
ar
X

iv
:2

20
7.

03
42

7v
1 

 [c
s.I

T]
  7

 Ju
l 2

02
2

Binary Iterative Hard Thresholding Converges with Optimal
Number of Measurements for 1-Bit Compressed Sensing

Namiko Matsumoto Arya Mazumdar

July 8, 2022

Abstract

Compressed sensing has been a very successful high-dimensional signal acquisition and recovery
technique that relies on linear operations. However, the actual measurements of signals have to be
quantized before storing or processing. 1(One)-bit compressed sensing is a heavily quantized version
of compressed sensing, where each linear measurement of a signal is reduced to just one bit: the sign
of the measurement. Once enough of such measurements are collected, the recovery problem in 1-bit
compressed sensing aims to find the original signal with as much accuracy as possible. The recovery
problem is related to the traditional “halfspace-learning” problem in learning theory.

For recovery of sparse vectors, a popular reconstruction method from 1-bit measurements is the
binary iterative hard thresholding (BIHT) algorithm. The algorithm is a simple projected sub-gradient
descent method, and is known to converge well empirically, despite the nonconvexity of the problem.
The convergence property of BIHT was not theoretically justified, except with an exorbitantly large
number of measurements (i.e., a number of measurement greater than max{k10, 2448, k3.5/ε}, where k
is the sparsity, ε denotes the approximation error, and even this expression hides other factors). In
this paper we show that the BIHT algorithm converges with only Õ( k

ε
) measurements. Note that,

this dependence on k and ε is optimal for any recovery method in 1-bit compressed sensing. With
this result, to the best of our knowledge, BIHT is the only practical and efficient (polynomial time)
algorithm that requires the optimal number of measurements in all parameters (both k and ε). This
is also an example of a gradient descent algorithm converging to the correct solution for a nonconvex
problem, under suitable structural conditions.

1 Introduction

One-bit compressed sensing (1bCS) is a basic nonlinear sampling method for high-dimensional sparse signals,
introduced first in Boufounos and Baraniuk (2008). Consider an unknown sparse signal x ∈ Rn with sparsity
(number of nonzero coordinates) ||x||0 ≤ k, k# n. In the 1bCS framework, measurements of x are obtained
with a sensing matrix A ∈ Rm×n via the observations of signs:

b = sign(Ax).

The sign function (formally defined later) is simply the ± signs of the coordinates.
Compressed sensing, the method of obtaining signals by taking few linear projections Donoho (2006);

Candès et al. (2006) has seen a lot of success in the past two decades. 1bCS is an extremely-quantized version
of compressed sensing where only 1 bit per sample of the signal is observed. In terms of nonlinearity, this is
one of the simplest example of a single-index model Plan and Vershynin (2016): yi = f(〈ai,x〉), i = 1, . . . ,m,
where f is a coordinate-wise nonlinear operation. Both as a practical case-study, and for being aesthetically
appealing, 1bCS has been studied with interest in the last few years, for example, in Haupt and Baraniuk
(2011); Gopi et al. (2013); Acharya et al. (2017); Plan and Vershynin (2013a); Li (2016).
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Notably, it was shown in Jacques et al. (2013b) that m = Θ̃(k/ε) measurements are necessary and suffi-
cient (up to logarithmic factors) to approximate x within an ε-ball. But the reconstruction method used to
obtain this measurement complexity is via exhaustive search, which is practically infeasible. A linear pro-
gramming based solution (which runs in polynomial time) that has measurement complexity O( k

ε5 log
2 n

k )
was provided in Plan and Vershynin (2013b). Note the suboptimal dependence on ε.

An incredibly well-performing algorithm turned out to the binary iterative hard thresholding (BIHT)
algorithm, proposed in the former work Jacques et al. (2013b). BIHT is a simple iterative algorithm that
converges to the correct solution quickly in practice. However, until later, the reason of its good performance
was somewhat unexplained, barring the fact that it is actually a proximal gradient descent algorithm on
a certain loss function (provided in Eq. (7)). In the algorithm, the projection is taken onto a nonconvex
set (namely, selecting the “top-k” coordinates and then normalizing), which usually makes a theoretical
analysis unwieldy. Since the work of Jacques et al. (2013b) there have been some progress explaining the
empirical success of the BIHT algorithm. In particular, it was shown in (Boufounos et al. 2015, Sec. 3.4.2)
that after only the first iteration of BIHT algorithm an approximation error ε is achievable with Õ( k

ε4 )

measurements, though the same result is shown in (Jacques et al. 2013a, Sec. 5) with Õ( k
ε2 ) measurements,

so the former result might just be a typo. Similar results also appear in (Plan et al. 2017, Sec. 3.5). In
all these results, the dependence on ε, which is also referred to as error-rate, is suboptimal. Furthermore,
these works also do not show convergence as the algorithm iterates further. Indeed, according to these works
O( k

ε2 log
n
k ) measurements are sufficient to bring the error down to ε after just the first iteration of BIHT.

Beyond the first iteration, it was shown in Liu et al. (2019) that the iterates of BIHT remain bounded
maintaining the same order of accuracy for the subsequent iterations. This, however, does not imply a
reduction in the approximation error after the first iteration. This issue have been partially mitigated in
Friedlander et al. (2021), which uses a normalized version of the BIHT algorithm. While Friedlander et al.
(2021) manage to show that the normalized BIHT algorithm can achieve optimal dependence on the error-
rate as the number of iterations of BIHT tends to infinity, i.e., m ∼ 1

ε , their result is only valid when

m > max{ck10 log10 n
k , 24

48, c′

ε (k log
n
k )

7/2}. This clearly is very sub-optimal in terms of dependence on k,
and do not explain the empirical performance of the algorithm. This has been left as the main open problem
in this area as per Friedlander et al. (2021).

1.1 Our Contribution and Techniques

In this paper, we show that normalized BIHT converges with sample complexity having optimal dependence
on both sparsity k and error ε (see, Theorem 3.1 below). And as such, we also show the convergence rate
with respect to iterations for this algorithm. In particular, we show that the approximation error of BIHT
decays as O(ε1−2−t

) with the number of iteration t. This encapsulates the very fast convergence of BIHT
to the ε-ball of the actual signal. Furthermore, this also shows that after just 1 iteration of BIHT, an
approximation error of

√
ε is achievable, with O(kε log

n
k ) measurements, which matches the observations of

Jacques et al. (2013a); Plan et al. (2017) regarding the performance of BIHT with just one iteration. Due to
the aforementioned fast rate, the approximation error quickly converges to ε resulting in a polynomial time
algorithm for recovery in 1bCS with only Õ(kε ) measurements, the optimal possible.

There are several difficulties in analyzing BIHT that were pointed out in the past, for example in
Friedlander et al. (2021). First of all, the loss function is not differentiable, therefore one has to rely on
(sub)-gradients, which prohibits an easier analysis of convergence. Secondly, the algorithm projects onto
nonconvex sets, so it is not apparent that in each iteration a better approximation is achieved. To tackle
these hurdles, the key idea is to use some structural property of the measurement or sampling matrix. Our
result relies on such a property of the sampling matrix A, called the restricted invertibility condition. A
somewhat different invertibility property of a matrix also appears in Friedlander et al. (2021). However,
our definition, which looks more natural, allows for a significantly different analysis - and results in the
improved sample complexity. Thereafter, we show that random matrices with i.i.d. Gaussian entries, satisfy
the invertibility condition with overwhelmingly large probability.

The invertibility condition that is essential for our proof intuitively states that treating the signed measure-
ments as some “scaled linear” measurements should lead to good enough estimates, which is an overarching
theme of recovery in generalized linear models. However, our condition also quantifies “goodness” of this
estimate in a way that allows us to show contraction in the BIHT iterations. This contraction of approx-
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imation error comes naturally from our definition. While similar idea appear in Friedlander et al. (2021),
showing the contraction of approximate error is a much involved exercise therein. Also, it is empirically
observed in (Jacques et al. 2013b, Sec. 4.2) that in normalized BIHT, the step-size of the gradient descent
algorithm must be carefully chosen, or the algorithm will not converge. Our definition of the invertibility
condition gives some intuitive justification on why the algorithm is so sensitive to step-size. Our analysis
relies on the step-size being set exactly to η =

√
2π. More generally, if η were to deviate too far from

√
2π,

the contraction would be lost.
So the technical burden of our main result turns out to be to show Gaussian matrices do satisfy the

invertibility condition (Definition 3.1 below). We need to show that for every pair of sparse unit vectors the
condition holds. We resort to constructing a cover, an “epsilon-net,” of the unit sphere, and then decompose
the invertibility conditions for any two vectors in the sphere into two components. First, we show that it is
satisfied for two vectors in the epsilon-net whose distance is sufficiently large, then we show that only small
error is added when instead of the net points, vectors close to them is considered. This leads to a “large-
distance” and “small-distance” analysis. For these two parts, we require differently curated concentration
inequalities, which form the bulk of the techniques used in this paper. Notably, we cannot just extend the
invertibility condition to points outside the net by simply using, e.g., the triangle inequality, due to the
sign operation. But at the same time, the sign operation significantly reduces the number of matrix-vector
products we need to union bound over. It turns out that, because we condition on the rotational uniformity
of the measurements, this number is not “too large,” and will not increase the sample complexity beyond
the optimal.

One important aspect of BIHT’s convergence is that as the approximation error in tth iteration improves,
it makes possible an even smaller error for the (t + 1)th approximation. This can again be intuitively
explained by the rotational symmetry of the measurements, as well as the sign operation. Each iteration of
BIHT involves fewer and fewer measurements, and we can track the number of measurements involved by
tracking the number of measurements that mismatch between the vector x and its approximation at the tth

iteration. This is used in the “large-distance” regime, where the pairs of points must be at least distance τ
from each other (note that that qualifier is necessary). On the other hand, once the distance is smaller than
τ , the Chernoff bound that is used to track the mismatch is no longer sufficient (using that we would end up
needing a suboptimal sample complexity). That is why the “small-distance” analysis is needed separately.
However, as mentioned above, because of the rotational uniformity, the number of different ways that we
have to include in union bound in this small distance regime is not that many. In some sense, what prevents
us from simply extending the argument made for “large-distance” regime to the “small-distance” regime is
also what enables the approach taken in the “small-distance” regime. Reconciling these two regimes was
necessary for our approach.

1.2 Other Related Works

A generalization of 1bCS is the noisy version of the problem, where the binary observations yi ∈ {+1,−1} are
random (noisy): i.e., yi = 1 with probability f(〈ai,x〉), i = 1, . . . ,m, where f is a potentially nonlinear func-
tion, such as the sigmoid function. Recovery guarantee for such models were studied in Plan and Vershynin
(2013a). Another model of observational noise can appear before the quantization, i.e., yi = sign (〈ai,x〉+ ηi) , i =
1, . . . ,m, where ηi is random noise. As observed in Plan and Vershynin (2016); Friedlander et al. (2021), the
noiseless setting (the one we consider) is actually more difficult to handle, because the randomness of noise
allows for a maximum likelihood analysis. Indeed, having some control-over ηis (or just assuming them to
be i.i.d. Gaussian), helps estimate the norm of x Knudson et al. (2016), which is otherwise impossible with
just sign measurements, as in our model (this is called introducing dither, a well-known paradigm in signal
processing). In a related line of work, one bit measurements are taken by adaptively varying the thresh-
old (in our case the threshold is 0 all the time), which can lead to much improved error-rate, for example
see Baraniuk et al. (2017) and Saab et al. (2018), the later being on application of sigma-delta quantization
methods.

Yet another line of works in 1bCS literature takes a more combinatorial avenue and looks at the sup-
port recovery problem and constructions of structured measurement matrices. Instances of these works
are Gopi et al. (2013); Acharya et al. (2017); Flodin et al. (2019); Mazumdar and Pal (2021). However, the
nature of these works are quite different from ours.
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1.3 Organization

The rest of the paper is organized as follows. The required notations and definitions to state the main
result appear in Section 2, where we also formally define the 1-bit compressed sensing problem and the
reconstruction method, the normalized binary iterative hard thresholding algorithm (Algorithm 1). We
provide our main result in Section 3, which establishes the convergence rate of BIHT (Theorem 3.1) and
the asymptotic error rate (Corollary 3.2) with the optimal measurement complexity. In Section 3.2 we
also provide an overview of how the result is derived. In Section 4 we provide the main proof of the BIHT
convergence algorithm, assuming that a structural property if satisfied by the measurement matrix. Proof of
this structural property for Gaussian matrices is the major technical contribution of this paper (Theorem 3.3),
and it has been delegated to Appendix A. Proofs of all lemmas and intermediate results can be found in the
appendix. We conclude with some future directions in Section 5.

2 Preliminaries

2.1 Notations and Definitions

The set of all real-valued, k-sparse vectors in n dimension is denoted by Σn
k . The %2-sphere in Rn is written

Sn−1 ⊂ Rn, such that (Sn−1 ∩ Σn
k ) ⊂ Σn

k is the subset real-valued, k-sparse vectors with unit norm. The
Euclidean ball of radius τ ≥ 0 and center u ∈ Rn is defined by Bτ (u) = {x ∈ Rn : ‖u− x‖2 ≤ τ}. Matrices
are denoted in uppercase, boldface text, e.g., M ∈ Rm×n, with (i, j)-entries written Mi,j . The n×n identity
matrix written as In×n. Vectors are likewise indicated by boldface font, using lowercase and uppercase
lettering for nonrandom and random vectors, respectively, e.g., u ∈ Rn and U ∼ N (0, In×n), with entries
specified such that, e.g., u = (u1, . . . , un). As customary, N (0, In×n) denotes the i.i.d. n-variate standard
normal distribution (with the univariate case, N (0, 1)). Moreover, random sampling from a distribution D
is denoted by X ∼ D, and drawing uniformly at random from a set X is written as X ∼ X . For any pair of
real-valued vectors u,v ∈ Rn, write dSn−1 (u,v) ∈ R≥0 for the distance between their projections onto the
%2-sphere, as well as θu,v ∈ [0,π] for their angular distance. and θu,v ∈ [−π,π] for the angular distance and
signed angular distance (for a given convention of positive and negative directions of rotation), respectively,
between them. Formally,

dSn−1 (u,v) =















∥

∥

∥

u
‖u‖2

− v
‖v‖2

∥

∥

∥

2
, if u,v .= 0,

0, if u = v = 0,

1, otherwise,

(1)

θu,v = arccos

(

〈u,v〉
‖u‖2 ‖v‖2

)

. (2)

Note that these are related by θu,v = arccos
(

1− d2
Sn−1(u,v)

2

)

, equivalently, dSn−1 (u,v) =
√

2(1− cos(θu,v)).

The sign function sign : R→ {+1,−1} is defined in the following way:

sign (x) =

{

1, x ≥ 0

−1, x < 0.

The function can be extended to vectors, i.e., sign : Rn → {+1,−1}n by just applying the it on each
coordinate.

We are going use the following universal constants a, b, c, c1, c2 > 0 in the statement of our results. Their
values are

a = 16, b ! 379.1038, c = 32, c1 =

√

3π

b

(

1 +
16
√
2

3

)

, c2 =
3

b

(

1 +
4π

3
+

8
√
3π

3
+ 8
√
6π

)

. (3)

Additionally, in the BIHT algorithm, the step size η > 0 is fixed as η =
√
2π.
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Definition 2.1 (Hard thresholding operation (k-top)). For k ∈ Z+, the hard thresholding operation Tk :
Rn → Σn

k projects a real-valued vector u ∈ Rn into the space of k-sparse real-valued vector by setting all but
the k largest (in absolute value) entries in u to 0 (with ties broken arbitrarily).

Definition 2.2 (Hard thresholding operation (by a set)). For a subset of coordinates J ⊆ [n], the hard
thresholding operation TJ : Rn → Σn

k associated with J projects a real-valued vector u ∈ Rn into the space
of real-valued, k-sparse vectors by

TJ (u)j =

{

uj , if j ∈ J,

0, otherwise.
(4)

This operation TJ is a linear transformation (see Lemma D.10, Appendix D) associated with a diagonal n×n
matrix denoted TJ = diag(T1;J , . . . , Tn;J), where

Tj;J =

{

1, if j ∈ J,

0, if j /∈ J.
(5)

2.2 1-Bit Compressed Sensing and the BIHT Algorithm

Let x ∈ Σn
k . A measurement matrix is denoted by A ∈ Rm×n and has rows A(1), . . . ,A(m) ∼ N (0, In×n)

with i.i.d. entries. The 1-bit measurements of x are performed by:

b = sign (Ax) (6)

Throughout this work, the unknown signals, x ∈ Σn
k , are assume to have unit norm since information

about the norm is lost due to the binarization of the responses. (For interested readers, see Knudson et al.
(2016) for techniques, e.g., dithering, to reconstruct the signal’s norm in 1-bit compressed sensing.) Given
A and b, the goal of 1-bit compressed sensing is to recover x as accurately as possible. We measure the
accuracy of reconstruction by the metric dSn−1 (·, ·) .

The binary iterative hard thresholding (BIHT) reconstruction algorithm, proposed by Jacques et al.
(2013c), comprises two iterative steps: (i) a gradient descent step, which finds a non-sparse approxima-
tion, x̃ ∈ Rn, followed by (ii) a projection by x̃ 1→ x̂ = Tk (x̃) into the space of k-sparse, real-valued vectors.
As shown by Jacques et al. (2013c), the gradient step, (i), aims to minimize the objective function

J (x̂;x) =
∥

∥[ sign (Ax)2 sign (Ax̂) ]−
∥

∥

1
, (7)

where u2v = (u1v1, . . . , unvn) and ( [u ]− )j = uj ·1(uj < 0). While several variants of the BIHT algorithm
have been proposed, Jacques et al. (2013c), this work focuses on the normalized BIHT algorithm, where the
projection step, (ii), is modified to project the approximation onto the k-sparse, %2-unit sphere, Sn−1 ∩ Σn

k .
Algorithm 1 provides the version of the BIHT algorithm studied in this work.

Algorithm 1: Binary iterative hard thresholding (BIHT) algorithm, normalized projections

1 Set η =
√
2π

2 x̂(0) ∼ Sn−1 ∩ Σn
k

3 for t = 1, 2, 3, . . . do

4 x̃(t) ← x̂(t−1) + η
2mAT

(

sign (Ax)− sign
(

Ax̂(t−1)
))

5 x̂(t) ← Tk(x̃(t))
‖Tk(x̃(t))‖

2
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3 Main Results and Techniques

3.1 BIHT Convergence Theorem

Our main results is presented below. Informally, it states that with m = O(kε log
n

k
√
ε
) 1-bit (sign) mea-

surements, it is possible to recover any k-sparse vector within an ε-ball, by means of the normalized BIHT
algorithm.

Theorem 3.1. Let a, b, c > 0 be universal constants as in Eq. (3). Fix ε, ρ ∈ (0, 1) and k,m, n ∈ Z+ where

m ≥ 4bck

ε
log
(en

k

)

+
2bck

ε
log

(

12bc

ε

)

+
bc

ε
log

(

a

ρ

)

. (8)

Let the measurement matrix A ∈ Rm×n and has rows A(1), . . . ,A(m) ∼ N (0, In×n) with i.i.d. entries. Then,
uniformly with probability at least 1−ρ, for all unknown k-sparse, real-valued unit vector x ∈ Sn−1∩Σn

k , the

normalized BIHT algorithm produces a sequence of approximations {x̂(t) ∈ Sn−1∩Σn
k}t∈Z≥0 which converges

to the ε-ball around the unknown vector x at a rate upper bounded by

dSn−1

(

x, x̂(t)
)

≤ 22
−t

ε1−2−t

(9)

for all t ∈ Z>0.

Corollary 3.2. Under the conditions stated in Theorem 3.1, uniformly with probability at least 1−ρ, for all
unknown k-sparse, real-valued unit vectors x ∈ Sn−1∩Σn

k , the sequence of BIHT approximations, {x̂(t)}t∈Z≥0 ,
converges asymptotically into the ε-ball around the unknown vector x. Formally,

lim
t→∞

dSn−1

(

x, x̂(t)
)

≤ ε. (10)

3.2 Technical Overview

The analysis in this work is divided into two components: (I) the proofs of Theorem 3.1 and Corollary 3.2,
which show universal convergence of the BIHT approximations by using the restricted approximate invertibil-
ity condition (RAIC) for an i.i.d. standard normal measurement matrix (defined below), and (II) the proof
of the main technical theorem, Theorem 3.3 (also below), which derives the RAIC for such a measurement
matrix.

Informally speaking, we show that the approximation error ε(t) of the BIHT algorithm at step t satisfy a
recurrence relation of the form ε(t) = a1

√

εε(t− 1) + a2ε. It is not a difficult exercise to see that we get the
desired convergence rate from this recursion, starting from a constant error. The recursion itself is a result
of the RAIC property, which tries to capture the fact that the difference between two vectors x and y can
be reconstructed by applying AT on the difference of the corresponding measurements. Next we explain the
technicalities of these different components of the proof.

3.2.1 The Restricted Approximate Invertibility Condition

The main technical contribution is an improved sample complexity for the restricted approximate invertibility
condition (RAIC). A different invertibilty condition was proposed by Friedlander et al. (2021). We have
included the definition of Friedlander et al. (2021) in Appendix E, for comparison, and to emphasize the
major differences. The definition of RAIC considered in this work is formalized in Definition 3.1, which uses
the following notations. For m,n ∈ Z+, let A ∈ Rm×n be a measurement matrix with rows A(i) ∈ Rn,
i ∈ [m]. Then, define the functions hA, hA;J : Rn × Rn → Rn by

hA (x,y) =
η

m
AT · 1

2
(sign (Ax)− sign (Ay)) (11)

hA;J (x,y) = Tsupp(x)∪supp(y)∪J (hA (x,y)) (12)

for x,y ∈ Rn and J ⊆ [n], and where η =
√
2π.
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Definition 3.1 (restricted approximate invertibility condition (RAIC)). Fix δ, a1, a2 > 0 and k,m, n ∈ Z+

such that 0 < k < n. The (k, n, δ, a1, a2)-RAIC is satisfied by a measurement matrix A ∈ Rm×n if

‖(x− y)− hA;J(x,y)‖2 ≤ a1
√

δdSn−1 (x,y) + a2δ (13)

uniformly for all x,y ∈ Sn−1 ∩ Σn
k and all J ⊆ [n], |J | ≤ k.

Theorem 3.3 below is the primary technical result in this analysis and establishes that m-many i.i.d.
standard normal measurements satisfy the (k, n, δ, c1, c2)-RAIC, where the sample complexity for m matches
the lower bound of (Jacques et al. 2013c, Lemma 1). The proof of the theorem is deferred to Appendix A,
and a overview of the proof is given below in Section 3.2.3.

