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Abstract

Compressed sensing has been a very successful high-dimensional signal acquisition and recovery
technique that relies on linear operations. However, the actual measurements of signals have to be
quantized before storing or processing. 1(One)-bit compressed sensing is a heavily quantized version
of compressed sensing, where each linear measurement of a signal is reduced to just one bit: the sign
of the measurement. Once enough of such measurements are collected, the recovery problem in 1-bit
compressed sensing aims to find the original signal with as much accuracy as possible. The recovery
problem is related to the traditional “halfspace-learning” problem in learning theory.

For recovery of sparse vectors, a popular reconstruction method from 1-bit measurements is the
binary iterative hard thresholding (BIHT) algorithm. The algorithm is a simple projected sub-gradient
descent method, and is known to converge well empirically, despite the nonconvexity of the problem.
The convergence property of BIHT was not theoretically justified, except with an exorbitantly large
number of measurements (i.e., a number of measurement greater than max{k'®, 24, k*°/¢}, where k
is the sparsity, € denotes the approximation error, and even this expression hides other factors). In
this paper we show that the BIHT algorithm converges with only O~(§) measurements. Note that,
this dependence on k and e is optimal for any recovery method in 1-bit compressed sensing. With
this result, to the best of our knowledge, BIHT is the only practical and efficient (polynomial time)
algorithm that requires the optimal number of measurements in all parameters (both k and €). This
is also an example of a gradient descent algorithm converging to the correct solution for a nonconvex
problem, under suitable structural conditions.

1 Introduction

One-bit compressed sensing (1bCS) is a basic nonlinear sampling method for high-dimensional sparse signals,
introduced first in Boufounos and Baraniuk (2008). Consider an unknown sparse signal x € R™ with sparsity
(number of nonzero coordinates) ||x||, < k,k < n. In the 1bCS framework, measurements of x are obtained
with a sensing matrix A € R™*™ via the observations of signs:

b = sign(Ax).

The sign function (formally defined later) is simply the =+ signs of the coordinates.

Compressed sensing, the method of obtaining signals by taking few linear projections Donoho (2006);
Candes et al. (2006) has seen a lot of success in the past two decades. 1bCS is an extremely-quantized version
of compressed sensing where only 1 bit per sample of the signal is observed. In terms of nonlinearity, this is
one of the simplest example of a single-index model Plan and Vershynin (2016): y; = f((a;,%x)),s = 1,...,m,
where f is a coordinate-wise nonlinear operation. Both as a practical case-study, and for being aesthetically
appealing, 1bCS has been studied with interest in the last few years, for example, in Haupt and Baraniuk
(2011); Gopi et al. (2013); Acharya et al. (2017); Plan and Vershynin (2013a); Li (2016).
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Notably, it was shown in Jacques et al. (2013b) that m = é(k/e) measurements are necessary and suffi-
cient (up to logarithmic factors) to approximate x within an e-ball. But the reconstruction method used to
obtain this measurement complexity is via exhaustive search, which is practically infeasible. A linear pro-
gramming based solution (which runs in polynomial time) that has measurement complexity O(E% log® )
was provided in Plan and Vershynin (2013b). Note the suboptimal dependence on e.

An incredibly well-performing algorithm turned out to the binary iterative hard thresholding (BIHT)
algorithm, proposed in the former work Jacques et al. (2013b). BIHT is a simple iterative algorithm that
converges to the correct solution quickly in practice. However, until later, the reason of its good performance
was somewhat unexplained, barring the fact that it is actually a proximal gradient descent algorithm on
a certain loss function (provided in Eq. (7)). In the algorithm, the projection is taken onto a nonconvex
set (namely, selecting the “top-k” coordinates and then normalizing), which usually makes a theoretical
analysis unwieldy. Since the work of Jacques et al. (2013b) there have been some progress explaining the
empirical success of the BIHT algorithm. In particular, it was shown in (Boufounos et al. 2015, Sec. 3.4.2)
that after only the first iteration of BIHT algorithm an approximation error e is achievable with O(E%)

measurements, though the same result is shown in (Jacques et al. 2013a, Sec. 5) with 0(6%) measurements,
so the former result might just be a typo. Similar results also appear in (Plan et al. 2017, Sec. 3.5). In
all these results, the dependence on €, which is also referred to as error-rate, is suboptimal. Furthermore,
these works also do not show convergence as the algorithm iterates further. Indeed, according to these works
O(Eﬁ2 log ) measurements are sufficient to bring the error down to e after just the first iteration of BIHT.
Beyond the first iteration, it was shown in Liu et al. (2019) that the iterates of BIHT remain bounded
maintaining the same order of accuracy for the subsequent iterations. This, however, does not imply a
reduction in the approximation error after the first iteration. This issue have been partially mitigated in
Friedlander et al. (2021), which uses a normalized version of the BIHT algorithm. While Friedlander et al.
(2021) manage to show that the normalized BIHT algorithm can achieve optimal dependence on the error-
rate as the number of iterations of BIHT tends to infinity, i.e., m ~ %, their result is only valid when

m > max{ck'®log"” 22478, C?/(klog %)7/2}. This clearly is very sub-optimal in terms of dependence on k,
and do not explain the empirical performance of the algorithm. This has been left as the main open problem
in this area as per Friedlander et al. (2021).

1.1 Owur Contribution and Techniques

In this paper, we show that normalized BIHT converges with sample complexity having optimal dependence
on both sparsity k& and error e (see, Theorem 3.1 below). And as such, we also show the convergence rate
with respect to iterations for this algorithm. In particular, we show that the approximation error of BIHT
decays as 0(61’2%) with the number of iteration ¢. This encapsulates the very fast convergence of BIHT
to the e-ball of the actual signal. Furthermore, this also shows that after just 1 iteration of BIHT, an
approximation error of /¢ is achievable, with O(é log %) measurements, which matches the observations of
Jacques et al. (2013a); Plan et al. (2017) regarding the performance of BIHT with just one iteration. Due to
the aforementioned fast rate, the approximation error quickly converges to € resulting in a polynomial time
algorithm for recovery in 1bCS with only O(%) measurements, the optimal possible.

There are several difficulties in analyzing BIHT that were pointed out in the past, for example in
Friedlander et al. (2021). First of all, the loss function is not differentiable, therefore one has to rely on
(sub)-gradients, which prohibits an easier analysis of convergence. Secondly, the algorithm projects onto
nonconvex sets, so it is not apparent that in each iteration a better approximation is achieved. To tackle
these hurdles, the key idea is to use some structural property of the measurement or sampling matrix. Our
result relies on such a property of the sampling matrix A, called the restricted invertibility condition. A
somewhat different invertibility property of a matrix also appears in Friedlander et al. (2021). However,
our definition, which looks more natural, allows for a significantly different analysis - and results in the
improved sample complexity. Thereafter, we show that random matrices with i.i.d. Gaussian entries, satisfy
the invertibility condition with overwhelmingly large probability.

The invertibility condition that is essential for our proof intuitively states that treating the signed measure-
ments as some “scaled linear” measurements should lead to good enough estimates, which is an overarching
theme of recovery in generalized linear models. However, our condition also quantifies “goodness” of this
estimate in a way that allows us to show contraction in the BIHT iterations. This contraction of approx-



imation error comes naturally from our definition. While similar idea appear in Friedlander et al. (2021),
showing the contraction of approximate error is a much involved exercise therein. Also, it is empirically
observed in (Jacques et al. 2013b, Sec. 4.2) that in normalized BIHT, the step-size of the gradient descent
algorithm must be carefully chosen, or the algorithm will not converge. Our definition of the invertibility
condition gives some intuitive justification on why the algorithm is so sensitive to step-size. Our analysis
relies on the step-size being set exactly to n = v/2m. More generally, if  were to deviate too far from /2,
the contraction would be lost.

So the technical burden of our main result turns out to be to show Gaussian matrices do satisfy the
invertibility condition (Definition 3.1 below). We need to show that for every pair of sparse unit vectors the
condition holds. We resort to constructing a cover, an “epsilon-net,” of the unit sphere, and then decompose
the invertibility conditions for any two vectors in the sphere into two components. First, we show that it is
satisfied for two vectors in the epsilon-net whose distance is sufficiently large, then we show that only small
error is added when instead of the net points, vectors close to them is considered. This leads to a “large-
distance” and “small-distance” analysis. For these two parts, we require differently curated concentration
inequalities, which form the bulk of the techniques used in this paper. Notably, we cannot just extend the
invertibility condition to points outside the net by simply using, e.g., the triangle inequality, due to the
sign operation. But at the same time, the sign operation significantly reduces the number of matrix-vector
products we need to union bound over. It turns out that, because we condition on the rotational uniformity
of the measurements, this number is not “too large,” and will not increase the sample complexity beyond
the optimal.

One important aspect of BIHT’s convergence is that as the approximation error in t** iteration improves,
it makes possible an even smaller error for the (¢t + 1)™ approximation. This can again be intuitively
explained by the rotational symmetry of the measurements, as well as the sign operation. Each iteration of
BIHT involves fewer and fewer measurements, and we can track the number of measurements involved by
tracking the number of measurements that mismatch between the vector x and its approximation at the ¢**
iteration. This is used in the “large-distance” regime, where the pairs of points must be at least distance 7
from each other (note that that qualifier is necessary). On the other hand, once the distance is smaller than
7, the Chernoff bound that is used to track the mismatch is no longer sufficient (using that we would end up
needing a suboptimal sample complexity). That is why the “small-distance” analysis is needed separately.
However, as mentioned above, because of the rotational uniformity, the number of different ways that we
have to include in union bound in this small distance regime is not that many. In some sense, what prevents
us from simply extending the argument made for “large-distance” regime to the “small-distance” regime is
also what enables the approach taken in the “small-distance” regime. Reconciling these two regimes was
necessary for our approach.

1.2 Other Related Works

A generalization of 1bCS is the noisy version of the problem, where the binary observations y; € {+1, —1} are
random (noisy): i.e., y; = 1 with probability f({(a;,x)),i =1,...,m, where f is a potentially nonlinear func-
tion, such as the sigmoid function. Recovery guarantee for such models were studied in Plan and Vershynin
(2013a). Another model of observational noise can appear before the quantization, i.e., y; = sign ((a;, x) + ;) ,
1,...,m, where 7; is random noise. As observed in Plan and Vershynin (2016); Friedlander et al. (2021), the
noiseless setting (the one we consider) is actually more difficult to handle, because the randomness of noise
allows for a maximum likelihood analysis. Indeed, having some control-over 7;s (or just assuming them to
be i.i.d. Gaussian), helps estimate the norm of x Knudson et al. (2016), which is otherwise impossible with
just sign measurements, as in our model (this is called introducing dither, a well-known paradigm in signal
processing). In a related line of work, one bit measurements are taken by adaptively varying the thresh-
old (in our case the threshold is 0 all the time), which can lead to much improved error-rate, for example
see Baraniuk et al. (2017) and Saab et al. (2018), the later being on application of sigma-delta quantization
methods.

Yet another line of works in 1bCS literature takes a more combinatorial avenue and looks at the sup-
port recovery problem and constructions of structured measurement matrices. Instances of these works
are Gopi et al. (2013); Acharya et al. (2017); Flodin et al. (2019); Mazumdar and Pal (2021). However, the
nature of these works are quite different from ours.

.



1.3 Organization

The rest of the paper is organized as follows. The required notations and definitions to state the main
result appear in Section 2, where we also formally define the 1-bit compressed sensing problem and the
reconstruction method, the normalized binary iterative hard thresholding algorithm (Algorithm 1). We
provide our main result in Section 3, which establishes the convergence rate of BIHT (Theorem 3.1) and
the asymptotic error rate (Corollary 3.2) with the optimal measurement complexity. In Section 3.2 we
also provide an overview of how the result is derived. In Section 4 we provide the main proof of the BIHT
convergence algorithm, assuming that a structural property if satisfied by the measurement matrix. Proof of
this structural property for Gaussian matrices is the major technical contribution of this paper (Theorem 3.3),
and it has been delegated to Appendix A. Proofs of all lemmas and intermediate results can be found in the
appendix. We conclude with some future directions in Section 5.

2 Preliminaries

2.1 Notations and Definitions

The set of all real-valued, k-sparse vectors in n dimension is denoted by X7'. The ¢>-sphere in R" is written
S§"~1 C R™, such that (8" N X7) C X7 is the subset real-valued, k-sparse vectors with unit norm. The
Euclidean ball of radius 7 > 0 and center u € R” is defined by B,(u) = {x € R": ||u — x|z < 7}. Matrices
are denoted in uppercase, boldface text, e.g., M € R™*" with (i, j)-entries written M, ;. The n x n identity
matrix written as I, x,. Vectors are likewise indicated by boldface font, using lowercase and uppercase
lettering for nonrandom and random vectors, respectively, e.g., u € R"™ and U ~ A(0,1,x,), with entries
specified such that, e.g., u = (u1,...,uy). As customary, N (0,L,x,) denotes the i.i.d. nm-variate standard
normal distribution (with the univariate case, N'(0,1)). Moreover, random sampling from a distribution D
is denoted by X ~ D, and drawing uniformly at random from a set X is written as X ~ X. For any pair of
real-valued vectors u,v € R", write ds»-1 (u,v) € R> for the distance between their projections onto the
la-sphere, as well as 6y, € [0, 7] for their angular distance. and 8y € [—m, 7] for the angular distance and
signed angular distance (for a given convention of positive and negative directions of rotation), respectively,
between them. Formally,

‘ u_ v || fuv£o0,
Tull, — Tvl, |y
dsn-1 (u,v) = <0, ifu=v=0, (1)
1, otherwise,
Oy,v = arccos <&) . (2)
[all (vl
énfl(uvv)

Note that these are related by 6, v = arccos (1 - 5 ), equivalently, dgn-1 (u,v) = \/2(1 — cos(Oy v))-

The sign function sign : R — {41, —1} is defined in the following way:

1 >
sign(gc):{7 z20

-1, x<0.

The function can be extended to vectors, i.e., sign : R® — {41,—1}" by just applying the it on each
coordinate.

We are going use the following universal constants a, b, ¢, ¢1, co > 0 in the statement of our results. Their
values are

3 162 3 i 83
a_16,b2379.1038,c—32,c1_1/%<1+T\/—>,02_5<1+§+ 37T+8\/67T>. (3)

Additionally, in the BIHT algorithm, the step size n > 0 is fixed as n = /2.



Definition 2.1 (Hard thresholding operation (k-top)). For k € Z,., the hard thresholding operation Ty :
R™ — 3} projects a real-valued vector u € R™ into the space of k-sparse real-valued vector by setting all but
the k largest (in absolute value) entries in u to 0 (with ties broken arbitrarily).

Definition 2.2 (Hard thresholding operation (by a set)). For a subset of coordinates J C [n], the hard
thresholding operation Ty : R™ — X7 associated with J projects a real-valued vector u € R™ into the space
of real-valued, k-sparse vectors by

el
uj, if J ' (@)
0, otherwise.

This operation Ty is a linear transformation (see Lemma D.10, Appendiz D) associated with a diagonal nxn
matriz denoted Ty = diag(Th,s,...,Th,s), where

1, ifjed

T3 = {0, ifjdl (5)

2.2 1-Bit Compressed Sensing and the BIHT Algorithm

Let x € X7. A measurement matrix is denoted by A € R™*™ and has rows A(l)7 ce A N(0,1,,%)
with i.i.d. entries. The 1-bit measurements of x are performed by:

b = sign (Ax) (6)

Throughout this work, the unknown signals, x € X}, are assume to have unit norm since information
about the norm is lost due to the binarization of the responses. (For interested readers, see Knudson et al.
(2016) for techniques, e.g., dithering, to reconstruct the signal’s norm in 1-bit compressed sensing.) Given
A and b, the goal of 1-bit compressed sensing is to recover x as accurately as possible. We measure the
accuracy of reconstruction by the metric dgn-1 (-, ).

The binary iterative hard thresholding (BIHT) reconstruction algorithm, proposed by Jacques et al.
(2013c¢), comprises two iterative steps: (i) a gradient descent step, which finds a non-sparse approxima-
tion, X € R™, followed by (ii) a projection by X — % = T} (X) into the space of k-sparse, real-valued vectors.
As shown by Jacques et al. (2013c¢), the gradient step, (i), aims to minimize the objective function

J(%;x) = ||[sign (Ax) @ sign (A)‘()LH1 , (7)

where u® Vv = (ugv1,...,uyvy,) and ([u]-); = u; - L(u; < 0). While several variants of the BIHT algorithm
have been proposed, Jacques et al. (2013c¢), this work focuses on the normalized BIHT algorithm, where the
projection step, (ii), is modified to project the approximation onto the k-sparse, f>-unit sphere, S*~! N X7.
Algorithm 1 provides the version of the BIHT algorithm studied in this work.

Algorithm 1: Binary iterative hard thresholding (BIHT) algorithm, normalized projections
1 Set n= \/ﬁ

» X0 ~Srinsy

s fort=1,2,3,...do

a £ gD 4 %AT (sign (Ax) — sign (Af((t_l)))

() Te(x")
X < T TN
’ 17 (=),




3 Main Results and Techniques

3.1 BIHT Convergence Theorem

Our main results is presented below. Informally, it states that with m = O(% log kL\/E) 1-bit (sign) mea-
surements, it is possible to recover any k-sparse vector within an e-ball, by means of the normalized BIHT
algorithm.

