number of collisions vs iterations for the same ex-
periment in Fig. 3 (b). The results show that all of our FL-
based methods far outperform the non-FL benchmark method
of SGDm in terms of number of collisions. SGDm, which
has no regard for collision prevention causes on average about
70 collisions whereas all of our schemes, even the ones that
do not achieve good convergence results such as RandK and
Dropout-B cause at most about 10 collisions on the average.
This demonstrates the efficiency of the proposed regulariza-
tion term. In Fig. 3 (c), we show the results of the second
experiment, where we use the best-performing scheme in the
first experiment, (QSDGD1b-EF) and test the convergence re-
sults with varying numbers of agents N . We make the obser-
vation that increasing the number of agents in the described
multi-agent scenario is akin to increasing the batch size in
mini-batch SGD, as by aggregating the messages received
from agents, the server performs an update on the global ob-
jective. Thus, motivated by the theoretical studies of mini-
batch SGD (see, e.g., [66]), to see the effect of varying the
number of agents, we set the ⌘ parameter proportional to

p
N .

The values we use for N are 5, 10, 15, 20, and 25, with the
respective ⌘ values being 0.5, 0.71, 0.87, 1, and 1.12. The
main lines in the plot show the average tracking errors av-
eraged over 100 runs of the simulation. It can be seen that the
comparison to mini-batch SGD may be justified, as the model
converges roughly around the same iteration for all N values
except for 5, when ⌘ values are set proportionally.

In Fig. 4, we demonstrate the effect of the compression
parameter � on the convergence of the tracking error. Al-
though the theoretical analysis shows that the dominant term
in the convergence bound is independent from the compres-
sion parameter �, the transient behavior of the convergence
still depends on �. This is reflected in the experimental re-
sults. In Fig. 4 (a), we consider the effect of varying � in the
Dropout-B compression scheme. Here, � corresponds to the
probability that a gradient component will be dropped. The
case of � = 0 corresponds to when there is no compression.
In these experiments, we set the step size ⌘ = 3, to facilitate
convergence in the highly compressed regime when � = 0.9.
It can be seen that even in the presence of extreme compres-
sion, convergence can be achieved by increasing the step size.
Similarly, in In Fig. 4 (b), we consider the effect of varying
the number of bits used in QSGD on the convergence of the
tracking error. We simulate the experiment with number of
bits 1, 2, 4, and 8 and plot the results.

Finally, in Fig. 3 (d), we compare the effect of the reg-
ularization parameter � on the number of collisions. Similar
to the second experiment, we use the best-performing scheme
in the first experiment, QSDGD1b-EF. The values tested for �
are 0, 1, 2, 5, 7, and 10. We observe that, as expected, increas-
ing the � parameter has a significant effect on decreasing the
number of collisions. In the � = 0 scenario, which practically



(a) Effect of varying � on tracking error
with Dropout-B compression with error

feedback term

(b) Effect of varying number of bits in
QSGD compression with error feedback

term on tracking error

Fig. 4: Convergence results of FED-EF-ZO-SGD under different compression rates: (a) shows the tracking error over 100 runs
of the simulation with different values for � under the Dropout-B compression scheme with error feedback term. (b) shows the
tracking error over 100 runs of the simulation with different numbers of bits used for the QSGD compression scheme with error
feedback term.

Fig. 5: Illustration of the agents in the area coverage exper-
iment. Each agent has the main objective of patrolling its
designated area, following a circular route (indicated with the
dashed curves). However, there is overlap between the areas,
and the secondary objective is to discourage the agents from
moving towards area that is already covered by another agent.

corresponds to no communication with regards to collision
prevention among the agents, we observe on the average up
to more than 50 collisions, similar to the numbers observed
in the first experiment with the benchmark SGDm method.
Even the small value of � = 1 drops the number of collisions
on average by almost half. We observe a drop in the number
of collisions with each increment in �, with � = 10 achieving
less than 5 collisions on average. This is naturally expected,
since as we increase �, the agents are more severely penalized
when they get close to each other; hence, they maintain a safe
distance to ensure a lower collision likelihood. It is intuitively
clear that this effect demonstrates a diminishing marginal gain
effect, in that the decrease in the number of collisions beyond
the value of � = 5 seems to slow down.