Theorem 3.3. Let a, b, c1, c2 > 0 be universal constants as defined in Eq. (3). Fix δ, ρ ∈ (0, 1) and k,m, n ∈
Z+ such that 0 < k < n and

m =
b

δ
log

(

(

n

k

)2( n

2k

)(

12b

δ

)2k (a

ρ

)

)

∈ O

(

k

δ
log
( n

δk

)

+
1

δ
log

(

1

ρ

))

. (14)

Let A ∈ Rm×n be a measurement matrix whose rows A(i) ∼ N (0, In×n), i ∈ [m], have i.i.d. standard normal
entries. Then, the measurement matrix A satisfies the (k, n, δ, c1, c2)-RAIC with probability at least 1 − ρ.
Formally, uniformly with probability at least 1− ρ, for all x,y ∈ Sn−1 ∩ Σn

k and all J ⊆ [n], |J | ≤ k,

‖(x− y)− hA;J(x,y)‖2 ≤ c1
√

δdSn−1 (x,y) + c2δ. (15)

3.2.2 The Uniform Convergence of BIHT Approximations

Assuming the desired RAIC property (i.e., correctness of Theorem 3.3), the uniform convergence of BIHT
approximations is shown as follows. (a) The 0th BIHT approximation, x̂(0), which is simply initialized by
drawing a point uniformly at random from Sn−1 ∩ Σn

k , i.e., x̂
(0) ∼ Sn−1 ∩ Σn

k , can be seen to have error at
most 2. Then, the following argument handles each subsequent tth BIHT approximation, t ∈ Z+. (b) Using
standard techniques, the error of any tth BIHT approximation, t ∈ Z+, can be shown to be (deterministically)
upper bounded by

dSn−1

(

x, x̂(t)
)

≤ 4
∥

∥

∥

(

x− x̂(t−1)
)

− hA;supp(x̂t)

(

x, x̂(t−1)
)∥

∥

∥

2
. (16)

(c) Subsequently, observing the correspondence between Eq. (16) and the RAIC, Theorem 3.3 is applied to
further bound the tth approximation error in (16), t ∈ Z+, from above by

dSn−1

(

x, x̂(t)
)

≤ 4

(

c1

√

ε

c
dSn−1

(

x, x̂(t−1)
)

+ c2
ε

c

)

= 4c1

√

ε

c
dSn−1

(

x, x̂(t−1)
)

+ 4c2
ε

c
. (17)

(d) Then, the recurrence relation corresponding to the right-hand-side of Eq. (17),

ε(0) = 2 (18)

ε(t) = 4c1

√

ε

c
ε(t− 1) + 4c2

ε

c
, t ∈ Z+, (19)

can be shown to be monotonically decreasing with respect to t, asymptotically converging to the ε-ball
around the unknown vector x, and pointwise upper bounded by ε(t) ≤ 22

−t

ε1−2−t

for each t ∈ Z≥0. This
will complete the analysis for the universal convergence of the BIHT algorithm.

3.2.3 The RAIC for an i.i.d. Standard Normal Measurement Matrix

Fixing δ, ρ ∈ (0, 1) and letting c1, c2 > 0 be the universal constants as specified in Eq. (3), Theorem
3.3 establishes that the measurement matrix A ∈ Rm×n with i.i.d. standard normal entries satisfies the
(k, n, δ, c1, c2)-RAIC with high probability (at least 1 − ρ) when the number of measurements m is at least
what is given in Eq. (14). The proof of the theorem is outlined as follows.
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(a) Writing τ = δ
b , a τ -net over S

n−1∩Σn
k is constructed by the union Cτ =

⋃

J⊆[n]:|J|≤k Cτ ;J ⊆ Sn−1∩Σn
k ,

where for each J ⊆ [n], |J | ≤ k, Cτ ;J ⊆ Sn−1 ∩ Σn
k is a τ -net over the subset of vectors in Sn−1 ∩ Σn

k
whose support sets are precisely J . The goal will be to show that with high probability certain
properties hold for (almost) every ordered pair (u,v) ∈ Cτ × Cτ or for every vector u ∈ Cτ . The
desired RAIC will then follow from extending the properties to every pair x,y ∈ Sn−1 ∩ Σn

k .

(b) The first property, which holds on a “large scale,” requires that with probability at least 1 − ρ1, for
each ordered pair (u,v) ∈ Cτ × Cτ in the τ -net at distance at least dSn−1 (u,v) ≥ τ and for every
J ⊆ [n], |J | ≤ 2k,

‖(u− v)− hA;J (u,v)‖2 ≤ b1
√

δdSn−1 (u,v) (20)

where b1 > 0 is a small universal constant (see, Eq. (3)).

(c) The second property, which holds on a “small scale,” requires that with probability at least 1− ρ2, for
each member of the τ -net u ∈ Cτ , each x ∈ Bτ (u) ∩ Sn−1 ∩Σn

k , and every J ⊆ [n], |J | ≤ 2k,

‖(x− u)− hA;J(x,u)‖2 ≤ b2δ (21)

where b2 > 0 is a small universal constant (again see, Eq. (3)).

(d) Requiring ρ1 + ρ2 = ρ, the last step of the proof derives the RAIC claimed in the theorem by using
the results from steps (b) and (c), such that the condition holds with probability at least 1 − ρ. We
provide an overview of these two steps subsequently.

3.2.4 The Large and Small-Scale Regimes, Steps (b) and (c)

Before discussing the approach to steps (b) and (c), let us first motivate the argument. Let x,y ∈ Sn−1∩Σn
k .

Notice that the function hA(x,y) can be written as

hA (x,y) =
√
2π

1

m
AT · 1

2
(sign (Ax)− sign (Ay)) (22)

=
√
2π

1

m

m
∑

i=1

A(i) · 1
2

(

sign
(

〈A(i),x〉
)

− sign
(

〈A(i),y〉
))

(23)

=
√
2π

1

m

m
∑

i=1

A(i) · sign
(

〈A(i),x〉
)

· 1
(

sign
(

〈A(i),x〉
)

.= sign
(

〈A(i),y〉
))

(24)

Hence, given the random vectorRx,y = 1
2 (sign (Ax)− sign (Ay)), which takes values in {−1, 0, 1}m, (hA (x,y) |

Rx,y) becomes a function of only Lx,y = ‖Rx,y‖0 ≤ m-many random vectors. Such conditioning on R will
allow for tighter concentration inequalities related to (an orthogonal decomposition of) (hA (x,y) | R). Note
that these concentration inequalities, stated in Appendix A, provide the same inequality for any Rx,y,Rx′,y′

such that Lx,y = L′
x′,y′ , where Lx,y = ‖Rx,y‖0, Lx′,y′ =

∥

∥Rx′,y′

∥

∥

0
, x,y,x′,y′ ∈ Sn−1 ∩ Σn

k , and thus it

suffices to have a handle on (an appropriate subset of) the random variables {Lx,y : x,y ∈ Sn−1 ∩Σn
k}.

With this intuition, the large- and small-scale results in steps (b) and (c) are derived using two primary
arguments. First, for a given u,v ∈ Cτ , the associated random variable L is bounded. Then, conditioning on
L, the desired properties in steps (b) and (c) follow from the appropriate concentration inequalities related
to the decomposition of hA;J (x,y) into three orthogonal components.

Specifically, step (b) is achieved as follows. (i) Consider any (u,v) ∈ Cτ×Cτ such that dSn−1 (u,v) ≥ τ , and
fix J ′ ⊆ [n], |J ′| ≤ 2k arbitrarily. Note that, by a known construction of a τ -net, all pairs of distinct points do
satisfy dSn−1 (u,v) ≥ τ. (ii) It can be shown that for a small s ∈ (0, 1), the number Lu,v of points A(i) ∈ A,

i ∈ [m], such that sign(〈A(i),u〉) .= sign(〈A(i),v〉) is bounded in the range Lu,v ∈ [(1− s) θu,vm
π , (1+ s) θu,vm

π ]
uniformly for all (u,v) ∈ Cτ × Cτ with high probability. (iii) Define gA : Rn × Rn → Rn by

gA(u,v) = hA(u,v)−
〈

u− v

‖u− v‖2
, hA(u,v)

〉

u− v

‖u− v‖2
−
〈

u+ v

‖u+ v‖2
, hA(u,v)

〉

u+ v

‖u+ v‖2
(25)
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which imply,

hA(u,v) =

〈

u− v

‖u− v‖2
, hA(u,v)

〉

u− v

‖u− v‖2
+

〈

u+ v

‖u+ v‖2
, hA(u,v)

〉

u+ v

‖u+ v‖2
+ gA(u,v) (26)

and

hA;J′(u,v) = Tsupp(u)∪supp(v)∪J′ (hA(u,v)) (27)

=

〈

u− v

‖u− v‖2
, hA(u,v)

〉

u− v

‖u− v‖2
+

〈

u+ v

‖u+ v‖2
, hA(u,v)

〉

u+ v

‖u+ v‖2
+ gA;J′(u,v)

where gA;J′(u,v) = Tsupp(u)∪supp(v)∪J′ (gA(u,v)). Note that Friedlander et al. (2021) similarly use such a

decomposition to show their RAIC. (iv) Then, conditioned on Lu,v ∈ [(1−s) θu,vm
π , (1+s) θu,vm

π ], the desired
property in Eq. (20) is derived from Eq. (26) using the concentration inequalities provided by Lemma A.1
in Appendix A together with standard techniques, e.g., the triangle inequality. (v) A union bound extends
Eq. (20) to hold uniformly over Cτ × Cτ and all J ′ ⊆ [n], |J ′| ≤ 2k, with high probability.

Step (c) takes a similar approach. (i) Let u ∈ Cτ be an arbitrary vector in the τ -net, and fix any J ′ ⊆ [n],
|J ′| ≤ 2k. Recall that the desired property in Eq. (21) should hold for all x ∈ Bτ (u) ∩ Sn−1 ∩ Σn

k . (ii) To
ensure this uniform result over Bτ (u)∩ Sn−1 ∩Σn

k , construct a second net Dτ (u) ⊆ Bτ (u)∩ Sn−1 ∩Σn
k such

that for each x ∈ Bτ (u)∩Sn−1∩Σn
k , there exits a point w ∈ Dτ (u) such that sign(Aw) = sign(Ax). (iii) Let

β = arccos(1− τ2

2 ) be the angle associated with the distance τ , and define the random variableMβ,u = |{A(i), i ∈ [m] : θw,A(i) ∈ [π2−β,
π
2+β]}|.

Notice that the size of Dτ (u) need not exceed 2Mβ,u . Moreover, for any x ∈ Bτ (u)∩Sn−1 ∩Σn
k , θx,u ∈ [0,β],

and the number Lx,u of points A(i) ∈ A, i ∈ [m], on which sign(〈A(i),x〉) and sign(〈A(i),u〉) disagree is
upper bounded by Mβ,u, formally, Lx,u ≤ Mβ,u for every x ∈ Bτ (u) ∩ Sn−1 ∩ Σn

k . (iv) By a Chernoff and
union bound, the random variable Mβ,u can be shown to be bounded from above by Mβ,u ≤ 4

3τm with
high probability for every u ∈ Cτ , and due to the above argument, this further implies Lx,u ≤ 4

3τm for each
x ∈ Bτ (u) ∩ Sn−1 ∩ Σn

k . (v) Taking any w ∈ Dτ (u) and conditioning on Lx,u, the norm of hA;J′(w,u) is
bounded using an orthogonal decomposition analogous to that in step (b) and again applying the concentra-
tion inequalities in Lemma A.1 and standard techniques, such that ‖hA;J′(w,u)‖2 ≤ O (τ). (vi) This bound
is then extended to hold uniformly for all u ∈ Cτ , w ∈ Dτ (u), and J ′ ⊆ [n], |J ′| ≤ 2k, by union bound-
ing. (vii) Step (c) concludes by arguing that the uniform result from step (vi) suffices to ensure Eq. (21) holds
uniformly for all u ∈ Cτ , all x ∈ Bτ (u), and all J ′ ⊆ [n], |J ′| ≤ 2k, by observing that for each x ∈ Bτ (u),
there exists w ∈ Dτ (u) such that ‖hA;J′(x,u)‖2 = ‖hA;J′(w,u)‖2 ≤ O (τ) due to the construction of the net
Dτ (u), and additionally, by the triangle inequality, ‖(x− u)− hA;J′(x,u)‖2 ≤ ‖x− u‖2+‖hA;J′(x,u)‖2 ≤ O (τ).

4 Proof of the Main Result—BIHT Convergence

4.1 Intermediate Results

Before proving the main theorems, Theorem 3.1 and 3.2, three intermediate results, in Lemmas 4.1-4.3,
are presented to facilitate the analysis for the convergence of BIHT approximations. The proofs for these
intermediate results are in Section 4.3.

Lemma 4.1. Consider any x ∈ Sn−1 ∩Σn
k and any t ∈ Z+. The error of the tth approximation produced by

the BIHT algorithm satisfies

dSn−1

(

x, x̂(t)
)

≤ 4
∥

∥

∥

(

x− x̂(t−1)
)

− hA;supp(x̂(t))

(

x, x̂(t−1)
)
∥

∥

∥

2
. (28)

Note that Lemma 4.1 is a deterministic result, arsing from the equation by which the BIHT algorithm
computes its tth approximations, t ∈ Z+. Hence, it hold for all x ∈ Sn−1 ∩ Σn

k and all iterations t ∈ Z+.

Lemma 4.2. Let ε : Z≥0 → R be a function given by the recurrence relation

ε(0) = 2 (29)
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ε(t) = 4c1

√

ε

c
ε(t− 1) + 4c2

ε

c
, t ∈ Z+ (30)

The function ε decreases monotonically with t and asymptotically tends to a value not exceeding ε, formally,

lim
t→∞

ε(t) =

(

2c1

(

c1 +
√

c21 + c2

)

+ c2

)

4ε

c
< ε (31)

Lemma 4.3. Let ε : Z≥0 → R be the function as defined in Lemma 4.2. Then, the sequence {ε(t)}t∈Z≥0 is

bound from above by the sequence {22−t

ε1−2−t}t∈Z≥0.

4.2 Proofs of Theorems 3.2 and 3.1

The main theorems for the analysis of the BIHT algorithm are restated for convenience and subsequently
proved in tandem.

Theorem (restatement) (Theorem 3.1). Let a, b, c > 0 be universal constants as in Eq. (3). Fix ε, ρ ∈ (0, 1)
and k,m, n ∈ Z+ where

m ≥ 4bck

ε
log
(en

k

)

+
2bck

ε
log

(

12bc

ε

)

+
bc

ε
log

(

a

ρ

)

.

Let the measurement matrix A ∈ Rm×n and has rows A(1), . . . ,A(m) ∼ N (0, In×n) with i.i.d. entries. Then,
uniformly with probability at least 1−ρ, for all unknown k-sparse, real-valued unit vector x ∈ Sn−1∩Σn

k , the

normalized BIHT algorithm produces a sequence of approximations {x̂(t) ∈ Sn−1∩Σn
k}t∈Z≥0 which converges

to the ε-ball around the unknown vector x at a rate upper bounded by

dSn−1

(

x, x̂(t)
)

≤ 22
−t

ε1−2−t

for all t ∈ Z>0.

Corollary (restatement) (Corollary 3.2). Under the conditions stated in Theorem 3.1, uniformly with
probability at least 1 − ρ, for all unknown k-sparse, real-valued unit vectors x ∈ Sn−1 ∩ Σn

k , the sequence of

BIHT approximations, {x̂(t)}t∈Z≥0 , converges asymptotically into the ε-ball around the unknown vector x.
Formally,

lim
t→∞

dSn−1

(

x, x̂(t)
)

≤ ε.

Proof (Theorem 3.1 and Corollary 3.2). The BIHT approximations for an arbitrary unknown, k-sparse
unit vector, x ∈ Sn−1 ∩ Σn

k , will be shown to converge as claimed in the theorems by applying the main
technical theorem, Theorem 3.3, and the intermediate lemmas, Lemmas 4.1-4.3. Recalling that Theorem
3.3 and Lemma 4.1 hold uniformly over Sn−1 ∩ Σn

k , the argument then implies uniform convergence for all
x ∈ Sn−1 ∩ Σn

k .
Consider any unknown, k-sparse unit vector x ∈ Sn−1 ∩Σn

k with an associated sequence of BIHT approx-

imations {x̂(t) ∈ Sn−1 ∩ Σn
k}t∈Z≥0 . For each t ∈ Z+, Lemma 4.1 bounds the error of the tth approximation

from above by

dSn−1

(

x, x̂(t)
)

≤ 4
∥

∥

∥

(

x− x̂(t−1)
)

− hA;supp(x̂(t−1))

(

x, x̂(t−1)
)∥

∥

∥

2
(32)

which is further bounded by Theorem 3.3—by setting δ = ε
c = ε

32 in the theorem—as

dSn−1

(

x, x̂(t)
)

≤ 4
∥

∥

∥

(

x− x̂(t−1)
)

− hA;supp(x̂(t−1))

(

x, x̂(t−1)
)∥

∥

∥

2
(33a)

≤ 4

(

c1

√

ε

c
dSn−1

(

x, x̂(t−1)
)

+ c2
ε

c

)

(33b)
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= 4c1

√

ε

c
dSn−1

(

x, x̂(t−1)
)

+ 4c2
ε

c
(33c)

where in the case of t = 1, (33c),

dSn−1

(

x, x̂(1)
)

≤ 4c1

√

ε

c
dSn−1

(

x, x̂(0)
)

+ 4c2
ε

c
≤ 4c1

√

ε

c
dSn−1 (x,−x) + 4c2

ε

c
= c1
√
2ε+

c2
4
ε. (34)

Recall that Lemma 4.2 defines a function ε : Z≥0 → R by the recurrence relation

ε(0) = 2 (35)

ε(t) = 4c1

√

ε

c
ε(t− 1) + 4c2

ε

c
, t ∈ Z+ (36)

whose form is similar to (33c). It can be argued inductively that for every t ∈ Z≥0, the function ε(t) upper

bounds the error of the tth BIHT approximation, dSn−1

(

x, x̂(t)
)

, as discussed next. The base case, t = 0, is

trivial since

dSn−1

(

x, x̂(0)
)

≤ dSn−1 (x,−x) = 2 = ε(0). (37)

On the other hand, supposing that for each t′ ∈ [t− 1], t ∈ Z+, the error is upper bounded by

dSn−1

(

x, x̂(t′)
)

≤ ε(t′), (38)

the tth approximation satisfies

dSn−1

(

x, x̂(t)
)

≤ 4c1

√

ε

c
dSn−1

(

x, x̂(t−1)
)

+ 4c2
ε

c
≤ 4c1

√

ε

c
ε(t− 1) + 4c2

ε

c
= ε(t). (39)

By induction, it follows that the sequence of BIHT approximations for the unknown vector x satisfies

dSn−1

(

x, x̂(t)
)

≤ ε(t), ∀ t ∈ Z≥0. (40)

Then, Lemmas 4.2 and 4.3 immediately imply the desired result since asymptotically (Lemma 4.2),

lim
t→∞

dSn−1

(

x, x̂(t)
)

≤ lim
t→∞

ε(t) =

(

2c1

(

c1 +
√

c21 + c2

)

+ c2

)

4ε

c
< ε (41)

and pointwise (Lemma 4.3),

dSn−1

(

x, x̂(t)
)

≤ ε(t) ≤ 22
−t

ε1−2−t

. (42)

This completes the first step of the proof. Next, the proof concludes by extending the argument to the
uniform results claimed in the theorems.

Notice that in the argument laid out above, Lemma 4.1 and Theorem 3.3 hold uniformly for every
x ∈ Sn−1 ∩Σn

k , where Lemma 4.1 is deterministic while Theorem 3.3 ensures the bound with probability at
least 1− ρ. Thus, for every x ∈ Sn−1 ∩ Σn

k , the tth BIHT approximation has error upper bounded by

dSn−1

(

x, x̂(t)
)

≤ 4c1

√

ε

c
dSn−1

(

x, x̂(t−1)
)

+ 4c2
ε

c
(43)

uniformly with probability at least 1 − ρ. Furthermore, because Lemmas 4.2 and 4.3 are deterministic,
the rate of decay and asymptotic behavior stated in the theorems also hold uniformly, such that for all
x ∈ Sn−1 ∩ Σn

k ,

lim
t→∞

dSn−1

(

x, x̂(t)
)

≤ lim
t→∞

ε(t) =

(

2c1

(

c1 +
√

c21 + c2

)

+ c2

)

4ε

c
< ε (44)

dSn−1

(

x, x̂(t)
)

≤ ε(t) ≤ 22
−t

ε1−2−t

, ∀ t ∈ Z≥0 (45)

with probability at least 1− ρ. "
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4.3 Proof of the Intermediate Lemmas (Lemmas 4.1-4.3)

4.3.1 Proof of Lemma 4.1

Proof (Lemma 4.1). Let x ∈ Sn−1 ∩Σn
k be an arbitrary unknown, k-spare vector of unit norm, and consider

any tth BIHT approximation, x̂(t) ∈ Sn−1 ∩ Σn
k , t ∈ Z+. Recall that the BIHT algorithm computes its tth

approximation by

x̃(t) = x̂(t−1) +
η

m
AT · 1

2

(

sign (Ax)− sign
(

Ax̂(t−1)
))

(46)

x̂(t) =
Tk

(

x̃(t)
)

∥

∥

∥
Tk

(

x̃(t)
)
∥

∥

∥

2

(47)

and notice that

x̃(t) = x̂(t−1) + hA(x, x̂(t−1)) (48)

Tsupp(x)∪supp(x̂(t−1))∪supp(x̂(t))

(

x̃(t)
)

= x̂(t−1) + hA;supp(x̂(t))(x, x̂
(t−1)). (49)

Applying the triangle inequality, the error of the tth BIHT approximation, x̂(t), can be bounded from above.

dSn−1

(

x, x̂(t)
)

(50a)

=
∥

∥

∥
x− x̂(t)

∥

∥

∥

2
(50b)

=
∥

∥

∥

(

x− Tsupp(x)∪supp(x̂(t))

(

x̃(t)
))

+
(

Tsupp(x)∪supp(x̂(t))

(

x̃(t)
)

− Tsupp(x̂(t))

(

x̃(t)
))

+
(

Tsupp(x̂(t))

(

x̃(t)
)

− x̂(t)
)∥

∥

∥

2

(50c)

≤
∥

∥

∥
x− Tsupp(x)∪supp(x̂(t))

(

x̃(t)
)∥

∥

∥

2
+
∥

∥

∥
Tsupp(x)∪supp(x̂(t))

(

x̃(t)
)

− Tsupp(x̂(t))

(

x̃(t)
)∥

∥

∥

2
+
∥

∥

∥
Tsupp(x̂(t))

(

x̃(t)
)

− x̂(t)
∥

∥

∥

2

# by the triangle inequality (50d)

=
∥

∥

∥
x− Tsupp(x)∪supp(x̂(t))

(

x̃(t)
)∥

∥

∥

2
+
∥

∥

∥
Tsupp(x)∪supp(x̂(t))

(

x̃(t)
)

− Tsupp(x̂(t))

(

x̃(t)
)∥

∥

∥

2
(50e)

+

∥

∥

∥

∥

∥

∥

Tsupp(x̂(t))

(

x̃(t)
)

−
Tsupp(x̂(t))

(

x̃(t)
)

∥

∥

∥
Tsupp(x̂(t))

(

x̃(t)
)∥

∥

∥

2

∥

∥

∥

∥

∥

∥

2

The rightmost term in the last line can be upper bounded as follows.

