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Optimal Convex Lifted Sparse Phase Retrieval and
PCA With an Atomic Matrix Norm Regularizer
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Abstract— We present novel analysis and algorithms for solving
sparse phase retrieval and sparse principal component analysis
(PCA) with convex lifted matrix formulations. The key innova-
tion is a new mixed atomic matrix norm that, when used as
regularization, promotes low-rank matrices with sparse factors.
We show that convex programs with this atomic norm as a
regularizer provide near-optimal sample complexity and error
rate guarantees for sparse phase retrieval and sparse PCA. While
we do not know how to solve the convex programs exactly
with an efficient algorithm, for the phase retrieval case we
carefully analyze the program and its dual and thereby derive
a practical heuristic algorithm. We show empirically that this
practical algorithm performs similarly to existing state-of-the-
art algorithms.

Index Terms— Sparse phase retrieval, sparse PCA, convex
relaxation, atomic norm.

I. INTRODUCTION

A. Sparsity, Phase Retrieval, and PCA

CONSIDER the standard linear regression problem in
which we make observations of the form yi = ⟨xi, β∗⟩+

ξi, i = 1, . . . , n, where β∗ ∈ Rp is a vector we want to
estimate, x1, . . . , xn ∈ Rp are measurement vectors, and
ξ1, . . . , ξn represent noise or other error. If the xi’s are chosen
randomly and independently (e.g., i.i.d. Gaussian), and the
noise is zero-mean and independent with var(ξi) ≤ σ2, it
is well-known that in general, we need1 n ≳ p measurements
to estimate β∗ meaningfully, and the best possible error we
can obtain is ∥β̂ − β∗∥2 ≲ σ

√
p/n.

We can potentially do much better if we exploit sparsity
in the vector β∗. If β∗ has (at most) s nonzero entries,
the standard LASSO algorithm, which requires solving an
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1Here and throughout the paper, ≲ and ≳ denote, respectively, ≤ and ≥

within absolute constants.

ℓ1-regularized least-squares optimization problem, yields an
estimator β̂ satisfying ∥β̂−β∗∥2 ≲ σ

√
(s/n) log(p/s) as long

as the number of measurements satisfies n ≳ s log(p/s) (see,
e.g., [1, Chapter 10]). Thus by using a convex regularized
optimization problem we can exploit sparsity to reduce the
number of measurements n and the estimation error propor-
tionally to sparsity level (i.e., the number of nonzero entries in
β∗). In this paper, we seek to extend this phenomenon to two
problems: phase retrieval and principal component analysis
(PCA). To introduce our main results, we briefly describe
phase retrieval and PCA and their sparse variants. We focus on
the formulations most relevant to our results. More complete
background and related literature can be found in Sections I-B
and I-C.

In phase retrieval, we seek to estimate a vector β∗ from n
noisy quadratic observations of the form yi = |⟨xi, β∗⟩|2 +ξi.
The nonlinearity in the measurement model makes estimation
and analysis more complicated than if our measurements are
linear. To get around this, a common approach is to note that
for any x, β ∈ Rp, |⟨x, β⟩|2 = ⟨X, B⟩HS, where X = x ⊗ x
and B = β⊗β are rank-1 positive semidefinite (PSD) matrices,
and ⟨·, ·⟩HS denotes the Hilbert-Schmidt (Frobenius) matrix
inner product. We can then write our observations as the linear
measurements yi = ⟨Xi, B

∗⟩HS + ξi, where B∗ = β∗ ⊗ β∗

and Xi = xi ⊗ xi. This is often called a “lifted” formulation,
since we are mapping the parameter of interest from Rp to the
larger space of p× p PSD matrices. If the xi’s are randomly
chosen (say, Gaussian), and we solve the semidefinite program

B̂ = arg min
B⪰0

1
2n

n∑
i=1

(yi − ⟨Xi, B⟩HS)2,

we can bound ∥B̂−B∗∥HS ≲ σ
√

p/n as long as n ≳ p, where
σ is the standard deviation of the ξi’s. (As shown in [2], this
implies that the leading eigenvector of B̂ is close to β∗ up to
its sign.) Both the sample complexity and the error rate are
comparable to those in ordinary linear regression.

In PCA, we observe n i.i.d. random vectors {xi}ni=1, and we
want to estimate the leading eigenvector v1 of the covariance
matrix Σ = E(x1 ⊗ x1). Again, this can be solved in a lifted
manner with a semidefinite program, noting that

P1 := v1 ⊗ v1 = arg max
P∈Rp×p

⟨Σ, P ⟩HS s.t. ∥P∥∗ ≤ 1.
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An estimator P̂ of P1 is obtained2 by replacing Σ with the
empirical covariance

∑̂
. Again, if n ≳ p, we can recover

P1 within error proportional to
√

p/n (where the constants
depend on the gap between the first and second leading
eigenvalues of Σ).

Sparse phase retrieval seeks to combine phase retrieval
with sparse recovery. If β∗ is s-sparse, and we observe yi =
|⟨xi, β∗⟩|2 + ξi for i ∈ {1, . . . , n}, can we recover β∗ with
a similar sample complexity and error as in linear sparse
recovery? Similarly, the question we consider in sparse PCA
is whether, if the leading eigenvector v1 is s-sparse, we can
recover it with a similar sample complexity and error as in
linear recovery.

Our main contributions are the following:
• We present novel convex relaxations of the sparse phase

retrieval and sparse PCA problems that use both a lifted
formulation and a sparsity-inducing regularization, and
we prove that for both problems, an estimator computed
via a convex program achieves an O(s log(p/s)) sample
complexity as in linear sparse recovery. Furthermore,
in both problems, the estimators achieve the optimal
O(
√

(s/n) log(p/s)) error rate (with the caveat, for the
sparse phase retrieval problem with unbounded noise,
that n may need to be larger than the minimum sample
complexity to obtain this optimal rate).

• Although we do not know how to compute the convex
programs exactly (we suspect they may, in fact, be com-
putationally intractable), we present a heuristic motivated
by a careful analysis of the dual problem and the prob-
lem’s optimality conditions, and we show that in the case
of sparse phase retrieval, the resulting algorithm achieves
nearly identical empirical performance to existing state-
of-the-art sparse phase retrieval algorithms.

In the following sections, we describe the sparse phase
retrieval and sparse PCA problems in more detail, and we
review the related literature.

B. Sparse Phase Retrieval

Phase retrieval in p dimensions with (sub-)Gaussian mea-
surements is by now well-studied. If we have n observations
of the form yi ≈ |⟨xi, β∗⟩|2, we can solve the optimization
problem

β̂ = arg min
β∈Rp

n∑
i=1

(yi − |⟨xi, β∗⟩|2)2. (1)

Unfortunately, this is a nonconvex problem, so there is no
immediately obvious way to solve it efficiently. (A similar
optimization problem and similar nonconvexity appear if we
instead write our measurements without the square, i.e., our
observations are ≈ |⟨xi, β∗⟩|.)

Most approaches to this algorithmic difficulty fall into one
of two categories. One method is to optimize a nonconvex loss
function such as (1) directly (and iteratively) with a suitable

2It would be computationally suboptimal in practice to compute the leading
eigenvector of

∑̂
with a semidefinite program, but this formulation helps

motivate our approach to the sparse case.

initialization (e.g., [3]). The other is the lifted semidefinite
approach outlined in Section I-A. For example, Candés and
Li [4] show that if the design vectors xi are Gaussian, yi =
|⟨xi, β∗⟩|2 + ξi, and we have n ≳ p measurements, solving

B̂ = arg min
B⪰0

n∑
i=1

|yi − ⟨Xi, B⟩HS|

achieves ∥B̂ − B∗∥F ≲ 1
n

∑n
i=1|ξi| with high probability.

In the case of zero-mean random noise with standard deviation
σ, we can, by using a squared loss, improve this to ∥B̂ −
B∗∥F ≲ σ

√
p/n (see [5]). Thus we can solve the phase

retrieval problem with a sample complexity and susceptibility
to noise proportional to the dimension p; this is the same
complexity as ordinary linear regression.

Several results have been published on how to adapt iterative
nonconvex phase retrieval algorithms to the sparse setting [6],
[7], [8], [9], [10], [11]. Some [7], [10] do indeed achieve
O(σ

√
(s/n) log p) error bounds with zero-mean noise—this

is very close to the optimal rate in linear sparse recovery (the
rest do not analyze theoretically the noisy case). However, the
theory in this literature requires n ≳ s2 log p, which, unless s
is very small, is much larger than what is required in linear
sparse recovery. As Soltanolkotabi [12] points out, the key
difficulty is finding a good initialization for the algorithms—
once we are close enough to β∗, we only need3 n ≳log s
measurements to converge to a correct estimate. In practice,
the first initialization step is often to estimate the support
of β∗; the best known methods require n ≳log s2 measure-
ments. We compare several of these algorithms (in addition to
that of the purely algorithmic/empirical work [13]) to ours
empirically in Section V-C, and we see that all of them
appear empirically to have linear sample complexity in s.
Another similar iterative algorithm is given in [14]; it has
similar sample complexity requirements but, interestingly, it
is derived from a more abstract compression-based algorithm
that, though not practically computable, does obtain optimal
O(s) sample complexity.

We see qualitatively similar sample complexity require-
ments in the works [15] and [16], which extend to the sparse
case the convex PhaseMax framework [17], [18]. Both results
only require n ≳log s measurements if we already have an
“anchor” vector β0 ∈ Rp that has significant correlation with
β∗. However, it is not known how to find such a β0 (in a
computationally efficient manner) without n ≳log s2 measure-
ments.