Theorem 3.1. Let a,b,c > 0 be universal constants as in Eq. (3). Fiz e,p € (0,1) and k,m,n € Z where

4bck 2bck 12b b
m > 2 log (ﬂ) + c log (_c) + e log (E> . (8)
€ k € € € P

Let the measurement matriz A € R™*" and has rows AM, ... AT ~ N(0,1,,x) with i.i.d. entries. Then,
uniformly with probability at least 1 — p, for all unknown k-sparse, real-valued unit vector x € S"~1N X5, the
normalized BIHT algorithm produces a sequence of approximations {i(t) € " 'NX ez, which converges
to the e-ball around the unknown vector x at a rate upper bounded by -

dgn-1 (x,f((t)) <92t 9)

for allt € Zsy.

Corollary 3.2. Under the conditions stated in Theorem 3.1, uniformly with probability at least 1 — p, for all
unknown k-sparse, real-valued unit vectors x € SN, the sequence of BIHT approzimations, {i(t)}tezzo,
converges asymptotically into the e-ball around the unknown vector x. Formally,

lim dgn-1 (x, i(t)) <e. (10)

t—o0

3.2 Technical Overview

The analysis in this work is divided into two components: (I) the proofs of Theorem 3.1 and Corollary 3.2,
which show universal convergence of the BIHT approximations by using the restricted approximate invertibil-
ity condition (RAIC) for an i.i.d. standard normal measurement matrix (defined below), and (IT) the proof
of the main technical theorem, Theorem 3.3 (also below), which derives the RAIC for such a measurement
matrix.

Informally speaking, we show that the approximation error £(t) of the BIHT algorithm at step ¢ satisfy a
recurrence relation of the form e(t) = ay+/ec(t — 1) + age. It is not a difficult exercise to see that we get the
desired convergence rate from this recursion, starting from a constant error. The recursion itself is a result
of the RAIC property, which tries to capture the fact that the difference between two vectors x and y can
be reconstructed by applying AT on the difference of the corresponding measurements. Next we explain the
technicalities of these different components of the proof.

3.2.1 The Restricted Approximate Invertibility Condition

The main technical contribution is an improved sample complexity for the restricted approximate invertibility
condition (RAIC). A different invertibilty condition was proposed by Friedlander et al. (2021). We have
included the definition of Friedlander et al. (2021) in Appendix E, for comparison, and to emphasize the
major differences. The definition of RAIC considered in this work is formalized in Definition 3.1, which uses
the following notations. For m,n € Z,, let A € R™*™ be a measurement matrix with rows AW e R™,
i € [m]. Then, define the functions ha,ha,s : R” x R” — R" by

1 :
ha (x.y) = L AT (sign (Ax) - sign (Ay)) ()
hA;J (X7 Y) = 7-supp(x)Usupp(y)UJ (hA (X7 y)) (12)

for x,y € R" and J C [n], and where n = /2.



Definition 3.1 (restricted approximate invertibility condition (RAIC)). Fiz §,a1,a2 > 0 and k,m,n € Z,
such that 0 < k <n. The (k,n,d,a1,a2)-RAIC is satisfied by a measurement matriz A € R™*™ if

[(x—y) = has(xy)l, < a1y ddsn—1 (X, y) + azd (13)
uniformly for all x,y € S ' N7 and all J C [n], |J| < k.

Theorem 3.3 below is the primary technical result in this analysis and establishes that m-many i.i.d.
standard normal measurements satisfy the (k,n, d, c1, c2)-RAIC, where the sample complexity for m matches
the lower bound of (Jacques et al. 2013¢, Lemma 1). The proof of the theorem is deferred to Appendix A,
and a overview of the proof is given below in Section 3.2.3.

Theorem 3.3. Let a,b,c1,co > 0 be universal constants as defined in Eq. (3). Fiz 6,p € (0,1) and k,m,n €
Zy such that 0 < k <n and

m=ou () ) () () co GG+ 5(3)- -

Let A € R™*™ be a measurement matriz whose rows AW ~ N(0,1,x), ¢ € [m], have i.5.d. standard normal
entries. Then, the measurement matriz A satisfies the (k,n,d,c1,c2)-RAIC with probability at least 1 — p.
Formally, uniformly with probability at least 1 — p, for all x,y € S ' NE} and all J C [n], |J| <k,

[(x—y) = has(xy), < c1v/ddsn-1 (x,y) + c20. (15)

3.2.2 The Uniform Convergence of BIHT Approximations

Assuming the desired RAIC property (i.e., correctness of Theorem 3.3), the uniform convergence of BIHT
approximations is shown as follows. (a) The 0" BIHT approximation, 5{(0), which is simply initialized by
drawing a point uniformly at random from S"~' N X7, i.e., £~ gn-1n Y%, can be seen to have error at
most 2. Then, the following argument handles each subsequent ¢'" BIHT approximation, t € Z,. (b) Using
standard techniques, the error of any ' BIHT approximation, ¢ € Z, , can be shown to be (deterministically)

upper bounded by

dgn s (x,fc(t)) <4 H (x _ x“*”) N (x,&“*l)) HZ . (16)

(c) Subsequently, observing the correspondence between Eq. (16) and the RAIC, Theorem 3.3 is applied to
further bound the ¢ approximation error in (16), t € Z, from above by

dgns (x, i(t)) <4 (Cl\/denl (x,f((t_l)) +CQE> — 4c1\/5d5n1 (x, )“c(t_l)) +4025, (17)
c c c c

(d) Then, the recurrence relation corresponding to the right-hand-side of Eq. (17),

(0) =2 (18)
e(t) = ey Ea(t 1)+ 4c2§, tezy, (19)

can be shown to be monotonically decreasing with respect to ¢, asymptotically converging to the e-ball
—t —t

around the unknown vector x, and pointwise upper bounded by &(t) < 22 €72~ for each t € Z>¢. This

will complete the analysis for the universal convergence of the BIHT algorithm.

3.2.3 The RAIC for an i.i.d. Standard Normal Measurement Matrix

Fixing d,p € (0,1) and letting ¢1,¢2 > 0 be the universal constants as specified in Eq. (3), Theorem
3.3 establishes that the measurement matrix A € R™*" with i.i.d. standard normal entries satisfies the
(k,n,d,c1,c2)-RAIC with high probability (at least 1 — p) when the number of measurements m is at least
what is given in Eq. (14). The proof of the theorem is outlined as follows.



(a) Writing 7 = 2, a 7-net over S"~!NXY is constructed by the union C, = Uscpnyai<k Cris € s"inxy,
where for each J C [n], |J| < k, C;.; € S" 1 N X7 is a 7-net over the subset of vectors in S"~1 N X}
whose support sets are precisely J. The goal will be to show that with high probability certain
properties hold for (almost) every ordered pair (u,v) € C, x C; or for every vector u € C,. The
desired RAIC will then follow from extending the properties to every pair x,y € S"~! N 7.

(b) The first property, which holds on a “large scale,” requires that with probability at least 1 — pq, for
each ordered pair (u,v) € C, x C; in the 7-net at distance at least dgn—1 (u,v) > 7 and for every
J C[n], |J] < 2k,

(0 =v) = ha.(u,v)[; <bi1yv/ddsn—r (u,v) (20)
where by > 0 is a small universal constant (see, Eq. (3)).

(¢) The second property, which holds on a “small scale,” requires that with probability at least 1 — po, for
each member of the 7-net u € C;, each x € B,(u) NS"~ ' N7, and every J C [n], |J| < 2k,

[(x =) = ha,s(x, u)ll, <26 (21)
where bs > 0 is a small universal constant (again see, Eq. (3)).

(d) Requiring p1 + p2 = p, the last step of the proof derives the RAIC claimed in the theorem by using
the results from steps (b) and (c), such that the condition holds with probability at least 1 — p. We
provide an overview of these two steps subsequently.

3.2.4 The Large and Small-Scale Regimes, Steps (b) and (c)

Before discussing the approach to steps (b) and (c), let us first motivate the argument. Let x,y € S""1NX7.
Notice that the function ha(x,y) can be written as

ha (x,y) = \/E%AT : % (sign (Ax) — sign (Ay)) (22)
S VIS A0 (s (140 %) - sin (140, )) (23)
= \/ﬂ% iA(i) - sign ((A(i),x>) . l(sign ((A(i),x>) # sign (<A(“,y>)) (24)

Hence, given the random vector Ry y = % (sign (Ax) — sign (Ay)), which takes values in {—1,0,1}™, (ha (x,y) |
Rx,y) becomes a function of only Ly y = ||Rx,y||, < m-many random vectors. Such conditioning on R will
allow for tighter concentration inequalities related to (an orthogonal decomposition of) (ha (x,y) | R). Note
that these concentration inequalities, stated in Appendix A, provide the same inequality for any Rx y, Ry’ o
such that Ly y = L], ., where Lyy = [[Rxyllg: Ly yr = Ry o XY, X,y € ST N R, and thus it
suffices to have a handle on (an appropriate subset of) the random variables {Lxy : x,y € S" ! N X7}

With this intuition, the large- and small-scale results in steps (b) and (c) are derived using two primary
arguments. First, for a given u, v € C;, the associated random variable L is bounded. Then, conditioning on
L, the desired properties in steps (b) and (c¢) follow from the appropriate concentration inequalities related
to the decomposition of ha. (x,y) into three orthogonal components.

Specifically, step (b) is achieved as follows. (i) Consider any (u,v) € C; XC; such that dgn-1 (u,v) > 7, and
fix J' C [n], |J'| < 2k arbitrarily. Note that, by a known construction of a 7-net, all pairs of distinct points do
satisfy dga—1 (u,v) > 7. (ii) It can be shown that for a small s € (0,1), the number Ly y of points A® € A,

i € [m], such that sign((A¥ u)) # sign((A?,v)) is bounded in the range Ly € [(1— )%™ (14 3)0“‘7""1

™

uniformly for all (u,v) € C; x C, with high probability. (iii) Define ga : R" x R™ — R" by

u—v u—v u-+v u+v
w,v) =ha(u,v) — { =Y ha(u, _ ,ha(u, - 25
aa) =) = (T atu)) e (R e ) @9




which imply,

u—v u—v u+t+v u+t+v
patay) = (22 s ( aln)) P sy (9
[u— vl [u— vl [u+ vl [u+ vl
and
hA;J’ (uu V) = 7-supp(u)usupp(v)UJ’ (hA (U., V)) (27)
u—v u—v u+v u+v
(s +( hau)) g )
<|u—V||2 [u— vl [u+ vl [u+ vl
where g, (W, V) = Teupp(u)usupp(v)us’ (ga(u, v)). Note that Iriedlander et al. (2021) similarly use such a

decomposition to show their RAIC. (iv) Then, conditioned on Ly v € [(1— s)e“’T"m, (1+s) 9“’7;'7”], the desired
property in Eq. (20) is derived from Eq. (26) using the concentration inequalities provided by Lemma A.1
in Appendix A together with standard techniques, e.g., the triangle inequality. (v) A union bound extends
Eq. (20) to hold uniformly over C; x C; and all J' C [n], |J'| < 2k, with high probability.

Step (c) takes a similar approach. (i) Let u € C; be an arbitrary vector in the 7-net, and fix any J’ C [n],
|J/| < 2k. Recall that the desired property in Eq. (21) should hold for all x € B-(u) NS"~ ' N 7. (ii) To
ensure this uniform result over B, (u) NS"~! N X7, construct a second net D, (u) C B, (u) NS~ N2 such
that for each x € B, (u)NS" "1 NX7, there exits a point w € D, (u) such that sign(Aw) = sign(Ax). (iii) Let
8= arccos(l—T;) be the angle associated with the distance 7, and define the random variable Mg , = [{A®
Notice that the size of D, (u) need not exceed 2M4.u. Moreover, for any x € B, (u)NS" 1N, x4 € [0, ],
and the number Ly, of points A" € A, i € [m], on which sign((A¥),x)) and sign((A¥) u)) disagree is
upper bounded by Mgy, formally, Lxy < Mgy for every x € B.(u) N S"" ' N X7, (iv) By a Chernoff and
union bound, the random variable Mg, can be shown to be bounded from above by Mg, < %Tm with
high probability for every u € C;, and due to the above argument, this further implies Ly < %Tm for each
x € B-(u)NS"" 1 NX7. (v) Taking any w € D, (u) and conditioning on Ly 4, the norm of ha. (w,u) is
bounded using an orthogonal decomposition analogous to that in step (b) and again applying the concentra-
tion inequalities in Lemma A.1 and standard techniques, such that ||ha;; (w,u)|, < O (7). (vi) This bound
is then extended to hold uniformly for all u € C,, w € D, (u), and J' C [n], |J/| < 2k, by union bound-
ing. (vii) Step (c¢) concludes by arguing that the uniform result from step (vi) suffices to ensure Eq. (21) holds
uniformly for all u € C;, all x € B,(u), and all J' C [n], |J'| < 2k, by observing that for each x € B, (u),
there exists w € D, (u) such that ||ha, s (x,u)l|, = ||ha,; (W, u)|[, < O (7) due to the construction of the net

€ [m]: 0y ac) €

D, (u), and additionally, by the triangle inequality, ||(x —u) — ha,; (x, )|, < |[|x — ull,+[|ha;r (x,0)|, < O (7).

4 Proof of the Main Result—BIHT Convergence

4.1 Intermediate Results

Before proving the main theorems, Theorem 3.1 and 3.2, three intermediate results, in Lemmas 4.1-4.3,
are presented to facilitate the analysis for the convergence of BIHT approximations. The proofs for these
intermediate results are in Section 4.3.

Lemma 4.1. Consider anyx € 8"~ 1N XF and any t € Zy. The error of the t*™ approzimation produced by
the BIHT algorithm satisfies

dses (32 0) <4 (x=2070) = hyupegainy (X)) 28
gn-1 (X, X < x—Xx Assupp(x®) (XX , (28)

Note that Lemma 4.1 is a deterministic result, arsing from the equation by which the BIHT algorithm
computes its t*" approximations, t € Z, . Hence, it hold for all x € S"~!1 N Y% and all iterations t € Z.

Lemma 4.2. Let ¢ : Z>o — R be a function given by the recurrence relation

e(0) =2 (29)



g(t) = 461 Za(t — 1) + 4C2£, t e ZJr (30)

The function € decreases monotonically with t and asymptotically tends to a value not exceeding €, formally,

. 4e
tlggo e(t) = (201 (61 +1/3+ 62) + C2> — <¢ (31)

Lemma 4.3. Let ¢ : Z>o — R be the function as defined in Lemma /J.2. Then, the sequence {£(t)}tezs, is

bound from above by the sequence {22%6172%}%220.

4.2 Proofs of Theorems 3.2 and 3.1

The main theorems for the analysis of the BIHT algorithm are restated for convenience and subsequently
proved in tandem.

Theorem (restatement) (Theorem 3.1). Let a,b, ¢ > 0 be universal constants as in Eq. (3). Fize, p € (0,1)

and k,m,n € Z where
4bck en 2bck 12bc be a
m > log (—) + log + —log|—-].
€ k € € € p

Let the measurement matriz A € R™*" and has rows AM, ... AT ~ N(0,1,,x) with i.i.d. entries. Then,
uniformly with probability at least 1 — p, for all unknown k-sparse, real-valued unit vector x € S"~1N X5, the

normalized BIHT algorithm produces a sequence of approrimations {i(t) eSSt ﬁzz}teZZo which converges
to the e-ball around the unknown vector x at a rate upper bounded by

dsnfl (X,&(t)) S 227t€1727t

for allt € Zsyg.