4.2. Area Coverage

For the second application, we consider a scenario where mul-
tiple agents patrol a designated area by following a fixed tra-
jectory, illustrated in Fig. 5. The goal of each agent is to
maintain maximum total area coverage by avoiding crossing

into areas already covered by other agents, while generally
maintaining its fixed trajectory. A motivating example might
be one where the agents are UAVs carrying out a ground cov-
erage task of their designated areas, where the areas overlap
in certain regions. Ideally, to have the maximum amount of
ground coverage at any given time, we would want to discour-
age a UAV from approaching an overlapping region of its des-
ignated coverage area if it is already being covered by another
UAV, since employing multiple UAVs for covering the same
area would reduce the total amount of area covered. We claim
that this can be seen akin to the first experiment in the follow-
ing manner: If we increase the r parameter of the agents to a
suitable value, the collision prevention mechanism works in
the way that the agents try not to cross into territories that are
already covered by other agents. Also, the trajectories of the
agents in their patrolling area can be modelled as perpetually
tracking a target that follows said trajectory. In the experi-
ments, we investigate 3 scenarios: the central server assigns
agents new locations under compressed gradients with error
feedback and nonzero regularization term, the same scenario
but with the regularization term set to 0 (which corresponds
to a scenario without communication), and a scenario with
no central aggregation, where agents run SGDm locally. We
model the intended coverage areas of each agent as a disk
of radius 5, with overlapping regions ranging between 10%
to 25%. We report the number of “collisions”, which in this
case represents the number of area violations between agents,
and present them in Table 1.
In the experiments, in addition to the 3-agent scenario illus-
trated in Fig. 5, we also test 2 and 4 agent cases. We run
each experiment for 7000 iterations, with values � = 100,
N = 2, 3, 4, and the rest of the parameters have the same
values as in the first experiment of the target-tracking prob-
lem. Running the simulation for 7000 iterations corresponds
to about 4 full cycles of the agents around their circular tra-



N SGDm No-Comp QSGD3b TopK Dropout-B RandK
2 0.8 0.0 0.0 0.0 0.0 0.0
3 9.0 0.8 0.2 1.2 0.6 0.4
4 12.4 1.0 2.59 0.8 0.2 0.2

Table 1: Average number of collisions over 5 runs of the sim-
ulation for varying N with methods SGDm without central
server; FED-EF-ZO-SGD with QSGD3b, TopK, Dropout-B
and RandK, and No-Comp.

jectory. Again, we observe that the number of collisions re-
duces significantly by our FED-EF-ZO-SGD algorithm and
the results obtained using a compressed gradient with error
feedback are very close to the case where no compression is
used. In some cases, compression with error feedback leads to
even better results. This can be explained similarly to before
in that owing to compressed gradients, we inject more noise
to the gradients, introducing randomness to the trajectories of
the agents, which helps avoid collisions.

5. CONCLUSION

In this study, we tackled a problem of distributed online op-
timization with communication limitations, where multiple
agents collaborate to track targets in a federated learning
setting, limited to only zeroth-order information. The com-
munication from the agents to the server was assumed to
be constrained, and we addressed this constraint by com-
pressing the communicated information along with an error
feedback term. Our analysis showed that in the single-agent
scenario, after O(d�

2

⇠2 ) steps in the dominant term, the EF-
ZO-SGD algorithm will reach a ⇠-accurate first-order so-
lution. In the multi-agent scenario, the FED-EF-ZO-SGD
algorithm will converge to a ⇠-accurate first-order solution
after O(�

2dMQ(�2+!̄2)+M�2+Z4)
⇠2 ) steps in the dominant

term. The dominant term in these convergence results are
independent of the compression ratio �. The convergence
of the FED-EF-ZO-SGD algorithm was confirmed through
simulations.

As future work, one can investigate the collision con-
straints of each agent from safe reinforcement learning where
in addition to maximizing rewards, agents must satisfy some
constraints. This framework can be incorporated into our
setting and can be analyzed from an optimization perspective.
Additionally, rather than doing simple averaging at the central
server, our work can be extended to a personalized federated
learning setting where the losses are minimized by consid-
ering one step further of each agent. Further avenues for
research include the examination of how the adaptive tuning
of step sizes and the regularization parameters might change
the convergence analysis. We note that the tuning of the reg-
ularization parameter is very related to dual formulations and
Lagrangian methods in the general functional constrained op-
timization context. Finally, following the intuition presented

in the experimental section, the effect of the number of agents
on the variance of the stochastic gradients of the local loss
functions may be studied. In this manner, as in mini-batch
SGD, one might discover that incorporating a factor of

p
N

in the selection of the step size might accelerate convergence
in a multi-agent scenario with N agents.

6. APPENDIX. PROOFS

6.1. Lemmas

We state several lemmas from [67], mainly related to the
zeroth-order method, which will be used in the main proofs.
Suppose f(x) 2 C1,1

L (Rd). Then, the following hold:

Lemma 1. fµ(x) 2 C1,1
Lµ

(Rd), where Lµ  L [67].