More related to our results are methods to adapt the lifted
convex phase retrieval approach to the sparse setting. The
foundational theoretical work in this area is by Li and Voronin-
ski [19], although some work (mostly empirical) appeared
in [20] and [21]. The key idea is that if β∗ ∈ Rp is s-sparse,
the lifted version B∗ = β∗ ⊗ β∗ is both rank-1 and at most
s2-sparse. In the noiseless case, they solve the optimization

3Here and hereafter, ≳log (≲log) will denote “greater (less) than within a
logarithmic factor.”
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problem

B̂ = arg min
B⪰0

λ1 tr(B) + λ2∥B∥1,1

s.t. ⟨Xi, B⟩HS = yi, i = 1, . . . , n, (2)

where ∥·∥1,1 denotes the elementwise ℓ1 norm of a matrix. The
trace regularization term promotes low rank, while the ℓ1 norm
promotes sparsity. As with the nonconvex methods, their the-
ory requires n ≳ s2 log p measurements to get exact recovery.
The result of [5], when specialized to sparse phase retrieval,
extends this approach to the noisy case, getting, within log
factors, the same O(s2) sample and noise complexity.

Finally, we note that although we are primarily concerned
with generic measurement vectors xi (e.g., sub-Gaussian), one
can obtain better theoretically guaranteed sample complexity
with practical algorithms if we have complete control over how
the measurements are chosen; see, for example, [22], [23].

C. Sparse PCA

PCA is a well-established technique with which, given
points x1, . . . , xn ∈ Rp, we try to find a low-dimensional
linear (or affine) subspace that contains most of the energy
in the data. If x1, . . . , xn have zero empirical mean (e.g.,
after centering), the closest r-dimensional subspace to the
points (in mean square ℓ2 distance) is the space spanned
by the top r eigenvectors of the empirical covariance matrix∑̂

= 1
n

∑n
i=1 xi ⊗ xi.

For simplicity, take r = 1. Suppose the xi’s are i.i.d.
copies of a random variable x with true covariance Σ with
eigenvalue decomposition Σ =

∑
ℓ σℓvℓ ⊗ vℓ, where σ1 >

σ2 ≥ · · · ≥ σp. If x is Gaussian, and σ2 ≳ σ1
p−1 , then, with

high probability [24],

∥
∑̂
− Σ∥2 ≲

√
σ1

σ1 + (p− 1)σ2

n
≲

√
σ1σ2

p

n
.

Then, if v̂1 is the leading eigenvector of
∑̂

, the Davis-Kahan
sin Θ theorem gives

∥v̂1 ⊗ v̂1 − v1 ⊗ v1∥2 ≲
√

σ1σ2

σ1 − σ2

√
p

n
.

This rate is minimax-optimal over general covariance matrices
with the given σ1, σ2 (see [25]).

When p is large compared to n, we need to impose more
structure on Σ to recover the leading eigenvector(s) accurately.
In sparse PCA, we consider the case in which the eigenvec-
tor(s) of interest are sparse. This problem has been extensively
studied in the past decade: see [26] for a recent review.

In the single-eigenvector recovery case (r = 1),
Cai et al. [27] show that if the leading eigenvector v1 is
s-sparse, the minimax rate for all estimators v̂1 of
v1 over the simple class {Σ = σ2Ip + (σ1 − σ2)v1 ⊗
v1 : v1 s-sparse, ∥v1∥2 = 1} is

∥v̂1 ⊗ v̂1 − v1 ⊗ v1∥2 ≈
√

σ1σ2

σ1 − σ2

√
s log(p/s)

n
.

While this theoretical result is clean and achieves our desire
to bring sparse-recovery sample complexity and error to the

PCA problem, one practical problem remains: how do we com-
pute an estimator v̂1 that achieves these theoretical properties?
The optimal estimator proposed in [27] is, to quote that paper
“computationally intensive.” As with sparse phase retrieval,
the best theoretical results for computationally efficient algo-
rithms require n ≳log s2 to guarantee accurate recovery (see,
e.g., [27], [28]). Once again, proper initialization (often by
estimating the support of v1) is the key difficulty.

There is strong evidence to suggest that this s2 barrier
may be inescapable for computationally efficient algorithms.
Recent results suggest that any statistically optimal estimator
that requires fewer measurements must be NP-hard to com-
pute. Berthet and Rigollet [29] showed that if a certain testing
problem in random graph theory (the planted clique problem)
is NP-hard to compute in certain regimes (which is widely
believed although so-far unproved in standard computational
models), then accurately testing for the existence of a sparse
leading eigenvector when n ≲log s2 is NP-hard. Berthet,
and Samworth [30], [31] further refine this by showing that,
under a similar assumption, there is no efficiently computable
consistent estimator of v1 when n ≲log s2.

II. KEY TOOL: A SPARSITY-AND-LOW-RANK–INDUCING
ATOMIC NORM

To motivate our approach, consider the optimization prob-
lem (2) from [19] for sparse phase retrieval or its least-squares
version

B̂ = arg min
B⪰0

1
2n

n∑
i=1

(yi−⟨Xi, B⟩HS)2

+ λ1 tr(B) + λ2∥B∥1,1. (3)

It turns out that quadratic (in sparsity) O(s2) complexity is a
fundamental performance bound for this class of methods. Our
target matrix B∗ has two kinds of structure: it is rank-1 and
s2-sparse. The trace regularization in our estimator encourages
low rank, while the ℓ1 regularization encourages sparsity.
However, recent work [32] and [33] has shown it is impossible
to take advantage of both kinds of structure simultaneously
with a regularizer that is merely a convex combination of
the two structure-inducing regularizers; the best we can do is
exploit either the low rank as in non-sparse phase retrieval,
in which case we get O(p) complexity, or the s2-sparsity,
in which case we get O(s2) complexity.

To see intuitively why we have this problem, note that the
nuclear norm and elementwise ℓ1 norm are both examples of
projective tensor norms [34]. For matrix A of any size,

∥A∥∗ = inf {
∑
∥uk∥2∥vk∥2 : A =

∑
uk ⊗ vk}

and

∥A∥1,1 = inf {
∑
∥uk∥1∥vk∥1 : A =

∑
uk ⊗ vk}

Equivalently, these norms are atomic norms [35] where the
atoms are rank-1 matrices with unit ℓ2 or ℓ1 norms. For a
PSD matrix, the trace is the nuclear norm, so the regularizer
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in (3) can be expressed as

λ1 tr(B) + λ2∥B∥1,1
= λ1 inf {

∑
∥uk∥2∥vk∥2 : B =

∑
uk ⊗ vk}

+ λ2 inf {
∑
∥wk∥1∥zk∥1 : B =

∑
wk ⊗ zk}. (4)

A key feature of B∗ = β∗ ⊗ β∗ is that the factors of its
rank-1 decomposition have a certain ℓ2 norm and are sparse.
Because the two infima in (4) are separate, the regularizer
promotes matrices with two separate atomic decompositions
of low ℓ2 and ℓ1 norm respectively. It does not encourage a
decomposition into low-rank matrices with factors that have
simultaneously low ℓ2 norm and low ℓ1 norm.

Inspired by the framework of Haeffele and Vidal [36], we
propose the following regularizer:

∥B∥∗,s := inf {
∑

θs(uk, vk) : B =
∑

uk ⊗ vk}, (5)

where

θs(u, v) = (∥u∥2 +
1√
s
∥u∥1)

(
∥v∥2 +

1√
s
∥v∥1

)
,

and s > 0 is a parameter that represents the sparsity (or
an approximation thereof) of the vector we are interested in
recovering. For some intuition on this choice of regularizer,
note that

{A : ∥A∥∗,s ≤ 1}
≈ conv{u⊗ v : ∥u∥2 = ∥v∥2 = 1, u, v are s-sparse},

by which we mean that either is contained within a modest
scaled version of the other. One direction is a simple con-
sequence of the fact that for an s-sparse vector u, ∥u∥1 ≤√

s∥u∥2. The other direction is provided by Lemma 6 in
Section A. Thus ∥·∥∗,s is (equivalent to) an atomic norm whose
atoms are precisely the type of matrix we expect B∗ to be.4

Similar notions of atomic norms that promote simultaneous
low rank and sparsity have appeared in [37] and [33].

We will show in the next section that using ∥·∥∗,s as a
regularizer in lifted formulations of sparse phase retrieval
and PCA gives sample complexity and error bounds nearly
identical to the linear regression case.

III. THEORETICAL GUARANTEES FOR ATOMIC-NORM
REGULARIZED ESTIMATORS

In this section, we state precisely our main problems,
assumptions, abstract convex optimization algorithm, and the-
oretical guarantees.

A. Sparse Phase Retrieval

Suppose β∗ ∈ Rp is an s-sparse vector. Let x be a random
vector in Rp. We observe n i.i.d. copies (x1, y1), . . . , (xn, yn)
of the random couple (x, y), where y is a real random variable
whose distribution conditioned on x depends only on ⟨x, β∗⟩2
(i.e., y ∼ py(y | ⟨x, β∗⟩2)). Let ξ := y − ⟨x, β∗⟩2 denote the
“noise.” We make the following assumptions:

4If we “guess wrongly” the sparsity of β∗, we can still get similar results
with different constants of equivalence.

Assumption 1 (Sub-Gaussian Measurements): The entries
(x(1), . . . , x(p)) of x are i.i.d. real random variables with
Ex(ℓ) = 0, E(x(ℓ))2 = 1, E(x(ℓ))4 > 1, and sub-Gaussian
norm ∥x(ℓ)∥ψ2 ≤ K for some K > 0.
Note that the fourth-moment assumption excludes Rademacher
random variables. In what follows, for simplicity of presenta-
tion, all dependence on K and the difference E(x(ℓ))4−1 will
be subsumed into unspecified constants.

Assumption 2 (Zero-Mean, Bounded-Moment Noise):
E[ξ | x] = 0 almost surely, and, for all u ∈ Rp such that
∥u∥2 ≤ 1,

E ξ2⟨x, u⟩4 ≤ σ2(β∗),

where σ2(β∗) is a quantity that possibly depends on the vector
β∗, the distribution of x, and the conditional distribution of y.
Furthermore, there are M, η ≥ 0 such that

∥ξ⟨x, u⟩2∥α ≤Mαη+1

for α ≥ 3 and all u ∈ Rp such that ∥u∥2 ≤ 1 (where ∥Z∥α :=
(E|Z|α)1/α for any random variable Z).
Our two working examples are the following:

• Independent additive noise: ξ is independent of all other
quantities, in which case we can take σ2(β) ≈ var(ξ),
and M and η depend on the moments of ξ.