∥

∥

∥

∥

∥

∥

Tsupp(x̂(t))

(

x̃(t)
)

−
Tsupp(x̂(t))

(

x̃(t)
)

∥

∥

∥
Tsupp(x̂(t))

(

x̃(t)
)
∥

∥

∥

2

∥

∥

∥

∥

∥

∥

2

(51a)

=
∣

∣

∣

∥

∥

∥
Tsupp(x̂(t))

(

x̃(t)
)∥

∥

∥

2
− 1
∣

∣

∣

∥

∥

∥

∥

∥

∥

Tsupp(x̂(t))

(

x̃(t)
)

∥

∥

∥
Tsupp(x̂(t))

(

x̃(t)
)∥

∥

∥

2

∥

∥

∥

∥

∥

∥

2

(51b)

=
∣

∣

∣

∥

∥

∥
Tsupp(x̂(t))

(

x̃(t)
)∥

∥

∥

2
− 1
∣

∣

∣
(51c)

=
∣

∣

∣

∥

∥

∥
Tsupp(x̂(t))

(

x̃(t)
)∥

∥

∥

2
− ‖x‖2

∣

∣

∣
(51d)

≤
∥

∥

∥
Tsupp(x̂(t))

(

x̃(t)
)

− x
∥

∥

∥

2
# by the triangle inequality (51e)

=
∥

∥

∥

(

Tsupp(x̂(t))

(

x̃(t)
)

− Tsupp(x)∪supp(x̂(t))

(

x̃(t)
))

+
(

Tsupp(x)∪supp(x̂(t))

(

x̃(t)
)

− x
)
∥

∥

∥

2
(51f)

≤
∥

∥

∥
Tsupp(x̂(t))

(

x̃(t)
)

− Tsupp(x)∪supp(x̂(t))

(

x̃(t)
)
∥

∥

∥

2
+
∥

∥

∥
Tsupp(x)∪supp(x̂(t))

(

x̃(t)
)

− x
∥

∥

∥

2
(51g)
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# by the triangle inequality

=
∥

∥

∥
x− Tsupp(x)∪supp(x̂(t))

(

x̃(t)
)∥

∥

∥

2
+
∥

∥

∥
Tsupp(x)∪supp(x̂(t))

(

x̃(t)
)

− Tsupp(x̂(t))

(

x̃(t)
)∥

∥

∥

2
(51h)

Combing (50e) and (51h) yields

dSn−1

(

x, x̂(t)
)

= 2
∥

∥

∥
x− Tsupp(x)∪supp(x̂(t))

(

x̃(t)
)∥

∥

∥

2
+ 2

∥

∥

∥
Tsupp(x)∪supp(x̂(t))

(

x̃(t)
)

− Tsupp(x̂(t))

(

x̃(t)
)∥

∥

∥

2
.

(52)

Taking a closer look at the last term in (52),
∥

∥

∥
Tsupp(x)∪supp(x̂(t))

(

x̃(t)
)

− Tsupp(x̂(t))

(

x̃(t)
)∥

∥

∥

2
=
∥

∥

∥
Tsupp(x)\supp(x̂(t))

(

x̃(t)
)∥

∥

∥

2
≤
∥

∥

∥
Tsupp(x̂(t))\supp(x)

(

x̃(t)
)∥

∥

∥

2

(53)

where the rightmost inequality follows from the definition of the thresholding operation Tk, which ensures

that for each j ∈ supp(x)\ supp(x̂(t)), the jth entry of x̃(t) satisfies |x̃(t)
j | ≤ minj′∈supp(x̂(t))\supp(x) |x̃

(t)
j′ |. Then,

observe
∥

∥

∥
x− Tsupp(x)∪supp(x̂(t))

(

x̃(t)
)∥

∥

∥

2

2
=

∑

j∈supp(x)∪supp(x̂(t))

(

xj − x̃(t)
j

)2
(54a)

=
∑

j∈supp(x̂(t))\supp(x)

(

xj − x̃(t)
j

)2
+

∑

j∈supp(x)

(

xj − x̃(t)
j

)2
(54b)

=
∑

j∈supp(x̂(t))\supp(x)

(

0− x̃(t)
j

)2
+

∑

j∈supp(x)

(

xj − x̃(t)
j

)2
(54c)

=
∑

j∈supp(x̂(t))\supp(x)

(

x̃(t)
j

)2
+

∑

j∈supp(x)

(

xj − x̃(t)
j

)2
(54d)

=
∥

∥

∥
Tsupp(x̂(t))\supp(x)

(

x̃(t)
)
∥

∥

∥

2

2
+
∥

∥

∥
x− Tsupp(x)

(

x̃(t)
)
∥

∥

∥

2

2
(54e)

It follows that
∥

∥

∥
Tsupp(x̂(t))\supp(x)

(

x̃(t)
)∥

∥

∥

2

2
+
∥

∥

∥
x− Tsupp(x)

(

x̃(t)
)∥

∥

∥

2

2
=
∥

∥

∥
x− Tsupp(x)∪supp(x̂(t))

(

x̃(t)
)∥

∥

∥

2

2
(55a)

−→
∥

∥

∥
Tsupp(x̂(t))\supp(x)

(

x̃(t)
)∥

∥

∥

2

2
=
∥

∥

∥
x− Tsupp(x)∪supp(x̂(t))

(

x̃(t)
)∥

∥

∥

2

2
−
∥

∥

∥
x− Tsupp(x)

(

x̃(t)
)∥

∥

∥

2

2
(55b)

−→
∥

∥

∥
Tsupp(x̂(t))\supp(x)

(

x̃(t)
)
∥

∥

∥

2

2
≤
∥

∥

∥
x− Tsupp(x)∪supp(x̂(t))

(

x̃(t)
)
∥

∥

∥

2

2
(55c)

−→
∥

∥

∥
Tsupp(x̂(t))\supp(x)

(

x̃(t)
)
∥

∥

∥

2
≤
∥

∥

∥
x− Tsupp(x)∪supp(x̂(t))

(

x̃(t)
)
∥

∥

∥

2
(55d)

Likewise,

∥

∥

∥
x− Tsupp(x)∪supp(x̂(t−1))∪supp(x̂(t))

(

x̃(t)
)∥

∥

∥

2

2
(56a)

=
∑

j∈supp(x)∪supp(x̂(t−1))∪supp(x̂(t))

(

xj − x̃(t)
j

)2
(56b)

=
∑

j∈supp(x)∪supp(x̂(t))

(

xj − x̃(t)
j

)2
+

∑

j∈supp(x̂(t−1))\(supp(x)∪supp(x̂(t)))

(

xj − x̃(t)
j

)2
(56c)

=
∥

∥

∥
Tsupp(x)∪supp(x̂(t))

(

x− x̃(t)
)
∥

∥

∥

2

2
+
∥

∥

∥
Tsupp(x̂(t−1))\(supp(x)∪supp(x̂(t)))

(

x− x̃(t)
)
∥

∥

∥

2

2
(56d)

≥
∥

∥

∥
Tsupp(x)∪supp(x̂(t))

(

x− x̃(t)
)
∥

∥

∥

2

2
(56e)
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=
∥

∥

∥
x− Tsupp(x)∪supp(x̂(t))

(

x̃(t)
)∥

∥

∥

2

2
(56f)

−→
∥

∥

∥
x− Tsupp(x)∪supp(x̂(t))

(

x̃(t)
)∥

∥

∥

2
≤
∥

∥

∥
x− Tsupp(x)∪supp(x̂(t−1))∪supp(x̂(t))

(

x̃(t)
)∥

∥

∥

2
(56g)

Continuing from (52),

dSn−1

(

x, x̂(t)
)

(57a)

= 2
∥

∥

∥
x− Tsupp(x)∪supp(x̂(t))

(

x̃(t)
)
∥

∥

∥

2
+ 2

∥

∥

∥
Tsupp(x)∪supp(x̂(t))

(

x̃(t)
)

− Tsupp(x̂(t))

(

x̃(t)
)
∥

∥

∥

2
(57b)

= 2
∥

∥

∥
x− Tsupp(x)∪supp(x̂(t))

(

x̃(t)
)∥

∥

∥

2
+ 2

∥

∥

∥
Tsupp(x̂(t))\supp(x)

(

x̃(t)
)∥

∥

∥

2
# by Eq. (53) (57c)

≤ 4
∥

∥

∥
x− Tsupp(x)∪supp(x̂(t))

(

x̃(t)
)∥

∥

∥

2
# by Eq. (55d) (57d)

≤ 4
∥

∥

∥
x− Tsupp(x)∪supp(x̂(t−1))∪supp(x̂(t))

(

x̃(t)
)∥

∥

∥

2
# by Eq. (56g) (57e)

= 4
∥

∥

∥
x− Tsupp(x)∪supp(x̂(t−1))∪supp(x̂(t))

(

x̂(t−1) + hA(x, x̂(t−1))
)
∥

∥

∥

2
(57f)

= 4
∥

∥

∥
x− x̂(t−1) − Tsupp(x)∪supp(x̂(t−1))∪supp(x̂(t))

(

hA(x, x̂(t−1))
)
∥

∥

∥

2
(57g)

= 4
∥

∥

∥

(

x− x̂(t−1)
)

− hA;supp(x̂(t))(x, x̂
(t−1))

∥

∥

∥

2
(57h)

as desired. "

4.3.2 Proof of Lemmas 4.2 and 4.3

Lemmas 4.2 and 4.3, will be verified in tandem. Fact 4.1, stated below and proved in Section C, will facilitate
the proof.

Fact 4.1. Let u, v, w,w0 ∈ R+ such that u = 1
2

(

1 +
√
1 + 4w

)

, and 1 ≤ u ≤ 2√
v
. Define the functions

f1, f2 : Z≥0 → R by

f1(0) = 2 (58)

f1(t) = vw +
√

vg(t− 1), t ∈ Z+ (59)

f2(t) = 22
−t

(u2v)1−2−t

, t ∈ Z≥0. (60)

Then, f1 and f2 are strictly monotonically decreasing and asymptotically converges to u2v. Moreover, f2
pointwise upper bounds f1. Formally,

f1(t) ≤ f2(t), ∀ t ∈ Z≥0 (61)

lim
t→∞

f2(t) = lim
t→∞

f1(t) = u2v. (62)

Lemma (restatement) (Lemma 4.2). Let ε : Z≥0 → R be a function given by the recurrence relation

ε(0) = 2

ε(t) = 4c1

√

ε

c
ε(t− 1) + 4c2

ε

c
, t ∈ Z+

The function ε decreases monotonically with t and asymptotically tends to a value not exceeding ε, formally,

lim
t→∞

ε(t) =

(

2c1

(

c1 +
√

c21 + c2

)

+ c2

)

4ε

c
< ε

Lemma (restatement) (Lemma 4.3). Let ε : Z≥0 → R be the function as defined in Lemma 4.2. Then,

the sequence {ε(t)}t∈Z≥0 is bound from above by the sequence {22−t

ε1−2−t}t∈Z≥0 .
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Proof (Lemmas 4.2 and 4.3). The lemmas are corollaries to Fact 4.1. All that is necessary is writing ε in the
form of f1 in Fact 4.1 and verifying that it satisfies the conditions of the fact. For t = 0, ε(0) = 2 = f1(0).
Otherwise, for t > 0, observe

ε(t) = 4c1

√

ε

c
ε(t− 1) + 4c2

ε

c
=

(

16c21ε

c

)(

16c21ε

c

)−1

4c2
ε

c
+

√

(

16c21ε

c

)

ε(t− 1) (63a)

=

(

16c21ε

c

)(

c2
4c21

)

+

√

(

16c21ε

c

)

ε(t− 1) (63b)

= vw +
√

vε(t− 1) (63c)

where v = 16c21ε
c , w = c2

4c21
, and u = 1

2 (1 +
√

1 + 4 · c2
4c21

) = 1
2 (1 +

√

1 + c2
c21
) = 1

2c1
(c1 +

√

c21 + c2). Recall

that the universal constants are fixed as c1 =
√

3π
b

(

1 + 16
√
2

3

)

, c2 = 3
b

(

1 + 4π
3 + 8

√
3π
3 + 8

√
6π
)

, c = 32.

By numerical calculations, it can be shown that u
√
v <
√
2 whenever b ! 379.1038, and hence u <

√

2
v , as

required by Fact 4.1. It then follows that ε monotonically decreases with t ∈ Z≥0 and

lim
t→∞

ε(t) = u2v =

(

2c1

(

c1 +
√

c21 + c2

)

+ c2

)

4ε

c
<

32ε

c
= ε, (64)

where the last inequality follows from a numerical calculation. Moreover, Fact 4.1 further implies

ε(t) ≤ 22
−t

(u2v)1−2−t

< 22
−t

ε1−2−t

. (65)

"

5 Outlook

In this paper, we have shown that the binary iterative hard thresholding, an iterative (proximal) subgradient
descent algorithm for a nonconvex optimization problem, converges under certain structural assumptions,
with optimal number of measurements. It is worth exploring how general this result can be: what other
nonlinear measurements can be handled this way - and also what type of measurement noise can be tolerated
by such iterative algorithms. This direction is hopeful because the noiseless sign measurements are often
thought to be the hardest to analyze. Furthermore, our result is deterministic given a measurement matrix
with certain property. Incidentally, Gaussian measurements satisfy this property with high probability.
However, spherical symmetry of the measurements is a big part of the proof, and it is not clear whether other
non-Gaussian (even sub-Gaussian) measurement matrices can have this property, and whether derandomized
explicit construction of measurement matrices is possible.

References

Jayadev Acharya, Arnab Bhattacharyya, and Pritish Kamath. Improved bounds for universal one-bit com-
pressive sensing. In 2017 IEEE International Symposium on Information Theory (ISIT), pages 2353–2357.
IEEE, 2017.

Richard G Baraniuk, Simon Foucart, Deanna Needell, Yaniv Plan, and Mary Wootters. Exponential decay
of reconstruction error from binary measurements of sparse signals. IEEE Transactions on Information
Theory, 63(6):3368–3385, 2017.

LE Blumenson. A derivation of n-dimensional spherical coordinates. The American Mathematical Monthly,
67(1):63–66, 1960.

15



Petros Boufounos and Richard G. Baraniuk. 1-bit compressive sensing. In 42nd Annual Confer-
ence on Information Sciences and Systems, CISS 2008, Princeton, NJ, USA, 19-21 March 2008,
pages 16–21. IEEE, 2008. ISBN 978-1-4244-2246-3. doi: 10.1109/CISS.2008.4558487. URL
https://doi.org/10.1109/CISS.2008.4558487.

Petros T Boufounos, Laurent Jacques, Felix Krahmer, and Rayan Saab. Quantization and compressive
sensing. In Compressed sensing and its applications, pages 193–237. Springer, 2015.

Emmanuel J Candès, Justin Romberg, and Terence Tao. Robust uncertainty principles: exact signal recon-
struction from highly incomplete frequency information. IEEE Transactions on Information Theory, 52
(2):489–509, 2006.

David L. Donoho. Compressed sensing. IEEE Trans. Information Theory, 52(4):1289–1306, 2006.

Larkin Flodin, Venkata Gandikota, and Arya Mazumdar. Superset technique for approximate recovery in
one-bit compressed sensing. In Advances in Neural Information Processing Systems, pages 10387–10396,
2019.

Michael P Friedlander, Halyun Jeong, Yaniv Plan, and Özgür Yılmaz. Nbiht: An efficient algorithm for
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A Proof of Theorem 3.3

This section proves the main technical theorem, Theorem 3.3, which is restated for convenience.

Theorem (restatement). Let a, b, c1, c2 > 0 be universal constants as defined in Eq. (3). Fix δ, ρ ∈ (0, 1)
and k,m, n ∈ Z+ such that 0 < k < n and

m =
b

δ
log

(

(

n

k

)2( n

2k

)(

12b

δ

)2k (a

ρ

)

)

∈ O

(

k

δ
log
( n

δk

)

+
1

δ
log

(

1

ρ

))

.

Let A ∈ Rm×n be a measurement matrix whose rows A(i) ∼ N (0, In×n), i ∈ [m], have i.i.d. standard
normal entries. Then, the measurement matrix A satisfies the (k, n, δ, c1, c2)-RAIC. Formally, uniformly
with probability at least 1− ρ, for all x,y ∈ Sn−1 ∩ Σn

k and all J ⊆ [n], |J | ≤ k,

‖(x− y)− hA;J(x,y)‖2 ≤ c1
√

δdSn−1 (x,y) + c2δ.

The proof of the theorem will consider two regimes—the first, in Section A.1, looks at points which are
at least distance δ

b apart, while the second, in Section A.2, handles points which are very close (less than
distance δ

b ). Section A.3 then combines the two regimes to establish the theorem.
Before beginning the proof, let us introduce some notation and intermediate results. Recall the definition

of hA : Rn × Rn → R,

hA (x,y) =
√
2π

1

m
AT · 1

2
(sign (Ax)− sign (Ay)) (66)

hA;J (x,y) = Tsupp(x)∪supp(y)∪J (hA (x,y)) (67)

and further define

gA (x,y) = hA (x,y)−
〈

x
‖x‖2

− y
‖y‖2

∥

∥

∥

x
‖x‖2

− y
‖y‖2

∥

∥

∥

2

, hA (x,y)

〉

x
‖x‖2

− y
‖y‖2

∥

∥

∥

x
‖x‖2

− y
‖y‖2

∥

∥

∥

2

(68)

−
〈

x
‖x‖2

+ y
‖y‖2

∥

∥

∥

x
‖x‖2

+ y
‖y‖2

∥

∥

∥

2

, hA (x,y)

〉

x
‖x‖2

+ y
‖y‖2

∥

∥

∥

x
‖x‖2

+ y
‖y‖2

∥

∥

∥

2

gA;J (x,y) = Tsupp(x)∪supp(y)∪J (gA (x,y)) (69)

for x,y ∈ Rn and J ⊆ [n]. The first of the two following lemmas provides concentration inequalities related
to these functions hA and gA. The latter lemma characterizes the number of measurements which lie in an
angularly defined subset of Rn. Both lemmas are verified in Appendix B.
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Lemma A.1. Fix %, t > 0, r ∈ {−1, 0, 1}m, and J ⊆ [n], such that ‖r‖0 = % > 0 and |J | ≤ 2k. Let
(u,v) ∈ Sn−1 ∩ Σn

k × Sn−1 ∩ Σn
k be an ordered pair of real-valued unit vectors, and define the random

variables Ru,v = (R1;u,v, . . . , Rm;u,v) =
1
2 (sign(Au)− sign(Av)) and Lu,v = ‖Ru,v‖0, and suppose Ru,v = r

and Lu,v = %. Then, conditioned on Ru,v = r and Lu,v = %, the following concentration inequalities hold.

Pr

(
∣

∣

∣

∣

〈

u− v

‖u− v‖2
,
1

η
hA;J (u,v)

〉

−
√

π

2

%

m

dSn−1 (u,v)

θu,v

∣

∣

∣

∣

≥ %t

m

∣

∣

∣

∣

Ru,v = r, Lu,v = %

)

≤ 2e−
1
2 (t

2

(70)

Pr

(∣

∣

∣

∣

〈

u+ v

‖u+ v‖2
,
1

η
hA;J(u,v)

〉∣

∣

∣

∣

≥ %t

m

∣

∣

∣

∣

Ru,v = r, Lu,v = %

)

≤ 2e−
1
2 (t

2

(71)

Pr

(

∥

∥

∥

∥

1

η
gA;J(u,v)

∥

∥

∥

∥

2

≥ 2
√
2k%

m
+
%t

m

∣

∣

∣

∣

∣

Ru,v = r, Lu,v = %

)

≤ 2e−
1
8 (t

2

(72)

Lemma A.2. Fix t ∈ (0, 1), β ∈ [0, π
2 ]. Let u ∈ Rn, and define the random variable Mβ,u = |{A(i) ∈ A :

θu,A(i) ∈
[

π
2 − β,

π
2 + β

]

}|. Then,

µMβ,u
= E [Mβ,u] =

2

π
βm (73)

and

Pr
(

Mβ,u /∈
[

(1− t)µMβ,u
, (1 + t)µMβ,u

])

≤ 2e−
1
3µMβ,u

t2 . (74)

Lastly, for the purposes of the proof, a τ -net Cτ ⊂ Sn−1 ∩ Σn
k over the set of k-sparse, real-valued unit

vectors is designed as follows, where τ = δ
b is defined to lighten the notation. For each J ⊆ [n], |J | ≤ k,

let Cτ ;J ⊂ Sn−1 ∩ Σn
k be a τ -net over the set {x ∈ Sn−1 ∩ Σn

k : supp(x) = J}. Then, construct the τ -

net Cτ ⊂ Sn−1 ∩ Σn
k as their union, Cτ =

⋃

J⊆[n]:|J|≤k Cτ ;J . Note that |Cτ | ≤
(n
k

) (

3
τ

)k
2k =

(n
k

) (

6
τ

)k
and

|Cτ × Cτ | ≤
(

n
k

)2 ( 3
τ

)2k
22k =

(

n
k

)2 ( 6
τ

)2k
. This construction is consistent throughout Sections A.1-A.3.

A.1 “Large distances” regime

The first regime considers the RAIC for ordered pairs of points in the τ -net which are at least distance τ
from each other. Lemma A.3 formalizes a uniform result in this regime.

Lemma A.3. Let b1 > 0 be a universal constant. Fix δ, ρ1 ∈ (0, 1), and let τ = δ
b . Uniformly with probability

at least 1− ρ1,

‖(u− v)− hA;J (u,v)‖2 ≤ b1
√

δdSn−1 (u,v) (75)

for all (u,v) ∈ Cτ × Cτ satisfying dSn−1 (u,v) ≥ τ , and J ⊆ [n], |J | ≤ 2k.

Proof (Lemma A.3). Let (u,v) ∈ Cτ×Cτ be an arbitrary ordered pair of points in the τ -net whose distance is
at least dSn−1 (u,v) ≥ τ . Similar to the approach by Friedlander et al. (2021) and seen in Plan and Vershynin
(2016), the function hA;J can be orthogonally decomposed as

hA;J(u,v) =

〈

u− v

‖u− v‖2
, hA;J(u,v)

〉

u− v

‖u− v‖2
+

〈

u+ v

‖u+ v‖2
, hA;J(u,v)

〉

u+ v

‖u+ v‖2
+ gA;J(u,v) (76)

Combining (76) with the triangle inequality yields

‖(u− v)− hA;J(u,v)‖2 (77a)

=

∥

∥

∥

∥

(u− v)−
(〈

u− v

‖u− v‖2
, hA;J(u,v)

〉

u− v

‖u− v‖2
+

〈

u+ v

‖u+ v‖2
, hA;J(u,v)

〉

u+ v

‖u+ v‖2
+ gA;J(u,v)

)∥

∥

∥

∥

2

(77b)

≤
∥

∥

∥

∥

(u− v)−
〈

u− v

‖u− v‖2
, hA;J(u,v)

〉

u− v

‖u− v‖2

∥

∥

∥

∥

2

+

∥

∥

∥

∥

〈

u+ v

‖u+ v‖2
, hA;J(u,v)

〉

u+ v

‖u+ v‖2

∥

∥

∥

∥

2

+ ‖gA;J (u,v)‖2
(77c)
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# by the triangle inequality

=

∣

∣

∣

∣

‖u− v‖2 −
〈

u− v

‖u− v‖2
, hA;J(u,v)

〉∣

∣

∣

∣

∥

∥

∥

∥

u− v

‖u− v‖2

∥

∥

∥

∥

2

+

∣

∣

∣

∣

〈

u+ v

‖u+ v‖2
, hA;J(u,v)

〉∣

∣

∣

∣

∥

∥

∥

∥

u+ v

‖u+ v‖2

∥

∥

∥

∥

2

+ ‖gA;J(u,v)‖2
(77d)

=

∣

∣

∣

∣

‖u− v‖2 −
〈

u− v

‖u− v‖2
, hA;J(u,v)

〉∣

∣

∣

∣

+

∣

∣

∣

∣

〈

u+ v

‖u+ v‖2
, hA;J(u,v)

〉∣

∣

∣

∣

+ ‖gA;J(u,v)‖2 (77e)

Lemma A.1 provides the following concentration inequalities.