Lemma 2. fµ(x) has the following gradient with respect to
x:

rfµ(x) =
1

(2⇡)d/2

Z
f(x+ µu)� f(x)

µ
ue(�

1
2kuk

2)du,

(26)
where u ⇠ N (0, Id) [67].

Lemma 3. For any x 2 Rd, we have

|fµ(x)� f(x)| 
µ2Ld

2
, (27)

[67].

Lemma 4. For any x 2 Rd, we have

krfµ(x)�rf(x)k 
µ

2
L(d+ 3)

3
2 (28)

[67].

Lemma 5. For any x 2 Rd, we have

Eu

h
kgµ (x)k

2
i


µ2

2
L2(d+6)3+2(d+4)krf(x)k2, (29)

where u ⇠ N (0, Id) and gµ(x) =
f(x+µu)�f(x)

µ u [67].

Lemma 6. (Young’s inequality) For any x, y 2 Rd and � >
0, we have

hx, yi 
kxk2

2�
+

kyk2�

2
(30)

[67].

6.2. Proof of Theorem 1

Proof. We assume that zt 2 Rd are i.i.d. random variables
for all t 2 Z+. Furthermore, we drop the superscript nota-
tion present in the assumptions, since i is always 1 for the
single-agent case. Let x̃t be defined as follows (following the
analysis in [6]):

x̃t := xt � ⌘et. (31)



From EF-ZO-SGD, we know that et+1 = pt � C(pt) and
pt = g̃µ,t(xt) + et, so we can rewrite x̃t+1 as

x̃t+1 = xt+1 � ⌘pt + ⌘C(pt)

= xt � ⌘C(pt)� ⌘g̃µ,t(xt)� ⌘et + ⌘C(pt)

= xt � ⌘et � ⌘g̃µ,t(xt)

= x̃t � ⌘g̃µ,t(xt),

(32)

where g̃µ,t(xt) =
˜̀
t(xt+µut)�˜̀

t(xt)
µ ut and ut ⇠ N (0, Id).

By Assumption 3, we can write the following:

`µ,t(x̃t+1)  `µ,t(x̃t) + hr`µ,t(x̃t), x̃t+1 � x̃ti

+
L

2
kx̃t+1 � x̃tk

2.
(33)

Now by Assumption 4, we get:

`µ,t+1(x̃t+1)  `µ,t(x̃t)� ⌘hg̃µ,t(xt),r`µ,t(x̃t)i

+
L⌘2

2
kg̃µ,t(xt)k

2 + !t.
(34)

Since r`µ,t(xt) = Eut,zt [g̃µ,t(xt)], taking the expectation of
both sides with respect to ut and zt, we have the following:

Eut,zt [hg̃µ,t(xt),r`µ,t(x̃t)i] = hr`µ,t(xt),r`µ,t(x̃t)i,
(35)

and

hr`µ,t(xt),r`µ,t(x̃t)i =
1

2
kr`µ,t(xt)k

2 +
1

2
kr`µ,t(x̃t)k

2

�
1

2
kr`µ,t(xt)�r`µ,t(x̃t)k

2.

(36)

In the last step, we use the fact that 2ha, bi = kak2 + kbk2 �
ka� bk2. Inserting this into (34), we get:

`µ,t+1(x̃t+1)  `µ,t(x̃t)�
⌘

2
kr`µ,t(xt)k

2

�
⌘

2
kr`µ,t(x̃t)k

2 +
L2⌘

2
kxt � x̃tk

2

+
L⌘2

2
Eut,zt

⇥
kg̃µ,t(xt)k

2
⇤
+ !t.

(37)

Note that kr`µ,t(xt)�r`µ,t(x̃t)k2  L2
kxt � x̃tk

2 by As-
sumption 3, with subsequent application of Lemma 1. Also,
we can drop -⌘2kr`µ,t(x̃t)k2 because it is nonpositive. Using
the fact that x̃t � xt = ⌘et, we get the main inequality:

⌘

2
kr`µ,t(xt)k

2

| {z }
Term I

 [`µ,t(x̃t)� `µ,t+1(x̃t+1)]| {z }
Term II

+
L⌘2

2
Eut,zt

⇥
kg̃µ,t(xt)k

2
⇤

| {z }
Term III

+
L2⌘3

2
ketk

2

| {z }
Term IV

+!t.