• Poisson noise: y ∼ Poisson(⟨x, β∗⟩2) conditioned on x.
In this case, under Assumption 1, we can take σ2(β∗) ≈
∥β∗∥22, M ≈ ∥β∗∥2 + 1, and η = 1 (we prove this in
Section D).

As before, we lift the problem into the space of PSD
matrices by setting B∗ = β∗ ⊗ β∗ and X = x ⊗ x. We then
choose a regularization parameter λ ≥ 0 and compute our
estimate by the following optimization problem:

B̂ = arg min
B∈Rp×p

1
2n

n∑
i=1

(yi − ⟨Xi, B⟩HS)2 + λ∥B∥∗,s. (6)

We then have the following guarantee for sample complexity
and error, proved in Section IV-A:

Theorem 1: Suppose Assumption 1 and 2 hold. Suppose
β∗ is s-sparse and that the number of measurements n satisfies
n ≳ s log(ep/s). If the regularization parameter satisfies

λ ≳

√
s log(ep/s)

n
σ2(β∗) +

M

n1−c

(
s log

ep

s

)η+1

,

where c ≈ (s log(ep/s))−1, then, with probability at least
1−e−bn−e−s(s/p)s (where b > 0 is a constant), the estimator
B̂ from (6) satisfies

∥B̂ −B∗∥∗ ≲ λ.

Remark 1: For simplicity of presentation, we assume that
the sparsity level s used in the regularizer is in fact (an upper
bound on) the sparsity of β∗. We could easily extend our
results to the “misspecified” case ∥β∗∥0 = s0 > s.

Remark 2: By a standard argument (found, e.g., in [2]),
if β̂ ⊗ β̂ is the closest rank-1 approximation to B̂, then β̂
satisfies

min{∥β̂ − β∗∥2, ∥β̂ + β∗∥2} ≲
λ

∥β∗∥2
.
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Remark 3: The required sample complexity s log(ep/s)
is precisely the optimal sample complexity from traditional
linear sparse recovery. For large n, the noise error rate (with
appropriately chosen λ) is also the optimal

√
(s/n) log(ep/s),

but, if η > 0, achieving this rate may require n to be
significantly larger than s log(ep/s). More precisely, the first
term containing the optimal rate will dominate if and only if

n1−2c ≳
M2

σ2(β∗)

(
s log

ep

s

)1+2η

.

If the noise ξ is bounded, we can take η = 0, and we only
need n1−2c ≳ s log ep

s to obtain the optimal error rate. For
most interesting cases (where c is very small), this is negligibly
different from the sample complexity requirement. If ξ is (con-
ditionally) sub-Gaussian, we can take η = 1/2, in which case
we need n1−2c ≳log s2. If ξ is (conditionally) sub-exponential,
as in the Poisson noise case, we need n1−2c ≳log s3. The
need for larger n comes (in our proof) from concentration
inequalities for sums of terms of the form ξ⟨x, u⟩2 for arbitrary
vectors u; these terms have larger moments than the ξ⟨x, u⟩
terms we would typically see in linear settings. This could
perhaps be improved with judicious truncation as in, for
example, [38].

Remark 4: In the independent additive noise case, one can
check that our proof gives a high-probability bound uniform
over s-sparse β∗. If var(ξ) = σ2, we get, for appropriately
chosen λ,

∥B̂ −B∗∥∗ ≲

√
s log(ep/s)

n
σ +

M

n1−c

(
s log

ep

s

)η+1

.

Remark 5: In the Poisson observation case, we obtain, for
appropriately chosen λ,

∥B̂ −B∗∥∗ ≲

√
s log(ep/s)

n
∥β∗∥2+

∥β∗∥2+1
n1−c

(
s log

ep

s

)2

.

When β∗ ̸= 0, and n is large enough that the first error term
dominates, we have, up to a sign, that

∥β̂ − β∗∥2 ≲

√
s log(ep/s)

n
,

where β̂ is the appropriately-scaled leading eigenvector of B̂.
Thus we get an error bound does that not depend on ∥β∗∥2.

Remark 6: If there is no noise (ξ = 0), our analysis could
easily be adapted to study the problem

min
B
∥B∥∗,s s.t. ⟨Xi, B⟩HS = yi, i = 1, . . . , n.

To understand how to use our proof techniques, note that any
solution B̂ to the above problem satisfies

∑n
i=1⟨Xi, H⟩2HS = 0

and

0 ≥ ∥B̂∥∗,s − ∥B∗∥∗,s ≥ ⟨WB∗ , H⟩HS,

for any subgradient WB∗ ∈ ∂∥B∗∥∗,s, where H = B̂ −B.

B. Sparse PCA

We can apply the atomic regularizer to the sparse PCA
problem via another standard lifted formulation:

Theorem 2: Suppose we observe n i.i.d. copies of the p-
dimensional vector x ∼ N (µ, Σ), where Σ = σ1v1⊗v1 +Σ2,
v1 is s-sparse and unit-norm, σ1 > ∥Σ2∥ =: σ2, and Σ2v1 = 0.
Choose

λ ≳
√

σ1σ2

√
s log(ep/s)

n

and let

P̂ =arg min
P∈Rp×p

−⟨
∑̂

, P ⟩HS + λ∥P∥∗,s s.t. ∥P∥∗ ≤ 1, (7)

where∑̂
=

1
n

n∑
i=1

(xi − x̄)⊗ (xi − x̄)=

(
1
n

n∑
i=1

xi ⊗ xi

)
−x̄⊗ x̄

is the empirical covariance of x1, . . . , xn (x̄ = 1
n

∑n
i=1 xi).

For t > 0, if n ≳ max
{

s log ep
s ,
(

σ1
σ1−σ2

)2

t

}
, then, with

probability at least 1− e−t − 3 e−s(s/p)s,

∥P̂ − P1∥F ≲
λ

σ1 − σ2
,

where P1 = v1 ⊗ v1.
We prove this result fully in Section C. A sketch of the proof
is provided in Section IV-B.

Remark 7: The assumption that x is Gaussian could easily
be relaxed to x = Σ1/2z, where z is a sub-Gaussian random
vector, as in, for example, [25].

Remark 8: For properly chosen λ the resulting error rate

∥P̂ − P1∥F ≲
√

σ1σ2

σ1 − σ2

√
s log(ep/s)

n

matches the minimax lower bounds in [25] and [27].

C. PSD Constraints and Another Regularizer

For phase retrieval and PCA, it is natural to restrict our
estimators to be PSD. All of our theoretical results hold if we
add a B ⪰ 0 constraint to (6) or a P ⪰ 0 constraint to (7).

Unlike the nuclear norm case (where the optimal decom-
position is the singular value decoposition, which is identical
to the eigenvalue decomposition for a PSD matrix), it is not
clear whether every PSD matrix B admits a symmetric (i.e.,
uk = vk) optimal decomposition with regard the definition
of ∥B∥∗,s in (5). Therefore, it is natural to define as a new
regularizer the following gauge function/asymmetric norm on
the space of PSD matrices: for B ⪰ 0,

Θs(B) = inf
{∑

θs(uk, uk) : B =
∑

uk ⊗ uk

}
.

All of our theoretical and computational results in Section III
and V can be easily extended to this choice of regularizer. This
choice of regularizer is computationally convenient because if
we optimize over a matrix B by optimizing over factors uk, vk
such that B =

∑
k uk⊗ vk (see Section V-B), we can enforce

a PSD constraint simply by forcing uk = vk.
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IV. PROOF HIGHLIGHTS

In this section, we outline the proofs of Theorem 1 and 2.
We fully prove Theorem 1 from some technical lemmas, while
we sketch the proof of Theorem 2

A. Sparse Phase Retrieval Proof

In this section, we prove Theorem 1, which is our error
bound for sparse phase retrieval. We will use the following
key technical lemmas:

Lemma 1 (Subgradients of Mixed Atomic Norm): Suppose
β ∈ Rp is s-sparse, and let B = β ⊗ β. Then, for every
matrix A ∈ Rp×p, there exists W ∈ ∂∥B∥∗,s such that

⟨W, A⟩HS ≥
1
10
∥A∥∗,s − 5∥A∥F .

Lemma 2 (Empirical Process Bound): Let G1, . . . , Gn be
i.i.d. copies of a random matrix G ∈ Rp×p, where, for all
u, v ∈ Rp, ⟨Gu, v⟩ has zero mean,

E⟨Gu, v⟩2 ≤ σ2∥u∥22∥v∥22,

and

∥⟨Gu, v⟩∥α ≤Mαη+1∥u∥2∥v∥2

for all α ≥ 3.
Let Z = 1

n

∑n
i=1 Gi. For s ≥ 1, with probability at least

1− e−s(s/p)s,

sup
∥A∥∗,s≤1

⟨Z, A⟩HS ≲ σ

√
s log(ep/s)

n
+

M

n1−c

(
s log

ep

s

)η+1

,

where c ≈ 1
s log(ep/s) .

Lemma 3 (Restricted Lower Isometry): Let x1, . . . , xn be
i.i.d. copies of a random vector x satisfying Assumption 1,
and let Xi = xi ⊗ xi. Suppose

n ≳ s log
ep

s
,

and let C ≥ 1 be a fixed constant. With probability at least
1− e−bn (for some b > 0), the following event holds: For all
A ∈ Rp×p such that

∥A∥∗,s ≤ C∥A∥F ,

we have

1
n

n∑
i=1

⟨Xi, A⟩2HS ≳ ∥A∥2F ,

where the constant in the lower bound depends on C.
Lemma 1 is proved in Section A. Lemma 2 and 3 are proved in
Section B. With these, we can prove the sparse phase retrieval
error bound:

Proof of Theorem 1: Applying Lemma 2 to the random
matrices Gi = ξiXi, we can choose λ according to the
theorem statement with large enough constant so that, with
probability at least 1− e−s(s/p)s,

sup
∥A∥∗,s≤1

〈
1
n

n∑
i=1

ξiXi, A

〉
HS

≤ λ

20
.