Corollary (restatement) (Corollary 3.2). Under the conditions stated in Theorem 5.1, uniformly with
probability at least 1 — p, for all unknown k-sparse, real-valued unit vectors x € S"~' N X%, the sequence of

BIHT approximations, {i(t)}t62>0, converges asymptotically into the e-ball around the unknown vector x.
Formally, -

lim dgn (x, 5<<t>) <e

t—o0

Proof (Theorem 3.1 and Corollary 3.2). The BIHT approximations for an arbitrary unknown, k-sparse
unit vector, x € S"~! N X7, will be shown to converge as claimed in the theorems by applying the main
technical theorem, Theorem 3.3, and the intermediate lemmas, Lemmas 4.1-4.3. Recalling that Theorem
3.3 and Lemma 4.1 hold uniformly over S"~!1 N Y%, the argument then implies uniform convergence for all
xe SNy

Consider any unknown, k-sparse unit vector x € 8"~ n Y} with an associated sequence of BIHT approx-
imations {)“c(t) € 8" 'N¥7}ez.,. For each t € Z,, Lemma 4.1 bounds the error of the t*® approximation
from above by B

dgoos (x.27) < (5= 70) — g (2270 | &
sn—1 (X,X < x—X Assupp(x(t-1) (X, X , (32)

which is further bounded by Theorem 3.3—Dby setting § = £ = 55 in the theorem—as
dswr (%) <4 H (x = %) = haguppzie (6. 57Y) H2 (33a)
€ N (tfl) €
<4 (cl \/—dSnl (x,x ) + 02—) (33Db)
c c
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=de; \/ stm (x, 5<<t—1>) + 4CQE (33¢)

where in the case of t = 1, (33¢),

dgn-1 (x,fc(l)> <de \/fdsnl (x, ;‘c“’)) FdesS < deyy [ Sdgn (x,—x) +derS = e1v/2e + %e. (34)
C C C C

Recall that Lemma 4.2 defines a function € : Z>¢y — R by the recurrence relation

£(0) = 2 (35)

e(t) = depy /Eg(t —1)+ 4c2§, teZy (36)

whose form is similar to (33c). It can be argued inductively that for every ¢ € Z>, the function e(t) upper
bounds the error of the t'* BIHT approximation, dgn—1 (x, i(t)), as discussed next. The base case, t = 0, is
trivial since

dsios (x,%0) < dgis (x,—x) =2 = £(0). (37)
On the other hand, supposing that for each ¢’ € [t — 1], t € Z, the error is upper bounded by
dsir (%, %) < =(t), (38)
the t'" approximation satisfies
dgn 1 (x,fc(t)) < 401\/§dsnl (x,x“—l)) n 4022 < dey Za(t 1)+ 4c2§ — (t). (39)

By induction, it follows that the sequence of BIHT approximations for the unknown vector x satisfies
dgn 1 (x,5<<t>) <e(t), Vte s (40)

Then, Lemmas 4.2 and 4.3 immediately imply the desired result since asymptotically (Lemma 4.2),

4
lim dgn—1 (x,fc(t)> < lim e(t) = (201 (cl +4/c3 +02) +02> Py (41)
t—o00 t—o00 C
and pointwise (Lemma 4.3),
dgn 1 (x,i(t)> <e(t) <22 e (42)

This completes the first step of the proof. Next, the proof concludes by extending the argument to the
uniform results claimed in the theorems.

Notice that in the argument laid out above, Lemma 4.1 and Theorem 3.3 hold uniformly for every
x € 8" NX7, where Lemma 4.1 is deterministic while Theorem 3.3 ensures the bound with probability at
least 1 — p. Thus, for every x € S"" ' N X7, the t* BIHT approximation has error upper bounded by

dsnfl (X,)A((t)) S 401\/Edsnl (X,&(t_l)) + 402E (43)
C C

uniformly with probability at least 1 — p. Furthermore, because Lemmas 4.2 and 4.3 are deterministic,
the rate of decay and asymptotic behavior stated in the theorems also hold uniformly, such that for all

xe8"Inxy,
4
lim dgn-—1 (x,f((t)) < lim e(t) = (201 (61 +14/c2 —|—62) +C2> = <e€ (44)
t—00 t—00 &

dgn—1 (x,x“)) <e(t) <22 e ViteZsg (45)

with probability at least 1 — p. |
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4.3 Proof of the Intermediate Lemmas (Lemmas 4.1-4.3)

4.3.1 Proof of Lemma 4.1

Proof (Lemma /.1). Let x € S"™"'N X7 be an arbitrary unknown, k-spare vector of unit norm, and consider

any t"" BIHT approximation, £® e sn-1n M3, t € Z4. Recall that the BIHT algorithm computes its tth
approximation by

g =gt L AT 3 (5|gn (Ax) — sign (Ax(t 1))) (46)

g0 ) =) (47)

|7 (=)l

and notice that
x® = gD 4 ha(x, £t 1)) (48)

,Tsupp(x)Usupp(fc(t*l))Usupp(:‘c(t)) (i(t)) = )’\((til) + hA;supp(i(t))(X7 i(til))' (49)
Applying the triangle inequality, the error of the ¢*" BIHT approximation, &(t), can be bounded from above.
dgn1 (x,x“)) (50a)

= |lx - x® H2 (50b)

= (x ~ Taupp()Usupp(x(®) (i(t>>) + (TSUPP (%) Usupp(X(*)) ( ) — Tewpp(a®) (i(t))) n (TSL,pp(,zm (i(t)) B i(t)) H2
(50c¢)
( ) = Taupn(2(4) (i(t)) Hz + ’ Toupp(x®) (i(t)) B &(t)Hz
supp(x)Usupp(X(*)) (i t)) Taupp(x(9) (i(t)) H2 (50e)

(50d)
Tapois) ()

Tasotey (X7)| 1,

The rightmost term in the last line can be upper bounded as follows.

T supp(x(®) (i(t))

IN

(t)
X = Tsupp(x)Usupp(x (1) ( )H + ’
» by the triangle inequality

B (t)
= ||x — ﬁupp(x)Usupp(x(t)) ( )H + ’

supp(x)Usupp(%(®))

+ 7-suplo(fc(”) (i(t)) - ‘

Tsupp(x®) (i(t)) - (5la)
[Tamisor (7)],],
(t)
= ||| Tsupp(x() (i ) = 1 :”PP(*(”) (~x(t) ) (51b)
Fomer G,
o ()], .
= ||| Tsupp(x®) (x ) , IIXIIQ} (51d)
< Tsupp(xm) ( ( )) — XHz » by the triangle inequality (51e)
= | (Taumoiscoy () = Tasporomspots) (X)) + (Teuppirossmmizeon (£) =) Hz (511)
< TSUPP(ﬁ(”) (i(t)) - TSUPP(X)USUPP(X(” ( )H + ‘ supp(x)Usupp(x(*)) (~(t)) - XH2 (51g)
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» by the triangle inequality

- HX_Tsupp( )Usupp(%(1)) ( )H +’

Combing (50e) and (51h) yields

dgn-1 (X X ) =2 HX 7-supp(x)USuPP(ﬁ(t)) ( )H T 2‘

supp(x)Usupp(x(1)) (~(t)) - Tsupp(ﬁ(”) (i(t)) H2 (51h)

supp(x)Usupp(X™®)) (~(t)) - 7;upp(;<<t>) (i(t)) H2 .
(52)

Taking a closer look at the last term in (52),

’ 7 supp() Usupp(x9) (i(t)) = Teupp(z) (i(t)) Hz - ’

where the rightmost inequality follows from the definition of the thresholding operation T, Wthh ensures
| Then,

<(0)
T supp(x)\supp(x(®)) (X )H2 = ’Tsupp<x<t>>\supp<x>( )H

that for each j € supp(x) \supp(fc(t))7 the jh entry of x*) satisfies |5c§-t)| < min
observe

HX - 7-Supp(x)Usupp(§c(t)) (i(t)> Hz = Z (wj - jgt)>2 (54&)

jesupp(x) Usupp(X(*))
2
+ > (z-a) (54b)

j€Esupp(x)

3’ €supp(X*))\supp(x) |:c j’

.Ij {f;t)

2
jesupp(%™)\supp(x
2

J€Esupp(x)

(
(0-2") + > (w —@?’)2 (54c)
(

Nét))Q + > (arj - 57(»”)2 (54d)

(x)
jesupp(x*))\supp(x)
J

(x)

jesupp(X*))\supp(x J€supp(x)
2
= [Ttz amnio (5] + b= Tawoi (), (34¢)
It follows that
7. + — 20" (55a)
supp(X(™*))\supp(x) Tsupp(x) 7 supp(x) Usupp(R(9) 9 a
2
= | Tomis “>>\supp<x>( )H —H supp<x>uwpv<x<”>( N, =[x = Temmio GO, (550
= || Toummz o (X )H < [l = Topmssamisoy (% )H (55¢)
() (t)
- ‘Tsupp(i“))\supp(X) (X )H <H SUPP(X)USUPP(x(t))( )H (55d)
Likewise,
ONE
HX 7;upp(x)Usupp(x(' 1))usupp(x(’t))< )H (56&)

2
) o

j€supp(x)Usupp(x (=1 )Usupp(x(*))
2 2
Z (:vj — :E;t)) + Z (xj - .’Z‘;t)) (56¢)
je€supp(x)Usupp(x(*)) j€supp(R=1)\ (supp(x)Usupp(&(*)))
2
_ () ()
= ‘ 7 supp() Usupp(x9) (X X )H T ’ supp(R(t~1)\ (supp(x)Usupp(X(*))) (X X )H2 (56d)

2 ‘ ﬁupp(x)Usupp(ﬁ(t)) (X - i )H2 (566)
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= HX - 7-supp(x)LJsupP(x(t)) ( ) H (56f)
—  ||x =T, %® < &t X < 6]
supp(x)Usupp(%(*)) SI-IPP x)Usupp(& (=1 )Usupp(x () 2 ©

Continuing from (52),

dgn—1 (x,fc(t)) (57a)
= 2||X = Tupp(x) Usupp(x(®) ( t)) H + 2’ supp(x) Usupp(x () (i(t)) ~ Taupp(x) (i(t)) H2 (57b)
= 211X = Toupp(x) Usupp(x(®) ( ® )H + 2‘ supp(())\supp(x) (i(t)) H2 » by Eq. (53) (57c)
< 4% ~ Touppiusumpiz) (X )H > by Eq. (55) (57d)
< 4 |1% = Taupp(e)usupp(x(+~1)Usupp(()) ( )H » by Eq. (56g) (57e)
= 4 ||% = T qupp(x) Usupp(x(t=1 ) Usupp(x(1)) (X( + hA(Xai(tfl))) H2 (57f)
=4 |x = R = T Usupp(20- D) Usupp(R) (hA(Xa ﬁ(t_l))) H2 (57g)
4 (x _ 5<<t—1>) — B upp(z (6, %) ’2 (57h)
as desired. ]

4.3.2 Proof of Lemmas 4.2 and 4.3

Lemmas 4.2 and 4.3, will be verified in tandem. Fact 4.1, stated below and proved in Section C, will facilitate
the proof.

Fact 4.1. Let u,v,w,wy € Ry such that u = %(1 ++/1 —|—4w), and 1 < u < \% Define the functions
Ji,fa 1 Z>0 — R by

f1(0) =2 (58)
fit) =vw+ Jug(t—1), teZy (59)
folt) =22 (W), t e Zso. (60)

Then, f1 and fo are strictly monotonically decreasing and asymptotically converges to u?v. Moreover, fo
pointwise upper bounds fi. Formally,

fi(t) < fa(t), VEe€Zxo (61)
Jim fo(t) = lim f1(t) = (62)

Lemma (restatement) (Lemma 4.2). Let € : Z>o — R be a function given by the recurrence relation
e(0)=2

e(t) =4 Ea(t—l)—l—élczg, t€Zy
c c

The function € decreases monotonically with t and asymptotically tends to a value not exceeding €, formally,

4
lim e(t) = (201 (Cl + \/C% +Cz) +Cz> e
t—o00 c

Lemma (restatement) (Lemma 4.3). Let € : Z>o — R be the functz’on as defined in Lemma 4.2. Then,

12'

the sequence {&(t) }tez, is bound from above by the sequence {22 b ez,
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Proof (Lemmas 4.2 and /.3). The lemmas are corollaries to Fact 4.1. All that is necessary is writing ¢ in the
form of f1 in Fact 4.1 and verifying that it satisfies the conditions of the fact. For ¢t = 0, £(0) = 2 = f1(0).
Otherwise, for t > 0, observe

16c2¢\ [16c2¢\ 16¢2
e(t) = dey Es(t —1) +4022 - < 6016) < 6016) 4022 + \/< 60016> e(t—1) (63a)

<16§%6> <4C—;> + \/(162%6) e(t— 1) (63b)
— vw + /oe(t — 1) (63¢)

2
wherev:%,w:%, and u = (1 + /1+4':T2§):%(1+ 1+2—§):%(c1+\/cf—|—@). Recall

that the universal constants are fixed as ¢; = 1/377’ (1 + %) ,Cy = % (1 + %’T + 8‘{))37 + 8\/67r) ,c = 32.

By numerical calculations, it can be shown that u\/v < v/2 whenever b > 379.1038, and hence u < \/g , as
required by Fact 4.1. It then follows that ¢ monotonically decreases with ¢ € Z>o and

4 32
lim (t) = u?v = (201 (cl +4/3+ 02) + cz) gy i €, (64)
t—o0 C C

where the last inequality follows from a numerical calculation. Moreover, Fact 4.1 further implies

e(t) <22 "(uv)'"T <22 2 (65)

5 Outlook

In this paper, we have shown that the binary iterative hard thresholding, an iterative (proximal) subgradient
descent algorithm for a nonconvex optimization problem, converges under certain structural assumptions,
with optimal number of measurements. It is worth exploring how general this result can be: what other
nonlinear measurements can be handled this way - and also what type of measurement noise can be tolerated
by such iterative algorithms. This direction is hopeful because the noiseless sign measurements are often
thought to be the hardest to analyze. Furthermore, our result is deterministic given a measurement matrix
with certain property. Incidentally, Gaussian measurements satisfy this property with high probability.
However, spherical symmetry of the measurements is a big part of the proof, and it is not clear whether other
non-Gaussian (even sub-Gaussian) measurement matrices can have this property, and whether derandomized
explicit construction of measurement matrices is possible.
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A  Proof of Theorem 3.3

This section proves the main technical theorem, Theorem 3.3, which is restated for convenience.

Theorem (restatement). Let a,b,c1,co > 0 be universal constants as defined in Eq. (3). Fiz d,p € (0,1)
and k,m,n € Zy such that 0 < k <n and

g () ) (5 () =o (Bmel) 5 ()

Let A € R™ "™ be a measurement matriz whose rows A® ~ N(0,L,xy), i € [m], have i.i.d. standard
normal entries. Then, the measurement matriz A satisfies the (k,n,d,c1,c2)-RAIC. Formally, uniformly
with probability at least 1 — p, for all x,y € S*"'NEY and all J C [n], |J| <k,

[(x—y) = ha,s(x,¥)ll, < c1v/ddsn-1 (x,y) + c20.

The proof of the theorem will consider two regimes—the first, in Section A.1, looks at points which are
at least distance 2 % apart, while the second, in Section A.2, handles points which are very close (less than
distance ) Sect1on A.3 then combines the two regimes to establish the theorem.

Before begmmng the proof, let us introduce some notation and intermediate results. Recall the definition
of ha : R" x R" = R,

ha (x,y) = V2 AT (s.gn (Ax) —sign (Ay)) (66)
hA;J (X, Y) = ,Tsupp(x)Usupp(y)UJ (hA (X, Y)) (67)
and further define
T, ~ T L~ TV
on ) = 3) - (BB ) BT (69
Er Er
+ +
_< EiF ||zn2 S (ij)> IR
|||+||| ’\H“L\yll
gA;J ( Y supp x)Usupp(y)UJ (gA (X,y)) (69)

for x,y € R™ and J C [n]. The first of the two following lemmas provides concentration inequalities related
to these functions ha and ga. The latter lemma characterizes the number of measurements which lie in an
angularly defined subset of R™. Both lemmas are verified in Appendix B.
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Lemma A.1. Fiz (,t > 0, r € {=1,0,1}"", and J C [n], such that |r||, = £ > 0 and |J| < 2k. Let
(u,v) € "IN x "1 NXY be an ordered pair of real-valued unit vectors, and define the random
variables Ruyv = (Risuvs -« Bmuyv) = %(sign(Au) —sign(Av)) and Lyy = [|Ruv|ly, and suppose Ry v =1
and Ly, v = {. Then, conditioned on Ry v =1 and Ly~ = ¢, the following concentration inequalities hold.

Pr (K& “hau(u, v)> mt s (w,v)

[u—v|,’ 2m  Ouy

w(
([2onstn

Lemma A.2. Fizt € (0,1), 8 €[0,3]. Let u € R", and define the random variable Mg = |{A(i) eA:
Ouac € [% -B,5+ B]H Then,

t
> é—‘Ruyv =1, Luyyv = e> <272 (70)

<& —ha,;(u, V)>} > —’Ruv =r,Lyy —E) < 2¢ 2t (71)

[u+v|,’
2v/2k0
>
m

Ru,v =1, Luy = é) < 9e~ 3t (72)
2

2
Py = E[Mgu] = ;ﬁm (73)
and

Pr (M ¢ [(1 = O)png, o (14 ar, ]) < 2¢7 50450 (74)

Lastly, for the purposes of the proof, a 7-net C; C S"~! N X7 over the set of k-sparse, real-valued unit
vectors is designed as follows, where 7 = % is defined to lighten the notation. For each J C [n], |J| < k,

let Cr.y C 8" 1 N XY be a 7-net over the set {x € S""' N X} : supp(x) = J}. Then, construct the -
net C, C "' N XY as their union, C, = UJg[n]:‘J‘SkCT;J. Note that |C,| < (Z) (%)k2k = (:) (ﬁ)k and

T

ICr x Cr| < (2)2 (%)% 22k — (2)2 (ﬁ)%. This construction is consistent throughout Sections A.1-A.3.

T

A.1 “Large distances” regime

The first regime considers the RAIC for ordered pairs of points in the 7-net which are at least distance 7
from each other. Lemma A.3 formalizes a uniform result in this regime.

Lemma A.3. Let by > 0 be a universal constant. Fix d,p1 € (0,1), and let 7 = %. Uniformly with probability

at least 1 — pq,
a = v) = haus (v, < biy/dsr (w,v) (73)
for all (u,v) € C; x C; satisfying dgn—1 (u,v) > 7, and J C [n], |J| < 2k.