(38)

We will put an upper bound to the Terms II, III and IV and a
lower bound to Term I. Starting with Term III, by Lemma 5,
we know that

Eut,z1:T

⇥
kg̃µ,t(xt)k

2
⇤
 2(d+ 4)Ez1:T

h
kr̃`t(xt)k

2
i

+
µ2L2

2
(d+ 6)3,

(39)

where Ez1:T [kr̃`t(xt)k2]  MEz1:T

⇥
kr`t(xt)k2

⇤
+ �2 by

Assumption 2. Note that, in this step, we use the the principle
of causality and the fact that zt are i.i.d. random variables.
We can put the following upper bound to Term II by means
of a telescoping sum and subsequent application of Lemma 3:

TX

t=1

[`µ,t(x̃t)� `µ,t+1(x̃t+1)] = `µ,1(x̃1)� `µ,T+1(x̃T+1),

(40)

and

`µ,1(x̃1)� `µ,T+1(x̃T+1)  µ2Ld+ `1(x̃1)� `T+1(x̃T+1)

= µ2Ld+ `1(x1)� `T+1(x̃T+1),
(41)

where we use the fact that `(x1) = `1(x̃1), since x̃1 = x1 by
definition. Then, we can do the following:

TX

t=1

[`µ,t(x̃t)� `µ,t+1(x̃t+1)]  µ2Ld+ `1(x1)

� `T+1(x̃T+1)

 µ2Ld+ `1(x1)

� `T+1(x
⇤
T+1),

(42)

where x⇤
T+1 2 argminx `T+1(x). We can put the following

lower bound to Term I by using Lemmas 4 and 6:

1

2
kr`t(xt)k

2
�

µ2L2

4
(d+ 3)3  kr`µ,t(xt)k

2. (43)

Lastly, we can put the following upper bound to Term IV by
Assumption 5 and Lemma 6. (Due to space considerations,
in the remainder of the proof, we denote the total expectation
Eu1:T ,z1:T ,C1:T [ · ] as E[ · ].)

E
⇥
ket+1k

2
⇤
= E

⇥
kpt � Ct(pt)k

2
⇤

 (1� �)E
⇥
kptk

2
⇤

= (1� �)E
⇥
ket + g̃µ,t(xt)k

2
⇤

 (1� �)(1 + ')E
⇥
ketk

2
⇤
+ (1� �)

✓
1 +

1

'

◆

Eu1:T ,z1:T

⇥
kg̃µ,t(xt)k

2
⇤
,

(44)



which we can write as,

tX

i=1

[(1� �)(1 + ')]t�i (1� �)(1 +
1

'
)

Eui,z1:T

⇥
kg̃µ,i(xi)k

2
⇤
,

(45)

for some ' > 0, zt, ut, Ct are i.i.d., and ECt [ · ] denotes the
expectation over the randomness at time t due to the com-
pression used. Note that by using Lemma 5 and Assumption
2,

Eut,z1:T [kg̃µ,t(xt)k
2]  AEz1:T

⇥
kr`t(xt)k

2
⇤
+B, (46)

where

B = 2�2(d+ 4) +
µ2L2

2
(d+ 6)3 and

A = 2M(d+ 4).
(47)

So we can rewrite (44) as follows:

E
⇥
ket+1k

2
⇤


tX

i=1

[(1� �)(1 + ')]t�i (1� �)(1 +
1

'
)

⇥
AEz1:T

⇥
kr`i(xi)k

2
⇤
+B

⇤
.

(48)

If we set ' := �
2(1��) , then 1 + 1

' 
2
� and (1� �)(1 +') =

(1� �
2 ), so we get:

E
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AEz1:T
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⇤
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�
.

(49)

If we sum through all E[ketk2], we get:
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E
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ketk
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⇤
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(50)

where K = 2(1��)
�

2
� 

4
�2 . If we define � := `1(x1) �

`T+1(x⇤
T+1), where x⇤

T+1 2 argminx `T+1(x), and combine

the upper bounds derived in (39), (40), (44), and the lower
bound derived in (43) and insert them into (38), we get the
following:
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⌘µ2L2
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(51)

Now, since zt’s are i.i.d. for all t 2 Z+, we have:

E

T

TX
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⇥
kr`t(xt)k
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
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where

E =
⌘

4
� LM⌘2(d+ 4)�

L2⌘3

�2
4M(d+ 4)
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1

4
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If ⌘ 
1
4L , the first upper bound will instead be:

1 +
4L⌘

�2
 1 +

1

�2
=

�2 + 1

�2


2
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. (54)

We proceed to find an ⌘ such that

2

�2
LM⌘(d+ 4) 