Furthermore, by Lemma 3, for n ≳ s log ep
s (with large enough

constant), we have, with probability at least 1− e−bn,

1
n

n∑
i=1

⟨Xi, A⟩2HS ≳ ∥A∥2F

for all A satisfying ∥A∥∗,s ≤ 100∥A∥F .
The intersection of these events occurs with probability at

least 1− e−s(s/p)s − e−bn. In what follows, we assume this
holds.

Let B̂ be the solution to (6). Writing F (B) as the objective
function, the convexity of the optimization problem implies
that

0 ≤ ⟨∇F (B̂), B∗ − B̂⟩HS

=
1
n

n∑
i=1

(yi − ⟨Xi, B̂⟩HS)⟨Xi, B̂ −B∗⟩HS

+ λ⟨WB̂ , B∗ − B̂⟩HS,

for any WB̂ ∈ ∂∥B̂∥∗,s. By the monotonicity of (sub)gradients
of convex functions, we have that, for any W ∈ ∂∥B∗∥∗,s,
⟨W −WB̂ , B∗ − B̂⟩HS ≥ 0, and therefore

0≤ 1
n

n∑
i=1

(yi−⟨Xi, B̂⟩HS)⟨Xi, B̂−B∗⟩HS+λ⟨W, B∗−B̂⟩HS.

Let H = B̂−B∗. Using the fact that (yi−⟨Xi, B̂⟩HS)⟨Xi, B̂−
B∗⟩HS = ξi⟨Xi, H⟩HS − ⟨Xi, H⟩2HS, we have

1
n

n∑
i=1

⟨Xi, H⟩2HS ≤
1
n

n∑
i=1

ξi⟨X, H⟩HS − λ⟨W, H⟩HS

≤ λ

20
∥H∥∗,s − λ⟨W, H⟩HS.

By Lemma 1, there exists W ∈ ∂∥B∗∥∗,s such that

⟨W, H⟩HS ≥
1
10
∥H∥∗,s − 5∥H∥F .

Therefore, we have

1
n

n∑
i=1

⟨Xi, H⟩2HS ≤ 5λ∥H∥F −
λ

20
∥H∥∗,s.

Because the left side of this inequality is nonnegative, we
have ∥H∥∗,s ≤ 100∥H∥F . Then, by restricted lower isometry,
we have

∥H∥2F ≲ λ∥H∥F .

The result immediately follows. □

B. Sparse PCA Proof Sketch

The proof of Theorem 2 is somewhat messier than the proof
of Theorem 1 above, so we do not go into all of the details
here. We refer the reader to Section C for the full proof.

If P̂ is an optimal solution of (7), one can obtain, similarly
to the proof of Theorem 1, that

⟨
∑̂

, H⟩HS ≥ λ⟨W, H⟩HS
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for any W ∈ ∂∥P1∥∗,s, where H = P̂ − P1. Choosing W
according to Lemma 1, we obtain

⟨
∑̂

, H⟩HS ≥ λ

(
1
10
∥H∥∗,s − 5∥H∥F

)
.

By analysis similar to Lemma 2, one can show that

|⟨
∑̂
− Σ, H⟩HS| ≲

√
σ1σ2

s log(ep/s)
n

∥H∥∗,s

+ σ1

√
t

n
|⟨H,P1⟩HS|

with probability at least 1 − e−t − 3 e−s(s/p)s when n ≳
s log(ep/s). For λ chosen so that the coefficient of ∥H∥∗,s
above is ≤ λ/10, we get, on this event,

⟨Σ, H⟩HS ≳ −λ∥H∥F − σ1

√
t

n
|⟨H,P1⟩HS|.

Now, note that because ∥P̂∥∗ ≤ 1, we have the following:
• |⟨H,P1⟩HS| = 1− ⟨P̂ , P1⟩HS, and
• ⟨Σ, H⟩HS = σ1(⟨P̂ , P1⟩HS − 1) + ⟨Σ2, P̂ ⟩HS ≤

σ1(⟨P̂ , P1⟩HS − 1) + σ2(1− ⟨P̂ , P1⟩HS).

Then, using the assumption that n ≳ σ2
1

(σ1−σ2)2
t, we get

(σ1 − σ2)(1− ⟨P̂ , P1⟩HS)

≲

(
σ1 − σ2 − σ1

√
t

n

)
(1− ⟨P̂ , P1⟩HS)

≲ λ∥H∥F .

Finally, one can show that ∥P̂∥F ≤ ∥P̂∥∗ ≤ 1 implies
∥H∥2F ≲ 1− ⟨P̂ , P1⟩HS, which immediately gives the result.

V. COMPUTATIONAL LIMITATIONS AND A PRACTICAL
ALGORITHM FOR PHASE RETRIEVAL

Although the mixed atomic norm ∥·∥∗,s is a powerful
theoretical tool, it is not clear how to calculate (let alone
optimize) it for a general matrix in practice, since it is defined
as an infimum over infinite sets of possible factorizations.

A warning that computations with these atomic regularizers
may be difficult in general is that they can be used to get
Olog(s) sample complexity for sparse PCA, which, as dis-
cussed in Section I-C, is widely believed to be impossible
with efficient algorithms.

In this section, we will analyze the convex programs more
carefully, with a particular focus on phase retrieval.5 We will
analyze the optimality conditions via a dual problem and
thereby develop a heuristic algorithm.

This problem was studied in greater generality in [36]. Their
Corollary 1 is similar to our Corollary 1. However, our analysis
of the dual problem is quite different from their perturbation
argument, and we can much more easily apply our method to
the sparse PCA optimization problem (7) with its inequality
constraint. Furthermore, we think the reader will benefit from
our deriving the optimality conditions from more elementary
principles for the particular problem we are trying to solve.

5While our algorithmic approach led to strong empirical performance
for sparse phase retrieval, the approach was less effective for sparse PCA.
We leave a more thorough investigation of this phenomenon for future work.

A. Factorization, Duality, and Optimality Conditions

To move toward a practical algorithm, we consider optimiz-
ing (6) in factored form; rather than optimizing over B directly,
we optimize over the factors {uk, vk} of a factorization B =∑
k uk ⊗ vk. Then (6) is equivalent to

min
{uk,vk}⊂Rp

1
2n

n∑
i=1

(
yi −

〈
Xi,

∑
k

uk ⊗ vk

〉
HS

)2

+ λ
∑
k

θs(uk, vk). (8)

The obvious drawback to this form is that the optimization
problem is no longer convex; therefore, it is not clear whether
finding a global minimum is computationally feasible.

To determine how well a factored algorithm works (e.g.,
to certify optimality), we examine a dual problem to (6).
We formulate the dual via a trick found in [39]: note that
b2/2 = maxa ab− a2/2 (achieved if and only if a = b), and
therefore

min
B∈Rp×p

1
2n

n∑
i=1

(yi − ⟨Xi, B⟩HS)2 + λ∥B∥∗,s

= min
B∈Rp×p

1
2n

n∑
i=1

max
αi

(
2αi(yi − ⟨Xi, B⟩HS)− α2

i

)
+ λ∥B∥∗,s

≥ max
α∈Rn

[
1
n

n∑
i=1

(
αiyi −

α2
i

2

)

+ min
B∈Rp×p

(
λ∥B∥∗,s −

1
n

n∑
i=1

αi⟨Xi, B⟩HS

)]
,

where the inequality comes from swapping the maximum over
α = (α1, . . . , αn) and the minimum over B.

Define the dual norm ∥·∥∗∗,s by

∥Z∥∗∗,s = max
B∈Rp×p

∥B∥∗,s≤1

⟨Z, B⟩HS.

Because ∥·∥∗∗,s is nonnegatively homogeneous,

min
B∈Rp×p

(
λ∥B∥∗,s −

〈
1
n

n∑
i=1

αiXi, B

〉
HS

)

=

{
0 if

∥∥ 1
n

∑n
i=1 αiXi

∥∥∗
∗,s ≤ λ

−∞ otherwise.

Therefore, a dual formulation of (6) is the convex problem

max
α∈Rn

(
1
n

n∑
i=1

αiyi −
α2
i

2

)
s.t.

∥∥∥∥∥ 1
n

n∑
i=1

αiXi

∥∥∥∥∥
∗

∗,s

≤ λ. (9)

Before we go further, note that,

∥Z∥∗∗,s = max
u,v∈Rp

θs(u,v)≤1

⟨Zu, v⟩.
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To see this, note that

∥Z∥∗∗,s = sup

{
⟨Z, B⟩HS : B, {uk}, {vk},

B =
∑
k

uk ⊗ vk,
∑
k

θs(uk, vk) ≤ 1

}

= sup

{∑
k

⟨Zuk, vk⟩ :
∑
k

θs(uk, vk) ≤ 1

}

= sup

{
K∑
k=1

⟨Zuk, vk⟩ : K ≥ 1,
K∑
k=1

θs(uk, vk) ≤ 1

}
.

For any finite sequence {uk, vk}Kk=1 with
∑K
k=1 θs(uk, vk) ≤

1, if we let k∗ = arg max1≤k≤K
⟨Zuk,vk⟩
θs(uk,vk) and set ũ =

uk∗√
θs(uk∗ ,vk∗ )

and ṽ = vk∗√
θs(uk∗ ,vk∗ )

, we will always have

⟨Zũ, ṽ⟩ ≥
∑K
k=1⟨Zuk, uk⟩. Therefore,

∥Z∥∗∗,s = sup {⟨Zu, v⟩ : θs(u, v) ≤ 1}.

We can replace the supremum by a maximum because the
objective function is continuous and the constraint set is
compact.

Returning to the optimization problem, note that a feasible
point α for the dual problem gives us a lower bound on the
primal optimal value. If there exist B ∈ Rp×p, α ∈ Rn such
that α is feasible and the two objective functions are equal,
then we know B is optimal for the primal problem. More
precisely, (B, α) is an optimal primal-dual pair if and only if
(a) the primal objective function at B equals the dual objective

functions at α, and
(b) α is feasible, i.e.,

∥∥ 1
n

∑n
i=1 αiXi

∥∥∗
∗,s ≤ λ.