Proof (Lemma A.3). Let (u,v) € C, xC, be an arbitrary ordered pair of points in the 7-net whose distance is
at least dgn—1 (u,v) > 7. Similar to the approach by Friedlander et al. (2021) and seen in Plan and Vershynin
(2016), the function ha,s can be orthogonally decomposed as

u—v u—v u+v u+v
hastuny) = (2T a0 { astu)) gy ()
[u— vl [u— vl [u+ vl [u+ vl
Combining (76) with the triangle inequality yields
[(w—v)—has(u, V)], (77a)
u—v u—v u+v u+v
v - (B o) +( as(uw)) g )
[u— vl [u— vl [u+ vl [u+ vl 2

(77b)

<

+llgass(u, V)l
2
(77¢)

(u—v) - <$ ha;(u, V)>

a—vll,’

u+v u+v
hA;J(u,v) _
2 [lu+vll, la+vi,

[u - VHQ
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» by the triangle inequality

u—v u—v u+v u+t+v
_ hl—V|'—<——————whAd0LV)>"————— +'<—————nhAgoLv>>]——————- T lgaus(w )]
=\ Ta=v; =l , I\ Ta s, vl 2
(77d)
u—v u-+v
—|u—w—<————<hmxmv§W+K————ﬁhmxmv»W+wmxmvm (77e)
2 ”u_VHQ ||u+VH2 2

Lemma A.1 provides the following concentration inequalities.

— 1 éu v d n— y gll.vtu v o
Pr ﬁ’ _hA‘J(u’ V) - 1—7 srl (u V) - : Ru.v =r, Lu.v = éu_v S 2e ;Z“x"ti,v
lw—vlly n ™" 2 m Ouy m , , ,
(78)
1 Y/ vtuv B
pe (| e (a))| > SR n Ly = fy ) <20 Hee (@)
2

1 2 Tlne  lustus

Pr <H—QA;J(u, v)|| > V2l oYY =1, Ly = ﬁu,v> < ge—ttunti, (80)
" 2 m m

where Ry, v and Ly, v are random variables defined as Ryy = (R1uyvs -« - Bmsuv) = % (sign(Au) — sign(Av))
and Lyy = |Ruyvly, and r € {—1,0,1}", £y € [m]. Eq. (78) further implies

u—v T v dsn-1 (1, V) Nuvtu,y
Pr (’(||u—v|2—<7”u_v|| 7h/A;J(u7V)>> — (|u—v||2—,/§ n‘; 5 > - umu
2 u,v

2

< 2e~ sluvtsy (81)

while Egs. (79) and (80) can be written

éu vtu v 2
Pr &, th'J(u, V) > 777 Ru v=r, Lu v — gu v)] < 2e éeuwta’v (82)
fu+ v, "™ mo -
212kl v luviuyv
. <||QA;J(117 Ill, > n\/m wy 0 Y2 Ry =T, Luy = eu,v> < 2e luvtin (83)

It follows that given Ly = fy,v, with probability at least 1 — 667%2“"’)5‘2"", the following holds

I = v) — haus(u,v), (84a)
u—v u+v
<[ vl = (RS ) )+ [ )+ () (341)
2\ Ju—=vl, [+ vl 2
guv d n— 9 gu vtuv éu vtuv 2 2k£ v gu vtuv
e e L e T
2 m Ou,v m m m m
v dgn— , 3nluvtuy = 20/ 2klyv
_ dsn—l (u7 V) . KT] u, Sn—1 (u V) + lu,viu, + n > (84(1)
2 m Ouv m m

3nluvtuv 2 2kL v
Muyvluy | 20V ", (84e)

dgn-1 (u,v) +
m m

I T Nluy 1
o 2 m Ouv

Let us next get a handle on the random variable Ly, which tallies up the number of sign differences
between sign(Au) and sign(Av). Note that this is precisely the number of i*® measurements A e A,

i € [m], such that 0 ) € [ — 9“7"',3 + 9“2’"], where w = u — v. By Lemma A.2, the random variable

Ly,v can be characterized expectation

ElLuy] = ——— (85)
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and the concentration inequality

Pr(Lus # (- sus)

Thus far, it has been shown that for a given pair (u,v) € C; XC;, where dgn-1 (u,v) > 7, with probability

1 2 1
at least 1 — 6e~sfuvtuy — 2e= 57 fuvmsuy,

Ouvm

0“ v _ 1
(14 Su,v) ;Tm:|) < 2e 3= Ouvmsu,v (86)

luv 1
|m—w—mwmmbqr—3”“

3nluvtuy  2n\/2kly~
Nu,vlu, T n u, (87)

dgn-1 (u,v) +
m m

2 m Ouy

where £y € [(1 - su,v)e“;’m, (1+ suyv) 0“;””]. Next, this result will be extended—via union bounding—to
hold uniformly for over all pairs (u,v) € Cr x C; with dgn-1 (u,v) > 7 and each J C [n], |J| < 2k. Let
P41, Py € (0,1) such that pj + py = p1. For each pair u,v € C, and every J C [n], |J| = 2k, the parameters
Su,v and ty v should ensure

euv euv
Pr (3 u,v e CT, dsnfl (u, V) > T, Lu,v ¢ |:(1 - Su,V) 5 m7 (1 + SU,V) ) m:|) < p/l (88)
T T
and
I(u,v) € Cr X Cry dgn-1(u,v) > 7,
ng[n], |J|§2]€, Ou,vm 1
Pr| = v) - ha(u v, Ly = fuy € (15 27| | < gt
> ‘1 — e Lo (u,v) 4 Bty | 20y Iy
(89)
For the former, (88), observe,
Ou v Ou v
Pr <3 WV EC,, dsi1(W,v)>7, Ly ¢ [(1 — su) 2 (14 su,v)“>—m]> <g,  (90a)
™ ™

n\?2 /6\%* Ouvm Ouvm
? < > <_> Pr <LU7V ¢ [(1 — Suyv) mY (14 su,v) mY }) < p/l (90b)
k T T T

n 2 6 2k 1
e

T

31 n\2 /6\%* /2
> b il
IR\ AT ((k) <T> (p’1>> (804)

Hence, the parameter is set as

Then,

Ou~vm 3 n\2 6\ /2 Ou~vm 2
uv S(1+suyv)———< |1 1 - — T < =y ym. 2
et (o [ (T O @) 22 .

On the other hand, using (89), tu,v is determined as follows. Note that the number subsets J C [n], |J| < 2k,
is at most (27;@) 22k (which will be used momentarily in a union bound), and then observe,

I(u,v) €Cr xCry dgn-1(u,v) > 7,

3J C [n], |J] < 2k, Com )
Pri f(u=v)—hay(uv), Luv ="/tuy € {(1 + Sy v)— ] < pt
bu,v Bnfuvtuy | 21V2kbuy
> ‘1 — %nm’ GI;L,V dsnfl (u, V) + i ”’n 2 4 P

(93a)
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n 2 6 2k n 1 2

</~c> (F) 22k<2k>6”£"’“t“”ép’{ (93b)
2 2k
12
(D (272) (7) G~ #totu < g (93¢)
8 n\2/n\ [12\* [/ 6

a1 =) (= d
" \léu,v % <<k> <2/€) <T> <p’1’)> (930

Thus, the parameter can be set as

Note that

I

—
25
s |€°
<
5}
0]
/
N
> 3
~__

[\v]
N
&3
Nl
N7

()
e (') () (2)
e (06 () ()

In regard to the parameter sy, observe

oo (VO )
AEE(OTE) e

Then, from the above discussion, with high probability, ||(u — v) — ha,s(u, v)||, is upper bounded as follows.

IN

[(a=v) = ha.s(u,v)ll,

luv 1 avtuy | 201/ 2kly v
<ho Ty LG ) 4 Sty 20 :
2 m Ouv m m
1 v)fuv 1 3nluvtuy = 214/ 2klu~
<li- fn( + Suv)fu, dgn-1 (u,v) + uvtuy | n ;
2 s Ou,v m m
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3luvtuy 20/ 2kl v
:‘1_(1+8u,v)\/fﬁ dgn—1 (u,V)—|— Nlu,vlu, N 77\/—7
27 m o
V2 Snluvtuy 277/ 2Kl
= 1—(1+su,v)\/f_7T dgn1 (u,v) + Nuvluy | ny/2kluy
2 7 m -
3luvtuy 20/ 2klyy
=11—= (14 suv)|dsn—1 (u,v) + Nlu,vlu, N 77\/%
m m
3nluvtuy | 20\/2kluy
= Suvdsn—1 (0, v) + N, vlu, 77\/—11,
m m
2 2k
= 2/ 2l v
< Zhrds—l(u,v)log n 6 2 +3n£u7vtuv 0/ 2klay
" k T P m m
3mdsn-1 (u,v) n\? 6\ (2 12 | dsns (u,v) n\2(n\ (12\* [ 6
<\ T log > z 12 \dsns (V) 12 B
m k T p/1 \/g m k 2% . p,l,

2k 2
+2m/ — - —Ouyv
m T

e (1) (9)" (3 e () (2 (2)” ()
+4n % %911”
< et (3 (2)" (3)) e o (' (2) (2)” ()
N L
3 m
et () ()7 () o () () (2)
N 4\2577 . \/W
<o (1) () ()" (7)) oo = () () (2)” ()
N 4\?77 . \/m
e (0 () (2) () o = (0 () () )

4\/_377 kdsn—l (u, V)
+ .
3 m
1 3

> Setp/1 :Zp17 plllzzpl

n

S\/ﬁ-\ldsan(u’v)log«k

n

2k

)

12

T

)(

)

8

P1
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+ 4\{)’@,¢d3n;n(u,v) log ((Z)2<2,Z> (1T_2)2k

_ <\/§+4\/§+4\g§> dsn—;iu,v) log< n>2<n)

Tdgn-1 (1, V)

1+ 16\/5) 5d5n71b(u,v)

= 3% <1 + @) ddgn—1 (u,v)
In short, the above step yields

(0 =v) = hau(w, V)|, <bi1y/ddsn—1 (u,v) (99)
where the universal constant is set as

by = 37” <1 + %) . (100)

Then, the lemma’s universal result follows—with probability at least 1 — pq,

(0 =v) = haws(u, V), < b1y/3dsn s (w,v) (101)
uniformly for all (u,v) € C; X C;, dsn-1 (u,v) > 7, and all J C [n], |J| < 2k. |

A.2 “Small distances” regime

In contrast to the regime in Section A.l, the regime under consideration in this section looks at points in
the 7-ball around each point in the 7-net, C,. Lemma A.4 states the formal result.

Lemma A.4. Let by > 0 be a universal constant. Fiz §, ps € (0,1), and let T = S Uniformly with probability

b
at least 1 — pa,

06— ) — hag G, W), < 623 (102)
for allu € C;, for all x € B.(u)NS"~ ' NXY, and for all J C [n], |J| < 2k.

Proof (Lemma A.J). To motivate the approach taken in this proof, consider an arbitrary point u € C.
of the 7-net and any x € B,(u) N S"~! N X7, Using the triangle inequality and then the membership of
x € B;(u) N 8"~ ! N X¢—which implies ||x — ul|, < 7—it follows that

[(x =) = has (5wl < [lx—ully + lhas(xw)lly <7+ [[ha; s (6w, (103)
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Hence, the primary task in proving the lemma is controlling the rightmost term in (103), ||ha.s(x, u)||2.

Towards this, consider the set of k-sparse, real-valued unit vectors, B,(u) N S"~' N Xp C S 1n X7,
within distance-7 of u, and let Y, (u) = {sign(Aw) : w € B,(u) N S""! N ¥7}. Construct a net D,(u) C
B-(u) NS"~ 1 NX? over the set of points B, (u) NS"~! N X} such that for every distinct y € Y- (u), the net
D-(u) contains exactly one point w € D, (u) such that sign(Aw) = y. By this construction of D, (u), for any
x € B, (u)NS" 1N}, there exits w € D, (u) such that sign(Aw) = sign(Ax). Noticing that the dependency
of ha,s(x,u) on x is limited to the its dependence on sign(Ax), it follows that ha.s(x,u) = ha,s(w,u).
Hence, it suffices to upper bound ||ha.;(W,u)|2 uniformly over every w € D.(u). Next, such a uniform
bound is derived.

Fix any w € D;(u). As in the proof of Lemma A.3, the function ha.s can be expressed using orthogonal
projections as

w—u w—u w4+ u w4+ Vv
hA;J(Wau) = 77hA;J(u7v) + 7hA§J(W7u) T +gA§J(W7u)
| u||2

[w—ull, [w—ul, lw+ul, [w+
(104)
and by the triangle inequality
[hass(w,a)ll, (105a)
w—u w—u X4+u W+ Vv
= ||[{ ———, ha.s(u, v)> + < yhass(w, u)> + ga.7(W,u) (105b)
’<||W—U||2 HW—Ullz |w +ull,’ [w +ulf, 2
w—u w+u w4V
< [(romi o)) | |t e ) | o ()
’<||W—u||2 [w— u||2 2 [w+u [w +ully [, 2
(105¢)
w—u w+u
(ot st | (o st )|+ g ) (1054)
<||W_u||2 ||W+uH2 2

Recall the concentration inequalities provided in Lemma A.1.

w—u T by u dgn-1 (W, u)
“«wﬂ%h”ww ﬁ%/ew

Ew,utw,u

_1 2
Rw,u =r, Lw,u = éw,u) < 2e 2bwoulw,u

m
(106)
;%<K_Xi£_ hAKWu»‘z_;_*—Rmuanmuzaw)<2eéwﬁ;u (107)
lw+u,’ m
1 2kl lo utw
T (H—QA;J(W,U) u + ,ulw,u Ryu=rLyu= [w)u> < 2~ o uty o (108)
n 2 m m

where R v and Ly, are random variables defined as Rw u = (Ri;w,u, - - - s Rmyw,u) = % (sign(Aw) — sign(Au))
and Lyw,u = [[Rw,ully, and r € {=1,0,1}™, w4 € [m]. Eq. (106) can be replaced by

Pr w—u 7 lhA~J(W, ) > E Uy dsn—1 (W, 1) n Uy ulw.u
[w—=ul,"n ™ 2 m Ow,u m
- 1 Ly Loy utw
— Pr( {2 has(wou)) > Ly Swulwa
|lw—uly, n ™ 2 m m

- 1 w,u
— Pr (<Lu,—hA;J(W,u)> > <\/f+tw7u) é_’
[lw —ull,"n 2 m

Due to the conditioning in the above concentration bounds, we will need to have a handle on the random
variable Lw u = [[Rw,ull,- Note that the random variable R;.w u, @ € [m], takes a nonzero value precisely

1 2
— 54 t
Rw,u =T, Lw,u = 6w,u> <e zwWuiwu

(109a)

Rw,u =T, Lw,u = fw,u) <e bw, utw "
(109b)

1 2
—s/ t
Rw,u =r, Lw,u = éw,u) <e 2"Wwou

(109¢)
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when sign((w, A®)) # sign((u, A®¥)). However, because dgn—1 (w,u) < 7, this sign difference can only
occur for the i*" points AD e A i€ [m], whose angular distance from u is in the range [§ — 3,5 + ],

2
random variable Mg, = [{A") € A Oy s €[5 — 5.5+ 5]} By Lemma A 2,

where 8 = arccos (1 — ﬁ) is the angular distance associated with the distance 7. In light of this, define the

2
E [Mpu] = —pm (110)
and for s € (0,1),
2 2 g
Pr{Mgyw>(1+s)=pm | <e 3= (111a)
T
— Pr (M@u > —ﬁm) < emahm (111b)
— Pr <M3u> —ﬁm) <e s (111c)
4 — 2 rm
— Pr{Mgu> 3™m <e 3w, (111d)

It follows that with probability at least 1—e ™37 7™, the size of the net D, (u) does not exceed | D, (u)| < 237™.
Later, this observation will be used to union bound over D, (u).

This completes the necessary preparation for deriving a uniform bound on ||ha.;(w,u)|l2. Let us first
summarize the relevant concentration inequalities, which are

- 1 w,u
Pr (<Lu, —hA;J(W,u)> > (\/E‘Ftw,u) é_
||W_u||2 n 2 m

1 lrwutw
PY(KLH,_;LA;J(W,H)N > bwutwa
[w+ul,’ 7 m

Rw,u =r, Lw,u = éw,u) < eiéew’ut?ﬂ’“ (112)

Rwu=r1Lyu= éwm) < 2e 3wt (113)

2 2k€w-u éw ulw,u
> — + ——
2 m m

Rw,u =r, Lw,u = 6w,u> < 26_%&"’“1&‘2”’“ (114)

4
Pr (M@u > ng) < eI (115)

To obtain a uniform result, a union bound can be taken over all u € C,, all w € D, (u), and all J C [n],
|J| < 2k, to upper bound the probability that the uniform result fails to occur. For each pair w,u, the
parameter ty 4 should be selected with consideration for this probability of failure so that it does not exceed

p2. Let
k k
/ n 6 n 2k —L1m n n 24 —2rm
= — — 2 ™ = — JE— 37 . 11

Then, the lemma’s uniform result fails to hold with probability not exceeding ps as long as

n n 24 k 4 1 2
() ()2 st =

k
1o 42 n n 24 4., O
wouleu > == i 117b
“ - </€> <2/€> <T> O (1170)

— eéfw,utzv,u > e%Tm (117C)
1 8
— _fw ut%v u > —tm (117d)
8 ’ 3
64 8
Y L AL (117¢)



Hence, tw,u can be set as small as
8 T™m
twu = N

Thus, with probability at least 1 — po, the following holds.