1

8
. (55)

Then, we get
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16LM(d+ 4)
, (56)



which implies E �
⌘
8 . Multiplying all terms in the bound by
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Let

⌘ =
1

�
p
(d+ 4)MTL

and µ =
1

(d+ 4)
p
T
. (58)

Putting these values into (57), we get (13) as follows:
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Defining !̄ :=
PT

t=1 !t, the number of times steps T to
obtain a ⇠-accurate first order solution is

T = O

✓
d�2L�M

⇠2
+

dL�

�2⇠
+

!̄�2dML
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◆
. (60)

⌅

6.3. Proof of Theorem 2

Proof. We assume in the following that z1:Nt 2 RNd are i.i.d.
random variables for all t 2 Z+. Similar to the analysis in the
single-agent case, we begin by defining:

ēt :=
1

N

NX

i=1

eit, (61)

and
x̃1:N
t := x1:N

t � ⌘ēt. (62)

Additionally, our global loss function in this scenario is:
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Now, we have:
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where we define ¯̃gµ,t(x1:N
t ) := 1

N
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i
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�
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�
. Now,

we have by Assumption 3 that each `it is L�smooth, there-
fore, our global loss function ¯̀

t is also L�smooth. Using
Lemma 1, we write
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By Assumption 4, this implies
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where !t = max{w1
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the following holds:
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since Ez1:N
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t ). Now, combining this
with (66) and using L�smoothness, we obtain:
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Note that the third term at the right-hand side of the inequality
can be dropped because it is nonpositive. Using the definition
of x̃1:N

t , and taking the expectation of both sides with respect
to u1:N

t and z1:Nt , we have the following main inequality:
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We will continue the proof by putting an upper bound to
Terms II, III, and IV and a lower bound to Term I. Starting
with Term III, using Jensen’s inequality, we get
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Then, by Lemma 5 we know
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Using Assumption 2, we have Ez1:N
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of Assumption 6 and Lemma 6, we have:
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For Term II, if we do a summation on both sides of (70) from
t = 1 to T , we get a telescoping sum:
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By adding and subtracting ¯̀
1(x̃1:N

1 ) and ¯̀
T+1(x̃1:N

T+1) on both
sides and using Lemma 3, we have:
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where x⇤
T+1 = mini2{1,...,N} argminx `iT+1(x) and � =
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Finally, for Term IV, we use the recursive summation similar
to the one in the single-agent proof. We want to put an upper
bound to kētk2. We can do so by taking the expectation of
both sides in (70) with respect to u1:N

1:T , z1:N1:T , C1:T and put an
upper bound to Eu1:N
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considerations, in the remainder of the proof, we denote the
total expectation Eu1:N
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[ · ] as E[ · ].) By Jensen’s
inequality, we can do the following:
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Note that putting an upper bound to the terms inside summa-
tion is nothing but putting an upper bound to the single-agent
case, which we have done in Proof 6.2 of the single-agent
setting. Hence, we know
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Using this fact in (77), we obtain
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Using the same procedure in (50), if we sum both sides
through t = 1 to t = T , we get the following inequality:
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where A = 2M(d + 4), B = 2�2(d + 4) + µ2L2(d+6)3

2 and
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Using Assumption 6, we can write this as:
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If we now combine the upper bounds derived for Terms I, II
and IV, and the lower bound derived for Term III and insert
them into (70), we get the following inequality:
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where K = 2M(d+4)Z2 +2�2(d+4)+ µ2L2(d+6)3

2 . After
rearranging the terms and dividing both sides by T , we have
the following inequality:
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If ⌘ < 1
4L , the first upper bound will instead be:
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We proceed to find an ⌘ such that
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Then, the number of times steps T to obtain a ⇠-accurate first
order solution is:
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and Lior Horesh. Decentralized policy gradient descent
ascent for safe multi-agent reinforcement learning. Pro-
ceedings of the AAAI Conference on Artificial Intelli-
gence, 35(10):8767–8775, May 2021.

[34] Mansoor Shaukat and Mandar Chitre. Adaptive be-
haviors in multi-agent source localization using pas-
sive sensing. Adaptive Behavior, 24(6):446–463, 2016.
PMID: 28018121.

[35] Sandra H. Dandach, Baris Fidan, Soura Dasgupta, and
Brian D. O. Anderson. Adaptive source localization by
mobile agents. In Proceedings of the 45th IEEE Confer-
ence on Decision and Control, pages 2045–2050, 2006.

[36] Alejandro I. Maass, Chris Manzie, Dragan Nešić,
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