Pr

(
∣

∣

∣

∣

〈

u− v

‖u− v‖2
,
1

η
hA;J(u,v)

〉

−
√

π

2

%u,v
m

dSn−1 (u,v)

θu,v

∣

∣

∣

∣

>
%u,vtu,v

m

∣

∣

∣

∣

Ru,v = r, Lu,v = %u,v

)

≤ 2e−
1
2 (u,vt

2
u,v

(78)

Pr

(∣

∣

∣

∣

〈

u+ v

‖u+ v‖2
,
1

η
hA;J(u,v)

〉∣

∣

∣

∣

>
%u,vtu,v

m

∣

∣

∣

∣

Ru,v = r, Lu,v = %u,v

)

≤ 2e−
1
2 (u,vt

2
u,v (79)

Pr

(

∥

∥

∥

∥

1

η
gA;J(u,v)

∥

∥

∥

∥

2

>
2
√

2k%u,v
m

+
%u,vtu,v

m

∣

∣

∣

∣

∣

Ru,v = r, Lu,v = %u,v

)

≤ 2e−
1
8 (u,vt

2
u,v (80)

whereRu,v and Lu,v are random variables defined asRu,v = (R1;u,v, . . . , Rm;u,v) = 1
2 (sign(Au)− sign(Av))

and Lu,v = ‖Ru,v‖0, and r ∈ {−1, 0, 1}m, %u,v ∈ [m]. Eq. (78) further implies

Pr

(
∣

∣

∣

∣

(

‖u− v‖2 −
〈

u− v

‖u− v‖2
, hA;J (u,v)

〉)

−
(

‖u− v‖2 −
√

π

2

η%u,v
m

dSn−1 (u,v)

θu,v

)
∣

∣

∣

∣

>
η%u,vtu,v

m

∣

∣

∣

∣

Ru,v = r, Lu,v = %u,v

)

≤ 2e−
1
2 (u,vt

2
u,v (81)

while Eqs. (79) and (80) can be written

Pr

(
∣

∣

∣

∣

〈

u+ v

‖u+ v‖2
, hA;J(u,v)

〉
∣

∣

∣

∣

>
η%u,vtu,v

m

∣

∣

∣

∣

Ru,v = r, Lu,v = %u,v

)

≤ 2e−
1
2 (u,vt

2
u,v (82)

Pr

(

‖gA;J (u,v)‖2 >
2η
√

2k%u,v
m

+
η%u,vtu,v

m

∣

∣

∣

∣

∣

Ru,v = r, Lu,v = %u,v

)

≤ 2e−
1
8 (u,vt

2
u,v (83)

It follows that given Lu,v = %u,v, with probability at least 1− 6e−
1
8 (u,vt

2
u,v , the following holds

‖(u− v)− hA;J(u,v)‖2 (84a)

≤
∣

∣

∣

∣

‖u− v‖2 −
〈

u− v

‖u− v‖2
, hA;J(u,v)

〉
∣

∣

∣

∣

+

∣

∣

∣

∣

〈

u+ v

‖u+ v‖2
, hA;J(u,v)

〉
∣

∣

∣

∣

+ ‖gA;J (u,v)‖2 (84b)

≤
∣

∣

∣

∣

‖u− v‖2 −
√

π

2

η%u,v
m

dSn−1 (u,v)

θu,v

∣

∣

∣

∣

+
η%u,vtu,v

m
+
η%u,vtu,v

m
+

2η
√

2k%u,v
m

+
η%u,vtu,v

m
(84c)

=

∣

∣

∣

∣

dSn−1 (u,v)−
√

π

2

η%u,v
m

dSn−1 (u,v)

θu,v

∣

∣

∣

∣

+
3η%u,vtu,v

m
+

2η
√

2k%u,v
m

(84d)

=

∣

∣

∣

∣

1−
√

π

2

η%u,v
m

1

θu,v

∣

∣

∣

∣

dSn−1 (u,v) +
3η%u,vtu,v

m
+

2η
√

2k%u,v
m

(84e)

Let us next get a handle on the random variable Lu,v, which tallies up the number of sign differences

between sign(Au) and sign(Av). Note that this is precisely the number of ith measurements A(i) ∈ A,

i ∈ [m], such that θw,A(i) ∈ [π2 −
θu,v

2 , π2 + θu,v

2 ], where w = u − v. By Lemma A.2, the random variable
Lu,v can be characterized expectation

E [Lu,v] =
θu,vm

π
(85)

19



and the concentration inequality

Pr

(

Lu,v /∈
[

(1− su,v)
θu,vm

π
, (1 + su,v)

θu,vm

π

])

≤ 2e−
1
3π θu,vmsu,v . (86)

Thus far, it has been shown that for a given pair (u,v) ∈ Cτ ×Cτ , where dSn−1 (u,v) ≥ τ , with probability

at least 1− 6e−
1
8 (u,vt

2
u,v − 2e−

1
3π θu,vmsu,v ,

‖(u− v)− hA;J(u,v)‖2 ≤
∣

∣

∣

∣

1−
√

π

2

η%u,v
m

1

θu,v

∣

∣

∣

∣

dSn−1 (u,v) +
3η%u,vtu,v

m
+

2η
√

2k%u,v
m

(87)

where %u,v ∈ [(1− su,v)
θu,vm

π , (1 + su,v)
θu,vm

π ]. Next, this result will be extended—via union bounding—to
hold uniformly for over all pairs (u,v) ∈ Cτ × Cτ with dSn−1 (u,v) ≥ τ and each J ⊆ [n], |J | ≤ 2k. Let
ρ′1, ρ

′′
1 ∈ (0, 1) such that ρ′1 + ρ′′1 = ρ1. For each pair u,v ∈ Cτ and every J ⊆ [n], |J | = 2k, the parameters

su,v and tu,v should ensure

Pr

(

∃u,v ∈ Cτ , dSn−1 (u,v) ≥ τ, Lu,v /∈
[

(1 − su,v)
θu,vm

π
, (1 + su,v)

θu,vm

π

])

≤ ρ′1 (88)

and

Pr











∃ (u,v) ∈ Cτ × Cτ , dSn−1 (u,v) ≥ τ,
∃ J ⊆ [n], |J | ≤ 2k,
‖(u− v)− hA;J(u,v)‖2
>
∣

∣

∣
1−

√

π
2
η(u,v

m
1

θu,v

∣

∣

∣
dSn−1 (u,v) + 3η(u,vtu,v

m +
2η
√

2k(u,v

m

∣

∣

∣

∣

∣

∣

∣

∣

∣

Lu,v = %u,v ∈
[

(1± su,v)
θu,vm

π

]











≤ ρ′′1

(89)

For the former, (88), observe,

Pr

(

∃u,v ∈ Cτ , dSn−1 (u,v) ≥ τ, Lu,v /∈
[

(1 − su,v)
θu,vm

π
, (1 + su,v)

θu,vm

π

])

≤ ρ′1 (90a)

−→
(

n

k

)2 (6

τ

)2k

Pr

(

Lu,v /∈
[

(1− su,v)
θu,vm

π
, (1 + su,v)

θu,vm

π

])

≤ ρ′1 (90b)

−→
(

n

k

)2 (6

τ

)2k

2e−
1
3π θu,vmsu,v ≤ ρ′1 (90c)

−→ su,v ≥

√

√

√

√

3π

θu,vm
log

(

(

n

k

)2(6

τ

)2k ( 2

ρ′1

)

)

(90d)

Hence, the parameter is set as

su,v =

√

√

√

√

3π

θu,vm
log

(

(

n

k

)2(6

τ

)2k ( 2

ρ′1

)

)

∈ (0, 1) (91)

Then,

%u,v ≤ (1 + su,v)
θu,vm

π
≤



1 +

√

√

√

√

3π

θu,vm
log

(

(

n

k

)2(6

τ

)2k ( 2

ρ′1

)

)





θu,vm

π
≤ 2

π
θu,vm. (92)

On the other hand, using (89), tu,v is determined as follows. Note that the number subsets J ⊆ [n], |J | ≤ 2k,
is at most

( n
2k

)

22k (which will be used momentarily in a union bound), and then observe,

Pr











∃ (u,v) ∈ Cτ × Cτ , dSn−1 (u,v) ≥ τ,
∃ J ⊆ [n], |J | ≤ 2k,
‖(u− v)− hA;J(u,v)‖2
>
∣

∣

∣
1−

√

π
2
η(u,v

m
1

θu,v

∣

∣

∣
dSn−1 (u,v) + 3η(u,vtu,v

m +
2η
√

2k(u,v

m

∣

∣

∣

∣

∣

∣

∣

∣

∣

Lu,v = %u,v ∈
[

(1± su,v)
θu,vm

π

]











≤ ρ′′1

(93a)
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−→
(

n

k

)2( 6

τ

)2k

22k
(

n

2k

)

6e−
1
8 (u,vt

2
u,v ≤ ρ′′1 (93b)

−→
(

n

k

)2( n

2k

)(

12

τ

)2k

6e−
1
8 (u,vt

2
u,v ≤ ρ′′1 (93c)

−→ tu,v ≥

√

√

√

√

8

%u,v
log

(

(

n

k

)2( n

2k

)(

12

τ

)2k ( 6

ρ′′1

)

)

(93d)

Thus, the parameter can be set as

tu,v =

√

√

√

√

8

%u,v
log

(

(

n

k

)2( n

2k

)(

12

τ

)2k ( 6

ρ′′1

)

)

. (94)

Note that

%u,v
m
≤ (1 + su,v)

θu,vm

π
· 1

m
=

(1 + su,v)

π
θu,v ≤

2

π
θu,v (95)

and

%u,vtu,v
m

≤ %u,v
m

√

√

√

√

8

%u,v
log

(

(

n

k

)2( n

2k

)(

12

τ

)2k ( 6

ρ′′1

)

)

=
1

m

√

√

√

√8%u,v log

(

(

n

k

)2( n

2k

)(

12

τ

)2k ( 6

ρ′′1

)

)

(96a)

≤ 1

m

√

√

√

√8 · 2
π
θu,vm log

(

(

n

k

)2( n

2k

)(

12

τ

)2k ( 6

ρ′′1

)

)

(96b)

=

√

√

√

√

16

π

θu,v
m

log

(

(

n

k

)2( n

2k

)(

12

τ

)2k ( 6

ρ′′1

)

)

(96c)

≤

√

√

√

√

16

3

dSn−1 (u,v)

m
log

(

(

n

k

)2( n

2k

)(

12

τ

)2k ( 6

ρ′′1

)

)

(96d)

≤ 4√
3
·

√

√

√

√

dSn−1 (u,v)

m
log

(

(

n

k

)2( n

2k

)(

12

τ

)2k ( 6

ρ′′1

)

)

(96e)

In regard to the parameter su,v, observe

su,vdSn−1 (u,v) = dSn−1 (u,v)

√

√

√

√

3π

θu,vm
log

(

(

n

k

)2(6

τ

)2k ( 2

ρ′1

)

)

(97a)

≤

√

√

√

√

3πdSn−1 (u,v)

m
log

(

(

n

k

)2(6

τ

)2k ( 2

ρ′1

)

)

(97b)

Then, from the above discussion, with high probability, ‖(u− v)− hA;J(u,v)‖2 is upper bounded as follows.

‖(u− v)− hA;J(u,v)‖2

≤
∣

∣

∣

∣

1−
√

π

2

η%u,v
m

1

θu,v
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3η%u,vtu,v
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+
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=

∣

∣

∣
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)

)
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+
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√
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√

√
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=

(

√
3π + 4

√
6π +

4
√
6π

3

)

√

√
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m
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(

(
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)2k ( 8

ρ1
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)

≤
√
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(
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√
2

3
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√

√

√

√

dSn−1 (u,v)

m
log

(

(

n
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)2( n
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τ

)2k (a

ρ

)

)

≤
√
3π

(

1 +
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√
2

3

)

√

τdSn−1 (u,v)

=
√
3π

(

1 +
16
√
2
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√

δdSn−1 (u,v)

b

=

√

3π

b
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1 +
16
√
2
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)

√

δdSn−1 (u,v)

In short, the above step yields

‖(u− v)− hA;J (u,v)‖2 ≤ b1
√

δdSn−1 (u,v) (99)

where the universal constant is set as

b1 =

√

3π

b

(

1 +
16
√
2

3

)

. (100)

Then, the lemma’s universal result follows—with probability at least 1− ρ1,

‖(u− v)− hA;J (u,v)‖2 ≤ b1
√

δdSn−1 (u,v) (101)

uniformly for all (u,v) ∈ Cτ × Cτ , dSn−1 (u,v) ≥ τ , and all J ⊆ [n], |J | ≤ 2k. "

A.2 “Small distances” regime

In contrast to the regime in Section A.1, the regime under consideration in this section looks at points in
the τ -ball around each point in the τ -net, Cτ . Lemma A.4 states the formal result.

Lemma A.4. Let b2 > 0 be a universal constant. Fix δ, ρ2 ∈ (0, 1), and let τ = δ
b . Uniformly with probability

at least 1− ρ2,

‖(x− u)− hA;J(x,u)‖2 ≤ b2δ (102)

for all u ∈ Cτ , for all x ∈ Bτ (u) ∩ Sn−1 ∩Σn
k , and for all J ⊆ [n], |J | ≤ 2k.

Proof (Lemma A.4). To motivate the approach taken in this proof, consider an arbitrary point u ∈ Cτ
of the τ -net and any x ∈ Bτ (u) ∩ Sn−1 ∩ Σn

k . Using the triangle inequality and then the membership of
x ∈ Bτ (u) ∩ Sn−1 ∩ Σn

k—which implies ‖x− u‖2 ≤ τ—it follows that

‖(x− u)− hA;J(x,u)‖2 ≤ ‖x− u‖2 + ‖hA;J(x,u)‖2 ≤ τ + ‖hA;J(x,u)‖2 (103)
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Hence, the primary task in proving the lemma is controlling the rightmost term in (103), ‖hA;J(x,u)‖2.
Towards this, consider the set of k-sparse, real-valued unit vectors, Bτ (u) ∩ Sn−1 ∩ Σn

k ⊆ Sn−1 ∩ Σn
k ,

within distance-τ of u, and let Yτ (u) = {sign(Aw) : w ∈ Bτ (u) ∩ Sn−1 ∩ Σn
k}. Construct a net Dτ (u) ⊆

Bτ (u) ∩ Sn−1 ∩Σn
k over the set of points Bτ (u) ∩ Sn−1 ∩Σn

k such that for every distinct y ∈ Yτ (u), the net
Dτ (u) contains exactly one point w ∈ Dτ (u) such that sign(Aw) = y. By this construction of Dτ (u), for any
x ∈ Bτ (u)∩Sn−1∩Σn

k , there exits w ∈ Dτ (u) such that sign(Aw) = sign(Ax). Noticing that the dependency
of hA;J(x,u) on x is limited to the its dependence on sign(Ax), it follows that hA;J(x,u) = hA;J(w,u).
Hence, it suffices to upper bound ‖hA;J(w,u)‖2 uniformly over every w ∈ Dτ (u). Next, such a uniform
bound is derived.

Fix any w ∈ Dτ (u). As in the proof of Lemma A.3, the function hA;J can be expressed using orthogonal
projections as

hA;J (w,u) =

〈

w − u

‖w− u‖2
, hA;J(u,v)

〉

w − u

‖w − u‖2
+

〈

w+ u

‖w + u‖2
, hA;J (w,u)

〉

w + v

‖w + u‖2
+ gA;J(w,u)

(104)

and by the triangle inequality

‖hA;J (w,u)‖2 (105a)

=

∥

∥

∥

∥

〈

w − u

‖w − u‖2
, hA;J(u,v)

〉

w− u

‖w − u‖2
+

〈

x+ u

‖w+ u‖2
, hA;J(w,u)

〉

w + v

‖w+ u‖2
+ gA;J(w,u)

∥

∥

∥

∥

2

(105b)

≤
∥

∥

∥

∥

〈

w − u

‖w − u‖2
, hA;J(u,v)

〉

w− u

‖w − u‖2

∥

∥

∥

∥

2

+

∥

∥

∥

∥

〈

w + u

‖w + u‖2
, hA;J(x,u)

〉

w+ v

‖w + u‖2

∥

∥

∥

∥

2

+ ‖gA;J(w,u)‖2
(105c)

=

∣

∣

∣

∣

〈

w− u

‖w − u‖2
, hA;J(u,v)

〉
∣

∣

∣

∣

+

∣

∣

∣

∣

〈

w + u

‖w+ u‖2
, hA;J(w,u)

〉
∣

∣

∣

∣

+ ‖gA;J(w,u)‖2 (105d)

Recall the concentration inequalities provided in Lemma A.1.

Pr

(∣

∣

∣

∣

〈

w − u

‖w − u‖2
,
1

η
hA;J(w,u)

〉

−
√

π

2

%w,u

m

dSn−1 (w,u)

θw,u

∣

∣

∣

∣

≥ %w,utw,u

m

∣

∣

∣

∣

Rw,u = r, Lw,u = %w,u

)

≤ 2e−
1
2 (w,ut

2
w,u

(106)

Pr

(∣

∣

∣

∣

〈

w + u

‖w+ u‖2
,
1

η
hA;J(w,u)

〉∣

∣

∣

∣

≥ %w,utw,u

m

∣

∣

∣

∣

Rw,u = r, Lw,u = %w,u

)

≤ 2e−
1
2 (w,ut

2
w,u (107)

Pr

(

∥

∥

∥

∥

1

η
gA;J(w,u)

∥

∥

∥

∥

2

≥
2
√

2k%w,u

m
+
%w,utw,u

m

∣

∣

∣

∣

∣

Rw,u = r, Lw,u = %w,u

)

≤ 2e−
1
8 (w,ut

2
w,u (108)

whereRw,u and Lw,u are random variables defined asRw,u = (R1;w,u, . . . , Rm;w,u) =
1
2 (sign(Aw)− sign(Au))

and Lw,u = ‖Rw,u‖0, and r ∈ {−1, 0, 1}m, %w,u ∈ [m]. Eq. (106) can be replaced by

Pr

(〈

w − u

‖w− u‖2
,
1

η
hA;J(w,u)

〉

≥
√

π

2

%w,u

m

dSn−1 (w,u)

θw,u
+
%w,utw,u

m

∣

∣

∣

∣

Rw,u = r, Lw,u = %w,u

)

≤ e−
1
2 (w,ut

2
w,u

(109a)

−→ Pr

(〈

w − u

‖w − u‖2
,
1

η
hA;J (w,u)

〉

≥
√

π

2

%w,u

m
+
%w,utw,u

m

∣

∣

∣

∣

Rw,u = r, Lw,u = %w,u

)

≤ e−
1
2 (w,ut

2
w,u

(109b)

−→ Pr

(〈

w − u

‖w − u‖2
,
1

η
hA;J (w,u)

〉

≥
(
√

π

2
+ tw,u

)

%w,u

m

∣

∣

∣

∣

Rw,u = r, Lw,u = %w,u

)

≤ e−
1
2 (w,ut

2
w,u

(109c)

Due to the conditioning in the above concentration bounds, we will need to have a handle on the random
variable Lw,u = ‖Rw,u‖0. Note that the random variable Ri;w,u, i ∈ [m], takes a nonzero value precisely
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when sign(〈w,A(i)〉) .= sign(〈u,A(i)〉). However, because dSn−1 (w,u) ≤ τ , this sign difference can only
occur for the ith points A(i) ∈ A, i ∈ [m], whose angular distance from u is in the range [π2 − β,

π
2 + β],

where β = arccos
(

1− τ2

2

)

is the angular distance associated with the distance τ . In light of this, define the

random variable Mβ,u = |{A(i) ∈ A : θu,A(i) ∈
[

π
2 − β,

π
2 + β

]

}|. By Lemma A.2,

E [Mβ,u] =
2

π
βm (110)

and for s ∈ (0, 1),

Pr

(

Mβ,u > (1 + s)
2

π
βm

)

≤ e−
2
3π βms2 (111a)

−→ Pr

(

Mβ,u >
4

π
βm

)

≤ e−
8
3π βm (111b)

−→ Pr

(

Mβ,u >
4

π
βm

)

≤ e−
8
3π τm (111c)

−→ Pr

(

Mβ,u >
4

3
τm

)

≤ e−
8
3π τm. (111d)

It follows that with probability at least 1−e− 8
3π τm, the size of the net Dτ (u) does not exceed |Dτ (u)| ≤ 2

4
3 τm.

Later, this observation will be used to union bound over Dτ (u).
This completes the necessary preparation for deriving a uniform bound on ‖hA;J (w,u)‖2. Let us first

summarize the relevant concentration inequalities, which are

Pr

(〈

w − u

‖w− u‖2
,
1

η
hA;J(w,u)

〉

≥
(
√

π

2
+ tw,u

)

%w,u

m

∣

∣

∣

∣

Rw,u = r, Lw,u = %w,u

)

≤ e−
1
2 (w,ut

2
w,u (112)

Pr

(∣

∣

∣

∣

〈

w + u

‖w+ u‖2
,
1

η
hA;J(w,u)

〉∣

∣

∣

∣

≥ %w,utw,u

m

∣

∣

∣

∣

Rw,u = r, Lw,u = %w,u

)

≤ 2e−
1
2 (w,ut

2
w,u (113)

Pr

(

∥

∥

∥

∥

1

η
gA;J(w,u)

∥

∥

∥

∥

2

≥
2
√

2k%w,u

m
+
%w,utw,u

m

∣

∣

∣

∣

∣

Rw,u = r, Lw,u = %w,u

)

≤ 2e−
1
8 (w,ut

2
w,u (114)

Pr

(

Mβ,u >
4

3
τm

)

≤ e−
8
3π τm (115)

To obtain a uniform result, a union bound can be taken over all u ∈ Cτ , all w ∈ Dτ (u), and all J ⊆ [n],
|J | ≤ 2k, to upper bound the probability that the uniform result fails to occur. For each pair w,u, the
parameter tw,u should be selected with consideration for this probability of failure so that it does not exceed
ρ2. Let

ρ′2 = ρ2 −
(

n

k

)(

6

τ

)k ( n

2k

)

22ke−
8
3π τm = ρ2 −

(

n

k

)(

n

2k

)(

24

τ

)k

e−
8
3π τm. (116)

Then, the lemma’s uniform result fails to hold with probability not exceeding ρ2 as long as

(

n

k

)(

n

2k

)(

24

τ

)k

2
4
3 τm · 5e− 1

8 (w,ut
2
w,u ≤ ρ′2 (117a)

−→ e
1
8 (w,ut

2
w,u ≥

(

n

k

)(

n

2k

)(

24

τ

)k

e
4
3 τm · 5

ρ′2
(117b)

−→ e
1
8 (w,ut

2
w,u ≥ e

8
3 τm (117c)

−→ 1

8
%w,ut

2
w,u ≥

8

3
τm (117d)

−→ tw,u ≥

√

64

3

τm

%w,u
=

8√
3
·
√

τm

%w,u
(117e)
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Hence, tw,u can be set as small as

tw,u =
8√
3
·
√

τm

%w,u
(118)

Thus, with probability at least 1− ρ2, the following holds.