(118)

%||hA;J(W,u)|2§‘<g,%hA;J(W,u)>‘+'<L—Fu ~hau (W, u)>'+”9A;J(Wau)|2 (1192)

[w —ull, [w +ull,’
§<\/f+tw_u>£’ 4 bvatwu 2 o bwbw, (119b)
2 ’ m m m m
gw u 2 2kéwu éw utw u
= \/E LS — 33— (119¢)
2 m m m
Tlwu 2+/2klwu b u 8 ™
_ T tw, ’ gowu © 119d
\/; m + m * m \/g gw,u ( )
/. 21/2kl v .
— \/E o UL gV/3 . W (119e)
2 m m m

Note that the random variable Ly ,, counts the number of sign differences between sign(Aw) and sign(Au),
which cannot exceed Mg , because Oy n < 8. Earlier, it was argued that with probability at least 1 —e™ 3T
the random variable Mg ,, takes a value no larger than Mg § s7m, and therefore, the value taken by the
random variable Ly v is bounded by Ly u < Mgy S sTm, 1mply1ng that

4
Applying (120) to (119¢), the bound becomes
1 lou 2y 2Klw I
— hass(w,a)], < \/E 2 4 L VR . (121a)
n 2 m m m
4 4
g\/z.—7+—\/67+8\/§~r (121b)
2 3 3
4 4
< \/g 37 + —\/_T +8V3r (121c)
2v/2
_ 2/, f 48V (121d)
- <2V327T 4‘[ +8\/—> (121e)

Then, substituting n = /27 yields
2v/2 2v/2 4 8v3
lhass(w,a)l, < < 37T \/_—1—8\/_) < L \/_—1—8\/_) Vorr = <_7T_|_ 37T+8~/67T>T

3 3
(122)
Therefore, with probability at least 1 — pa, uniformly for every u € C, and each w € D, (u),
4 8v3 4 8v3 0
has (w,w)ll, < <§ + =3 Ty 8\/67r> r= <§ + =3 U 8\/67r> - (123)

As previously discussed, for any given u € C, and x € B,(u)NS" 1 N7, there exists w € D, (u) such that
sign(Aw) = sign(Ax), which implies that ha,;(x,u) = ha,;(w,u). It follows that

||hA;J<x,u>|2—|hA;J<w7u>“2s(4; 3V 8\/_> (124)
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Combining (124) with Eq. (103),

¢ = ) — haw ()l < 1% — ully + [haw (o), < 7+ [haw (3wl (125)
§%+<4§+8\/3_” 8\/_> <+4; 8v/3m 8\/_> (125b)

In short, uniformly with probability at least 1 — pa, for all u € C, and each x € B,(u) NS"~ ! N X7
[(x —u) = has(x,u), < b2d (126)

where the universal constant by > 0 is set to

by = 1 (1 + %ﬁ ;8 V;’” + 8\/67r> . (127)

b

A.3 Combining the regimes to prove Theorem 3.3

Using Lemmas A.3 and A.4, Theorem 3.3 can now be established with a direct argument.

Proof (Theorem 3.3). Fix p1,p2 € (0,1) such that p; + pa = p. With the universal constant a = 16, setting
p1 = p2 = & suffices. Let x,y € S"~' N} be an arbitrary pair of k-sparse unit vectors. Suppose u,v € C;
are the closest points to x,y, respectively, subject to supp(u) = supp(x) and supp(v) = supp(y). Formally,

u = arg min lx —u'l|, (128)
u’eC,:
supp(u’)=supp(x)
v = arg min ly = vl (129)
v’ec

-

supp(v’)=supp(y)

Note that the requirement supp(u) = supp(x) and supp(v) = supp(y) is possible due to the design of the
7-net C, as specified at the beginning of Section A. Observe

(x—y) — ha(x, y) (130a)
=(x-y)— \/_ AT (5|gn (Ax) — sign (Ay)) (130b)
=(u-— v) +x—u)+(v-y) - \/_ AT. (S|gn (Au) — sign (Av)) (130c)

- \/_ AT (SIgn (AX) — sign (Au)) — \/_ AT (SIgn (Av) —sign (Ay))
—(u-v)- \/_ AT <s.gn (Ax) — sign (Au)) (130d)
+(x—u) - \/_ AT L (sign (Au) - sign (Av))
+(v-y) - \/%EAT : % (sign (Av) —sign (Ay))
=u-v)—ha(u,v)+ (x—u)—ha(x,u)+ (v-y) - ha(v,y) (130e)
Write Jy = J Usupp(x) and J, = J Usupp(y), where |Jx|, |Jy| < 2k. Then,

(X - y) - hA;J(X7 Y) = (X - Y) - 7—supp(x)Usupp(y)UJ (hA (Xu y)) (1318“>
= (u - V) - ,Tsupp(x)Usupp(y)UJ (hA(uv V)) (131b)
=+ (X - u) - lTsupp(x)Usupp(y)UJ (hA (Xa u))
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+ (v = ¥) = Teupp(x)usupp(y)us (ha(v,y))
(u V) Teupp(u)Usupp(v)us (ha(a, v)) (131c)
Teupp(x)Usupp(u)uy, (ha(x, 1))
Tsupp(v)Usupp(y)UJx (RA(V,Y))
= (u - V) has(u,v) + (x —u) = hay, (x,0) + (V= y) — hay(viy)  (131d)

The norm of (131) is then bounded by the triangle inequality.

x - >—hA-J<x v, (1320)
= [[(u = v) = hass (0, ¥) + (= 1) — b, (6 0) + (v~ y) ~ hac (v ¥)]l, (132b)
< lu - > — ha (V) + [ = w) ~ hag, Gow)l, + (v —y) ~ ha vy, (1820)

Suppose dgn—1 (u,v) < 7. Then, by Lemma A .4,

[(x —y) = ha.s(x,¥)l, (133a)
<[(a=v) = has(w, )]y + |[(x = w) = ha,y, (x,0) ||, + (v = ¥) = han (v, y)ll, (133b)
< 3b26 (133c)

(133d)

< byy/ddgn-1 (u,v) + 3b20 133d

uniformly with probability at least 1 — p > 1 — p. On the other hand, if dgn-1 (u,v) > 7, then by Lemmas
A.3 and A .4,

[(x—y) = has(x¥)l, (134a)
< (a=v) = hay(u,v)l, +[|(x =) = hay, (x|, + (v = ¥) = hayr (v, ¥l (134b)
< b1y/ddgn—1 (0, V) 4 bad + bad (134c¢)
= b1\/ddsn—1 (u,v) + 2b5 (134d)
< byy/6dgn-1 (0, V) + 3bod (134e)

uniformly with probability at least 1 — p; — po = 1 — p. Therefore, with probability at least 1 — p, for all
x,y €SI NEP and all J C [n], |J] <k,

[(x=y) = has(x,y)], < c1V/ddsn-1 (1,v) + c26 (135)

where ¢; = b; = ‘/BT’T (1 + %), co = 3by = % (1 + 4?7’ + %37 + 8\/671’), and b 2 379.1038, as specified in

Eq. (3). Succinctly, the measurement matrix A satisfies the (k,n,d, ¢1, c2)-RAIC with probability at least
1—p. |

B Proofs of the concentration inequalities, Lemmas A.1 and A.2

B.1 Orthogonal projections: proof of Lemma A.1

This section proves a slightly more general form of the three concentration inequalities in Lemma A.1, stated
in Lemmas B.1-B.3. It is easy to see that Lemma A.1 is a direct corollary.

Lemma B.1. Let {,t > 0 and r € {—1,0,1}™ such that |r||, = £. Fiz an ordered pair of real-valued unit

vectors, (u,v) € S"1 x 8"~1. Define the random variable Ly = [Ru,vlly, and suppose Ryy = r and
Ly~ = L. Then, the random variable Xy v = <||1:1—;vv||7 Zﬁl Z(i)Ri;u7v> conditioned on Ryv =1,Lyy =4
2

18 concentrated around its mean such that

Pr (|Xu7v —E[Xuv|Luv = 1| > ‘Ruyv =1, Lyy = z) < 9em 3 (136)
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Lemma B.2. Let {,t > 0 and r € {—1,0,1}" such that ||r||, = £. Fiz an ordered pair of real-valued unit

vectors, (u,v) € 8"~ x 8"~ Define the random variable Ly = |Ruv||,, and suppose Ry = r and
Ly~ = (. Then, the random variable Xy = ( —2Y— S Z(Z-)Ri.u v ) conditioned on Ruyv =1,Lyy =/
; ; Tutvl,? 2wi=1 u, ; :

is concentrated around zero such that

Pr (|Xu7v| > 1t ‘Ru_,v =1, Lyy = é) < e 3, (137)
Lemma B.3. Letd,(,t > 0. Fiz an ordered pair of k-sparse, real-valued unit vectors, (u,v) € (8"~! NX7) x
(8"1NXY), and let J C [n] with |J| < d. Define the random variables Y&)\, = Z(i)—<| u—v Z(i)> u—v

[u—v]’ Tu—vll,
utv (%) utv _ m (1) p.
<||u-|—v|\2 2 > [utv],’ XU7V - HT] (Zi:l Yu,vRZ;U-,V)
Ly~ ={. Then,

, and Lyy = [[Ruylly, and suppose Ry v =1 and
2

Pr(Xuw = (V2k+ V) Vi+ @t ]Ru,v =1, Luy = £) < 2¢7 (138)

Before proving the lemma (see Appendix B.1.2), several intermediate results are stated and proved in
Appendix B.1.1 to facilitate the proof.

B.1.1 The distributions of orthogonal projections of i.i.d. standard normal vectors

Lemma B.4. Fir an ordered pair of real-valued vectors, (u,v) € S"~! x 8"~ of unit norm. Let Z ~
N(0,1,,xr) be a standard normal random vector, and let R be the (discrete) random wvariable taking values
in {—1,0,1} and given by Ry~ = 3 (sign((u, Z)) —sign((v,Z))). Define the map o : R — R by a(z) =

d? ) . ) .
T tan (9“7") =z 4—_%. Then, the density function fxr : R — Rxo for the random wvariable

Xuv = < 4 ,Z> Ry v conditioned on R # 0 is given by

lu—=vll,

x [2_—=z2 1 ry=al@) __i ,
2 " >
P (@7 #0) = 4PV 7 T TR @ Ay Fw 20 (139)
’ ’ 0, if £ < 0.
Moreover, in expectation,
mTdgn—1 (U, v
E(Xuyv | Ruv #0) = \/;73 91 (u,v) (140)

Proof (Lemma B.J). Before deriving the density function of Xuy, u,v € S"71, let us show that for
u,v,u’,v/ € §"!, such that Oy = 0, s, the pair of random variables (Xuv | Ruy = 0) and (X, |
Ry v+ = 0) follow the same distribution, as do the pair (Xyy | Ruyv # 0) and (X s | Ry # 0). This
willrsimplify the characterization of the distribution of X, v by allowing u,v to be chosen non-arbitrarily.
Conditioned on Ry v = Ry v = 0, Xu v = X, » = 0 with probability 1. Otherwise, when Ry v, R, # 0,
write ¢ = |Ju — v|l2 = ||[u’ — v’||2, and observe

Xuy = <ﬁ z> Ruw (141a)
- % (0, Z) Ruy — (v, Z) Ruy) (141D)
=~ (0. Z)sign((u.2)) ~ (v, Z)(~sign((v. 2))) (1410)
=~ (0. Z)sign((u.2)) + (v, Z)sign((v.2))) (141d)
= (. + [ 2)) (141¢)
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Likewise,
Xy v = % (0, Z)sign((u’, Z)) + (v, Z)sign((v", Z))) = é (Iu', Z)[ + [(v', Z)]) (142)

Then, letting

1 () o ") (0) (i 7)o

notice that X, v and X, ., conditioned on Ry v, Ry # 0, both follow the same distribution as % (Y] + 1Y7']).
Hence, the claim is proved.

We are ready to derive Lemma B.4. To simplify notation, we will drop the subscript of u, v on the random
variables, writing X = Xyv,R = Ruv. Let Z = (Z1,...,Z,) ~ N(0,1,x,). For an arbitrary choice of
6 € [0,27), fix u,v € 8”71 such that 6, v = 0 and u = (u1,ua,...,up), v = (—uq,uz,...,u,) with ug > 0,
which is made possible by the claim argued above. This choice will now be shown to induce the distribution
of (|Z1] | R # 0) on the random variable (X | R # 0). First, observe that

u—Vv

U7V _1,0,...,0) (144)
[[u—vl,
and thus
X = <¥,Z>R:Z1R. (145)
[u— vl

Moreover, conditioned on R # 0, by its definition, R takes the value

R = sign (<l z>) — sign (Z1). (146)

[a—vll,’

It follows that

0= ((

u—Vv

|u—v||2’Z>R'R7EO) = (Z\R| R#0) = (Zisign (Z1) | R#0) = (|1Z1] | R #0),
(147)

as claimed.

Next, the density function fx gz : R — Rxq of the conditioned random variable (X | R # 0) is found
by deriving the equivalent density function f|z,||rxo0 : R — R>0. By Bayes’ rule, this density function can
be written as

fiz,)@)prjjz,(r #0 | x)
pr(r #0) ’
which expresses f|z,|| g0 using three more manageable density (mass) functions. Beginning with pr(r # 0),

let the random variable I be the indicator of the event R # 0, formally, I = 1(R # 0). Observing the
following biconditionals

fizr(x | r#0) =

(148)

R#0 < L (sign((0.2)) — sign((v.2))) £0 < (sign ((w.Z) — sign ((v.2))) 0, (149)
it follows that
I=1(R#0) (150a)
=1 gsien (u.2)) - sign (v, 2)) 2 0) (150b)
1 = 1(sign (1, %)) — sign (v, Z)) #0) (150¢)

are equivalent definitions for the random variable I. Then, the mass associated with R # 0 is pr(r # 0) =

Pr(I=1)= 9‘;’", where the last equality follows from Lemma B.5, stated below and proved in Appendix D.
(see the proof of Lemma D.2).
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Lemma B.5. Fiz any pair of real-valued vectors u,v € R"™, and suppose Z ~ N(0,1,x,) is a standard
normal vector with i.i.d. entries. Define the indicator random variable I = 1(sign({u, Z)) — sign({v,Z)) # 0).
Then,

Pr(/ =1)=—=. (151)
In short, the above argument yields pr(r # 0) =Pr(I = 1) = 9“7"’.

Next, the density function for the random variable | Z; |, which is the absolute value of the standard normal
random variable Z7, is the well-known folded standard normal distribution and takes the form

fz, (=) + fz,(x), ifx>0,

= 152

fiz,)(x) {0, G0 (152)

LS5 LT ita>0

=1 Ve T (153)
0, if z < 0.
1 _a? 1 _z2 if >0
— 2 —_— 2

_{me TRt T =t (154)
0, if x < 0.
2'%6_%, if x >0,

= 8 , (155)
0, if x < 0.
\/5 5 itz >0
— 2

= qVEe T T (156)
0, if x < 0.

In summary,

ge_é, if z >0,
fiz, () = \/: . (157)
0, if x < 0.

Lastly, consider the mass function of (R | |Z1]), which need only be evaluated when R # 0. The next
argument will show that

1 y=a(z) 2
pR||Z1\(T3’éO|x):\/—2—7T ( )6 T dy (158)
y=—a(z

where a: R — R is as defined in the lemma (and repeated here for convenience):

ou,v d?gn—l (u7 V)

Notice that given |Z1| =, x > 0, the event R # 0 occurs precisely when

u—Vv eu,v eu,v
<m, Z> S [—xtan (T) ,xtan (T)] (160)

) can be expressed as follows by using the half-angle trigonometric formula (applied in

Ouv

2

where tan (

(161a)):

Ouv) |1 —cos(Ouv)
tan (T) =\ T5cos (Buv) (161a)

d2, _,(u,v)
1 — cos (arccos (1 — S"f))
= () (161b)
1+ cos (arccos (1 — S"f))
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(161c)

2
- st T (161d)

_Mz) (161e)

pRO‘¢(U—-Pr<<T5;;$ﬁ;,Z> c {—xtmn(ggx),xtml<egv>}) (162a)
::Pr(<T5%%3E,Z>€’}wggﬁyxgiﬂ]> (162b)

=Pr (<ﬁ z> € [—a(x),a(:v)]) (162c)

Thus,

But Z is invariant under inner products with unit vectors, and hence, the distribution of < = H > follows
that of <ﬁ, > ~ N(0,1). Therefore,
y= a(iﬂ)
0)= P Y el- , 7 d , 163
palr£0) = Pr (e la@.a@) = o= [y (163)
as claimed.
Combining the above derivations, the density function of |Z1| | R # 0 is obtained via (148):
2 - fu a(z) v d
fiz,|(@)PR)jz,|(r #0 | 2) =€ 7 271' ——a(@® * %
0) = = : 164
fizyr(@ | #0) pr(r £0) o (164a)
T 2 22 1 y:a(z) y2
- —e 2 . — 677d 164b
Ouv V 7 V2T /y_a(x) Y ( )

if >0, and fz,g(z | 7 # 0) if x < 0, where the support of f|z, || is restricted to the interval [0, c0) due
the the latter case in (152).