From the derivation of the dual problem above, (a) requires
αi = yi − ⟨Xi, B⟩HS. Making this substitution, setting the
objective functions equal, and simplifying gives one direction
of the following result:

Lemma 4: B solves (6) if and only if both of the following
hold:
(a) 1

n

∑n
i=1(yi − ⟨Xi, B⟩HS)⟨Xi, B⟩HS = λ∥B∥∗,s.

(b)
∥∥ 1
n

∑n
i=1(yi − ⟨Xi, B⟩HS)Xi

∥∥∗
∗,s ≤ λ.

Proof: We have already shown that these conditions
are sufficient for optimality. To see the other direction (that
these conditions are necessary for optimality), note that Z :=
1
n

∑n
i=1(yi − ⟨Xi, B⟩HS)Xi is the negative gradient of the

empirical loss at B. Because condition (b) is equivalent to

⟨Zu, v⟩ ≤ λθs(u, v) ∀u ∈ Rp,

if (b) does not hold, there exists some ū, v̄ ∈ Rp such that
⟨Zū, v̄⟩ > λθs(ū, v̄), and then we can decrease the objective
function by moving to B + ϵū⊗ v̄ for some sufficiently small
ϵ > 0. Thus (b) is a necessary condition for the optimality of
B.

Now suppose (b) holds, but (a) does not. Condition
(b) implies that ⟨Z, B⟩HS ≤ λ∥B∥∗,s, so we must have
⟨Z, B⟩HS < λ∥B∥∗,s.

Let B =
∑
k uk ⊗ vk be an optimal factorization with

respect to the definition of ∥B∥∗,s, that is, such that ∥B∥∗,s =

∑
k θs(uk, vk) (we assume, for clarity, that an optimal fac-

torization exists—if not, we could use an approximation
argument). There must be some uk, vk such that ⟨Zuk, vk⟩ <
λθs(uk, vk). Then, modifying B by replacing (uk, vk) with
((1 − ϵ)uk, (1 − ϵ)vk) for some sufficiently small ϵ > 0 will
decrease the objective function.

□
Note that the proof of Lemma 4 gives us an explicit way to

improve the objective function whenever one of the optimality
conditions is not satisfied.

Applying our derivation to the factored optimization prob-
lem, we get the following result:

Corollary 1: B solves (6) and B =
∑
k uk⊗ vk is an opti-

mal factorization with respect to ∥·∥∗,s (equivalently, {uk, vk}
solve (8)) if and only if the following hold:

1) For all k, 1
n

∑n
i=1(yi − ⟨Xi, B⟩HS)⟨Xiuk, vk⟩ =

λθs(uk, vk).
2)
∥∥ 1
n

∑n
i=1(yi − ⟨Xi, B⟩HS)Xi

∥∥∗
∗,s ≤ λ; equivalently, for

all u, v ∈ Rp,

1
n

n∑
i=1

(yi − ⟨Xi, B⟩HS)⟨Xiu, v⟩ ≤ λθs(u, v).

Note that we have broken out condition (a) into individual
equalities (rather than equating the sums of each side); con-
dition (b) allows us to do this. It is even easier to find a
descent direction when one of these conditions fails to hold,
since the objective function of (8) already depends explicitly
on the vectors uk, vk.

Note that condition (a) is much easier to verify than condi-
tion (b). We refer to {uk, vk} as a first-order stationary point
if it satisfies condition (a), since this is equivalent to a zero
subgradient on the (nonzero) uk’s and vk’s (cf. Proposition
2 in [36]).

Although we are not focusing on sparse PCA here, it may
be interesting to compare Corollary 1 to what we get for
sparse PCA, particularly as PCA may be a fundamentally more
difficult problem. A dual problem to (7) is

arg max
Z∈Rp×p

− ∥Z∥ s.t ∥
∑̂
− Z∥∗∗,s ≤ λ.

The following lemma gives (redundant) optimality conditions:
Lemma 5: P solves (7) if and only if ∥P∥∗ = 1 and there

exists Z ∈ Rp×p such that
1) ∥

∑̂
− Z∥∗∗,s ≤ λ,

2) ⟨
∑̂
− Z, P ⟩HS = λ∥P∥∗,s,

3) ⟨Z, P ⟩HS = ∥Z∥ = ∥Z∥∥P∥∗, and
4) ∥Z∥ = ⟨

∑̂
, P ⟩HS − λ∥P∥∗,s.

In the PCA case, the semidefinite version of the problem
is somewhat simpler due to the fact that the nuclear norm
becomes a trace. If we solve

P̂ = arg min
P⪰0

− ⟨
∑̂

, P ⟩HS + λΘs(P ) s.t. tr(P ) ≤ 1,

we get similar theoretical error guarantees as Theorem 2.
Furthermore, P =

∑
k uk ⊗ uk solves this optimization

program and {uk} is an optimal factorization with respect to
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Fig. 1. Phase transition plots. Colors represent 80% quantile error over 20 trials (darker colors correspond to higher error). We used p = 20,000, ∥β∗∥2 = 1,
and σ = 0.05. All algorithms were run on the same data.

Θs if and only if P is feasible and, for all u ∈ Rp.

⟨
∑̂

u, u⟩+

(
λ
∑
k

θs(uk, uk)−⟨
∑̂

, P ⟩HS

)
∥u∥22 ≤ θs(u, u).

B. A First Factored Algorithm, a Computational Snag, and a
Heuristic

The results of the previous section give a simple abstract
recipe for finding a global optimum of (6):
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Fig. 2. Plot of ∥β̂ − β∗∥2 vs. s (80% quantile over 10 trials). All simulations use p = 8,000 and n = 4,000. Blue circles are actual data; the red curves
are of the form c

√
s log ep

s
, where the scaling factor c is chosen to give minimum mean absolute deviation.

1) We optimize (8) over a fixed number r of rank-
1 factors (i.e., vectors u1, . . . , ur, v1, . . . , vr) until we
reach a first-order stationary point (by satisfying con-
dition (a) in Corollary 1). Note that whenever condi-
tion (a) is not satisfied, it is easy to find a descent
direction, since we can simply rescale the vectors uk, vk
in a similar manner to the second part of the proof
of Lemma 4.

2) At a first-order stationary point, if condition (b) in
Corollary 1 holds, we have reached the global mini-
mum. Otherwise, as in the first part of the proof of
Lemma 4, there exists ũ, ṽ ∈ Rp such that 1

n

∑n
i=1(yi−

⟨Xi, B⟩HS)⟨Xiũ, ṽ⟩ > λθs(ũ, ṽ). We set (ur+1, vr+1) =
(ϵũ, ϵṽ) for ϵ > 0 small enough to decrease the objective
function and go back to step 1.

The algorithm is guaranteed to terminate with a finite r by
[36, Theorem 2].

The most difficult part to implement is step 2. Check-
ing condition (b) requires maximizing a bilinear form on
vectors u, v under a bound on θs(u, v). If we could max-
imize this for general bilinear forms, we could also solve
sparse PCA (see Section V-A), so we suspect it is not
possible. However, this does not preclude positive results
that exploit the particular structure of the phase retrieval
problem.

To implement a practical algorithm, we take a very simple
shortcut: instead of checking condition (b) over all vectors
u, v ∈ Rp, we check it over 1-sparse vectors. We simply
calculate whether any element of 1

n

∑n
i=1(yi−⟨Xi, B⟩HS)Xi

is greater than (1 + 1/
√

s)2λ. Although we have not yet
found a robust theoretical justification, we will see in the
next section that this heuristic works reasonably well in
practice. We summarize our high-level practical algorithm in
Algorithm 1.

Algorithm 1 High-Level Sparse Phase Retrieval Algorithm
1: r ← 1
2: Initialize u1, v1 (e.g., some spectral algorithm)
3: while not Converged do
4: Optimize (8) over {u1, . . . ur}, {v1, . . . , vr} with

first-order method until condition (a) in Corollary 1 is
satisfied

5: Z ← 1
n

∑n
i=1(yi − ⟨Xi, B⟩HS)Xi, where B =∑r

k=1 uk ⊗ vk
6: if Zij > (1 + 1/

√
s)2λ for any i, j ∈ {1, . . . , p} then

7: r ← r + 1
8: ur+1 ← ϵej , vr+1 ← ϵei, where ϵ > 0 is

sufficiently small to decrease objective function.
9: else

10: Converged ← true
11: end if
12: end while
13: return {u1, . . . , ur}, {v1, . . . , vr}

C. Simulation Results

We implemented Algorithm 1 in MATLAB and ran a variety
of simulations to illustrate its performance with respect to
both sample complexity and noise performance. The interested
reader can view our code6 to see more details, but some of
the more salient features are the following:

• Line 5 of Algorithm 1 is implemented with alternating
minimization over U = [u1 · · ·ur] ∈ Rp×r and V =
[v1 · · · vr] ∈ Rp×r.

• After each alternating minimization step, we “rebalance”
U and V (i.e., rescale each uk, vk to force θs(uk, uk) =
θs(uk, vk) = θs(vk, vk)).

6https://github.com/admcrae/spr2021
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• Each minimization problem over U or V is convex, and
we solve it with an accelerated proximal gradient descent
algorithm.

• The proximal step requires solving a convex problem of
the form

arg min
y∈Rp

⟨x, y⟩+ 1
2
∥y∥22 + a∥y∥2 + b∥y∥1

for arbitrary x ∈ Rp and a, b > 0. This can be solved in
closed form by soft-thresholding x with threshold b and
then rescaling.

All of our simulations used i.i.d. Gaussian measurement
vectors x ∼ N (0, Ip).