1

η
‖hA;J(w,u)‖2 ≤

∣

∣

∣

∣

〈

w − u

‖w − u‖2
,
1

η
hA;J(w,u)

〉∣

∣

∣

∣

+

∣

∣

∣

∣

〈

w + u

‖w+ u‖2
,
1

η
hA;J(w,u)

〉∣

∣

∣

∣

+ ‖gA;J(w,u)‖2 (119a)

≤
(
√

π

2
+ tw,u

)

%w,u

m
+
%w,utw,u

m
+

2
√

2k%w,u

m
+
%w,utw,u

m
(119b)

=

√

π

2

%w,u

m
+

2
√

2k%w,u

m
+ 3

%w,utw,u

m
(119c)

=

√

π

2

%w,u

m
+

2
√

2k%w,u

m
+ 3

%w,u

m

8√
3
·
√

τm

%w,u
(119d)

=

√

π

2

%w,u

m
+

2
√

2k%w,u

m
+ 8
√
3 ·
√

τ%w,u

m
(119e)

Note that the random variable Lw,u counts the number of sign differences between sign(Aw) and sign(Au),

which cannot exceed Mβ,u because θw,u ≤ β. Earlier, it was argued that with probability at least 1−e− 8
3π τm,

the random variable Mβ,u takes a value no larger than Mβ,u ≤ 4
3τm, and therefore, the value taken by the

random variable Lw,u is bounded by Lw,u ≤Mβ,u ≤ 4
3τm, implying that

%w,u

m
≤ 4

3
τ. (120)

Applying (120) to (119e), the bound becomes

1

η
‖hA;J(w,u)‖2 ≤

√

π

2

%w,u

m
+

2
√

2k%w,u

m
+ 8
√
3 ·
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τ%w,u

m
(121a)

≤
√

π

2
· 4
3
τ +

4
√
6

3
τ + 8

√
3 · τ (121b)

≤
√

π

2
· 4
3
τ +

4
√
6

3
τ + 8

√
3τ (121c)

=
2
√
2π

3
τ +

4
√
6

3
τ + 8

√
3τ (121d)

=

(

2
√
2π

3
+

4
√
6

3
+ 8
√
3

)

τ (121e)

Then, substituting η =
√
2π yields

‖hA;J(w,u)‖2 ≤
(

2
√
2π

3
+

4
√
6

3
+ 8
√
3

)

ητ =

(

2
√
2π

3
+

4
√
6

3
+ 8
√
3

)

√
2πτ =

(

4π

3
+

8
√
3π

3
+ 8
√
6π

)

τ

(122)

Therefore, with probability at least 1− ρ2, uniformly for every u ∈ Cτ and each w ∈ Dτ (u),

‖hA;J(w,u)‖2 ≤
(

4π

3
+

8
√
3π

3
+ 8
√
6π

)

τ =

(

4π

3
+

8
√
3π

3
+ 8
√
6π

)

δ

b
(123)

As previously discussed, for any given u ∈ Cτ and x ∈ Bτ (u)∩ Sn−1 ∩Σn
k , there exists w ∈ Dτ (u) such that

sign(Aw) = sign(Ax), which implies that hA;J(x,u) = hA;J(w,u). It follows that

‖hA;J(x,u)‖2 = ‖hA;J(w,u)‖2 ≤
(

4π

3
+

8
√
3π

3
+ 8
√
6π

)

δ

b
. (124)
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Combining (124) with Eq. (103),

‖(x − u)− hA;J (x,u)‖2 ≤ ‖x− u‖2 + ‖hA;J(x,u)‖2 ≤ τ + ‖hA;J (w,u)‖2 (125a)

≤ δ

b
+

(

4π

3
+

8
√
3π

3
+ 8
√
6π

)

δ

b
=

(

1 +
4π

3
+

8
√
3π

3
+ 8
√
6π

)

δ

b
(125b)

In short, uniformly with probability at least 1− ρ2, for all u ∈ Cτ and each x ∈ Bτ (u) ∩ Sn−1 ∩ Σn
k .

‖(x− u)− hA;J(x,u)‖2 ≤ b2δ (126)

where the universal constant b2 > 0 is set to

b2 =
1

b

(

1 +
4π

3
+

8
√
3π

3
+ 8
√
6π

)

. (127)

"

A.3 Combining the regimes to prove Theorem 3.3

Using Lemmas A.3 and A.4, Theorem 3.3 can now be established with a direct argument.

Proof (Theorem 3.3). Fix ρ1, ρ2 ∈ (0, 1) such that ρ1 + ρ2 = ρ. With the universal constant a = 16, setting
ρ1 = ρ2 = ρ

2 suffices. Let x,y ∈ Sn−1 ∩ Σn
k be an arbitrary pair of k-sparse unit vectors. Suppose u,v ∈ Cτ

are the closest points to x,y, respectively, subject to supp(u) = supp(x) and supp(v) = supp(y). Formally,

u = arg min
u′∈Cτ :

supp(u′)=supp(x)

‖x− u′‖2 (128)

v = arg min
v′∈Cτ :

supp(v′)=supp(y)

‖y − v′‖2 (129)

Note that the requirement supp(u) = supp(x) and supp(v) = supp(y) is possible due to the design of the
τ -net Cτ as specified at the beginning of Section A. Observe

(x− y)− hA(x,y) (130a)

= (x− y)−
√
2π

1

m
AT · 1

2
(sign (Ax)− sign (Ay)) (130b)

= (u− v) + (x − u) + (v − y)−
√
2π

1

m
AT · 1

2
(sign (Au)− sign (Av)) (130c)

−
√
2π

1

m
AT · 1

2
(sign (Ax)− sign (Au))−

√
2π

1

m
AT · 1

2
(sign (Av)− sign (Ay))

= (u− v)−
√
2π

1

m
AT · 1

2
(sign (Ax)− sign (Au)) (130d)

+ (x− u)−
√
2π

1

m
AT · 1

2
(sign (Au)− sign (Av))

+ (v − y)−
√
2π

1

m
AT · 1

2
(sign (Av)− sign (Ay))

= (u− v)− hA(u,v) + (x − u)− hA(x,u) + (v − y)− hA(v,y) (130e)

Write Jx = J ∪ supp(x) and Jy = J ∪ supp(y), where |Jx|, |Jy| ≤ 2k. Then,

(x− y)− hA;J(x,y) = (x− y)− Tsupp(x)∪supp(y)∪J (hA(x,y)) (131a)

= (u− v)− Tsupp(x)∪supp(y)∪J (hA(u,v)) (131b)

+ (x− u)− Tsupp(x)∪supp(y)∪J (hA(x,u))
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+ (v − y)− Tsupp(x)∪supp(y)∪J (hA(v,y))

= (u− v)− Tsupp(u)∪supp(v)∪J (hA(u,v)) (131c)

+ (x− u)− Tsupp(x)∪supp(u)∪Jy
(hA(x,u))

+ (v − y)− Tsupp(v)∪supp(y)∪Jx
(hA(v,y))

= (u− v)− hA;J(u,v) + (x − u)− hA;Jy
(x,u) + (v − y)− hA;Jx

(v,y) (131d)

The norm of (131) is then bounded by the triangle inequality.

‖(x− y)− hA;J(x,y)‖2 (132a)

=
∥

∥(u− v)− hA;J(u,v) + (x− u)− hA;Jy
(x,u) + (v − y)− hA;Jx

(v,y)
∥

∥

2
(132b)

≤ ‖(u− v)− hA;J(u,v)‖2 +
∥

∥(x− u)− hA;Jy
(x,u)

∥

∥

2
+ ‖(v − y)− hA;Jx

(v,y)‖2 (132c)

Suppose dSn−1 (u,v) < τ . Then, by Lemma A.4,

‖(x− y)− hA;J (x,y)‖2 (133a)

≤ ‖(u− v)− hA;J(u,v)‖2 +
∥

∥(x− u)− hA;Jy
(x,u)

∥

∥

2
+ ‖(v − y)− hA;Jx

(v,y)‖2 (133b)

≤ 3b2δ (133c)

≤ b1
√

δdSn−1 (u,v) + 3b2δ (133d)

uniformly with probability at least 1− ρ2 > 1− ρ. On the other hand, if dSn−1 (u,v) ≥ τ , then by Lemmas
A.3 and A.4,

‖(x− y)− hA;J (x,y)‖2 (134a)

≤ ‖(u− v)− hA;J(u,v)‖2 +
∥

∥(x− u)− hA;Jy
(x,u)

∥

∥

2
+ ‖(v − y)− hA;Jx

(v,y)‖2 (134b)

≤ b1
√

δdSn−1 (u,v) + b2δ + b2δ (134c)

= b1
√

δdSn−1 (u,v) + 2b2δ (134d)

≤ b1
√

δdSn−1 (u,v) + 3b2δ (134e)

uniformly with probability at least 1 − ρ1 − ρ2 = 1 − ρ. Therefore, with probability at least 1 − ρ, for all
x,y ∈ Sn−1 ∩Σn

k and all J ⊆ [n], |J | ≤ k,

‖(x− y)− hA;J(x,y)‖2 ≤ c1
√

δdSn−1 (u,v) + c2δ (135)

where c1 = b1 =
√

3π
b

(

1 + 16
√
2

3

)

, c2 = 3b2 = 3
b

(

1 + 4π
3 + 8

√
3π
3 + 8

√
6π
)

, and b ! 379.1038, as specified in

Eq. (3). Succinctly, the measurement matrix A satisfies the (k, n, δ, c1, c2)-RAIC with probability at least
1− ρ. "

B Proofs of the concentration inequalities, Lemmas A.1 and A.2

B.1 Orthogonal projections: proof of Lemma A.1

This section proves a slightly more general form of the three concentration inequalities in Lemma A.1, stated
in Lemmas B.1-B.3. It is easy to see that Lemma A.1 is a direct corollary.

Lemma B.1. Let %, t > 0 and r ∈ {−1, 0, 1}m such that ‖r‖0 = %. Fix an ordered pair of real-valued unit
vectors, (u,v) ∈ Sn−1 × Sn−1. Define the random variable Lu,v = ‖Ru,v‖0, and suppose Ru,v = r and

Lu,v = %. Then, the random variable Xu,v =
〈

u−v
‖u−v‖2

,
∑m

i=1 Z
(i)Ri;u,v

〉

conditioned on Ru,v = r, Lu,v = %

is concentrated around its mean such that

Pr
(

|Xu,v − E [Xu,v|Lu,v = %]| ≥ %t
∣

∣

∣
Ru,v = r, Lu,v = %

)

≤ 2e−
1
2 (t

2

. (136)
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Lemma B.2. Let %, t > 0 and r ∈ {−1, 0, 1}m such that ‖r‖0 = %. Fix an ordered pair of real-valued unit
vectors, (u,v) ∈ Sn−1 × Sn−1. Define the random variable Lu,v = ‖Ru,v‖0, and suppose Ru,v = r and

Lu,v = %. Then, the random variable Xu,v =
〈

u+v
‖u+v‖2

,
∑m

i=1 Z
(i)Ri;u,v

〉

conditioned on Ru,v = r, Lu,v = %

is concentrated around zero such that

Pr
(

|Xu,v| ≥ %t
∣

∣

∣
Ru,v = r, Lu,v = %

)

≤ 2e−
1
2 (t

2

. (137)

Lemma B.3. Let d, %, t > 0. Fix an ordered pair of k-sparse, real-valued unit vectors, (u,v) ∈ (Sn−1∩Σn
k )×

(Sn−1∩Σn
k ), and let J ⊆ [n] with |J | ≤ d. Define the random variables Y(i)

u,v = Z(i)−
〈

u−v
‖u−v‖2

,Z(i)
〉

u−v
‖u−v‖2

−
〈

u+v
‖u+v‖2

,Z(i)
〉

u+v
‖u+v‖2

, Xu,v =
∥

∥

∥
TJ

(

∑m
i=1 Y

(i)
u,vRi;u,v

)∥

∥

∥

2
, and Lu,v = ‖Ru,v‖0, and suppose Ru,v = r and

Lu,v = %. Then,

Pr
(

Xu,v ≥
(√

2k +
√
d
)√

%+ %t
∣

∣

∣
Ru,v = r, Lu,v = %

)

≤ 2e−
1
8 (t

2

(138)

Before proving the lemma (see Appendix B.1.2), several intermediate results are stated and proved in
Appendix B.1.1 to facilitate the proof.

B.1.1 The distributions of orthogonal projections of i.i.d. standard normal vectors

Lemma B.4. Fix an ordered pair of real-valued vectors, (u,v) ∈ Sn−1 × Sn−1, of unit norm. Let Z ∼
N (0, In×n) be a standard normal random vector, and let R be the (discrete) random variable taking values
in {−1, 0, 1} and given by Ru,v = 1

2 (sign(〈u,Z〉)− sign(〈v,Z〉)). Define the map α : R → R by α(x) =

x tan
(

θu,v

2

)

= x

√

d2
Sn−1(u,v)

4−d2
Sn−1(u,v)

. Then, the density function fX|R : R → R≥0 for the random variable

Xu,v =
〈

u−v
‖u−v‖2

,Z
〉

Ru,v conditioned on R .= 0 is given by

fXu,v|Ru,v
(x | r .= 0) =

{

π
θu,v

√

2
π e

−x2

2 · 1√
2π

∫ y=α(x)
y=−α(x) e

− y2

2 dy, if x ≥ 0,

0, if x < 0.
(139)

Moreover, in expectation,

E(Xu,v | Ru,v .= 0) =

√

π

2

dSn−1 (u,v)

θu,v
. (140)

Proof (Lemma B.4). Before deriving the density function of Xu,v, u,v ∈ Sn−1, let us show that for
u,v,u′,v′ ∈ Sn−1, such that θu,v = θu′,v′ , the pair of random variables (Xu,v | Ru,v = 0) and (Xu′,v′ |
Ru′,v′ = 0) follow the same distribution, as do the pair (Xu,v | Ru,v .= 0) and (Xu′,v′ | Ru′,v′ .= 0). This
will simplify the characterization of the distribution of Xu,v by allowing u,v to be chosen non-arbitrarily.
Conditioned on Ru,v = Ru′,v′ = 0, Xu,v = Xu′,v′ = 0 with probability 1. Otherwise, when Ru,v, Ru′,v′ .= 0,
write q = ‖u− v‖2 = ‖u′ − v′‖2, and observe

Xu,v =

〈

u− v

‖u− v‖2
,Z

〉

Ru,v (141a)

=
1

q
(〈u,Z〉Ru,v − 〈v,Z〉Ru,v) (141b)

=
1

q
(〈u,Z〉sign(〈u,Z〉)− 〈v,Z〉(−sign(〈v,Z〉))) (141c)

=
1

q
(〈u,Z〉sign(〈u,Z〉) + 〈v,Z〉sign(〈v,Z〉)) (141d)

=
1

q
(|〈u,Z〉|+ |〈v,Z〉|) (141e)
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Likewise,

Xu′,v′ =
1

q
(〈u′,Z〉sign(〈u′,Z〉) + 〈v′,Z〉sign(〈v′,Z〉)) = 1

q
(|〈u′,Z〉|+ |〈v′,Z〉|) (142)

Then, letting

(Y, Y ′) ∼ N
((

0
0

)

,

(

1 cos(θu,v)
cos(θu,v) 1

))

≡ N
((

0
0

)

,

(

1 cos(θu′,v′)
cos(θu′,v′) 1

))

, (143)

notice thatXu,v andXu′,v′ , conditioned onRu,v, Ru′,v′ .= 0, both follow the same distribution as 1
q (|Y |+ |Y ′|).

Hence, the claim is proved.
We are ready to derive Lemma B.4. To simplify notation, we will drop the subscript of u,v on the random

variables, writing X = Xu,v, R = Ru,v. Let Z = (Z1, . . . , Zn) ∼ N (0, In×n). For an arbitrary choice of
θ ∈ [0, 2π), fix u,v ∈ Sn−1 such that θu,v = θ and u = (u1, u2, . . . , un), v = (−u1, u2, . . . , un) with u1 > 0,
which is made possible by the claim argued above. This choice will now be shown to induce the distribution
of (|Z1| | R .= 0) on the random variable (X | R .= 0). First, observe that

u− v

‖u− v‖2
= (1, 0, . . . , 0) (144)

and thus

X =

〈

u− v

‖u− v‖2
,Z

〉

R = Z1R. (145)

Moreover, conditioned on R .= 0, by its definition, R takes the value

R = sign

(〈

u− v

‖u− v‖2
,Z

〉)

= sign (Z1) . (146)

It follows that

(X | R .= 0) =

(〈

u− v

‖u− v‖2
,Z

〉

R

∣

∣

∣

∣

R .= 0

)

= (Z1R | R .= 0) = (Z1sign (Z1) | R .= 0) = (|Z1| | R .= 0) ,

(147)

as claimed.
Next, the density function fX|R -=0 : R → R≥0 of the conditioned random variable (X | R .= 0) is found

by deriving the equivalent density function f|Z1||R -=0 : R → R≥0. By Bayes’ rule, this density function can
be written as

f|Z1||R(x | r .= 0) =
f|Z1|(x)pR||Z1|(r .= 0 | x)

pR(r .= 0)
, (148)

which expresses f|Z1||R -=0 using three more manageable density (mass) functions. Beginning with pR(r .= 0),
let the random variable I be the indicator of the event R .= 0, formally, I = 1(R .= 0). Observing the
following biconditionals

R .= 0 ⇐⇒ 1

2
(sign (〈u,Z〉)− sign (〈v,Z〉)) .= 0 ⇐⇒ (sign (〈u,Z〉)− sign (〈v,Z〉)) .= 0, (149)

it follows that

I = 1(R .= 0) (150a)

I = 1

(

1

2
sign (〈u,Z〉)− sign (〈v,Z〉) .= 0

)

(150b)

I = 1(sign (〈u,Z〉)− sign (〈v,Z〉) .= 0) (150c)

are equivalent definitions for the random variable I. Then, the mass associated with R .= 0 is pR(r .= 0) =

Pr(I = 1) = θu,v

π , where the last equality follows from Lemma B.5, stated below and proved in Appendix D.
(see the proof of Lemma D.2).
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Lemma B.5. Fix any pair of real-valued vectors u,v ∈ Rn, and suppose Z ∼ N (0, In×n) is a standard
normal vector with i.i.d. entries. Define the indicator random variable I = 1(sign(〈u,Z〉)− sign(〈v,Z〉) .= 0).
Then,

Pr(I = 1) =
θu,v
π

. (151)

In short, the above argument yields pR(r .= 0) = Pr(I = 1) = θu,v

π .
Next, the density function for the random variable |Z1|, which is the absolute value of the standard normal

random variable Z1, is the well-known folded standard normal distribution and takes the form

f|Z1|(x) =

{

fZ1(−x) + fZ1(x), if x ≥ 0,

0, if x < 0.
(152)

=

{

1√
2π

e−
(−x)2

2 + 1√
2π
e−

x2

2 , if x ≥ 0,

0, if x < 0.
(153)

=

{

1√
2π

e−
x2

2 + 1√
2π

e−
x2

2 , if x ≥ 0,

0, if x < 0.
(154)

=

{

2 · 1√
2π

e−
x2

2 , if x ≥ 0,

0, if x < 0.
(155)

=

{
√

2
π e

− x2

2 , if x ≥ 0,

0, if x < 0.
(156)

In summary,

f|Z1|(x) =

{
√

2
π e

− x2

2 , if x ≥ 0,

0, if x < 0.
(157)

Lastly, consider the mass function of (R | |Z1|), which need only be evaluated when R .= 0. The next
argument will show that

pR||Z1|(r .= 0 | x) = 1√
2π

∫ y=α(x)

y=−α(x)
e−

y2

2 dy (158)

where α : R→ R is as defined in the lemma (and repeated here for convenience):

α(x) = x tan

(

θu,v
2

)

= x

√

d2Sn−1 (u,v)

4− d2Sn−1 (u,v)
. (159)

Notice that given |Z1| = x, x ≥ 0, the event R .= 0 occurs precisely when
〈

u− v

‖u− v‖2
,Z

〉

∈
[

−x tan
(

θu,v
2

)

, x tan

(

θu,v
2

)]

(160)

where tan
(

θu,v

2

)

can be expressed as follows by using the half-angle trigonometric formula (applied in

(161a)):

tan

(

θu,v
2

)

=

√

1− cos (θu,v)

1 + cos (θu,v)
(161a)

=

√

√

√

√

√

√

1− cos
(

arccos
(

1− d2
Sn−1(u,v)

2

))

1 + cos
(

arccos
(

1− d2
Sn−1(u,v)

2

)) (161b)
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=

√

√

√

√

√

d2
Sn−1(u,v)

2

2− d2
Sn−1(u,v)

2

(161c)

=

√

d2Sn−1 (u,v)

4− d2Sn−1 (u,v)
(161d)

=
α(x)

x
(161e)

Thus,

pR(r .= 0) = Pr

(〈

u− v

‖u− v‖2
,Z

〉

∈
[

−x tan
(

θu,v
2

)

, x tan

(

θu,v
2

)])

(162a)

= Pr

(〈

u− v

‖u− v‖2
,Z

〉

∈
[

−xα(x)
x

, x
α(x)

x

])

(162b)

= Pr

(〈

u− v

‖u− v‖2
,Z

〉

∈ [−α(x),α(x)]
)

(162c)

But Z is invariant under inner products with unit vectors, and hence, the distribution of
〈

u−v
‖u−v‖2

,Z
〉

follows

that of
〈

u−v
‖u−v‖2

,Z
〉

∼ N (0, 1). Therefore,

pR(r .= 0) = Pr
Y ∼N (0,1)

(Y ∈ [−α(x),α(x)]) = 1√
2π

∫ y=α(x)

y=−α(x)
e−

y2

2 dy, (163)

as claimed.
Combining the above derivations, the density function of |Z1| | R .= 0 is obtained via (148):

f|Z1||R(x | r .= 0) =
f|Z1|(x)pR||Z1|(r .= 0 | x)

pR(r .= 0)
=

√

2
π e

−x2

2 · 1√
2π

∫ y=α(x)
y=−α(x) e

− y2

2 dy

θu,v

π

(164a)

=
π

θu,v

√

2

π
e−

x2

2 · 1√
2π

∫ y=α(x)

y=−α(x)
e−

y2

2 dy (164b)

if x ≥ 0, and f|Z1||R(x | r .= 0) if x < 0, where the support of f|Z1||R is restricted to the interval [0,∞) due
the the latter case in (152).