The remaining task is finding the expectation of (X | R # 0) to verify (140), which is done by a direct
calculation using the density function, (139), that was just proved:

BX|[R20)= [ afizn(e | r#0)ds (1650)
=t 2 . 1 y=a(x) 2
= lim T e —/ e 7 dydx (165b)
t—00 Jp—o eu,V ™ 2T y=—a(x)
7w [2dgn-(u,v)
Vo (165¢)
_ [T s (Wy) (165d)
V2 Ouy
as claimed. |

Lemma B.6. Fir an ordered pair of real-valued vectors, (u,v) € S"~! x 8"~ of unit norm. Let Z ~
N(0,1,,xr) be a standard normal random vector, and let Ry~ be a discrete random variable given by Ry =
1 (sign((u, Z)) —sign((v,Z))), which takes values in {—1,0,1}. Then, the distribution of the random variable

Yov = Hquv” ,Z> Ry conditioned on Ry # 0 is standard normal, i.e., (Yuv | Ruv # 0) ~ N(0,1).
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Proof (Lemma B.6). Analogously to the claim in the proof of Lemma B.4, it can be shown that for
u,v,u’, v/ € 8", such that 6y, = 0, +, the random variables (Yu,y | Ruy = 0) and (Y, o+ | Ry o+ = 0)
follow the same distribution, as do (Yuv | Ruv # 0) and (Y, s | Ry # 0). We will omit the formal
argument since it is nearly identical to that provided in the proof of Lemma B.4.

Fix any 6 € [0,27), and let u = (u1,...,u,) € "1 and take v = (u1, —ua..., —uy,) such that u; > 0

and 60y, = 0. This construction yields

UtY 0,0 (166)
[u+vl,

as well as
u—v o (0,ug,...u,) (167)

We will again drop the subscript u, v from the random variables for simplicity and denote ¥ = Y, v, R =
Ry v. From (166), it follows that

X = <& z> —7 (168)

[u+vlly’

On the other hand, observe that the event R # 0 implies that sign({u, Z)) # sign({v,Z)) and hence that
sign({u, Z)) = —sign({v,Z)). Then,

= sign (sign ({(u, Z)) — sign (
= sign (sign ((u, Z)) + sign (
= sign ((u — v, Z))

But recall from (167) that u — v o (0, ug, ... u,), and thus, given R # 0,
R = sign ((u — v, Z)) = sign (0, uz, .., un), Z)) (170)

which implies conditional independence of (R | R # 0) and (Z1 | R# 0) = (X | R # 0). Then, (Y | R #
0)=(XR|R#0)=(Z1tR| R#0),and so (Y | R# 0) (Y | R # 0) follows the same distribution as
either the random variable Z’ or —Z’, where Z’ ~ N(0,1). But it is well-known that the standard normal
random variable Z' and its negation —Z’ have the same distribution, implying that (Y | R # 0) ~ N (0, 1),
as claimed. n

Lemma B.7. Fiz an ordered pair of real-valued unit vectors, (u,v) € 8"t x S"~1 and let w € S"71 N
span ({u— v,u+ v})" be any real-valued unit vector in the orthogonal complement of span ({u — v, u+v}).
Let Z ~ N(0,1,,%,) be a standard normal random vector, let Y be the random vector given by

Y:Z—< iy z> iy < utv z> utv (171)

lu—=vly/ flu=vly  \u+vl, "/ a+v],’

and let R be the (discrete) random variable taking values in {—1,0,1} and given by R =  (sign({u, Z)) — sign((v, Z))).
Then, the random vector X = (w,Y)R conditioned on R # 0 is standard normal, i.e., (X | R # 0) ~ N(0,1).

Proof (Lemma B.7). As in the previous two lemmas, the ordered pair of unit vectors (u,v) € S*~! x §"~!
can be chosen nonarbitrarily due to the rotational invariance of the standard normal distribution and the
argument laid out in the proof of Lemma B.4. For the purposes of this proof, we will select u and v as
follows. For any pair of constants p, g, subject to p>+¢? = 1, set u = (p, ¢,0,...,0) and v = (—p, q,0,...,0).
Note that

[ully = vl =1 (172)
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u—Vv

u—v=(2p,0,...,0), — =(1,0,...,0)=¢e (173)

[u—vll,

u-+v

utv=0(0,2g...,0), TV _(0,1,...,0)=es (174)

lu+ v,
where e; = (1,0,...,0),e; = (0,1,...,0) € R™ are the first and second standard basis vectors or R”. Fix

any w € 8" Nspan ({u— v,u+v})". Then,
Y:Z—< e ,z> i —< uty ,z> uty (175)
a=vll," / lla=vly  \lu+vly,”/ flutvi,

=7 — Z1e1 — ZQGQ (176)
= (0507237"'3Zn) (177)
Notice that span ({u —v,u+v}) = span({e;,ez}) and span ({u —v cu+vH© =span({e;,e})" = {x €
R™ : 21 = 22 = 0}. Then, writing Z = (Zs,...,Z,) and W = (ws,...,wy), the random variable (w,Y)
follows the same distribution as (W,Z) = <”VE:,"H2,Z> with ||W|2 = 1. But it is well-known that (W,Z) ~

N(0,1).
Recall the definition of the random variable R = % (sign((u, Z))—sign(({v, Z))). Because u, v € span ({u — v
the random variable R is entirely dependent on the projection of Z onto span ({u — v,u+ v}) and hence

independent of its projection onto span ({u—v,u+ v})L. More formally,
1
R =1 (sign((u.2)) — sign((v.2))) (175a)
1, . .
=3 (sign(pZy + qZ2) — sign(—pZ1 + qZ>)) (178b)

and thus, R depends only on the random variables Z; and Z5. However, it was already noted that
span ({u—v,u+v})" = {x € R" : #; = z, = 0}, which implies that the projection ¥ depend only on

a (possibly 1mproper) subset of {Z;};en)\{1,2;- The independence of Y and R follows. Then, the condi-
tioned random variable (X | R # 0) = (<W Y)R | R # 0) is equivalent to either (w, Y)R or —(w,Y)R, both
of which follow the standard normal distribution. Hence, (X | R # 0) ~ N(0,1). |

B.1.2 Concentration inequalities for orthogonal projections of normal vectors

We are ready to prove Lemmas B.1-B.3. Note that the subscripts u,v are dropped from some random
variables for ease of notation.

Proof (Lemma B.1). Using the linearity of inner products, the random variable X can be written as

m

(g Een) S-S o

i=1

where the random variables X; = <Hu T,

Z(l)Ri;u,v>, i € [m], are i.i.d. and have (conditional) dis-
tributions formally defined in Lemma B.4. The concentration inequality will follow from (i) controlling

the MGF, 9x,_u|R, .0, Of each zero-mean ii.d. random variable (X; — p | Riuyv # 0), such that

VX, —p|Rimav0(8) < ¢. The negation of this random variable, (—=X; + g | Riuv # 0), is handled like-
wise. (i) Then, the MGFs of (X —E [X] | [|[Ru,vl,) and (=X +E[X] | [|Ru,v||,) follow from step (i) and the
iid. property of {X}icpm. (iii) Lastly, two Chernoff bounds using the MGFs found in step (ii) will yield
the lemma’s two-sided bound. in (136).

Beginning with the derivation of the MGF of the i.i.d. random variables, as outlined in step (i), fix any
i € [m] such that R;.u v # 0. Then, the density function of (X; | Riu,v # 0) is given in Eq. (139) of Lemma
B.4:

L\/267% L [y=al@) efédy ifx>0
IXi Ry (@ [ 7 #0) = Puv V7 Var Jy=—alo) ’ N (180)
’ 0, if z <O.

,u+v}),



with

(X |Rzuv7go) \/;dsnolui(:lv), (181)

as specified in (140) of Lemma B.4. The MGF of (X; | Riuv # 0) at s > 0 is then bounded from above by

2

¢X1_N|Ri:u,v¢0(s) S 67 (182)
as derived next in (183).

VX —plRiav20(5) = E [ SR V#O))‘RZ uv 7 0} (183a)
—E [e s Riuy # o} (183b)
— ¢ MR [6 s X Ri;u,v 7& 0] (183C)
— e—su/ esmei‘Ri;u,v (LL' | r ?é O)dl' (183(31)

T=00 2 © 1 yfa(w) 2
_ efsu/ est . T 25 _/ e T dydx (183e)
=0 Ouy V 21 Jy=—a(a)
=00 y=a(z) 2
= 675#/ 65167% . —Tr 2 . —1 / ei%dyd'r (183f)
e uv V7T 21 Jy=—a(a)
z=00 (.2 2 1 y=a(z) y2
— e—su/ e ( 2 sm) . il . _/ e_Tdyd(E (183g)
=0 ou,v IV 2 y=—a(x)
T=00 z2—2sa 2 1 U:a(m) '-’42
— e—su/ D LI e _/ e 2 dydxr (183h)
=0 ou,v 77 2 y:—a(;ﬂ)
r=00 22 25245252 s 2
_ e_su/ g T2 % dyda (1831)
2=0 v V' Vor e —a(w)
T=00 2 22 25w 452 ™ 2 1
— e SH eZTe T 2z .— 4= 77d dx 183;j
/z_o buv VT V27 Jym o) g s
T=00 (2—8)2 T 2 1 Y= 0‘(95) 42
— 6*5# eze 2 — — e 2 dydx 183k
/z . Vs 7= y (183Kk)
2 T=0 w-9? o1 2 1 v= a(m)
— ez e SH e 2 = 'z d dx 1831
e [ e

Note that the function

N T S
q(s) = 6_5“/ e 2 . — /
( ) =0 V2T —a(z)

decreases monotonically w.r.t. s over the interval s € [0,00) (see Lemma B.8). Formally, this implies

y2 s
e~ zdydr =E [es(x_“)e_;} (183m)

séﬁ)aii)Q( s)=q(0)=1 (183n)

where the last equality follows from the fact that ¢(0) reduces to the evaluation of the density function
IX,|Ri.u OVer its entire support. Then, continuing (183a)-(1831) arrives at the desired bound, (182):

r=00 (o 5)2

2 r 21 e e
Oxpipols) = e [ e 2 [ Ry (s
#lRijuv =0 Ouv VT V21 Jy——a(a)

<eT 1 (183p)
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=e

Next, the MGF of the negated random variable, (—X; + p | Riuv 7 0) is upper bounded by

VX, 4 u| Ry #0(8) < €7

The derivation of (184) is similar to that above.

VX, + | Risu v #0(8) = E
E

|
[efs(Xi*#) ’Ri;u,v + 0}
m

2

o5 (= Xi+E(X; | Riu v #£0)) ’Ri;u,v 4 0]

=e**E [e_SXi Riuv # 0}
= es“/ efszfX”Ri:uyv(x | #£ 0)dx
=00 2 2 1 y=a(x) 2
= es“/ e —e T — 77dyd:v
=0 Ouv V 7 V2
=00 T [2 1 v “@> y2
= es“/ e e T - —/ e 7 dydx
=0 ou v ™ \/ a(z)

Il
o
»
=
—
L

me—(fw).i\ﬁ LS -
= 0 \/_7T :—a(;ﬂ)

2
e T dydx

=00 2ioan =a(z) 2
:es”/ em T —\/j —/ e 7 dydx
=0 0 2T a(z)

—su /
Again, the function

57
()765#/96 Ooe Gte? \/5
=0 9 ™

_ z42swts°—s% +25£+s - T \/5
(&
U \/27‘1’ y=

_ y= a(w)
e L / T dyd;v
Yy=

1 y=a(z) 42
77dyd:v

ou,v ™ 21w
<z+s)2 T \/? 1
V2 Jye —a@)

L2 w V/_- 1 j/ o
— T dydx
V2T Jy=—a(x)

y a(z)

- dydaz

2

y2 s
e  Tdydr =FE {675()(7“)67T

decreases monotonically w.r.t. s € [0,00) (see, again, Lemma B.8), and thus

max r(s)=r(0)=1

s€[0,00)

where, as before, the last equality holds because 7’(0) simply evaluates the density function fx,|r,.. .,

(185¢)

(185f)

(185g)

(185h)

(185i)

(185))

(185k)

(1851)

(185m)

(185n)

over its

entire support. Then, the desired bound in (184) can now be established by continuing from (185a)-(1851)

as follows.

o2
w—Xi-'rH‘Ri;u,v?éo(S) = 676‘9“/

22
2

IN

ez -1

C3
%

e

=00

x=0

y2
e 2 dydx

eyt x fT 1
eu,v Q \/% y=—a(x)
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Note that (182) and (184) holds likewise for every ¢ € [m]. This completes the first outline step.

The second task, outlined in (ii), is controlling the MGF's of the sums of i.i.d. random variables, (X —E[X] |
L =Y and (X +E[X] | L =¢). Writing pux = E[X | L = /], the MGF for the sum of i.i.d. random
variables, X = > (X; — p), conditioned on L = ¢ can then be bounded from above as follows.

VX —px||Ru fo=¢(8) = E {65“*”) ’L = 4 (186a)
—E [esﬂiﬂxi—w ‘L - 4 (186b)
=E {esZiesuppumu,vuo>(Xi‘“)} (186¢)
= H E [es(xi*“)] , ».- the random variables X;, i € [m] are independent

iesupp(||Ru,vllo)
(186d)
¢
=FE [es(xi*“)] , ».- the random variables X;, i € [m] are identically distributed
(186¢)
<ers* p by (182) (186¢)

Moreover, by an analogous argument, the MGF of the negated random variable (—X —E[-X] | L = ¢) =
(=X +E[X] | L ={) can be upper bounded. Notice that —X = — > (X; — p) = >, (=X, + ), which
allows the MGF of —X + E[X] conditioned on L = ¢ to be upper bounded by the following.

VX ppx | [Runfo—t(8) = E [es(—X+ux) ’L — 4 (187a)
—E [es T (=Xt ’L - 4 (187b)
=E [es Eiesuppumu,vHo)(*Xi*”)} (187¢)
= H E es(_X”“)} ) » . the random variables X;, ¢ € [m] are independent

i€supp([|Ru,v[lo)
(187d)
¢
=E [es(_xﬁ”)} ) » . the random variables X;, i € [m] are identically distributed
(187e)
<ex p by (184) (187f)

To summarize, this step, (ii), has shown

2

VX o [ Ry o= (8) < €27 (188)
152

VX[ R o=t () < €27 (189)

The aim in the final outlined step, (iii), is bounding X from each sides by a Chernoff bound and sub-
sequently union bounding to obtain the lemma’s two-sided result. The upper bound, derived first, will use
the MGF of (X —E[X] | L = ¢), while the lower bound will use the MGF of (—X + E[X] | L = ¢). In both

cases, the bounds will be shown to fail with probability not exceeding e~ 2%, For the upper bound,

Pr (X—E[X|L:€] > it ‘L:é) (190a)
—Pr (X—MX > it ‘L :e) (190b)
=Pr (eX_E[X‘LZZ] > et ‘L = ﬂ) (190c¢)
< Isn>lg e tst Xy L=e(8), » due to Bernstein (see, e.g., Vershynin (2018)) (190d)
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< mine “lstesls® g by Eq. (188) (190e)

— mine~t(*=%) (190f)
s>0

—i(st—=)

. . 2 . . . 2
A maximizer of st — % a minimizer of e The unique zero of 55t — % is at s = t (moreover,

g—;st - % < 0 and hence this is indeed a (global) maximum). Note addltlonally that setting s = ¢ ensures
that s € [0, 1], which was assumed in step (i). Then, continuing from above,

S

52
Pr (X—IE[X|L:€] > 4t ‘L:e) < ngge*f(“*ﬂ (190g)
()
=e 2/, » as argued above (190h)
< 3t (190i)

as desired. The derivation of the lower bound is nearly identical, as seen next.

Pr (X—IE[X|L:£] <t ‘L:K) (191a)
—Pr (—X+E[X|L:€] > 1t ‘L:é) (191b)
=Pr (—X—i—uX >t ’Lz() (191c¢)
—Pr (e—XHE[X‘L:f] > et ’L - z) (191d)
< rsn>151 et Xy in=e(8), » due to Bernstein (see, e.g., Vershynin (2018)) (191e)
< min e~tteats  p by Eq. (189) (191f)
ot (st-5)
=mine (191g)
—e(-%) C :
=e ) » the same minimization problem as (190f), (191h)
whose solution is at s =t (1911)
= 3l (191j)

Thus far, it has been shown that
Pr (X—E[X|L:£] > 0t ‘Lzﬁ) <3 (192)
Pr (X _E[X|L=1{] <t ’L - e) <e ¥ (193)

To complete the proof, (192) and (193) are combined by a union bound, yielding the lemma’s concentration
inequality,

Pr (|X—E[X|L:é]| > 1t ‘L:K) < 9637, (194)
m

Proof (Lemma B.2). As in the proof of Lemma B.4, let X; = <|\u+v|\ Z(l)Ri;u7v> for each i € [m], which

are i.i.d. with (conditional) distributions described in Lemma B.6. Then the random variable X can be
written as

m

u+v i . u+v
<||u+v|| ZZ zuv>—;<”u+v|| zuv> ZX (195)
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Recall from Lemma B.6 that for each i € [m], the random variable (X; | Ajuv # 0) is standard normal. It
follows

X=> Xi= >  (Xi|Apuy #0)~N(0,0° =10) (196)
=1 i€supp(Ruy,v)

where the distribution of X depends only on the number ¢ of random variables summed up but not the exact
subset supp(Ruy,v) C [n] (since the random variables X;, ¢ € [m], are identically distributed). Therefore,

N

+!