1) Figure 1 shows phase transition diagrams of performance
versus sample size n and sparsity s for our algorithm
and a variety of alternatives. Note that qualitatively, all
these algorithms have similar performance in terms of
sample complexity. Interestingly, all of them appear only
to require (within a log factor) a number of samples linear
in the sparsity s. This demonstrates a gap between the
empirical performance of all these algorithms and the best
theoretical guarantees that have been proved so far.

2) Figure 2 shows plots of the error versus sparsity s
for both Gaussian noise and Poisson noise. Note that
in both cases, the error roughly follows the predicted√

s log(p/s) scaling.

VI. CONCLUSION

We have shown that estimators for sparse phase retrieval
and sparse PCA obtained by solving a convex program ((6)
for sparse phase retrieval and (7) for sparse PCA) with the
abstract mixed atomic norm (5) as a regularizer satisfy optimal
statistical guarantees in terms of sample complexity and error.
For sparse phase retrieval, we have derived a practical heuristic
algorithm whose performance matches that of existing state-
of-the-art algorithms.

Our work suggests new methods for analyzing these prob-
lems (and others with similar sparse factored structure, such
as sparse blind deconvolution). It also suggests interesting new
research directions in sparse recovery and in optimization. For
example, it would be very useful to study why our heuristic
approach appears to work well for sparse phase retrieval as
well as whether it is possible to do even better. A related
problem is to prove that sparse phase retrieval has linear
sample complexity with practical algorithms (or that it doesn’t,
along with why current empirical results seem to suggest
otherwise). Similarly, the atomic matrix norm (along with
other similar norms) invites further analysis, particularly in
how well we can optimize it (where this may depend on the
structure of the problem in which it is used). The interplay
between statistical guarantees and computational complexity
theory (e.g., in sparse PCA) may be very interesting here.

APPENDIX A
DETAILED ANALYSIS OF MIXED NORM

In this section, we explore several important properties of
the mixed norm ∥·∥∗,s.

First, we show that matrices with small mixed norm can be
written as a convex combination of sparse rank-1 matrices.

Lemma 6: For any matrix A, we can write A =
∑

aiui⊗vi,
where each ui and vi has unit ℓ2 norm and is s-sparse, and∑
|ai| ≤ ∥A∥∗,s.
Consequently, for any matrix Z,

sup
∥A∥∗,s≤1

⟨Z, A⟩HS ≤ sup
∥u∥2,∥v∥2≤1
∥u∥0,∥v∥0≤s

⟨Zu, v⟩.

Proof: The consequence follows from the first statement
immediately by the fact that any unit-atomic-norm A is in the
convex hull of rank-1 s-sparse atoms. We now prove the first
statement of the Lemma.

Because ∥·∥∗,s is defined as an atomic norm over rank-1
atoms, it suffices to prove the result for rank-1 A. Therefore,
we will show that any rank-1 matrix x⊗ y can be written as
x ⊗ y =

∑
ui ⊗ vi, where each ui and vi is s-sparse, and∑

∥ui∥2∥vi∥2 ≤ θs(x, y).
Indeed, a standard result from sparsity theory (see, e.g.,

Exercise 10.3.7 in [1]) says that any vector z can be written
as z =

∑
zi, where each zi is s-sparse, and

∑
∥zi∥2 ≤

∥z∥2 + 1√
s
∥z∥1. Applying this to both x and y, we have

x⊗ y =

(∑
i

xi

)∑
j

yj

 =
∑
i,j

xi ⊗ yj ,

where each xi and yj is s-sparse, and

∑
i,j

∥xi∥2∥yj∥2 =

(∑
i

∥xi∥2

)∑
j

∥yj∥2


≤
(
∥x∥2 +

∥x∥1√
s

)(
∥y∥2 +

∥y∥1√
s

)
= θs(x, y).

□
To prove Lemma 1, we need to find a suitable subgradient

of ∥·∥∗,s at the point B = β ⊗ β. Let I ⊂ {1, . . . , p} denote
the indices for which the entries of β are nonzero. With some
abuse of notation, we also write I as the subspace of Rp×p

whose matrices are zero except at entries (i, j) ∈ I×I . We also
denote T = {x ⊗ β + β ⊗ y : x, y ∈ Rp}. We will denote
the orthogonal projections onto these subspaces and various
orthogonal complements and intersections by PI , PT , PT∩I⊥ ,
etc. We will also on occasion denote the orthogonal projection
onto span{β} ⊂ Rp or its orthogonal complement (in I) by
Pβ , Pβ⊥ , Pβ⊥∩I , etc.

According to [36, Proposition 1], a matrix W ∈ ∂∥B∥∗,s if
the following two properties hold:

1) ⟨Wβ, β⟩ = θs(β, β), and
2) ⟨Wu, v⟩ ≤ θs(u, v) for all u, v ∈ Rp.

It is easy to check that the matrix Wβ := wβ ⊗ wβ , where
wβ := β

∥β∥2
+ 1√

s
sign β, is a subgradient. However, as with

the subgradients of the ordinary nuclear norm, a much broader
set of matrices satisfies these properties:

Lemma 7: Suppose β is s-sparse, and let B = β ⊗ β. Any
matrix of the form W = Wβ + W⊥ ∈ ∂∥B∥∗,s where W⊥
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can be any matrix in one of the following three families (or
any convex combination thereof):

1) W⊥ = 1√
s
(wβ ⊗ ũ + ṽ ⊗ wβ), where ũ, ṽ ∈ I⊥ and

∥ũ∥∞, ∥ṽ∥∞ ≤ 1.
2) W⊥ ∈ T⊥ and ∥W∥ ≤ 1.
3) W⊥ = PT⊥∩I⊥(W̃ ) for W̃ satisfying ⟨W̃u, v⟩ ≤

1
5θs(u, v) for all u, v ∈ Rp.
Proof: For each case, note that ⟨W⊥β, β⟩ = 0, so we

only need to show that ⟨Wu, v⟩ ≤ θs(u, v) for all u, v ∈ Rp.
We will use the following simple fact many times: for any

vector u ∈ Rp,

|⟨wβ , u⟩| ≤ ∥Pβ(u)∥2 +
∥PI(u)∥1√

s
.

We prove each case separately.
a) Case 1: Let ũ, ṽ ∈ I⊥ with ∥ũ∥∞, ∥ṽ∥∞ ≤ 1. Let

W = wβ ⊗ wβ +
1√
s
(wβ ⊗ ũ + ṽ ⊗ wβ).

Then, for any u, v ∈ Rp,

⟨Wu, v⟩ =⟨wβ , u⟩⟨wβ , v⟩+
1√
s
(⟨wβ , v⟩⟨ũ, u⟩+⟨ṽ, v⟩⟨wβ , u⟩)

≤
(
∥Pβ(u)∥2+

∥PI(u)∥1√
s

)(
∥Pβ(v)∥2+

∥PI(v)∥1√
s

)
+
(
∥Pβ(v)∥2+

∥PI(v)∥1√
s

)
∥PI⊥(u)∥1√

s

+
(
∥Pβ(u)∥2+

∥PI(u)∥1√
s

)
∥PI⊥(v)∥1√

s

≤
(
∥Pβ(u)∥2+

∥u∥1√
s

)(
∥Pβ(v)∥2 +

∥v∥1√
s

)
≤ θs(u, v),

where the penultimate inequality uses the fact that ∥z∥1 =
∥PI(z)∥1 + ∥PI⊥(z)∥1 for any vector z.

b) Case 2: Let W⊥ ∈ T⊥ such that ∥W∥ ≤ 1. Let u, v ∈
Rp. Note that ⟨W⊥u, v⟩ ≤ ∥Pβ⊥(u)∥2∥Pβ⊥(v)∥2. Then

⟨Wu, v⟩ =⟨wβ , u⟩⟨wβ , v⟩+⟨W⊥u, v⟩

≤
(
∥Pβ(u)∥2+

∥PI(u)∥1√
s

)(
∥Pβ(v)∥2+

∥PI(v)∥1√
s

)
+ ∥Pβ⊥(u)∥2∥Pβ⊥(v)∥2

≤ θs(u, v),

where the last inequality uses that fact that

∥Pβ(u)∥2∥Pβ(v)∥2 + ∥Pβ⊥(u)∥2∥Pβ⊥(v)∥2 ≤ ∥u∥2∥v∥2.

c) Case 3: Let W̃ ∈ Rp×p satisfy ⟨W̃u, v⟩ ≤ 1
5θs(u, v).

Let W = Wβ + PT⊥∩I⊥(W̃ ). Then, for u, v ∈ Rp,

⟨Wu, v⟩ = ⟨wβ , u⟩⟨wβ , v⟩+ ⟨PT⊥∩I⊥(W̃ ), v ⊗ u⟩HS

= ⟨wβ , u⟩⟨wβ , v⟩+ ⟨W̃ ,PT⊥∩I⊥(v ⊗ u)⟩HS

= ⟨wβ , u⟩⟨wβ , v⟩+ ⟨W̃PI⊥(u),Pβ⊥∩I(v)⟩
+ ⟨W̃Pβ⊥∩I(u),PI⊥(v)⟩
+ ⟨W̃PI⊥(u),PI⊥(v)⟩.

As before,

⟨wβ , u⟩⟨wβ , v⟩ ≤
(
∥Pβ(u)∥2 +

∥PI(u)∥1√
s

)
×
(
∥Pβ(v)∥2 +

∥PI(v)∥1√
s

)
.

Next,

⟨W̃PI⊥(u),Pβ⊥∩I(v)⟩

≤ 1
5

(
∥PI⊥(u)∥2 +

∥PI⊥(u)∥1√
s

)
×
(
∥Pβ⊥∩I(v)∥2 +

∥Pβ⊥∩I(v)∥1√
s

)
≤ 2

5

(
∥Pβ⊥(u)∥2 +

∥PI⊥(u)∥1√
s

)
∥Pβ⊥(v)∥2.

Similarly,

⟨W̃Pβ⊥∩I(u),PI⊥(v)⟩

≤ 2
5
∥Pβ⊥(u)∥2

(
∥Pβ⊥(v)∥2 +

∥PI⊥(v)∥1√
s

)
.