The remaining task is finding the expectation of (X | R .= 0) to verify (140), which is done by a direct
calculation using the density function, (139), that was just proved:

E(X | R .= 0) =

∫ ∞

−∞
xf|Z1||R(x | r .= 0)dx (165a)

= lim
t→∞

∫ x=t

x=0

π

θu,v

√

2

π
xe−

x2

2 · 1√
2π

∫ y=α(x)

y=−α(x)
e−

y2

2 dydx (165b)

=
π

θu,v

√

2

π

dSn−1 (u,v)

2
(165c)

=

√

π

2

dSn−1 (u,v)

θu,v
(165d)

as claimed. "

Lemma B.6. Fix an ordered pair of real-valued vectors, (u,v) ∈ Sn−1 × Sn−1, of unit norm. Let Z ∼
N (0, In×n) be a standard normal random vector, and let Ru,v be a discrete random variable given by Ru,v =
1
2 (sign(〈u,Z〉)− sign(〈v,Z〉)), which takes values in {−1, 0, 1}. Then, the distribution of the random variable

Yu,v =
〈

u+v
‖u+v‖2

,Z
〉

Ru,v conditioned on Ru,v .= 0 is standard normal, i.e., (Yu,v | Ru,v .= 0) ∼ N (0, 1).
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Proof (Lemma B.6). Analogously to the claim in the proof of Lemma B.4, it can be shown that for
u,v,u′,v′ ∈ Sn−1, such that θu,v = θu′,v′ , the random variables (Yu,v | Ru,v = 0) and (Yu′,v′ | Ru′,v′ = 0)
follow the same distribution, as do (Yu,v | Ru,v .= 0) and (Yu′,v′ | Ru′,v′ .= 0). We will omit the formal
argument since it is nearly identical to that provided in the proof of Lemma B.4.

Fix any θ ∈ [0, 2π), and let u = (u1, . . . , un) ∈ Sn−1 and take v = (u1,−u2 . . . ,−un) such that u1 > 0
and θu,v = θ. This construction yields

u+ v

‖u+ v‖2
= (1, 0, . . . , 0) (166)

as well as

u− v ∝ (0, u2, . . . un) (167)

We will again drop the subscript u,v from the random variables for simplicity and denote Y = Yu,v, R =
Ru,v. From (166), it follows that

X =

〈

u+ v

‖u+ v‖2
,Z

〉

= Z1 (168)

On the other hand, observe that the event R .= 0 implies that sign(〈u,Z〉) .= sign(〈v,Z〉) and hence that
sign(〈u,Z〉) = −sign(〈v,Z〉). Then,

R =
1

2
(sign (〈u,Z〉)− sign (〈v,Z〉)) (169a)

= sign (sign (〈u,Z〉)− sign (〈v,Z〉)) (169b)

= sign (sign (〈u,Z〉) + sign (〈−v,Z〉)) (169c)

= sign (〈u− v,Z〉) (169d)

But recall from (167) that u− v ∝ (0, u2, . . . un), and thus, given R .= 0,

R = sign (〈u− v,Z〉) = sign (〈(0, u2, . . . , un),Z〉) (170)

which implies conditional independence of (R | R .= 0) and (Z1 | R .= 0) = (X | R .= 0). Then, (Y | R .=
0) = (XR | R .= 0) = (Z1R | R .= 0), and so (Y | R .= 0) (Y | R .= 0) follows the same distribution as
either the random variable Z ′ or −Z ′, where Z ′ ∼ N (0, 1). But it is well-known that the standard normal
random variable Z ′ and its negation −Z ′ have the same distribution, implying that (Y | R .= 0) ∼ N (0, 1),
as claimed. "

Lemma B.7. Fix an ordered pair of real-valued unit vectors, (u,v) ∈ Sn−1 × Sn−1, and let w ∈ Sn−1 ∩
span ({u− v,u+ v})⊥ be any real-valued unit vector in the orthogonal complement of span ({u− v,u+ v}).
Let Z ∼ N (0, In×n) be a standard normal random vector, let Y be the random vector given by

Y = Z−
〈

u− v

‖u− v‖2
,Z

〉

u− v

‖u− v‖2
−
〈

u+ v

‖u+ v‖2
,Z

〉

u+ v

‖u+ v‖2
, (171)

and let R be the (discrete) random variable taking values in {−1, 0, 1} and given by R = 1
2 (sign(〈u,Z〉)− sign(〈v,Z〉)).

Then, the random vector X = 〈w,Y〉R conditioned on R .= 0 is standard normal, i.e., (X | R .= 0) ∼ N (0, 1).

Proof (Lemma B.7). As in the previous two lemmas, the ordered pair of unit vectors (u,v) ∈ Sn−1 × Sn−1

can be chosen nonarbitrarily due to the rotational invariance of the standard normal distribution and the
argument laid out in the proof of Lemma B.4. For the purposes of this proof, we will select u and v as
follows. For any pair of constants p, q, subject to p2+q2 = 1, set u = (p, q, 0, . . . , 0) and v = (−p, q, 0, . . . , 0).
Note that

‖u‖2 = ‖v‖2 = 1 (172)
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u− v = (2p, 0, . . . , 0),
u− v

‖u− v‖2
= (1, 0, . . . , 0) = e1 (173)

u+ v = (0, 2q, . . . , 0),
u+ v

‖u+ v‖2
= (0, 1, . . . , 0) = e2 (174)

where e1 = (1, 0, . . . , 0), e1 = (0, 1, . . . , 0) ∈ Rn are the first and second standard basis vectors or Rn. Fix

any w ∈ Sn−1 ∩ span ({u− v,u+ v})⊥. Then,

Y = Z−
〈

u− v

‖u− v‖2
,Z

〉

u− v

‖u− v‖2
−
〈

u+ v

‖u+ v‖2
,Z

〉

u+ v

‖u+ v‖2
(175)

= Z− Z1e1 − Z2e2 (176)

= (0, 0, Z3, . . . , Zn) (177)

Notice that span ({u− v,u+ v}) = span ({e1, e2}) and span ({u− v,u+ v})⊥ = span ({e1, e2})⊥ = {x ∈
Rn : x1 = x2 = 0}. Then, writing Z̃ = (Z3, . . . , Zn) and w̃ = (w3, . . . , wn), the random variable 〈w,Y〉
follows the same distribution as 〈w̃, Z̃〉 = 〈 w̃

‖w̃‖2
, Z̃〉 with ‖w̃‖2 = 1. But it is well-known that 〈w̃, Z̃〉 ∼

N (0, 1).
Recall the definition of the random variableR = 1

2 (sign(〈u,Z〉)−sign(〈v,Z〉)). Because u,v ∈ span ({u− v,u+ v}),
the random variable R is entirely dependent on the projection of Z onto span ({u− v,u+ v}) and hence

independent of its projection onto span ({u− v,u+ v})⊥. More formally,

R =
1

2
(sign(〈u,Z〉)− sign(〈v,Z〉)) (178a)

=
1

2
(sign(pZ1 + qZ2)− sign(−pZ1 + qZ2)) (178b)

and thus, R depends only on the random variables Z1 and Z2. However, it was already noted that
span ({u− v,u+ v})⊥ = {x ∈ Rn : x1 = x2 = 0}, which implies that the projection Y depend only on
a (possibly improper) subset of {Zj}j∈[n]\{1,2}. The independence of Y and R follows. Then, the condi-
tioned random variable (X | R .= 0) = (〈w,Y〉R | R .= 0) is equivalent to either 〈w,Y〉R or −〈w,Y〉R, both
of which follow the standard normal distribution. Hence, (X | R .= 0) ∼ N (0, 1). "

B.1.2 Concentration inequalities for orthogonal projections of normal vectors

We are ready to prove Lemmas B.1-B.3. Note that the subscripts u,v are dropped from some random
variables for ease of notation.

Proof (Lemma B.1). Using the linearity of inner products, the random variable X can be written as

X =

〈

u− v

‖u− v‖2
,

m
∑

i=1

Z(i)Ri;u,v

〉

=
m
∑

i=1

〈

u− v

‖u− v‖2
,Z(i)Ri;u,v

〉

=
m
∑

i=1

Xi, (179)

where the random variables Xi =
〈

u−v
‖u−v‖2

,Z(i)Ri;u,v

〉

, i ∈ [m], are i.i.d. and have (conditional) dis-

tributions formally defined in Lemma B.4. The concentration inequality will follow from (i) controlling
the MGF, ψXi−µ|Ri;u,v -=0, of each zero-mean i.i.d. random variable (Xi − µ | Ri;u,v .= 0), such that

ψXi−µ|Ri;u,v -=0(s) ≤ e
s2

2 . The negation of this random variable, (−Xi + µ | Ri;u,v .= 0), is handled like-
wise. (ii) Then, the MGFs of (X−E [X ] | ‖Ru,v‖0) and (−X+E [X ] | ‖Ru,v‖0) follow from step (i) and the
i.i.d. property of {Xi}i∈[m]. (iii) Lastly, two Chernoff bounds using the MGFs found in step (ii) will yield
the lemma’s two-sided bound. in (136).

Beginning with the derivation of the MGF of the i.i.d. random variables, as outlined in step (i), fix any
i ∈ [m] such that Ri;u,v .= 0. Then, the density function of (Xi | Ri;u,v .= 0) is given in Eq. (139) of Lemma
B.4:

fXi|Ri;u,v
(x | r .= 0) =

{

π
θu,v

√

2
π e

−x2

2 · 1√
2π

∫ y=α(x)
y=−α(x) e

− y2

2 dy, if x ≥ 0,

0, if x < 0.
(180)
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with

µ
def
= E(Xi | Ri;u,v .= 0) =

√

π

2

dSn−1 (u,v)

θu,v
, (181)

as specified in (140) of Lemma B.4. The MGF of (Xi | Ri;u,v .= 0) at s ≥ 0 is then bounded from above by

ψXi−µ|Ri;u,v -=0(s) ≤ e
s2

2 (182)

as derived next in (183).

ψXi−µ|Ri;u,v -=0(s) = E

[

es(Xi−E(Xi|Ri;u,v -=0))
∣

∣

∣
Ri;u,v .= 0

]

(183a)

= E

[

es(Xi−µ)
∣

∣

∣
Ri;u,v .= 0

]

(183b)

= e−sµ
E
[

esXi
∣

∣Ri;u,v .= 0
]

(183c)

= e−sµ

∫ x=∞

x=−∞
esxfXi|Ri;u,v

(x | r .= 0)dx (183d)

= e−sµ

∫ x=∞

x=0
esx · π

θu,v

√

2

π
e−

x2

2 · 1√
2π

∫ y=α(x)

y=−α(x)
e−

y2

2 dydx (183e)

= e−sµ

∫ x=∞

x=0
esxe−

x2

2 · π

θu,v

√

2

π
· 1√

2π

∫ y=α(x)

y=−α(x)
e−

y2

2 dydx (183f)

= e−sµ

∫ x=∞

x=0
e
−
(

x2

2 −sx
)

· π

θu,v

√

2

π
· 1√

2π

∫ y=α(x)

y=−α(x)
e−

y2

2 dydx (183g)

= e−sµ

∫ x=∞

x=0
e−

x2−2sx
2 · π

θu,v

√

2

π
· 1√

2π

∫ y=α(x)

y=−α(x)
e−

y2

2 dydx (183h)

= e−sµ

∫ x=∞

x=0
e−

x2−2sx+s2−s2

2 · π

θu,v

√

2

π
· 1√

2π

∫ y=α(x)

y=−α(x)
e−

y2

2 dydx (183i)

= e−sµ

∫ x=∞

x=0
e

s2

2 e−
x2−2sx+s2

2 · π

θu,v

√

2

π
· 1√

2π

∫ y=α(x)

y=−α(x)
e−

y2

2 dydx (183j)

= e−sµ

∫ x=∞

x=0
e

s2

2 e−
(x−s)2

2 · π

θu,v

√

2

π
· 1√

2π

∫ y=α(x)

y=−α(x)
e−

y2

2 dydx (183k)

= e
s2

2 e−sµ

∫ x=∞

x=0
e−

(x−s)2

2 · π

θu,v

√

2

π
· 1√

2π

∫ y=α(x)

y=−α(x)
e−

y2

2 dydx (183l)

Note that the function

q(s) = e−sµ

∫ x=∞

x=0
e−

(x−s)2

2 · π

θu,v

√

2

π
· 1√

2π

∫ y=α(x)

y=−α(x)
e−

y2

2 dydx = E

[

es(X−µ)e−
s2

2

]

(183m)

decreases monotonically w.r.t. s over the interval s ∈ [0,∞) (see Lemma B.8). Formally, this implies

max
s∈[0,∞)

q(s) = q(0) = 1 (183n)

where the last equality follows from the fact that q(0) reduces to the evaluation of the density function
fXi|Ri;u,v

over its entire support. Then, continuing (183a)-(183l) arrives at the desired bound, (182):

ψXi−µ|Ri;u,v -=0(s) = e
s2

2 e−sµ

∫ x=∞

x=0
e−

(x−s)2

2 · π

θu,v

√

2

π
· 1√

2π

∫ y=α(x)

y=−α(x)
e−

y2

2 dydx (183o)

≤ e
s2

2 · 1 (183p)
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= e
s2

2 (183q)

Next, the MGF of the negated random variable, (−Xi + µ | Ri;u,v .= 0) is upper bounded by

ψ−Xi+µ|Ri;u,v -=0(s) ≤ e
s2

2 . (184)

The derivation of (184) is similar to that above.

ψ−Xi+µ|Ri;u,v -=0(s) = E

[

es(−Xi+E(Xi|Ri;u,v -=0))
∣

∣

∣
Ri;u,v .= 0

]

(185a)

= E

[

e−s(Xi−µ)
∣

∣

∣
Ri;u,v .= 0

]

(185b)

= esµ E
[

e−sXi
∣

∣Ri;u,v .= 0
]

(185c)

= esµ
∫ x=∞

x=−∞
e−sxfXi|Ri;u,v

(x | r .= 0)dx (185d)

= esµ
∫ x=∞

x=0
e−sx · π

θu,v

√

2

π
e−

x2

2 · 1√
2π

∫ y=α(x)

y=−α(x)
e−

y2

2 dydx (185e)

= esµ
∫ x=∞

x=0
e−sxe−

x2

2 · π

θu,v

√

2

π
· 1√

2π

∫ y=α(x)

y=−α(x)
e−

y2

2 dydx (185f)

= esµ
∫ x=∞

x=0
e
−
(

x2

2 +sx
)

· π

θu,v

√

2

π
· 1√

2π

∫ y=α(x)

y=−α(x)
e−

y2

2 dydx (185g)

= esµ
∫ x=∞

x=0
e−

x2+2sx
2 · π

θu,v

√

2

π
· 1√

2π

∫ y=α(x)

y=−α(x)
e−

y2

2 dydx (185h)

= esµ
∫ x=∞

x=0
e−

x2+2sx+s2−s2

2 · π

θu,v

√

2

π
· 1√

2π

∫ y=α(x)

y=−α(x)
e−

y2

2 dydx (185i)

= esµ
∫ x=∞

x=0
e

s2

2 e−
x2−2sx+s2

2 · π

θu,v

√

2

π
· 1√

2π

∫ y=α(x)

y=−α(x)
e−

y2

2 dydx (185j)

= esµ
∫ x=∞

x=0
e

s2

2 e−
(x+s)2

2 · π

θu,v

√

2

π
· 1√

2π

∫ y=α(x)

y=−α(x)
e−

y2

2 dydx (185k)

= e
s2

2 e−sµ

∫ x=∞

x=0
e−

(x+s)2

2 · π

θu,v

√

2

π
· 1√

2π

∫ y=α(x)

y=−α(x)
e−

y2

2 dydx (185l)

Again, the function

r(s) = esµ
∫ x=∞

x=0
e−

(x+s)2

2 · π

θu,v

√

2

π
· 1√

2π

∫ y=α(x)

y=−α(x)
e−

y2

2 dydx = E

[

e−s(X−µ)e−
s2

2

]

(185m)

decreases monotonically w.r.t. s ∈ [0,∞) (see, again, Lemma B.8), and thus

max
s∈[0,∞)

r(s) = r(0) = 1 (185n)

where, as before, the last equality holds because r′(0) simply evaluates the density function fXi|Ri;u,v
over its

entire support. Then, the desired bound in (184) can now be established by continuing from (185a)-(185l)
as follows.

ψ−Xi+µ|Ri;u,v -=0(s) = e
s2

2 esµ
∫ x=∞

x=0
e−

(x+s)2

2 · π

θu,v

√

2

π
· 1√

2π

∫ y=α(x)

y=−α(x)
e−

y2

2 dydx (185o)

≤ e
s2

2 · 1 (185p)

= e
s2

2 (185q)
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Note that (182) and (184) holds likewise for every i ∈ [m]. This completes the first outline step.
The second task, outlined in (ii), is controlling the MGFs of the sums of i.i.d. random variables, (X−E[X ] |

L = %) and (−X + E[X ] | L = %). Writing µX = E[X | L = %], the MGF for the sum of i.i.d. random
variables, X =

∑m
i=1(Xi − µ), conditioned on L = % can then be bounded from above as follows.

ψX−µX |‖Ru,v‖0=((s) = E

[

es(X−µX)
∣

∣

∣
L = %

]

(186a)

= E

[

es
∑m

i=1(Xi−µ)
∣

∣

∣
L = %

]

(186b)

= E

[

es
∑

i∈supp(‖Ru,v‖0)(Xi−µ)
]

(186c)

=
∏

i∈supp(‖Ru,v‖0)

E

[

es(Xi−µ)
]

, #∵ the random variables Xi, i ∈ [m] are independent

(186d)

= E

[

es(Xi−µ)
](

, #∵ the random variables Xi, i ∈ [m] are identically distributed

(186e)

≤ e
1
2 (s

2

, # by (182) (186f)

Moreover, by an analogous argument, the MGF of the negated random variable (−X − E[−X ] | L = %) =
(−X + E[X ] | L = %) can be upper bounded. Notice that −X = −

∑m
i=1(Xi − µ) =

∑m
i=1(−Xi + µ), which

allows the MGF of −X + E[X ] conditioned on L = % to be upper bounded by the following.

ψ−X+µX |‖Ru,v‖0=((s) = E

[

es(−X+µX)
∣

∣

∣
L = %

]

(187a)

= E

[

es
∑m

i=1(−Xi+µ)
∣

∣

∣
L = %

]

(187b)

= E

[

es
∑

i∈supp(‖Ru,v‖0)(−Xi+µ)
]

(187c)

=
∏

i∈supp(‖Ru,v‖0)

E

[

es(−Xi+µ)
]

, #∵ the random variables Xi, i ∈ [m] are independent

(187d)

= E

[

es(−Xi+µ)
](

, #∵ the random variables Xi, i ∈ [m] are identically distributed

(187e)

≤ e
1
2 (s

2

, # by (184) (187f)

To summarize, this step, (ii), has shown

ψX−µX |‖Ru,v‖0=((s) ≤ e
1
2 (s

2

(188)

ψ−X+µX |‖Ru,v‖0=((s) ≤ e
1
2 (s

2

. (189)

The aim in the final outlined step, (iii), is bounding X from each sides by a Chernoff bound and sub-
sequently union bounding to obtain the lemma’s two-sided result. The upper bound, derived first, will use
the MGF of (X − E[X ] | L = %), while the lower bound will use the MGF of (−X + E[X ] | L = %). In both

cases, the bounds will be shown to fail with probability not exceeding e−
1
2 (t

2
. For the upper bound,

Pr
(

X − E [X |L = %] ≥ %t
∣

∣

∣
L = %

)

(190a)

= Pr
(

X − µX ≥ %t
∣

∣

∣
L = %

)

(190b)

= Pr
(

eX−E[X|L=(] ≥ e(t
∣

∣

∣
L = %

)

(190c)

≤ min
s≥0

e−(st · ψX−µX |L=((s), # due to Bernstein (see, e.g., Vershynin (2018)) (190d)
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≤ min
s≥0

e−(ste
1
2 (s

2

, # by Eq. (188) (190e)

= min
s≥0

e
−(

(

st− s2

2

)

(190f)

A maximizer of st − s2

2 a minimizer of e−((st− s2

2 ). The unique zero of ∂
∂sst −

s2

2 is at s = t (moreover,
∂2

∂s2 st−
s2

2 < 0 and hence this is indeed a (global) maximum). Note additionally that setting s = t ensures
that s ∈ [0, 1], which was assumed in step (i). Then, continuing from above,

Pr
(

X − E [X |L = %] ≥ %t
∣

∣

∣
L = %

)

≤ min
s≥0

e
−(

(

st− s2

2

)

(190g)

= e
−(

(

t2− t2

2

)

, # as argued above (190h)

≤ e−
1
2 (t

2

(190i)

as desired. The derivation of the lower bound is nearly identical, as seen next.

Pr
(

X − E [X |L = %] ≤ −%t
∣

∣

∣
L = %

)

(191a)

= Pr
(

−X + E [X |L = %] ≥ %t
∣

∣

∣
L = %

)

(191b)

= Pr
(

−X + µX ≥ %t
∣

∣

∣
L = %

)

(191c)

= Pr
(

e−X+E[X|L=(] ≥ e(t
∣

∣

∣
L = %

)

(191d)

≤ min
s≥0

e−(st · ψ−X+µX |L=((s), # due to Bernstein (see, e.g., Vershynin (2018)) (191e)

≤ min
s≥0

e−(ste
1
2 (s

2

, # by Eq. (189) (191f)

= min
s≥0

e
−(

(

st− s2

2

)

(191g)

= e
−(

(

t2− t2

2

)

, # the same minimization problem as (190f), (191h)

whose solution is at s = t (191i)

= e−
1
2 (t

2

(191j)

Thus far, it has been shown that

Pr
(

X − E [X |L = %] ≥ %t
∣

∣

∣
L = %

)

≤ e−
1
2 (t

2

, (192)

Pr
(

X − E [X |L = %] ≤ −%t
∣

∣

∣
L = %

)

≤ e−
1
2 (t

2

. (193)

To complete the proof, (192) and (193) are combined by a union bound, yielding the lemma’s concentration
inequality,

Pr
(

|X − E [X |L = %]| ≥ %t
∣

∣

∣
L = %

)

≤ 2e−
1
2 (t

2

. (194)

"

Proof (Lemma B.2). As in the proof of Lemma B.4, let Xi =
〈

u+v
‖u+v‖2

,Z(i)Ri;u,v

〉

for each i ∈ [m], which

are i.i.d. with (conditional) distributions described in Lemma B.6. Then the random variable X can be
written as

X =

〈

u+ v

‖u+ v‖2
,

m
∑

i=1

Z(i)Ri;u,v

〉

=
m
∑

i=1

〈

u+ v

‖u+ v‖2
,Z(i)Ri;u,v

〉

=
m
∑

i=1

Xi. (195)

38



Recall from Lemma B.6 that for each i ∈ [m], the random variable (Xi | Ai;u,v .= 0) is standard normal. It
follows

X =
m
∑

i=1

Xi =
∑

i∈supp(Ru,v)

(Xi | Ai;u,v .= 0) ∼ N (0,σ2 = %) (196)

where the distribution of X depends only on the number % of random variables summed up but not the exact
subset supp(Ru,v) ⊆ [n] (since the random variables Xi, i ∈ [m], are identically distributed). Therefore,

Pr (|X | ≥ t′|L = %) ≤ 2e−
t′2

2$ . (197)

Taking t′ = %t, (197) implies

Pr (|X | ≥ %t|L = %) ≤ 2e−
$2t2

2$ = 2e−
1
2 (t

2

. (198)

Thus proved. "

Proof (Lemma B.3). By Lemma B.7, for each i ∈ [m], Z(i)Ri;u,v Write J ′ = J ∩ (supp(u) ∪ supp(v)) and
J ′′ = J \ (supp(u) ∪ supp(v)). By the triangle inequality,

∥

∥

∥

∥

∥

TJ

(

m
∑

i=1

Y(i)Ri;u,v

)
∥

∥

∥

∥

∥

2

=

∥

∥

∥

∥

∥

TJ′

(

m
∑

i=1

Y(i)Ri;u,v

)

+ TJ′′

(

m
∑

i=1

Y(i)Ri;u,v

)
∥

∥

∥

∥

∥

2

(199a)

≤

∥

∥

∥

∥

∥

TJ′

(

m
∑

i=1

Y(i)Ri;u,v

)
∥

∥

∥

∥

∥

2

+

∥

∥

∥

∥

∥

TJ′′

(

m
∑

i=1

Y(i)Ri;u,v

)
∥

∥

∥

∥

∥

2

(199b)

≤

∥

∥

∥

∥

∥

Tsupp(u)∪supp(v)

(

m
∑

i=1

Y(i)Ri;u,v

)∥

∥

∥

∥

∥

2

+

∥

∥

∥

∥

∥

TJ′′

(

m
∑

i=1

Y(i)Ri;u,v

)∥

∥

∥

∥

∥

2

. (199c)

Let d′ = |supp(u) ∪ supp(v)| and V(i) = V (i)
1 , . . . , V (i)

d′−2 ∼ N (0, I(d′−2)×(d′−2)), i ∈ [m], and suppose {bj ∈
Rn}j∈[d′−2] is an orthonormal basis over span ({u− v,u+ v})⊥ ∩ {x ∈ Rn : supp(x) ⊆ supp(u) ∪ supp(v)}
with Y(i) =

∑d′−2
j=1 〈bj ,Y

(i)〉bj . Due to Lemma B.7, 〈bj ,Y
(i)〉 ∼ N (0, 1).