Pr(|X|>t|L=1() <2 7r. (197)
Taking ¢’ = ¢t, (197) implies
0242 1942
Pr(|X| > ¢t|L =) < 2e” 20 =272, (198)
Thus proved. |

Proof (Lemma B.3). By Lemma B.7, for each i € [m], Z¥ Ry Write J' = J N (supp(u) U supp(v)) and
J"” = J\ (supp(u) Usupp(v)). By the triangle inequality,

‘ T (Z Y(i)Ri;u,v> = ||T, (Z Y(i)Ri;u,v> + Ty (Z Y(i)Ri;u,v> (199a)
i=1 2 i=1 i=1 2
< T]’ (Z Y(i)Ri;u,v> + TJ” <Z Y(i)Ri;u,v> (199b)
i=1 2 i=1 2
< ,Tsupp(u)Usupp(v) <Z Y(i)Ri;u,v> T]“ (Z Y(i)Ri;u,v> (199C)
i=1 2 i=1 2

Let d' = |supp(u) U supp(v)| and V) = Vl(i), ce ijlQ ~ N(0,X(g_9)x(a—2)), i € [m], and suppose {b; €
R™} jca/—2) is an orthonormal basis over span ({u —v,u + v N {x € R" : supp(x) C supp(u) U supp(v)}
with YO = 597 %(b;, Y)b;. Due to Lemma B.7, (b;, Y®) ~ (0, 1).

7-supp (u)Usupp(v) (ZY i u,v) = Zﬁupp(u)Usupp(v) (Y(Z)Ri;u,v> (2003)
2 i=1 2
m d'—2
= Z Z (b;, YN)b (200b)
Rl u, v7£0 2
—2 m .
= Z b, > (b;,Y") (200¢)
R0 )
2y 2
—2d' -2 m )
j=1 Jl—l i=1:
Riju,v#0
2\ 2
d -2 m .
= > (b, YD) (200¢)
=1 i=1:
Ri;u,v?éo
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[
[N

~(3 Y v (200¢)
j=1 1=1:
Ri;u,vio
= Z 2 (200g)
R'Luv#O 2
~ ZV(“ (200h)
i 2

Then, by a standard Chernoff bound for standard normal random vectors (see, e.g., Corollary D.8 later in
the appendix),

Pr <| T <Z Y<i>Ri;u,v> > V2Kl + ét wvs Luy = e) (201)
=1 2
<Pr < 7-supp(u)usupp(v) <Z Y(i)Ri;u,v> > V2kl + ft uvu uv — f) (202)
i=1
Z .
=Pr< ZV“) > V2k( + Et Ruv, Luv :e) (203)
i=1
¢ _ ¢ _ 1
<Pr < ZV@ >E ZV(Z) + 50 Ruy, Luy = z) (204)
i=1 i=1 2
» due to Lemma D.9
14
< e sl » due to Corollary D.8, with the parameter set aso? = — (205)
m
On the other hand, observe,
| T (Z v Ri;u7v> -3 <e YR, v> (206a)
i=1 2 i=1jeJ” 9
=133 Y Riuve, (206b)
i=1jeJ )

Let d” = [J”| and W = (Wy,...,War) ~ N(0,Tgrxq7), i € [m]. Due to Lemma B.7, (| X, 5 Y, Risaves |2 |

Rin # 0) and [[W ||y, i € [m], share the same distribution. Then, by a standard Chernoff bound for
standard normal random vectors,

TN i 1
Pr ( T (Z Y(Z)Ri;u,v> >Vl + 50t/ Ruy, Luy = e) (207)

i=1
< Pr< T (ZY(“R@“N> >Vd'l+ et wvs Luv = e) (208)

=1
1
=Pr Z WO > Ve + 50t/ Ruyv, Luy = (209)
’L u, V#O 2
: ¢ N
< Pr ( z;ww >E z;vv(” + 5 Ruy, Luy = e) (210)
1= 2 1= 24
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» again due to Lemma D.9 (211)

<e st » again due to Corollary D.8, with the parameter set aso? = LQ (212)
m
Then, since
1 1
VERL + b+ VL + bt = (V2k + Vi) Vit at (213)
and
|T] (Z Yu)Ri;u,v) < ,Tsupp(u)Usupp(v) <Z Y(i)Ri;u,v> + T]” <Z Y(i)Ri;u,v> ) (214)
i=1 2 i=1 2 i=1 2
it follows from a union bound that
Pr< T, <ZY(“R@“7V> (\/ +f) VI+ 0t Ry v, Luy _e> (215a)
=1 2
< Pr ( T (Z Y(i)Ri;u,v> > V2k( + et Ruv, Luv = e) (215b)
i=1
+Pr< Ty (ZY@Ri;u,v) >Vl + et wvs L _e> (215¢)
i=1
— L2 ?
<278 (215d)
|

B.1.3 Proof of Lemma B.8

Lemma B.8. Let X be a random variable with a finite, positive mean p = E[X] and a density function f
of the form

f(x):{\/ge_zp( x), ifx >0, (216)

0, ifx <0,

= tan L] y2
where the image of the function p : R — R is given by p(x) = %\/%— y=rt (fz) e~ zdy for x € R. Define
B 2

y=—x tan
the functions ¢, : R — R by
s2
q(s) = XIEf [es(x_“)e_T} (217)
r(s) = XIEf [efs(xf“)efﬁ} (218)

for s € R. Then, q(s) and r(s) monotonically decrease with s over the interval s € [0, 00).

Proof (Lemma B.8). Let s € R, f,p,q,7 : R = R be satisfy the conditions of the lemma. Notice that ¢, r
can be expressed as

q(s):/z:“ esufme*%f(x)dx:/ \/7 ~5 () da (219)
T(S):/I_:_OO —s(z—p) ,— d:z:—/m OO\/je ~ e p(x)dx (220)
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The functions ¢, can be shown to (non-strictly) monotonically decrease with s over the interval s € [0, c0)

by verifying that their partial derivatives w.r.t. s are non-positive on this interval, which will be argued by

contradiction. First, suppose ¢(s) is not monotonically decreasing with s over all s > 0, such that there
2

exists s’ > 0 for which %q(s)L:s, > 0. Write p'(a,b) = btan( e~ Tdy, a < b € R, and notice that

9 \/E f tan
p'(a,b) < p'(0,b — a). Then, observe

0
221
S| (2210)
r=00 (e—5)? 5)2
= 3 / _S“e p(z)dx (221b)
s
=0 (@=2)?
_ 2 s - d 221
/" agﬁe E playie| 2210)
T=00 2 z—s)2
- /—0 (x—s—u)\/;e_sue_( - p(e)da (221d)
oo 2 (@=3")?
:/ (x—s —p)/=e e 2z p(x)dex (221e)
=0 m
' r=ee , 2 _(e—s)?
= (x—s"—p) —e e p(z)dx (221f)
2 u2

R u/ i / \/geé—z (p(u) + 29" (u, u + 5")) du (221h)

S“(/u__yu\/z_f(()+2p(uu+8))dU— /__S,\/je T +2p(uu+5))d>

(221i)
e (j/
—,u/ \/jeuT w) 4+ 2p' (u,u+ ")) du — / \/jeuT +2p(uu+s))d>
B U=0o0 2 u_ U=00 )
< S“(/ ur/—e= = (p(u) +2p' (u,u + 8")) du — / \/je E —|—2p(uu—|—s))d>,
T

(221k)

IS
E:Ia

Ze (p(u) + 29 (w,u + 8) du+/uoo \/;“2 w) + 2p' (u,u+ ")) du (221)

» the first integral in (221j) is nonpositive; the third is nonnegative

__‘S“</m(w VteQ w) +2p(0,8)) du — /m(va; & +2p@gﬂ)d> (2211)

»ats=s, — ()>Oby assumption

= _5“</ \/je = p(u)du + 2p/ (0, s') / \/je = du (221m)
—,u/ \/je T p(u)du — 2up’ (0, ' / \/je T ) (221n)
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=€

=€

—s' (/uu—oo wf(u)du + 2p'(0,s") /“:"0 wfz)(u)du — M/“:‘” fuw)du —2pp'(0,s) /

o f|Z(u)du)
(2210)

=0 u=0 u=0 u=0

, 2
o (u + 2\/;17’(0, s') — p—2up’(0, S’)> (221p)

=e o ((u — ) + 2p'(0, S’)(\/g - u)) (221q)

<0

, » equality only if =7 (221r)

But this shows that %q(s)L:S/ < 0 which is a contradiction. Hence, monotonicity of ¢ holds.

Now consider 7(s), and again assume there exists s’ > 0 such that %r(s)‘

o > 0. The following will

s=

similarly arrive at a contradiction.

Thus,
holds.

0

%r(s) . (222a)
=00 2 ots 2

= % 70 ;65#67( En p(x)dx (222Db)
T=0Q0 2 ots 2

= / % ;65#67( En p(z)dx (222¢)
=0 —g
=00 2 45 2

B / (n—s— x)\/;esue_( = p(a)de (222d)
=0 —g

=00 2 ot s/)2
z=0

r=o0 2 w+s’)2 0
< / (b —5—x)4/ ;es e p(z)de, > at s =3¢, gr(s) > 0 by assumption (222f)

' =00 2 _(Z+S/)2
=e (W—s—2x) —em e p(z)dx (222¢)
z=0
, U=0o0 2 u2
=e* H‘/ (u - u) —e_Tp(u - Sl)du, bu=2z+s (222h)
u=s’ Q
, U=00 2 u2
<et u/ (p—w)y/—e 7 p(u)du, » cquality only if s =0 (2221)
u=s’ Q
, U=00 2 2 u:s/ 2 w2
=S H (p—u)y/=—e "z p(u)du — / (n—wu)\/ —e T p(u)du (222j)
u=0 T u=0 ™
/ u=00 2 u
< e u/ (1 —u)y/ =e 7 p(u)du, » the right integral in (222j) is nonnegative (222k)
u T

Il

)
(IJ\
BS

1 —e” 2 p(u)du —/ uy/ —e” 7 p(u)du (2221)
u=0 7T u=0 ™

=e’H u/ f(u)du —/ uf(u)du) (222m)
u=0 u=0

= e (- p) (222n)

=0 (2220)

%r(s)‘szs, < 0 implies %T(S)’S:S, < 0, a contradiction. Therefore, the monotonicity of r also

[ |
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B.1.4 Proof of Lemma A.2

Lemma (restatement) (Lemma A.2). Fiz t € (0,1), 8 € [0,5]. Let u € R", and define the random

variable Mg, = |[{AD i € [m] : Ouaw €[5 — 8.5 +B]}. Then,

2
/’LM;-},“ = E [Mﬂ,u] = ;ﬁm
and

Pr (Mgﬁu ¢ [(1 — s, (14 t)'“MB,uD < 267‘%“Mﬂmt2

Proof (Lemma A.2). Denote H = {A® i € [m] : Oy ac) €[5 —B,5 +B]}. Tt is well known that standard
normal vectors AW ~ N(0,L,xy,), i € [m], with i.i.d. entries are rotationally uniform. Hence, each it
indicator random variable I; = l(A(i) € H), i € [m], has
2 2
Pr(f;=1)=2.280 25 (223)

o T

Moreover, Mg, = >.i*, I;, and by the linearity of expectation and the fact that the random variables
{Ii}icm) are iid.,

28m

t, = E[Mpgu] = o (224)

as desired. Using standard Chernoff bounds, for any ¢ € (0, 1),
Pr (Mg < (1 - )piag, ) < e 2ot (225)
Pr (Mpu > (1+ par, ) < ¢ Han (226)

and via a union bound,
Pr(M a 1—t¢ 737, , 1 +t 73y, S e_%uMﬁ,ut2 + 6_%MMB,ut2 S 26_%MMﬁ’Ut2, 997
B, B.u B,u

as claimed. |

C Proof of Fact 4.1

Recall Fact 4.1 from Section 4.3.2.

Fact (restatement) (Fact 4.1). Let u,v,w,wo € Ry such that u = % (1++v1+4w), and 1 < u < \/g
Define the functions fi, fo: Z>0 = R by
f1(0) =
filt) =vw+/vfi(t=1), teZy
fat) =2 (@Po) 7t € .

2

Then, fi1 and fo are strictly monotonically decreasing and asymptotically converges to u“v. Moreover, fo

pointwise upper bounds f1. Formally,

fi(t) < fo(t), VteZso
tlirglof2(t) = tlgglofl( ) =

The verification of the fact will use Fact C.1.
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Fact C.1. Let u,w,wg € Ry u = % (1 +v1+ 4w). Define the function f:Z>o — R by

£(0) = wo, (228)
f)=w+ f(t—1), teZ;. (229)

Then,
i £(0) = (230)

Moreover, when wg > u (wg < u, wo = u), f strictly monotonically decreases (respectively, strictly mono-
tonically increases, is constant) with respect to t.

Proof (Fact C.1). Let us first show that f is monotone over t € Z,. Write

1, ifa<0,
signg(a) = 0, ifa=0, (231)
1, ifa >0,

and note that signo(fQ( ) — f2(t)) = signy(f(t) — f(')) for any t,#' > 0. Moreover, notice that f2(t) =
(Vw+ ft—1)? =w+ f(t —1), t € Z>o. The goal will be to show that for each ¢t € Z, the sign of

f(t)— f(t+1) and f(t — 1) — f(t) match. Fix t € Z4 arbitrarily, and observe
PO = e+l =w+ ft—1) - (w+ f(1) (232)
=ft=1)—f®) (233)
and thus
sign (f(t) — f(t +1)) = signg(f*(t) — f2(t + 1)) = signg (f(t — 1) — f(t)) (234)

as desired. The monotonicity of f over Z> follows.
To find the direction of the monotonicity, it suffices to look at sign,(f(1) — f(0)) since the monotonicity
has already been argued. This can be given by

signg (f (1) — f(0)) = signg(f*(1) — f2(0)) = signg(w + f(0) — f2(0)) = signg(w + wo — w3). (235)

To determine from this the condition under which f is constant, observe,

signg (w + wo — wd) = 0 (236a)
— w+wy—wi =0 (236b)
— Wi —wy—w=0 (236¢)
1
— wp € {5(11\/14—410)} (236d)
1

— = 5(1 +V1i4+dw)=u (236¢)

<0, ifwy>1(1+VI+4w),
wAwy —wg ¢ =0, ifwy=21(1+I+4w), (237)

>0, ifwy<3(1+v1+4w).

Hence, f is strictly monotonically decreasing when wy > u, constant when wg = u, and strictly monotonically
increasing when wg > u, as claimed.

The final step is to determine the asymptotic behavior of f as t — oco. If wy = u, then f is constant,
implying that lim¢— f(t) = f(0) = wo = u. On the other hand, when wy # u we would like to characterize
some behavior such as

lim f2(t4+1) — f2(t)=0 (238)

t—o00
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Observe,

FPl+1) -2 = (2392)
— w+ f(t) - f():o (239D)
— f(t):%(1+\/1—|—4w)—u (239¢)

Hence, if wo > u, the strictly monotonically decreasing function is lower bounded by infiez., f(t) = u, while
the strictly monotonically increasing function is upper bounded by sup;cz._, f(t) = v when wg < u. But in
both cases, the function has strict monotonicity, and therefore it must happen that lim; o f(t) = u. |

Proof (Fact 4.1). In addition to defining f; and f; as in Fact 4.1, let f : Z>o — R be the function as defined
in Fact C.1, which is given by the recurrence relation

f(0) = wo (240)
Ft) = w+ f(t—1) (241)

where for the purposes of this proof, wy is fixed as wg = \/g . Notice that the function f; can be written as

fi(t —

filt) =vw+ vfl(t—l):v(w—i- 1)>=v(w+f(t—1)):vf2(t) (242)

Then, the monotonicity and asymptotic behavior of the functions f; follow directly from Fact C.1.