Combining these with the obvious bound on
⟨W̃PI⊥(u),PI⊥(v)⟩, we get

⟨Wu, v⟩ ≤
(
∥Pβ(u)∥2 +

∥PI(u)∥1√
s

)
×
(
∥Pβ(v)∥2 +

∥PI(v)∥1√
s

)
+
(
∥Pβ⊥(u)∥2 +

∥PI⊥(u)∥1√
s

)
×
(
∥Pβ⊥(v)∥2 +

∥PI⊥(v)∥1√
s

)
To bound this last expression, we consider the terms that

we get from multiplying everything out. Note again that

∥Pβ(u)∥2∥Pβ(v)∥2 + ∥Pβ⊥(u)∥2∥Pβ⊥(v)∥2 ≤ ∥u∥2∥v∥2,

and also

∥PI(u))∥1∥PI(v)∥1 + ∥PI⊥(u)∥1∥PI⊥(v)∥1 ≤ ∥u∥1∥v∥1.

For the cross-terms, note that

∥Pβ(u)∥2∥PI(v)∥1 + ∥Pβ⊥(u)∥2∥PI⊥(v)∥1

≤ min
c>0

(
c
∥Pβ(u)∥22 + ∥Pβ⊥(u)∥22

2

+
1
c

∥PI(v)∥21 + ∥PI⊥(v)∥21
2s

)

≤ min
c>0

(
c
∥u∥22

2
+

1
c

∥v∥21
2s

)
=

1√
s
∥u∥2∥v∥1.

The similar inequality holds for u and v reversed. Therefore,

⟨Wu, v⟩ ≤
(
∥u∥2 +

∥u∥1√
s

)(
∥v∥2 +

∥v∥1√
s

)
= θs(u, v).

□
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With this, we can prove Lemma 1.
Proof of Lemma 1: Let A ∈ Rp×p. We choose a

subgradient W ∈ ∂∥B∥∗,s as follows: Let

W = Wβ +
1
10
(
W⊥

1 + 4 W⊥
2 + 5 W⊥

3

)
,

where we choose W⊥
i , i = 1, 2, 3, as follows:

1) If PT∩I⊥(A) = β ⊗ u + v ⊗ β where u, v ∈ I⊥, choose

W⊥
1 =

1√
s
(wβ ⊗ ũ + ṽ ⊗ wβ),

where ũ, ṽ ∈ I⊥, ∥ũ∥∞, ∥ṽ∥∞ ≤ 1 and ⟨ũ, u⟩ = ∥u∥1,
⟨ṽ, v⟩ = ∥v∥1. Then

⟨W⊥
1 u, v⟩ =

(
∥β∥2 +

∥β∥1√
s

)
∥u∥1 + ∥v∥1√

s

≥ θs(β, u) + θs(β, v)− 2∥β∥2(∥u∥2 + ∥v∥2)
≥ ∥PT∩I⊥(A)∥∗,s − 2

√
2∥PT∩I⊥(A)∥F

≥ ∥PT∩I⊥(A)∥∗,s − 2
√

2∥A∥F .

2) Choose W⊥
2 ∈ T⊥ ∩ I with ∥W⊥

2 ∥ ≤ 1 such that
⟨W⊥

2 , A⟩HS = ∥PT⊥∩I(A)∥∗ ≥ 1
4∥PT⊥∩I(A)∥∗,s. This

last norm inequality holds because every vector in I is
s-sparse.

3) Choose W⊥
3 according to Lemma 7 such that

⟨W⊥
3 , A⟩HS = 1

5∥PT⊥∩I⊥(A)∥∗,s.
Then, using the fact that ∥Wβ∥F = ∥wβ∥22 ≤ 4, we have

⟨W, A⟩HS= ⟨Wβ , A⟩HS +
1

10
⟨W⊥

1 , A⟩HS

+
4

10
⟨W⊥

2 , A⟩HS +
5

10
⟨W⊥

3 , A⟩HS

≥ −4∥A∥F −
1

10
∥PT∩I(A)∥∗,s +

1

10
∥PT∩I(A)∥∗,s

+
1

10

(
∥PT∩I⊥ (A)∥∗,s − 2

√
2∥A∥F

)
+

4

10
·
1

4
∥PT⊥∩I(A)∥∗,s +

5

10
·
1

5
∥PT⊥∩I⊥ (A)∥∗,s

≥
1

10
∥A∥∗,s −

(
4 +

√
2

5

)
∥A∥F −

1

10
∥PT∩I(A)∥∗,s

≥
1

10
∥A∥∗,s − 5∥A∥F ,

where the last inequality uses the fact that ∥PT∩I(A)∥∗,s ≤
4∥PT∩I(A)∥∗ ≤ 4

√
2∥A∥F . □

APPENDIX B
EMPIRICAL PROCESS AND RESTRICTED LOWER ISOMETRY

BOUNDS

Proof of Lemma 2: By Lemma 6, it suffices to show

sup
∥u∥2=∥v∥2=1
∥u∥0,∥v∥0≤s

⟨Zu, v⟩ ≲ σ

√
s log(ep/s)

n
+

M

n1−c

(
s log

ep

s

)η+1

where, again, Z = 1
n

∑
i Gi.

We first consider the random variable ⟨Zu, v⟩ for fixed unit-
norm u and v. We have

⟨Zu, v⟩ =
1
n

n∑
i=1

⟨Giu, v⟩.

This is the sum of independent copies of the zero-mean
random variable ⟨Gu, v⟩. By assumption,

E⟨Gu, v⟩2 ≤ σ2

and, for α ≥ 3,

∥⟨Gu, v⟩∥α ≤Mαη+1.

Then, by [40, Theorem 3.1], for any δ > 0, with probability
at least 1− δ,

⟨Zu, v⟩ ≲ σ

√
log δ−1

n
+

Mαη+1

n1−1/α
δ−1/α.

We then use a covering argument similar to that in [41]. Let
J1 and J2 be any two subspaces of s-sparse vectors in Rp.
The unit sphere SJi

in Ji can be covered within a resolution of
1/4 by at most 9s points ( [1, Corollary 4.2.13], for example).
Let NJ1 ,NJ2 be optimal 1/4-covering sets. For each x ∈ SJi

,
let ni(x) be the closest point in NJi

. Then

sup
u∈SJ1
v∈SJ2

⟨Zu, v⟩ = sup
u∈SJ1
v∈SJ2

⟨Zn1(u), n2(v)⟩+ ⟨Z(u− n1(u)), v⟩

+ ⟨Zn1(u), v − n2(v)⟩

≤ max
u∈NJ1
v∈NJ2

⟨Zu, v⟩+ 1
2

sup
u∈SJ1
v∈SJ2

⟨Zu, v⟩,

so

sup
u∈SJ1
v∈SJ2

⟨Zu, v⟩ ≤ 2 max
u∈NJ1
v∈NJ2

⟨Zu, v⟩.

Let

N =
⋃

s-sparse J1, J2

NJ1 ×NJ2 .

Clearly,

sup
∥u∥2=∥v∥2=1
∥u∥0,∥v∥0≤s

⟨Zu, v⟩ = sup
s-sparse J1, J2

sup
u∈SJ1
v∈SJ2

⟨Zu, v⟩

≤ 2 max
(u,v)∈N

⟨Zu, v⟩.

There are
(
p
s

)
≤
(
ep
s

)s
s-sparse subspaces of Rp, so |N | ≤(

9s
(
ep
s

)s)2
.

By a union bound and substituting δ above with δ/|N |,
we then have, for any δ > 0, with probability at least 1− δ,

sup
∥u∥2=∥v∥2=1
∥u∥0,∥v∥0≤s

⟨Zu, v⟩ ≲ σ

√
s log(ep/s)

n
+

log δ−1

n

+
Mαη+1

n1−1/α

(ep

s

)2s/α

δ−1/α.

Taking δ = e−s(s/p)s and α ≈ s log Cp
s , we get, with

probability at least 1− e−s(s/p)s,

sup
∥u∥2=∥v∥2=1
∥u∥0,∥v∥0≤s

⟨Zu, v⟩ ≲ σ

√
s log(ep/s)

n
+

M

n1−c

(
s log

ep

s

)η+1

.

□
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We will need the following variant of Lemma 2 for both the
sparse PCA results and our restricted lower isometry lemma:

Lemma 8: Let G1, . . . , Gn be i.i.d. copies of a random
matrix G ∈ Rp×p, where, for all u, v ∈ Rp, ⟨Gu, v⟩ has
zero mean,

E⟨Gu, v⟩2 ≲ ∥u∥22∥v∥22
and ⟨Gu, v⟩ is sub-exponential in the sense that ∥⟨Gu, v⟩∥α ≲
α∥u∥2∥v∥2 for all α ≥ 2.

Let

Z =
1
n

n∑
i=1

Gi

For any integer s ≥ 1, with probability at least 1−e−s(s/p)s,

sup
∥A∥∗,s≤1

⟨Z, A⟩HS ≲

√
s log(ep/s)

n
+

s log(ep/s)
n

.

Furthermore, for n ≳ s log ep
s ,

E sup
∥A∥∗,s≤1

⟨Z, A⟩HS ≲

√
s log(ep/s)

n
.

We omit the proof, as it is nearly identical to the proof of
Lemma 2. We simply replace the Fuk-Nagaev inequality with
a Bernstein inequality. With this, we can prove our restricted
lower isometry lemma:

Proof of Lemma 3: If X = x ⊗ x, by a straightforward
calculation, for any p× p matrix A,

E⟨X,A⟩2HS =
∑
i̸=j

AiiAjj E(x(i))2(x(j))2

+ 2
∑
i̸=j

A2
ij E(x(i))2(x(j))2

+
∑
i

A2
iiE(x(i))4.

Using the facts that E(x(i))2 = 1 for each i and x(i) and x(j)

are independent when i ̸= j, we have

E⟨X, A⟩2HS =
∑
i,j

AiiAjj+2
∑
i̸=j

A2
ij +

∑
i

A2
ii(E(x(i))4−1)

≥ (tr A)2 + min{2,E(x1)4 − 1}∥A∥2F
≳ ∥A∥2F .