∥

∥

∥

∥

∥

Tsupp(u)∪supp(v)

(

m
∑

i=1

Y(i)Ri;u,v

)∥

∥

∥

∥

∥

2

=

∥

∥

∥

∥

∥

m
∑

i=1

Tsupp(u)∪supp(v)

(

Y(i)Ri;u,v

)

∥

∥

∥

∥

∥

2

(200a)

=

∥

∥

∥

∥

∥

∥

∥

m
∑

i=1:
Ri;u,v -=0

d′−2
∑

j=1

〈bj ,Y
(i)〉bj

∥

∥

∥

∥

∥

∥

∥

2

(200b)

=

∥

∥

∥

∥

∥

∥

∥

d′−2
∑

j=1

bj

m
∑

i=1:
Ri;u,v -=0

〈bj ,Y
(i)〉

∥

∥

∥

∥

∥

∥

∥

2

(200c)

=







d′−2
∑

j=1

d′−2
∑

j′=1

〈bj ,bj′〉







m
∑

i=1:
Ri;u,v -=0

〈bj ,Y
(i)〉







2





1
2

(200d)

=







d′−2
∑

j=1







m
∑

i=1:
Ri;u,v -=0

〈bj ,Y
(i)〉







2





1
2

(200e)
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∼







d′−2
∑

j=1







m
∑

i=1:
Ri;u,v -=0

V (i)
j







2





1
2

(200f)

=

∥

∥

∥

∥

∥

∥

∥

m
∑

i=1:
Ri;u,v -=0

V(i)

∥

∥

∥

∥

∥

∥

∥

2

(200g)

∼

∥

∥

∥

∥

∥

(
∑

i

V(i)

∥

∥

∥

∥

∥

2

. (200h)

Then, by a standard Chernoff bound for standard normal random vectors (see, e.g., Corollary D.8 later in
the appendix),

Pr

(
∥

∥

∥

∥

∥

TJ′

(

m
∑

i=1

Y(i)Ri;u,v

)
∥

∥

∥

∥

∥

2

>
√
2k%+

1

2
%t

∣

∣

∣

∣

∣

Ru,v, Lu,v = %

)

(201)

≤ Pr

(
∥

∥

∥

∥

∥

Tsupp(u)∪supp(v)

(

m
∑

i=1

Y(i)Ri;u,v

)
∥

∥

∥

∥

∥

2

>
√
2k%+

1

2
%t

∣

∣

∣

∣

∣

Ru,v, Lu,v = %

)

(202)

= Pr

(
∥

∥

∥

∥

∥

(
∑

i=1

V(i)

∥

∥

∥

∥

∥

2

>
√
2k%+

1

2
%t

∣

∣

∣

∣

∣

Ru,v, Lu,v = %

)

(203)

≤ Pr

(
∥

∥

∥

∥

∥

(
∑

i=1

V(i)

∥

∥

∥

∥

∥

2

> E

[
∥

∥

∥

∥

∥

(
∑

i=1

V(i)

∥

∥

∥

∥

∥

2

]

+
1

2
%t

∣

∣

∣

∣

∣

Ru,v, Lu,v = %

)

(204)

# due to Lemma D.9

≤ e−
1
8 (t

2

# due to Corollary D.8, with the parameter set asσ2 =
%

m2
(205)

On the other hand, observe,
∥

∥

∥

∥

∥

TJ′′

(

m
∑

i=1

Y(i)Ri;u,v

)
∥

∥

∥

∥

∥

2

=

∥

∥

∥

∥

∥

∥

m
∑

i=1

∑

j∈J′′

〈

ej ,Y
(i)Ri;u,v

〉

ej

∥

∥

∥

∥

∥

∥

2

(206a)

=

∥

∥

∥

∥

∥

∥

m
∑

i=1

∑

j∈J′′

Y (i)
j Ri;u,vej

∥

∥

∥

∥

∥

∥

2

(206b)

Let d′′ = |J ′′| andW(i) = (W1, . . . ,Wd′′) ∼ N (0, Id′′×d′′), i ∈ [m]. Due to Lemma B.7, (‖
∑

j∈J′′ Y
(i)
j Ri;u,vej‖2 |

Ri;u,v .= 0) and ‖W(i)‖2, i ∈ [m], share the same distribution. Then, by a standard Chernoff bound for
standard normal random vectors,

Pr

(
∥

∥

∥

∥

∥

TJ′′

(

m
∑

i=1

Y(i)Ri;u,v

)
∥

∥

∥

∥

∥

2

>
√
d%+

1

2
%t

∣

∣

∣

∣

∣

Ru,v, Lu,v = %

)

(207)

≤ Pr

(
∥

∥

∥

∥

∥

TJ′′

(

m
∑

i=1

Y(i)Ri;u,v

)
∥

∥

∥

∥

∥

2

>
√
d′′%+

1

2
%t

∣

∣

∣

∣

∣

Ru,v, Lu,v = %

)

(208)

= Pr









∥

∥

∥

∥

∥

∥

∥

m
∑

i=1:
Ri;u,v -=0

W(i)

∥

∥

∥

∥

∥

∥

∥

2

>
√
d′′%+

1

2
%t

∣

∣

∣

∣

∣

∣

∣

∣

Ru,v, Lu,v = %









(209)

≤ Pr

(∥

∥

∥

∥

∥

(
∑

i=1

W(i)

∥

∥

∥

∥

∥

2

> E

[∥

∥

∥

∥

∥

(
∑

i=1

W(i)

∥

∥

∥

∥

∥

2

]

+
1

2
%t

∣

∣

∣

∣

∣

Ru,v, Lu,v = %

)

(210)
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# again due to Lemma D.9 (211)

≤ e−
1
8 (t

2

# again due to Corollary D.8, with the parameter set asσ2 =
%

m2
(212)

Then, since

√
2k%+

1

2
%t+
√
d%+

1

2
%t =

(√
2k +

√
d
)√

%+ %t (213)

and
∥

∥

∥

∥

∥

TJ

(

m
∑

i=1

Y(i)Ri;u,v

)
∥

∥

∥

∥

∥

2

≤

∥

∥

∥

∥

∥

Tsupp(u)∪supp(v)

(

m
∑

i=1

Y(i)Ri;u,v

)
∥

∥

∥

∥

∥

2

+

∥

∥

∥

∥

∥

TJ′′

(

m
∑

i=1

Y(i)Ri;u,v

)
∥

∥

∥

∥

∥

2

, (214)

it follows from a union bound that

Pr

(∥

∥

∥

∥

∥

TJ

(

m
∑

i=1

Y(i)Ri;u,v

)∥

∥

∥

∥

∥

2

≥
(√

2k +
√
d
)√

%+ %t

∣

∣

∣

∣

∣

Ru,v, Lu,v = %

)

(215a)

≤ Pr

(∥

∥

∥

∥

∥

TJ′

(

m
∑

i=1

Y(i)Ri;u,v

)∥

∥

∥

∥

∥

2

≥
√
2k%+

1

2
%t

∣

∣

∣

∣

∣

Ru,v, Lu,v = %

)

(215b)

+ Pr

(∥

∥

∥

∥

∥

TJ′′

(

m
∑

i=1

Y(i)Ri;u,v

)∥

∥

∥

∥

∥

2

≥
√
d%+

1

2
%t

∣

∣

∣

∣

∣

Ru,v, Lu,v = %

)

(215c)

≤ 2e−
1
8 (t

2

(215d)

"

B.1.3 Proof of Lemma B.8

Lemma B.8. Let X be a random variable with a finite, positive mean µ = E[X ] and a density function f
of the form

f(x) =

{
√

2
π e

− x2

2 p(x), if x ≥ 0,

0, if x < 0,
(216)

where the image of the function p : R → R is given by p(x) = π
θ

1√
2π

∫ y=x tan( θ
2 )

y=−x tan( θ
2 )
e−

y2

2 dy for x ∈ R. Define

the functions q, r : R→ R by

q(s) = E
X∼f

[

es(X−µ)e−
s2

2

]

(217)

r(s) = E
X∼f

[

e−s(X−µ)e−
s2

2

]

(218)

for s ∈ R. Then, q(s) and r(s) monotonically decrease with s over the interval s ∈ [0,∞).

Proof (Lemma B.8). Let s ∈ R, f, p, q, r : R → R be satisfy the conditions of the lemma. Notice that q, r
can be expressed as

q(s) =

∫ x=∞

x=−∞
es(x−µ)e−

s2

2 f(x)dx =

∫ x=∞

x=0

√

2

π
e−sµe−

(x−s)2

2 p(x)dx (219)

r(s) =

∫ x=∞

x=−∞
e−s(x−µ)e−

s2

2 f(x)dx =

∫ x=∞

x=0

√

2

π
esµe−

(x+s)2

2 p(x)dx (220)
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The functions q, r can be shown to (non-strictly) monotonically decrease with s over the interval s ∈ [0,∞)
by verifying that their partial derivatives w.r.t. s are non-positive on this interval, which will be argued by
contradiction. First, suppose q(s) is not monotonically decreasing with s over all s ≥ 0, such that there

exists s′ ≥ 0 for which ∂
∂sq(s)

∣

∣

s=s′
> 0. Write p′(a, b) = π

θ
1√
2π

∫ b tan( θ
2 )

a tan( θ
2 )

e−
y2

2 dy, a ≤ b ∈ R, and notice that

p′(a, b) ≤ p′(0, b− a). Then, observe

∂

∂s
q(s)

∣

∣

∣

∣

s=s′
(221a)

=
∂

∂s

∫ x=∞

x=0

√

2

π
e−sµe−

(x−s)2

2 p(x)dx

∣

∣

∣

∣

∣

s=s′

(221b)

=

∫ x=∞

x=0

∂

∂s

√

2

π
e−sµe−

(x−s)2

2 p(x)dx

∣

∣

∣

∣

∣

s=s′

(221c)

=

∫ x=∞

x=0
(x − s− µ)

√

2

π
e−sµe−

(x−s)2

2 p(x)dx

∣

∣

∣

∣

∣

s=s′

(221d)

=

∫ x=∞

x=0
(x − s′ − µ)

√

2

π
e−sµe−

(x−s′)2

2 p(x)dx (221e)

= e−s′µ

∫ x=∞

x=0
(x− s′ − µ)

√

2

π
e−

(x−s′)2

2 p(x)dx (221f)

= e−s′µ

∫ u=∞

u=−s′
(u − µ)

√

2

π
e−

u2

2 p(u+ s′)du, # u = x− s′ (221g)

= e−s′µ

∫ u=∞

u=−s′
(u − µ)

√

2

π
e−

u2

2 (p(u) + 2p′(u, u+ s′)) du (221h)

= e−s′µ

(

∫ u=∞

u=−s′
u

√

2

π
e−

u2

2 (p(u) + 2p′(u, u+ s′)) du− µ

∫ u=∞

u=−s′

√

2

π
e−

u2

2 (p(u) + 2p′(u, u+ s′)) du

)

(221i)

= e−s′µ

(

∫ u=0

u=−s′
u

√

2

π
e−

u2

2 (p(u) + 2p′(u, u+ s′)) du+

∫ u=∞

u=0
u

√

2

π
e−

u2

2 (p(u) + 2p′(u, u+ s′)) du (221j)

−µ
∫ u=0

u=−s′

√

2

π
e−

u2

2 (p(u) + 2p′(u, u+ s′)) du − µ

∫ u=∞

u=0

√

2

π
e−

u2

2 (p(u) + 2p′(u, u+ s′)) du

)

≤ e−s′µ

(

∫ u=∞

u=0
u

√

2

π
e−

u2

2 (p(u) + 2p′(u, u+ s′)) du− µ

∫ u=∞

u=0

√

2

π
e−

u2

2 (p(u) + 2p′(u, u+ s′)) du

)

,

(221k)

# the first integral in (221j) is nonpositive; the third is nonnegative

≤ e−s′µ

(

∫ u=∞

u=0
u

√

2

π
e−

u2

2 (p(u) + 2p′(0, s′)) du− µ

∫ u=∞

u=0

√

2

π
e−

u2

2 (p(u) + 2p′(0, s′)) du

)

(221l)

# at s = s′,
∂

∂s
q(s) > 0 by assumption

= e−s′µ

(

∫ u=∞

u=0
u

√

2

π
e−

u2

2 p(u)du+ 2p′(0, s′)

∫ u=∞

u=0
u

√

2

π
e−

u2

2 du (221m)

−µ
∫ u=∞

u=0

√

2

π
e−

u2

2 p(u)du− 2µp′(0, s′)

∫ u=∞

u=0

√

2

π
e−

u2

2 du

)

(221n)
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= e−s′µ

(
∫ u=∞

u=0
uf(u)du+ 2p′(0, s′)

∫ u=∞

u=0
uf|Z|(u)du− µ

∫ u=∞

u=0
f(u)du− 2µp′(0, s′)

∫ u=∞

u=0
f|Z|(u)du

)

(221o)

= e−s′µ

(

µ+ 2

√

2

π
p′(0, s′)− µ− 2µp′(0, s′)

)

(221p)

= e−s′µ

(

(µ− µ) + 2p′(0, s′)(

√

2

π
− µ)

)

(221q)

≤ 0, # equality only if θ = π (221r)

But this shows that ∂
∂sq(s)

∣

∣

s=s′
≤ 0 which is a contradiction. Hence, monotonicity of q holds.

Now consider r(s), and again assume there exists s′ ≥ 0 such that ∂
∂sr(s)

∣

∣

s=s′
> 0. The following will

similarly arrive at a contradiction.

∂

∂s
r(s)

∣

∣

∣

∣

s=s′
(222a)

=
∂

∂s

∫ x=∞

x=0

√

2

π
esµe−

(x+s)2

2 p(x)dx

∣

∣

∣

∣

∣

s=s′

(222b)

=

∫ x=∞

x=0

∂

∂s

√

2

π
esµe−

(x+s)2

2 p(x)dx

∣

∣

∣

∣

∣

s=s′

(222c)

=

∫ x=∞

x=0
(µ− s− x)

√

2

π
esµe−

(x+s)2

2 p(x)dx

∣

∣

∣

∣

∣

s=s′

(222d)

=

∫ x=∞

x=0
(µ− s− x)

√

2

π
esµe−

(x+s′)2

2 p(x)dx (222e)

≤
∫ x=∞

x=0
(µ− s− x)

√

2

π
es

′µe−
(x+s′)2

2 p(x)dx, # at s = s′,
∂

∂s
r(s) > 0 by assumption (222f)

= es
′µ

∫ x=∞

x=0
(µ− s− x)

√

2

π
e−

(x+s′)2

2 p(x)dx (222g)

= es
′µ

∫ u=∞

u=s′
(µ− u)

√

2

π
e−

u2

2 p(u− s′)du, # u = x+ s′ (222h)

≤ es
′µ

∫ u=∞

u=s′
(µ− u)

√

2

π
e−

u2

2 p(u)du, # equality only if s′ = 0 (222i)

= es
′µ

(

∫ u=∞

u=0
(µ− u)

√

2

π
e−

u2

2 p(u)du−
∫ u=s′

u=0
(µ− u)

√

2

π
e−

u2

2 p(u)du

)

(222j)

≤ es
′µ

∫ u=∞

u=0
(µ− u)

√

2

π
e−

u2

2 p(u)du, # the right integral in (222j) is nonnegative (222k)

= es
′µ

(

µ

∫ u=∞

u=0

√

2

π
e−

u2

2 p(u)du−
∫ u=∞

u=0
u

√

2

π
e−

u2

2 p(u)du

)

(222l)

= es
′µ

(

µ

∫ u=∞

u=0
f(u)du−

∫ u=∞

u=0
uf(u)du

)

(222m)

= es
′µ (µ− µ) (222n)

= 0 (222o)

Thus, ∂
∂sr(s)

∣

∣

s=s′
≤ 0 implies ∂

∂sr(s)
∣

∣

s=s′
≤ 0, a contradiction. Therefore, the monotonicity of r also

holds. "
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B.1.4 Proof of Lemma A.2

Lemma (restatement) (Lemma A.2). Fix t ∈ (0, 1), β ∈ [0, π
2 ]. Let u ∈ Rn, and define the random

variable Mβ,u = |{A(i), i ∈ [m] : θu,A(i) ∈
[

π
2 − β,

π
2 + β

]

}|. Then,

µMβ,u
= E [Mβ,u] =

2

π
βm

and

Pr
(

Mβ,u /∈
[

(1− t)µMβ,u
, (1 + t)µMβ,u

])

≤ 2e−
1
3µMβ,u

t2 .

Proof (Lemma A.2). Denote H = {A(i), i ∈ [m] : θu,A(i) ∈
[

π
2 − β,

π
2 + β

]

}. It is well known that standard

normal vectors A(i) ∼ N (0, In×n), i ∈ [m], with i.i.d. entries are rotationally uniform. Hence, each ith

indicator random variable Ii = 1
(

A(i) ∈ H
)

, i ∈ [m], has

Pr (Ii = 1) = 2 · 2β
2π

=
2β

π
. (223)

Moreover, Mβ,u =
∑m

i=1 Ii, and by the linearity of expectation and the fact that the random variables
{Ii}i∈[m] are i.i.d.,

µMβ,u
= E [Mβ,u] =

2βm

π
(224)

as desired. Using standard Chernoff bounds, for any t ∈ (0, 1),

Pr
(

Mβ,u < (1 − t)µMβ,u

)

≤ e−
1
2µMβ,u

t2 (225)

Pr
(

Mβ,u > (1 + t)µMβ,u

)

≤ e−
1
3µMβ,u

t2 (226)

and via a union bound,

Pr
(

Mβ,u /∈
[

(1− t)µMβ,u
, (1 + t)µMβ,u

])

≤ e−
1
2µMβ,u

t2 + e−
1
3µMβ,u

t2 ≤ 2e−
1
3µMβ,u

t2 , (227)

as claimed. "

C Proof of Fact 4.1

Recall Fact 4.1 from Section 4.3.2.

Fact (restatement) (Fact 4.1). Let u, v, w,w0 ∈ R+ such that u = 1
2

(

1 +
√
1 + 4w

)

, and 1 ≤ u ≤
√

2
v .

Define the functions f1, f2 : Z≥0 → R by

f1(0) = 2

f1(t) = vw +
√

vf1(t− 1), t ∈ Z+

f2(t) = 22
−t

(u2v)1−2−t

, t ∈ Z≥0.

Then, f1 and f2 are strictly monotonically decreasing and asymptotically converges to u2v. Moreover, f2
pointwise upper bounds f1. Formally,

f1(t) ≤ f2(t), ∀ t ∈ Z≥0

lim
t→∞

f2(t) = lim
t→∞

f1(t) = u2v.

The verification of the fact will use Fact C.1.

44



Fact C.1. Let u,w,w0 ∈ R+ u = 1
2

(

1 +
√
1 + 4w

)

. Define the function f : Z≥0 → R by

f(0) = w0, (228)

f(t) =
√

w + f(t− 1), t ∈ Z+. (229)

Then,

lim
t→∞

f(t) = u (230)

Moreover, when w0 > u (w0 < u, w0 = u), f strictly monotonically decreases (respectively, strictly mono-
tonically increases, is constant) with respect to t.

Proof (Fact C.1). Let us first show that f is monotone over t ∈ Z+. Write

sign0(a) =











−1, if a < 0,

0, if a = 0,

1, if a > 0,

(231)

and note that sign0(f
2(t) − f2(t′)) = sign0(f(t) − f(t′)) for any t, t′ ≥ 0. Moreover, notice that f2(t) =

(
√

w + f(t− 1))2 = w + f(t − 1), t ∈ Z≥0. The goal will be to show that for each t ∈ Z+, the sign of
f(t)− f(t+ 1) and f(t− 1)− f(t) match. Fix t ∈ Z+ arbitrarily, and observe

f2(t)− f2(t+ 1) = w + f(t− 1)− (w + f(t)) (232)

= f(t− 1)− f(t) (233)

and thus

sign0(f(t)− f(t+ 1)) = sign0(f
2(t)− f2(t+ 1)) = sign0(f(t− 1)− f(t)) (234)

as desired. The monotonicity of f over Z≥0 follows.
To find the direction of the monotonicity, it suffices to look at sign0(f(1)− f(0)) since the monotonicity

has already been argued. This can be given by

sign0(f(1)− f(0)) = sign0(f
2(1)− f2(0)) = sign0(w + f(0)− f2(0)) = sign0(w + w0 − w2

0). (235)

To determine from this the condition under which f is constant, observe,

sign0(w + w0 − w2
0) = 0 (236a)

−→ w + w0 − w2
0 = 0 (236b)

−→ w2
0 − w0 − w = 0 (236c)

−→ w0 ∈
{

1

2
(1±

√
1 + 4w)

}

(236d)

−→ w0 =
1

2
(1 +

√
1 + 4w) = u (236e)

w + w0 − w2
0











< 0, if w0 > 1
2 (1 +

√
1 + 4w),

= 0, if w0 = 1
2 (1 +

√
1 + 4w),

> 0, if w0 < 1
2 (1 +

√
1 + 4w).

(237)

Hence, f is strictly monotonically decreasing when w0 > u, constant when w0 = u, and strictly monotonically
increasing when w0 > u, as claimed.