. BERT 2 )
Tim fi(t) = lim 0f2(t) = (243)
On the other hand, for fs,
: 27t 2 N1-27t 4 2 2
thggofg()—tlilrgo2 (uv) =1-u*v=uv (244)

The function de can be shown inductively to pointwise upper bound f;. The base case, t = 0, is tr1v1a1
since f2(0) = 22 (u?v)'72 =2-1= 2= f,(0). Letting t € Z,, suppose that for each t' € {2,. — 1},
the bound f1(t') < faft ) holds. Then, the desired result will follow from induction if it is shown that
f1(t) < f2(t). To verify this, note that fo can be written as the following recurrence relation

f2(0) =2 (245)
f2(t) = Vulofa(t — 1) (246)

since it was already argued that f2(0) = 2 and otherwise for ¢ € Z,

uvfo(t —1) = (u2v)% (f2(t —1))2 (247a)
= (u?0)? (u20) P (folt — 2))2 = (uP0) P (folt — 2))> (247D)

= (u20) T (fy(t — 3))3 (247¢)

(247d)

= ()5 (ot — ) (247c)

(247f)

= (@20) 7 (fat =) = (@20) T (R(0) =2 (wP0) T (247g)

= f2(t) (247h)

46



as desired. With the above argument, it suffices to show that fi(t) < y/u?vfa(t — 1). Note that

:i(l—i—x/l—i—w)zzu—i—w (248a)
— w=u’—u (248b)

Then, observe,
fi(t) = VuRvfaot — 1) = vw + Vofi(t — 1) — Juofa(t — 1) (249a)
<vw+\ufa(t — 1) — Juvfa(t — 1), » by the inductive hypothesis (249b)
:v(uQ—u)—i-\/vfg t—1) — Vulofo(t — 1) (249¢)
= vu? —vu+ Jufa(t — 1) —uy/vfa(t — 1) (249d)
=(u—Duv— (u—1)\/vfa(t —1) (249¢)
< (u—1Duw — (u — 1)y/v(uv) (2491)
< ( Duv — (u — Duw (249g)
- (249h)

Hence,

filt) —vVuPofa(t — 1) <0 = fi(t) < Vulvfo(t — 1) (250)
By induction, f1(¢) < f2(t) for every t € Z>. |

D Miscellaneous results

Lemma D.1. Let Z ~ N(0,1,x,) be a standard normal vector with i.i.d. entries. Fiz any unit vector
u € 8" L. Then, the random variable X = 0y z taking values in [—m, 7] follows the uniform distribution
over [—m, .
Proof (Lemma D.1). Let Y ~ Unif (-, n]) and Z ~ N(0,1,,x,), and define X = 0, z. Lemma D.1 will
follow from showing the equivalence of the MGFs of X and Y, where both are given by
eST — e—sT
Px(s) =Py (s) = o(s) = —5—— (251)

2ms

for any s > 0. Recall that the density function associated with the uniform distribution over [—, 7] is

—r =1L ifye|-mn]
_ )= oxs LY » T, 959
fr () {O, otherwise. (252)
The MGF of Y is then
Yy (s) =E [e*] (253a)
Y=0o0
_ / e fy (y)dy (253b)
Yy=—00
Ty 253
= /y——wﬁ Y (253¢)
1 U=STr d
=— edu, > u=sy, dy = & (253d)
218 Jyu——sn S
eST _ =5
= — 253
2ms (253¢)
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= 9(s)

as desired. On the other hand, the MGF of X is obtained as follows. For any r > 0, recall that the volume
V.. (r) of the n-ball with radius r is given in closed form by

(253f)

m\s

Vo(r) = = — (254)
L'(3+ 1) (5)
and can also be represented in spherical coordinates as (see, e.g., Blumenson (1960))
w1 =% Wn—2=% Wy 1 =T
Va(r) = / / / / " sin™ 2 (wy) - - - sin(wy,—o) dwp, 1 dwy,_g - - - dwy dr’
r’'=0 7% Wp—2=—F JWp_1=—7
(255a)
r'= Wn—2=% Wp—1=T
= / L dr / wl) dwy / sin(wy,—2) dw, 2 / dwy
r’'=0 w1y % Wp—2=—F Wp_1=—T
(255b)
,r.n wlzg wan:%
=— .27 sin” "2 (wy) dwy | - - / sin(wp—2) dw,—2 (255¢)
n wi=—7% Wp—2=—7%
It follows that
wi=3 _ Wn—2=3% nVy,(r) n2mwz w21
son—2 . n
sin” " “(wy) dwy | - / sin(wy—2) dwp—2 | = = — = (256)
</w1__72r ) < wn—ZZ_% 2mwrn 27TT'"7’LF(§) F(E)
Then, again using spherical coordinates,
Yx(s) =E [e] (257a)
r=00 wi=73 Wp—2=7% =T 1 .2
= / / . / / e~ 2 eSTpnTl sin"_z(wl) <+ sin(wp—2) do dwy,—o - - - dwy dr
r=0 wy=—7% Wp—2=—F Jr=—T (27T) 2
(257Db)
1 r=00 2 wi=7% ) Wp—2=7% =T
= - (/ "l T dr> / sin” " (wq) dwy | - -- / sin(wy,—2) dw,—2 </
(27T) 2 r=0 wlzfg wn,2:7% r=—T
(257¢)
([Tt ([
= = r"Tre 2 dr — e dx (257d)
(27‘—)3 ( r=0 F(E) r=—7
1 ﬂ_%fl (/r_oo . 2 (/x_w )
= = — e T dr e** dx (257e)
(27‘—)5 F(E) r=0 r=—m
1 n_q U=00 d T=T
= - 7T2n (/ rilemt (—)) (/ e’* da:) (257f)
(27T) 2 F(E) u=0 r r=—1
S m (/u_oo P 2eT du) (/I_Tr e dw) (257g)
(27‘—)% F(%) u=0 r=—7
1 ngl (/u_oo n—2 T=T
= = V 2u) e du) </ e’ dw) (257h)
(27‘—)5 F(%) u=0 T=—T7
LT (231/“0 5-lemug ) (/rﬂ g > (257i)
=—— = U e U e** dx i
(271-)§ F(f) u=0 T=—7
1 W%_l n n r=mn
= . 98-1p (—)) / s g 257]
2m: T(2) ( 2 S (257))
2 ﬂflrl n T=T
_ ”)22 £2) / e® dz (257K)
2m)2T(3) Jo=—n
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1 T=T

= — e’ dz (2571)

27 r=—7

eST — 5T

= 257

27s (257m)
=1(s) (257n)
Therefore, ¥x = ¥ = ¥y, which immediately implies that the random variables X and Y follow the same
distribution, as claimed. |

Lemma (restatement) D.2 (Lemma B.5). Fiz any pair of real-valued vectors u,v € R™, and suppose
Z ~ N(0,1,x,) is a standard normal vector with i.i.d. entries. Define the indicator random variable

I = 1(sign({(u, Z)) — sign({v,Z)) # 0). Then,
Ou,v
Pr(I =1)= 2%, (258)
Proof (Lemma D.2). The result will follow from showing that the random variable I is equivalently defined

angularly as 1(cos (0y,z) cos (6y,z — Ou,v) < 0). Subsequently, Lemma D.1 simplifies the derivation of (258).
For the first step, observe the following equivalence:

I=1 < (sign((u,Z)) —sign((v,Z))) =1, » by definition (259a)
< sign ((u,Z)) # sign ({v,Z)) (259Db)
<= sign ((u, Z))sign((v,Z)) # sign ((v,Z))sign({(v,Z)) =1 (259¢)
< sign ((u, Z))sign ((v,Z)) #1 (259d)
< sign ((u, Z))sign ((v,Z)) = —1 (259¢)

. u Z , v Z _
= s (o)) oo (R ) = (290
u Z v Z
= (i 7o) <||v|2’ ) < (25%)
<= 08 (0u,z) cos (Oy.z) < (259h)
<= 08 (0u,z) cos (Ou,z) < (259i)
<~ cos (eu,Z) COS( u,zZ + 0v u) <0 (259j>
<= c0s(0u,z)cos (Ouz — Ouyv) <0 (259k)
— OOHZ—%OHN|>-gand|0mz|<1g)(H 00u1~—0uy|<-gand|0mz|>>g) (2591)

where the random variables 0y, z, Oy v, Ov.u € [—7, 7] are signed rotations under some convention for rotations
in the origin-centered hyperplane containing u and v. Recall from Lemma D.1 that the random variable 8, z
follows the uniform distribution over [—m, 7]. In light of this, suppose Y ~ Unif ([, 7]) is a random variable
under the uniform distribution. Note that for any fixed size b € [0, 2], every interval [a,a + b) C [—7, 7] of
size b is equally probable, formally

Pr(Y € la,a+b)=Pr(Y € [d,d +b)) (260)
for every choice of a,a’ € [—m, 7 — b]. Then,
m T
((|49u z+0uy| > = and 10uz| < 2) or (|49u,Z — Oy < 5 and Buz| > 5)) (261a)

— Pr (|¢9u 2+ 00y > 2 and 10u.z] < ) +Pr (|¢9u_,Z O] < gand 10u.z| > g) (261b)
» the two events are disjoint

—Pr(|0uz+0uv|>2‘|0uz|< )Pr(|0uz|< )+Pr(|0u,z uv|<2‘|auz|> )Pr(|0uz|> )
(261c)
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1 T T 1 T T
— - Pr (10uz + Ouvy —‘ou —) _p (eu . —’011 —) 261d
5 Pr{[0uz +0uv| > 5ll0uz| < 5 )+ 5 Pr{lfuz vl <5 |0uz] > 5 (261d)
1 1
=3 Pr(Y €10,0uyv)) + 3 Pr(Y €1(0,0u+v)) (261e)
=Pr(Y €1[0,0uv)) (261f)
011\/
b, (261g)
T
Therefore, combining (259a) and (261) yields the result:
011\/
Pr(I=1)=Pr ((|9u,z + 0y | > gand |0y z] < g) or (|0u,Z —Ouv| < gand |0y z| > g)) = 7r )
(262)
[ |

Lemma D.3. Fizo > 0. Let Zy1,..., Zym ~ N(0,02) be m i.i.d. normal variables. Then, their sum 2211 Z;
follows the mean-zero, variance-mao? normal distribution.

Corollary D.4. Let ZW, ... 2™ ~ N(0,0%1,,x,,). Then, their sum > -, Z9 follows the normal distri-
bution N (0, mo>L,,xy).

Proof (Lemma D.J). This follows directly from applying Lemma D.3 to each of the n coordinates, which
suffices since the entries are independent. |

Lemma D.5. Fiz o,t > 0. Let Z ~ N(0,02) be a normal random variable. Then,
+2
Pr(|Z] >t) <2e 2.2 (263)

Proof (Lemma D.5). By Chernoff bounds,

2

Pr(Z>t)<e 37 (264)
t2
Pr(Z <t)<e 2.2. (265)
By a union bound, the result follows. |
Corollary D.6. Fiz o,t > 0. Let Z1,..., Zy ~ N(0,0%L,x,,) be m i.i.d. normal random variables, and
write their sum as Z =Y .| Z;. Then,
+2
Pr(|Z| > t) < 2e 2mo?. (266)
Proof (of Corollary D.6). The corollary directly follows from Lemmas D.5 and D.3. |

Lemma D.7. Fiz o,t > 0. Let Z ~ N(0,0%L,x,), be a normal vector with i.i.d. entries. Then,

+2
Pr([[|Z]l, —E[IZ],]] = t) < 2e” 27 (267)

Moreover, for any coordinate subset, J C [n],
+2
Pr([|T7Z]l, - E[IT7Z|l,]| = t) < 2e” 22 (268)
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Proof (Lemma D.7). Fix any o,t > 0, and suppose Z ~ N(0,021,,%,). The lemma will follow from deriving
a Chernoff bound using the MGF of the random vector Z. Recall that the zero-mean multivariate normal
distribution has as its density function

fal) = e e Ll (269)
e = 2 = o 202 .
z (2mo2)2 ‘ (2m02)2 N
The MGF of ||Z]|, is then
0'252
Yz(s) = e 2 (270)
which is obtained as follows.
Yz, (s) = B [6‘5”Z”2] (271a)
ll=13
—_— esl#ll2 o= 507 g, » by the law of lazy statistician (271b)
(2m02)2 J,ern
22 ll=I13
_ / oslzlle = gy (271c)
(2m02) 2 ZGR"
0'25 z
—_— S e 295 H2 -~ H2 2 dz (271d)
(2mo?)2 zeR"
_llzI3-20%5 ]zl 24+ 52
— / 202 dZ (2716)
27(0' 2 Rn
0252 _ (lzlla—c?5)?
- / TR dz (271f)
(2mo2)2 ERn
Uizl ~o?)?
LI T 271
- / oo 2te)
6252
=e 2 -1, » evaluating a density function over its entire support (271h)
0252
_ % (271i)
The upper bound in (267) follows.
Pr (|2, — E[|Z],] > ¢) = Pr (elZEl1Z1:] > 1) (272a)
< m>igle_5t¢z(s), » due to Bernstein (see, e.g., Vershynin (2018))  (272b)
- o252
< ngge_SteT, » by Eq. (270) (272¢)
_t2 2 t
=e oZe2?, » s = — minimizes (272c) (272d)
o
+2
=57 (272¢)

as desired. The lower bound in (267) follows from a similar argument. Combined with the upper bound by
union bounding yields (267).

The lemma’s second result, (268) follows immediately from (267), which does not depend on the dimension
of the random vector Z (and thus the same concentration inequality holds after hard thresholding a subset
of coordinates). More formally, this can be shown by contradiction. Suppose that

t2
Pr (|| T7Z]l, - E|T7Z5| = t) > 2e™ 2.2, (273)
Fix any d € [n], and with out loss of generality, suppose J = [d]. Construct a second random vector
Y = (V1,...,Yy) in d-dimensions by assigning Y; = Z; for each j € [d], such that Y ~ N(0,02L;x4). By
(267), the following holds

2
Pr([[Yll, —E[Y[,]| =2 1) < 2e727. (274)

o1



Then, it must happen that for some random draw of Z ~ N(0,0°L,x,), | T7Z|, # ||Y|l,- But similarly
justified by the proof of Lemma D.10 (stated later in the appendix),

1
2

2

[SE

n

2
ITrzll, = (Yo (Tir )| = | 20 Z| =| 22| =Y (275a)
j=1 j€[n]: Jj€(d]
TJ';J?éO
which is a contradiction. Hence, (268) holds. [

Corollary D.8. Fix o > 0. Let Z(l)7 cen Zm ~ N(0,0%1,,xn), be m i.i.d. normal vectors, and write their
sum as Z =3 ", Z® . Then,

t2
Pr([||Z]|, — E[|Z]l,| = t) < 2e” 2me? (276)
Moreover, for any coordinate subset, J C [n],
t2
Pr(|TsZ, — E[|TsZ[|,| > t) < 2e™ 2me? (277)

Proof (of Corollary D.8). Notice that Z = >"" Z follows the multivariate normal distribution A/(0, mo?)
due to Corollary D.4. Hence, the corollary is immediately realized from Lemma D.7. |

Lemma D.9. Fiz o >0, and let Z ~ N(0,0°1,,%,,). Then, its expected norm is at most
E[|1Z]l,] < Vno® = vio. (278)

In the case when n = 1, the expected norm is precisely

2
El1Z,) = | 2. (279)
Proof (Lemma D.9). Let Z ~ N(0,0%1,x,). Then,
E(|Zl,) =E|,|> 23 (280a)
=1
< |E Z zZ3 |, » Jensen’s inequality (for concave functions) (280b)
j=1
_ > e[z (250¢)
j=1
- (Var (72) +E [Zj]Q) (280d)
j=1
= | > Var(22) (280e)
j=1
=.|> 0o? (280f)
j=1
= Vno? (280¢g)
= Vo (280h)
as claimed. [
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Lemma D.10. Fiz J C [n]. Then, the map Ty : R" — R" is a linear transformation.
Proof (Lemma D.10). Fix J C [n] arbitrarily, and construct a diagonal matrix Ty € R™ ™ such that
T; = diag(Th,7, ..., Tn,g) with Tj,7 = 1(j € J) for each j € [n], as in Definition 2.2 in Section 2. Then,
clearly the map 7' : R® — R" by x KN T7x is equivalent to the map 77 : R® — R™ since, writing
y =T(x) = Ax,

Tv,gr r-1(1 € J)

y=| : |= ; ~ Ty (%) (251a)
T 7n zn-1(ne J)

for all x € R™. It is well-known that a map from R™ to R™ is a linear transformation if can be specified by
a matrix-vector product for some real-valued n x n matrix, hence completing the proof. |

E A Different Invertibility Condition Friedlander et al. (2021)

Definition E.1 (restricted approximate invertibility condition as defined in (Friedlander et al. 2021, Def.
8)). Fixv,8,n,m,r" >0. Let A € R™ ™ be a measurement matriz, and let x € S""'NXE. The (v,d8,n,r,r')-
RAIC holds for A at x if for every y € "' NIY, r < dgn-1 (x,y) <77,

H(x —y)— vAT (sign (Ax) — sign (Ay))H(snilmEn)o < bdgn (x,y) +1 (282)

where H'”(s"*lﬂE’Z)O denotes the dual norm given by Hu”(s"’lﬂz’ﬁf = SUPycsn-1nny (0, 0) for u € R™.

Instead of the f>-norm as in our definition, this definition resorts to the dual norm. Furthermore, our
definition of RAIC should hold for all pair of vectors uniformly; whereas in the above definition invertibitily
condition is asked for vectors within distance [r,7’]. Both of these two differences make our definition simpler
to state and handle, and also allow us to do a precise analysis in the “small-distance” regime.
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