The last inequality uses the assumption that E(x(1))4 > 1.
By the Hanson-Wright inequality for sub-Gaussian vec-

tors [42], we have

E(⟨X, A⟩2HS −E⟨X,A⟩2HS)2 ≲ ∥A∥4F ,

so E⟨X, A⟩4HS ≲ (E⟨X, A⟩2HS)2. By the Paley-Zygmund
inequality, we then have, for some c1, c2 > 0,

inf
A∈Rp×p

P(|⟨X, A⟩HS| ≥ c1∥A∥F ) ≥ c2.

The remainder of the proof is a small-ball argument ( [43];
see also [44] for an excellent introduction).

Let

S = {A ∈ Rp×p : ∥A∥F = 1; ∥A∥∗,s ≤ C}.

We will prove that

inf
A∈S

1
n

n∑
i=1

⟨Xi, A⟩2HS ≥ c

with high probability for some constant c > 0.
By [44, Proposition 5.1], for any t > 0, we have, with

probability at least 1− e−t
2/2,

inf
A∈S

√√√√ 1
n

n∑
i=1

⟨Xi, A⟩2HS

≳ c1c2 − 2E sup
A∈S

(
1
n

n∑
i=1

εi⟨Xi, A⟩HS

)
− 1√

n
c1 t,

where ε1, . . . , εn are i.i.d. Rademacher random variables inde-
pendent of everything else.

Set Z = 1
n

∑n
i=1 εiXi, and note that Gi = εiXi, i =

1, . . . , n, satisfy the requirements of Lemma 8. Then

E sup
A∈S
⟨Z, A⟩HS ≲ C

√
s log(ep/s)

n
.

Choosing n large enough and t =
√

2bn for small enough
b > 0 completes the proof.

□

APPENDIX C
PROOF OF SPARSE PCA ERROR BOUND

Proof of Theorem 2: By a similar argument to that in the
proof of Theorem 1 in Section IV-A, the solution P̂ to (7)
satisfies

⟨
∑̂

,−H⟩HS ≤ λ⟨W,−H⟩HS

for H = P̂ − P1 and any W ∈ ∂∥P1∥∗,s. Choosing W
according to Lemma 1 (as in the proof of Theorem 1), we
obtain

⟨
∑̂

, H⟩HS ≥ λ

(
1
10
∥H∥∗,s − 5∥H∥F

)
.

We first consider the difference between ⟨
∑̂

, H⟩HS and
⟨Σ, H⟩HS. Since the distribution of

∑̂
is independent of µ, we

assume, without loss of generality, that µ = 0. We write xi =
Σ1/2zi, where zi ∼ N (0, Ip), and Σ1/2 =

√
σ1P1 + Σ1/2

2 .
We therefore want to bound

⟨
∑̂
− Σ, H⟩HS = ⟨Σ1/2(Z − Ip − z̄ ⊗ z̄)Σ1/2, H⟩HS,

where Z = 1
n

∑n
i=1 zi ⊗ zi and z̄ = 1

n

∑n
i=1 zi.

Let H⊥ denote the component of H orthogonal (in Hilbert-
Schmidt inner product) to P1. We have

H = ⟨H,P1⟩HSP1 + H⊥.
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First, for all t ≤ n, with probability at least 1− e−t,∣∣∣∣⟨∑̂− Σ, P1⟩HS

∣∣∣∣ = σ1

∣∣∣∣∣ 1n
n∑
i=1

(⟨zi, v1⟩2 − 1)− ⟨z̄, v1⟩2
∣∣∣∣∣

≤ σ1

∣∣∣∣∣ 1n
n∑
i=1

(⟨zi, v1⟩2 − 1)

∣∣∣∣∣+ ⟨z̄, v1⟩2

≲ σ1

(√
t

n
+

t

n

)

≲ σ1

√
t

n
,

where the second-to-last inequality follows from applying a
Bernstein inequality to the sum and an ordinary Gaussian tail
bound to the N (0, 1/n) random variable ⟨z̄, v1⟩.

To analyze the remainder, denote the portion of
∑̂

orthog-
onal to P1 as

∑̂⊥
=
∑̂
− ⟨
∑̂

, P1⟩HSP1

=
1
n

n∑
i=1

(
√

σ1⟨zi, v1⟩(v1 ⊗ (Σ1/2
2 zi)

+ (Σ1/2
2 zi)⊗ v1) + (Σ1/2

2 zi)⊗2

)

− (Σ1/2
2 z̄)⊗2.

Note that for each i, ⟨v1, zi⟩ is independent of Σ1/2
2 zi.

By Lemma 8, with probability at least 1− 2 e−s(s/p)s,

sup
∥A∥∗,s≤1

⟨
∑̂⊥

+ (Σ1/2
2 z̄)⊗2 − Σ2, A⟩HS

≤ 2 sup
∥A∥∗,s≤1

〈
1
n

n∑
i=1

√
σ1⟨zi, v1⟩v1 ⊗ (Σ1/2

2 zi), A

〉
HS

+ sup
∥A∥∗,s≤1

〈
1
n

n∑
i=1

(Σ1/2
2 zi)⊗2 − Σ2, A

〉
HS

≲ (
√

σ1σ2 + σ2)

(√
s log(ep/s)

n
+

s log(ep/s)
n

)

≲
√

σ1σ2

√
s log(ep/s)

n
.

Lemma 8 also gives, with probability at least 1− e−s(s/p)s,

sup
∥A∥∗,s≤1

⟨(Σ1/2
2 z̄)⊗2, A⟩HS

≤ sup
∥A∥∗,s≤1

⟨(Σ1/2
2 z̄)⊗2 −E(Σ1/2

2 z̄)⊗2, A⟩HS

+ sup
∥A∥∗,s≤1

⟨E(Σ1/2
2 z̄)⊗2, A⟩HS

≲ σ2

√
s log(ep/s)

n
.

Therefore,

sup
∥A∥∗,s≤1

⟨
∑̂⊥

− Σ2, A⟩HS ≲
√

σ1σ2

√
s log(ep/s)

n

with probability at least 1− 3 e−s(s/p)s.
Let λ be chosen with a large enough constant to ensure that

on this event,

sup
∥A∥∗,s≤1

⟨
∑̂⊥

− Σ2, A⟩HS ≤
λ

10
.

Then

|⟨
∑̂⊥

− Σ2, H⟩HS| ≤
λ

10
∥H∥∗,s.

We then have

σ1⟨P1, H⟩HS + ⟨Σ2, H⟩HS

= ⟨Σ, H⟩HS

= ⟨
∑̂

, H⟩HS + ⟨Σ−
∑̂

, H⟩HS

≥ λ

(
1
10
∥H∥∗,s − 5∥H∥F

)
− σ1

√
t

n
|⟨H,P1⟩HS|

− λ

10
∥H∥∗,s

= −5λ∥H∥F − σ1

√
t

n
|⟨H,P1⟩HS|.

Note that

⟨H,P1⟩HS = ⟨P̂ , P1⟩HS − 1 ≤ 0,

and ⟨Σ2, H⟩HS = ⟨Σ2, P̂ ⟩HS, so

σ1

(
1−

√
t

n

)
(⟨P̂ , P1⟩HS − 1) + ⟨P̂ , Σ2⟩HS ≳ −λ∥H∥F .

Note that ⟨P̂ , Σ2⟩HS ≤ σ2∥PT⊥(P̂ )∥∗, where T⊥ is (sim-
ilarly to before) the matrix subspace with rows and columns
orthogonal to v1. Note that 1 ≥ ∥P̂∥∗ ≥ ⟨P̂ , P1⟩HS +
∥PT⊥(P̂ )∥∗, so ⟨P̂ , Σ2⟩HS ≤ σ2(1− ⟨P̂ , P1⟩HS).

Combining this with the previous inequality and requiring

n ≳
(

σ1
σ1−σ2

)2

t, we have

(σ1 − σ2)(1− ⟨P̂ , P1⟩HS)

≲

(
σ1

(
1−

√
t

n

)
− σ2

)
(1− ⟨P̂ , P1⟩HS)

≲ λ∥H∥F .

To bound ∥H∥F , note that we can write

P̂ = av1 ⊗ v1 + v1 ⊗ u + w ⊗ v1 + PT⊥(P̂ ),

where a = ⟨P̂ , P1⟩HS and u, w ⊥ v1. Then

1 ≥ ∥P̂∥2∗ ≥ ∥P̂∥2F = a2 + ∥u∥22 + ∥w∥22 + ∥PT⊥(P̂ )∥2F ,

and therefore

∥H∥2F = (1− a)2 + ∥u∥22 + ∥w∥22 + ∥PT⊥(P̂ )∥2F
≤ (1− a)2 + 1− a2

= 2(1− a)

= 2(1− ⟨P̂ , P1⟩HS).
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From this, we have (σ1 − σ2)∥H∥2F ≲ λ∥H∥F , from which
the result immediately follows. □

APPENDIX D
PROOF OF POISSON VARIANCE/MOMENT BOUNDS

If x satisfies Assumption 1 and, conditioned on x, y ∼
Poisson(⟨x, β∗⟩2), then, for unit-norm u ∈ Rp,

E ξ2⟨x, u⟩4 = E
[
E[ξ2 | x]⟨x, u⟩4

]
= E⟨x, β∗⟩2⟨x, u⟩4

≲ ∥β∗∥22.

Also,

∥ξ⟨x, u⟩2∥α =
(
E
∣∣ξ⟨x, u⟩2

∣∣α)1/α

=
(
E
[
E[|ξ|α | x]|⟨x, u⟩|2α

])1/α
≲
√

α
(
E|⟨x, β∗⟩|α|⟨x, u⟩|2α

)1/α
+ α∥⟨x, u⟩2∥α

≲ α2(∥β∗∥2 + 1),

where the first inequality uses the standard Poisson centered
moment bound

∥Z −EZ∥α ≲
√

αλ + α

if Z ∼ Poisson(λ).
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