The final step is to determine the asymptotic behavior of f as t → ∞. If w0 = u, then f is constant,
implying that limt→∞ f(t) = f(0) = w0 = u. On the other hand, when w0 .= u we would like to characterize
some behavior such as

lim
t→∞

f2(t+ 1)− f2(t) = 0 (238)
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Observe,

f2(t+ 1)− f2(t) = 0 (239a)

−→ w + f(t)− f2(t) = 0 (239b)

−→ f(t) =
1

2
(1 +

√
1 + 4w) = u (239c)

Hence, if w0 > u, the strictly monotonically decreasing function is lower bounded by inft∈Z≥0 f(t) = u, while
the strictly monotonically increasing function is upper bounded by supt∈Z≥0

f(t) = u when w0 < u. But in
both cases, the function has strict monotonicity, and therefore it must happen that limt→∞ f(t) = u. "

Proof (Fact 4.1). In addition to defining f1 and f2 as in Fact 4.1, let f : Z≥0 → R be the function as defined
in Fact C.1, which is given by the recurrence relation

f(0) = w0 (240)

f(t) =
√

w + f(t− 1) (241)

where for the purposes of this proof, w0 is fixed as w0 =
√

2
v . Notice that the function f1 can be written as

f1(t) = vw +
√

vf1(t− 1) = v

(

w +

√

f1(t− 1)

v

)

= v (w + f(t− 1)) = vf2(t) (242)

Then, the monotonicity and asymptotic behavior of the functions f1 follow directly from Fact C.1.

lim
t→∞

f1(t) = lim
t→∞

vf2(t) = u2v (243)

On the other hand, for f2,

lim
t→∞

f2(t) = lim
t→∞

22
−t

(u2v)1−2−t

= 1 · u2v = u2v (244)

The function f2 can be shown inductively to pointwise upper bound f1. The base case, t = 0, is trivial
since f2(0) = 22

0

(u2v)1−20 = 2 · 1 = 2 = f1(0). Letting t ∈ Z+, suppose that for each t′ ∈ {2, . . . , t − 1},
the bound f1(t′) ≤ f2(t′) holds. Then, the desired result will follow from induction if it is shown that
f1(t) ≤ f2(t). To verify this, note that f2 can be written as the following recurrence relation

f2(0) = 2 (245)

f2(t) =
√

u2vf2(t− 1) (246)

since it was already argued that f2(0) = 2 and otherwise for t ∈ Z+,

√

u2vf2(t− 1) =
(

u2v
)

1
2 (f2(t− 1))

1
2 (247a)

=
(

u2v
)

1
2
(

u2v
)

1
22 (f2(t− 2))

1
22 =

(

u2v
)

1
2+

1
22 (f2(t− 2))

1
22 (247b)

=
(

u2v
)

1
2+

1
22

+ 1
23 (f2(t− 3))

1
23 (247c)

... (247d)

=
(

u2v
)

∑t′

s=1 2−s

(f2(t− t′))
2−t′

(247e)

... (247f)

=
(

u2v
)

∑t
s=1 2−s

(f2(t− t))2
−t

=
(

u2v
)

∑t
s=1 2−s

(f2(0))
2−t

= 22
−t (

u2v
)1−2−t

(247g)

= f2(t) (247h)
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as desired. With the above argument, it suffices to show that f1(t) ≤
√

u2vf2(t− 1). Note that

u2 =
1

4

(

1 +
√
1 + w

)2
= u+ w (248a)

−→ w = u2 − u (248b)

Then, observe,

f1(t)−
√

u2vf2(t− 1) = vw +
√

vf1(t− 1)−
√

u2vf2(t− 1) (249a)

≤ vw +
√

vf2(t− 1)−
√

u2vf2(t− 1), # by the inductive hypothesis (249b)

= v
(

u2 − u
)

+
√

vf2(t− 1)−
√

u2vf2(t− 1) (249c)

= vu2 − vu+
√

vf2(t− 1)− u
√

vf2(t− 1) (249d)

= (u− 1)uv − (u − 1)
√

vf2(t− 1) (249e)

≤ (u− 1)uv − (u − 1)
√

v(u2v) (249f)

≤ (u− 1)uv − (u − 1)uv (249g)

= 0 (249h)

Hence,

f1(t)−
√

u2vf2(t− 1) ≤ 0 =⇒ f1(t) ≤
√

u2vf2(t− 1) = f2(t) (250)

By induction, f1(t) ≤ f2(t) for every t ∈ Z≥0. "

D Miscellaneous results

Lemma D.1. Let Z ∼ N (0, In×n) be a standard normal vector with i.i.d. entries. Fix any unit vector
u ∈ Sn−1. Then, the random variable X = θu,Z taking values in [−π,π] follows the uniform distribution
over [−π,π].

Proof (Lemma D.1). Let Y ∼ Unif ([−π,π]) and Z ∼ N (0, In×n), and define X = θu,Z. Lemma D.1 will
follow from showing the equivalence of the MGFs of X and Y , where both are given by

ψX(s) = ψY (s) = ψ(s) =
esπ − e−sπ

2πs
(251)

for any s ≥ 0. Recall that the density function associated with the uniform distribution over [−π,π] is

fY (y) =

{

1
π−(−π) =

1
2π , if y ∈ [−π,π],

0, otherwise.
(252)

The MGF of Y is then

ψY (s) = E
[

esY
]

(253a)

=

∫ y=∞

y=−∞
esyfY (y)dy (253b)

=

∫ y=π

y=−π

esy

2π
dy (253c)

=
1

2πs

∫ u=sπ

u=−sπ
eudu, # u = sy, dy =

du

s
(253d)

=
esπ − e−sπ

2πs
(253e)
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= ψ(s) (253f)

as desired. On the other hand, the MGF of X is obtained as follows. For any r ≥ 0, recall that the volume
Vn(r) of the n-ball with radius r is given in closed form by

Vn(r) =
π

n
2

Γ(n2 + 1)
=

2 · π n
2

nΓ(n2 )
(254)

and can also be represented in spherical coordinates as (see, e.g., Blumenson (1960))

Vn(r) =

∫ r′=r

r′=0

∫ w1=π
2

w1=−π
2

· · ·
∫ wn−2=π

2

wn−2=−π
2

∫ wn−1=π

wn−1=−π
rn−1 sinn−2(w1) · · · sin(wn−2) dwn−1 dwn−2 · · · dw1 dr

′

(255a)

=

(

∫ r′=r

r′=0
rn−1 dr′

)(

∫ w1=π
2

w1=−π
2

sinn−2(w1) dw1

)

· · ·
(

∫ wn−2=π
2

wn−2=−π
2

sin(wn−2) dwn−2

)(

∫ wn−1=π

wn−1=−π
dw1

)

(255b)

=
rn

n
· 2π

(

∫ w1=
π
2

w1=−π
2

sinn−2(w1) dw1

)

· · ·
(

∫ wn−2=
π
2

wn−2=−π
2

sin(wn−2) dwn−2

)

(255c)

It follows that
(

∫ w1=π
2

w1=−π
2

sinn−2(w1) dw1

)

· · ·
(

∫ wn−2=π
2

wn−2=−π
2

sin(wn−2) dwn−2

)

=
nVn(r)

2πrn
=

n2π
n
2 rn

2πrnnΓ(n2 )
=
π

n
2 −1

Γ(n2 )
(256)

Then, again using spherical coordinates,

ψX(s) = E
[

esX
]

(257a)

=

∫ r=∞

r=0

∫ w1=
π
2

w1=−π
2

· · ·
∫ wn−2=

π
2

wn−2=−π
2

∫ x=π

x=−π

1

(2π)
n
2
e−

r2

2 esxrn−1 sinn−2(w1) · · · sin(wn−2) dx dwn−2 · · · dw1 dr

(257b)

=
1

(2π)
n
2

(
∫ r=∞

r=0
rn−1e−

r2

2 dr

)

(

∫ w1=
π
2

w1=−π
2

sinn−2(w1) dw1

)

· · ·
(

∫ wn−2=
π
2

wn−2=−π
2

sin(wn−2) dwn−2

)

(
∫ x=π

x=−π
esx dx

)

(257c)

=
1

(2π)
n
2

(
∫ r=∞

r=0
rn−1e−

r2

2 dr

)

π
n
2 −1

Γ(n2 )

(
∫ x=π

x=−π
esx dx

)

(257d)

=
1

(2π)
n
2
· π

n
2 −1

Γ(n2 )

(
∫ r=∞

r=0
rn−1e−

r2

2 dr

)(
∫ x=π

x=−π
esx dx

)

(257e)

=
1

(2π)
n
2
· π

n
2 −1

Γ(n2 )

(
∫ u=∞

u=0
rn−1e−u

(

du

r

))(
∫ x=π

x=−π
esx dx

)

(257f)

=
1

(2π)
n
2
· π

n
2 −1

Γ(n2 )

(
∫ u=∞

u=0
rn−2e−u du

)(
∫ x=π

x=−π
esx dx

)

(257g)

=
1

(2π)
n
2
· π

n
2 −1

Γ(n2 )

(
∫ u=∞

u=0

(√
2u
)n−2

e−u du

)(
∫ x=π

x=−π
esx dx

)

(257h)

=
1

(2π)
n
2
· π

n
2 −1

Γ(n2 )

(

2
n
2 −1

∫ u=∞

u=0
u

n
2 −1e−u du

)(
∫ x=π

x=−π
esx dx

)

(257i)

=
1

(2π)
n
2
· π

n
2 −1

Γ(n2 )

(

2
n
2 −1Γ

(n

2

))

(
∫ x=π

x=−π
esx dx

)

(257j)

=
(2π)

n
2 −1Γ(n2 )

(2π)
n
2 Γ(n2 )

∫ x=π

x=−π
esx dx (257k)
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=
1

2π

∫ x=π

x=−π
esx dx (257l)

=
esπ − e−sπ

2πs
(257m)

= ψ(s) (257n)

Therefore, ψX = ψ = ψY , which immediately implies that the random variables X and Y follow the same
distribution, as claimed. "

Lemma (restatement) D.2 (Lemma B.5). Fix any pair of real-valued vectors u,v ∈ Rn, and suppose
Z ∼ N (0, In×n) is a standard normal vector with i.i.d. entries. Define the indicator random variable
I = 1(sign(〈u,Z〉)− sign(〈v,Z〉) .= 0). Then,

Pr(I = 1) =
θu,v
π

. (258)

Proof (Lemma D.2). The result will follow from showing that the random variable I is equivalently defined
angularly as 1(cos (θu,Z) cos (θu,Z − θu,v) < 0). Subsequently, Lemma D.1 simplifies the derivation of (258).
For the first step, observe the following equivalence:

I = 1 ⇐⇒ (sign (〈u,Z〉)− sign (〈v,Z〉)) = 1, # by definition (259a)

⇐⇒ sign (〈u,Z〉) .= sign (〈v,Z〉) (259b)

⇐⇒ sign (〈u,Z〉) sign(〈v,Z〉) .= sign (〈v,Z〉) sign(〈v,Z〉) = 1 (259c)

⇐⇒ sign (〈u,Z〉) sign (〈v,Z〉) .= 1 (259d)

⇐⇒ sign (〈u,Z〉) sign (〈v,Z〉) = −1 (259e)

⇐⇒ sign

(〈

u

‖u‖2
,

Z

‖Z‖2

〉)

sign

(〈

v

‖v‖2
,

Z

‖Z‖2

〉)

= −1 (259f)

⇐⇒
〈

u

‖u‖2
,

Z

‖Z‖2

〉〈

v

‖v‖2
,

Z

‖Z‖2

〉

< 0 (259g)

⇐⇒ cos (θu,Z) cos (θv,Z) < 0 (259h)

⇐⇒ cos (θu,Z) cos (θu,Z) < 0 (259i)

⇐⇒ cos (θu,Z) cos (θu,Z + θv,u) < 0 (259j)

⇐⇒ cos (θu,Z) cos (θu,Z − θu,v) < 0 (259k)

⇐⇒
(

|θu,Z + θu,v| >
π

2
and |θu,Z| <

π

2

)

or
(

|θu,Z − θu,v| <
π

2
and |θu,Z| >

π

2

)

(259l)

where the random variables θu,Z, θu,v, θv,u ∈ [−π,π] are signed rotations under some convention for rotations
in the origin-centered hyperplane containing u and v. Recall from Lemma D.1 that the random variable θu,Z

follows the uniform distribution over [−π,π]. In light of this, suppose Y ∼ Unif ([−π,π]) is a random variable
under the uniform distribution. Note that for any fixed size b ∈ [0, 2π], every interval [a, a+ b) ⊆ [−π,π] of
size b is equally probable, formally

Pr (Y ∈ [a, a+ b)) = Pr (Y ∈ [a′, a′ + b)) (260)

for every choice of a, a′ ∈ [−π,π − b]. Then,

Pr
((

|θu,Z + θu,v| >
π

2
and |θu,Z| <

π

2

)

or
(

|θu,Z − θu,v| <
π

2
and |θu,Z| >

π

2

))

(261a)

= Pr
(

|θu,Z + θu,v| >
π

2
and |θu,Z| <

π

2

)

+ Pr
(

|θu,Z − θu,v| <
π

2
and |θu,Z| >

π

2

)

(261b)

# the two events are disjoint

= Pr
(

|θu,Z + θu,v| >
π

2

∣

∣

∣
|θu,Z| <

π

2

)

Pr
(

|θu,Z| <
π

2

)

+ Pr
(

|θu,Z − θu,v| <
π

2

∣

∣

∣
|θu,Z| >

π

2

)

Pr
(

|θu,Z| >
π

2

)

(261c)
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=
1

2
Pr
(

|θu,Z + θu,v| >
π

2

∣

∣

∣
|θu,Z| <

π

2

)

+
1

2
Pr
(

|θu,Z − θu,v| <
π

2

∣

∣

∣
|θu,Z| >

π

2

)

(261d)

=
1

2
Pr (Y ∈ [0, θu,v)) +

1

2
Pr (Y ∈ [0, θu,v)) (261e)

= Pr (Y ∈ [0, θu,v)) (261f)

=
θu,v
π

(261g)

Therefore, combining (259a) and (261) yields the result:

Pr (I = 1) = Pr
((

|θu,Z + θu,v| >
π

2
and |θu,Z| <

π

2

)

or
(

|θu,Z − θu,v| <
π

2
and |θu,Z| >

π

2

))

=
θu,v
π

.

(262)

"

Lemma D.3. Fix σ > 0. Let Z1, . . . , Zm ∼ N (0,σ2) be m i.i.d. normal variables. Then, their sum
∑m

i=1 Zi

follows the mean-zero, variance-mσ2 normal distribution.

Corollary D.4. Let Z(1), . . . ,Z(m) ∼ N (0,σ2In×n). Then, their sum
∑m

i=1 Z
(i) follows the normal distri-

bution N (0,mσ2In×n).

Proof (Lemma D.4). This follows directly from applying Lemma D.3 to each of the n coordinates, which
suffices since the entries are independent. "

Lemma D.5. Fix σ, t > 0. Let Z ∼ N (0,σ2) be a normal random variable. Then,

Pr (|Z| > t) ≤ 2e−
t2

2σ2 . (263)

Proof (Lemma D.5). By Chernoff bounds,

Pr (Z > t) ≤ e−
t2

2σ2 (264)

Pr (Z < t) ≤ e−
t2

2σ2 . (265)

By a union bound, the result follows. "

Corollary D.6. Fix σ, t > 0. Let Z1, . . . , Zm ∼ N (0,σ2In×n) be m i.i.d. normal random variables, and
write their sum as Z =

∑m
i=1 Zi. Then,

Pr (|Z| > t) ≤ 2e−
t2

2mσ2 . (266)

Proof (of Corollary D.6). The corollary directly follows from Lemmas D.5 and D.3. "

Lemma D.7. Fix σ, t > 0. Let Z ∼ N (0,σ2In×n), be a normal vector with i.i.d. entries. Then,

Pr (|‖Z‖2 − E [‖Z‖2]| ≥ t) ≤ 2e−
t2

2σ2 (267)

Moreover, for any coordinate subset, J ⊆ [n],

Pr (|‖TJZ‖2 − E [‖TJZ‖2]| ≥ t) ≤ 2e−
t2

2σ2 (268)
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Proof (Lemma D.7). Fix any σ, t > 0, and suppose Z ∼ N (0,σ2In×n). The lemma will follow from deriving
a Chernoff bound using the MGF of the random vector Z. Recall that the zero-mean multivariate normal
distribution has as its density function

fZ(z) =
1

(2πσ2)
n
2
e−

zT( 1
σ2 In×n)z

2 =
1

(2πσ2)
n
2
e−

‖z‖22
2σ2 . (269)

The MGF of ‖Z‖2 is then

ψZ(s) = e
σ2s2

2 (270)

which is obtained as follows.

ψ‖Z‖2
(s) = E

[

e−s‖Z‖2

]

(271a)

=
1

(2πσ2)
n
2

∫

z∈Rn

es‖z‖2e−
‖z‖22
2σ2 dz, # by the law of lazy statistician (271b)

=
1

(2πσ2)
n
2

∫

z∈Rn

e
σ2s2

2 e−
σ2s2

2 es‖z‖2e−
‖z‖22
2σ2 dz (271c)

=
1

(2πσ2)
n
2

∫

z∈Rn

e
σ2s2

2 e−
σ4s2

2σ2 e
2σ2s‖z‖2

2σ2 e−
‖z‖22
2σ2 dz (271d)

=
1

(2πσ2)
n
2

∫

z∈Rn

e
σ2s2

2 e−
‖z‖22−2σ2s‖z‖2+σ4s2

2σ2 dz (271e)

=
1

(2πσ2)
n
2

∫

z∈Rn

e
σ2s2

2 e−
(‖z‖2−σ2s)2

2σ2 dz (271f)

= e
σ2s2

2
1

(2πσ2)
n
2

∫

z∈Rn

e−
(‖z‖2−σ2s)2

2σ2 dz (271g)

= e
σ2s2

2 · 1, # evaluating a density function over its entire support (271h)

= e
σ2s2

2 (271i)

The upper bound in (267) follows.

Pr (‖Z‖2 − E [‖Z‖2] ≥ t) = Pr
(

e‖Z‖2−E[‖Z‖2] ≥ et
)

(272a)

≤ min
s≥0

e−stψZ(s), # due to Bernstein (see, e.g., Vershynin (2018)) (272b)

≤ min
s≥0

e−ste
σ2s2

2 , # by Eq. (270) (272c)

= e−
t2

σ2 e
t2

2σ2 , # s =
t

σ2
minimizes (272c) (272d)

= e−
t2

2σ2 (272e)

as desired. The lower bound in (267) follows from a similar argument. Combined with the upper bound by
union bounding yields (267).

The lemma’s second result, (268) follows immediately from (267), which does not depend on the dimension
of the random vector Z (and thus the same concentration inequality holds after hard thresholding a subset
of coordinates). More formally, this can be shown by contradiction. Suppose that

Pr (|‖TJZ‖2 − E ‖TJZ‖2| ≥ t) > 2e−
t2

2σ2 . (273)

Fix any d ∈ [n], and with out loss of generality, suppose J = [d]. Construct a second random vector
Y = (Y1, . . . , Yd) in d-dimensions by assigning Yj = Zj for each j ∈ [d], such that Y ∼ N (0,σ2Id×d). By
(267), the following holds

Pr (|‖Y‖2 − E [‖Y‖2]| ≥ t) ≤ 2e−
t2

2σ2 . (274)
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Then, it must happen that for some random draw of Z ∼ N (0,σ2In×n), ‖TJZ‖2 .= ‖Y‖2. But similarly
justified by the proof of Lemma D.10 (stated later in the appendix),

‖TJZ‖2 =





n
∑

j=1

(Tj;JZj)
2





1
2

=









∑

j∈[n]:
Tj;J -=0

Z2
j









1
2

=





∑

j∈[d]

Z2
j





1
2

= ‖Y‖2 (275a)

which is a contradiction. Hence, (268) holds. "

Corollary D.8. Fix σ > 0. Let Z(1), . . . ,Z(m) ∼ N (0,σ2In×n), be m i.i.d. normal vectors, and write their
sum as Z =

∑m
i=1 Z

(i). Then,

Pr (|‖Z‖2 − E ‖Z‖2| ≥ t) ≤ 2e−
t2

2mσ2 (276)

Moreover, for any coordinate subset, J ⊆ [n],

Pr (|‖TJZ‖2 − E ‖TJZ‖2| ≥ t) ≤ 2e−
t2

2mσ2 (277)

Proof (of Corollary D.8). Notice that Z =
∑m

i=1 Z
(i) follows the multivariate normal distribution N (0,mσ2)

due to Corollary D.4. Hence, the corollary is immediately realized from Lemma D.7. "

Lemma D.9. Fix σ > 0, and let Z ∼ N (0,σ2In×n). Then, its expected norm is at most

E [‖Z‖2] ≤
√
nσ2 =

√
nσ. (278)

In the case when n = 1, the expected norm is precisely

E [‖Z‖2] =
√

2

πσ2
. (279)

Proof (Lemma D.9). Let Z ∼ N (0,σ2In×n). Then,

E [‖Z‖2] = E





√

√

√

√

n
∑

j=1

Z2
j



 (280a)

≤

√

√

√

√

√E





n
∑

j=1

Z2
j



, # Jensen’s inequality (for concave functions) (280b)

=

√

√

√

√

n
∑

j=1

E
[

Z2
j

]

(280c)

=

√

√

√

√

n
∑

j=1

(

Var
(

Z2
j

)

+ E [Zj]
2
)

(280d)

=

√

√

√

√

n
∑

j=1

Var
(

Z2
j

)

(280e)

=

√

√

√

√

n
∑

j=1

σ2 (280f)

=
√
nσ2 (280g)

=
√
nσ (280h)

as claimed. "
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Lemma D.10. Fix J ⊂ [n]. Then, the map TJ : Rn → Rn is a linear transformation.

Proof (Lemma D.10). Fix J ⊂ [n] arbitrarily, and construct a diagonal matrix TJ ∈ Rn×n such that
TJ = diag(T1;J , . . . , Tn;J ) with Tj;J = 1(j ∈ J ) for each j ∈ [n], as in Definition 2.2 in Section 2. Then,

clearly the map T : Rn → Rn by x
T1→ TJ x is equivalent to the map TJ : Rn → Rn since, writing

y = T (x) = Ax,

y =







T1;J x1
...

Tn;Jxn






=







x1 · 1(1 ∈ J )
...

xn · 1(n ∈ J )






= TJ (x) (281a)

for all x ∈ Rn. It is well-known that a map from Rn to Rn is a linear transformation if can be specified by
a matrix-vector product for some real-valued n× n matrix, hence completing the proof. "

E A Different Invertibility Condition Friedlander et al. (2021)

Definition E.1 (restricted approximate invertibility condition as defined in (Friedlander et al. 2021, Def.
8)). Fix ν, δ, η, r, r′ > 0. Let A ∈ Rm×n be a measurement matrix, and let x ∈ Sn−1 ∩Σn

k . The (ν, δ, η, r, r′)-
RAIC holds for A at x if for every y ∈ Sn−1 ∩ Σn

k , r ≤ dSn−1 (x,y) ≤ r′,

∥

∥

∥
(x− y)− νAT (sign (Ax)− sign (Ay))

∥

∥

∥

(Sn−1∩Σn
k )

◦
≤ δdSn−1 (x,y) + η (282)

where ‖·‖(Sn−1∩Σn
k )

◦ denotes the dual norm given by ‖u‖(Sn−1∩Σn
k )

◦ = supu′∈Sn−1∩Σn
k
〈u,u′〉 for u ∈ Rn.

Instead of the %2-norm as in our definition, this definition resorts to the dual norm. Furthermore, our
definition of RAIC should hold for all pair of vectors uniformly; whereas in the above definition invertibitily
condition is asked for vectors within distance [r, r′]. Both of these two differences make our definition simpler
to state and handle, and also allow us to do a precise analysis in the “small-distance” regime.
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