
EdgePC: Efficient Deep Learning Analytics for Point Clouds on
Edge Devices

Ziyu Ying
zjy5087@psu.edu

The Pennsylvania State University
State College, Pennsylvania, USA

Sandeepa Bhuyan
sxb392@psu.edu

The Pennsylvania State University
State College, Pennsylvania, USA

Yan Kang
ybk5166@psu.edu

The Pennsylvania State University
State College, Pennsylvania, USA

Yingtian Zhang
yjz5396@psu.edu

The Pennsylvania State University
State College, Pennsylvania, USA

Mahmut T. Kandemir
mtk2@psu.edu

The Pennsylvania State University
State College, Pennsylvania, USA

Chita R. Das
cxd12@psu.edu

The Pennsylvania State University
State College, Pennsylvania, USA

ABSTRACT
Recently, point cloud (PC) has gained popularity in modeling vari-
ous 3D objects (including both synthetic and real-life) and has been
extensively utilized in a wide range of applications such as AR/VR,
3D reconstruction, and autonomous driving. For such applications,
it is critical to analyze/understand the surrounding scenes properly.
To achieve this, deep learning based methods (e.g., convolutional
neural networks (CNNs)) have been widely employed for higher ac-
curacy. Unlike the deep learning on conventional 2D images/videos,
where the feature computation (matrix multiplication) is the major
bottleneck, in point cloud-based CNNs, the sample and neighbor
search stages are the primary bottlenecks, and collectively con-
tribute to 54% (up to 80%) of the overall execution latency on a
typical edge device. While prior efforts have attempted to solve this
issue by designing custom ASICs or pipelining the neighbor search
with other stages, to our knowledge, none of them has tried to
“structurize” the unstructured PC data for improving computational
efficiency.

In this paper, we first explore the opportunities of structuriz-
ing PC data using Morton code (which is originally designed to
map data from a high dimensional space to one dimension, while
preserving spatial locality) and observe that there is a huge scope
to “skip” the sample and neighbor search computation by operat-
ing on the “structurized” PC data. Based on this, we propose two
approximation techniques for the sampling and neighbor search
stages. We implemented our proposals on an NVIDIA Jetson AGX
Xavier edge GPU board. The evaluation results collected on six
different workloads show that our design can accelerate the sample
and neighbor search stages by 3.68× (up to 5.21×) with minimal
impact on inference accuracy. This acceleration in turn results in
1.55× speedup in the end-to-end execution latency and saves 33%
of energy expenditure.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISCA ’23, June 17–21, 2023, Orlando, FL, USA.
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0095-8/23/06. . . $15.00
https://doi.org/10.1145/3579371.3589113

CCS CONCEPTS
• Computer systems organization→ Embedded systems; Sys-
tem on a chip; • Computing methodologies→ Computer vision.

KEYWORDS
Point Cloud, DeepNeural Network, Approximation, Energy-efficiency,
Edge Device
ACM Reference Format:
Ziyu Ying, Sandeepa Bhuyan, Yan Kang, Yingtian Zhang, Mahmut T. Kan-
demir, and Chita R. Das. 2023. EdgePC: Efficient Deep Learning Analyt-
ics for Point Clouds on Edge Devices. In Proceedings of the 50th Annual
International Symposium on Computer Architecture (ISCA ’23), June 17–
21, 2023, Orlando, FL, USA. ACM, New York, NY, USA, 14 pages. https:
//doi.org/10.1145/3579371.3589113

1 INTRODUCTION
Point Cloud (PC), a representation of objects in 3D space using a
huge collection of points, primarily used for terrain scanning bymil-
itary and space agencies and various industrial applications (e.g.,
engineering, architecture, archaeology, etc.) has gained tremen-
dous attraction over the past few years. Especially, the recent ad-
vent of various emerging applications requiring hyper-realistic
visualizations of objects such as 360-degree or volumetric video
streaming [32, 73] in Virtual Reality (VR), virtual object and real-
world interaction in Augmented Reality (AR) [74], cultural heritage
modeling and rendering [51], as well as applications demanding
high-fidelity version of the physical world such as object detection
in autonomous driving and robotics, have put PC in the forefront.
Additionally, research advancements in point acquisition technolo-
gies (such as 3D scanning [61], photogrammetry [2], etc.) as well as
the availability of affordable and convenient PC acquisition devices
such as LiDAR, RGB-Depth cameras (e.g., Microsoft Kinect [41],
Intel RealSense [25], etc.) and, more recently smartphones (e.g.,
iPhone 13 Pro[1], Samsung Galaxy S20 [53]) equipped with LiDAR
Depth Camera have fuelled its widespread adoption. According to
a Straits Research report, the PC market is forecasted to reach 6.93
Billion USD by 2030 [21].

The rising interest in PC has led to increase in PC data avail-
ability, thus making it feasible to leverage deep learning-based
techniques such as classification, segmentation, and detection for
PC data, thereby facilitating the machines with a better under-
standing of the scene to make more accurate decisions. Especially,

https://orcid.org/0000-0002-0854-9933
https://orcid.org/0000-0002-0679-9058
https://orcid.org/0009-0002-8718-1491
https://orcid.org/0009-0007-7220-8571
https://orcid.org/0000-0002-9940-9951
https://orcid.org/0000-0002-4746-7578
https://doi.org/10.1145/3579371.3589113
https://doi.org/10.1145/3579371.3589113
https://doi.org/10.1145/3579371.3589113
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3579371.3589113&domain=pdf&date_stamp=2023-06-17

ISCA ’23, June 17–21, 2023, Orlando, FL, USA. Ziyu Ying and Sandeepa Bhuyan, et al.

PC deep learning analytics can provide more useful inputs to au-
tonomous cars, drones, robots, etc. by assisting with better visual
perception to detect and measure the distance of objects precisely,
failing which can result in devastating consequences. Moreover, the
availability of LiDAR cameras and neural processing units (NPUs)
on the commodity mobile/edge devices have made on-device PC
inference an attractive option, thus eliminating the need for offload-
ing computations to server which can potentially incur significant
communication latency or energy consumption [4, 29, 38, 40].

However, unlike the deep learning analysis on 2D image data,
which are structured (where neighboring pixels can be simply found
by using indexes), deep learning on PC faces several challenges as
the raw PC data are irregular (i.e., points are unevenly sampled
across different regions) and unstructured (i.e., distances between
neighboring points are not fixed). Due to these inherent properties
of the PC data, two additional steps are employed on inferencing
the raw PC data – sample and neighbor search. However, since the
off-the-shelf deep learning acceleration works like [24, 54, 57, 69]
are not tailored for such operations, the PC analytics applications
do not run efficiently on existing hardwares. Our profiling data
reveal that just the sample and neighbor search stages contribute to
more than 50% of the overall PC inference latency on a typical edge
device. So, it is imperative to optimize these two stages, and thereby
decrease the latency and energy consumption of PC inference on
the edge devices with limited resources and battery life.

While most prior works along this direction primarily focus on
improving the PC inference accuracy [23, 28, 36, 63], only few ef-
forts to reduce the inference latency and energy consumption [18,
35] on edge devices. Mesorasi [18] accelerated the feature computa-
tion stage and pipelined the neighbor search stage to some extent,
but did not address the sample stage. Albeit, PointAcc[35] devel-
oped custom hardware accelerator for PC inference, but did not
consider leveraging potential software-level optimization opportu-
nities by taking into consideration the unique characteristics of the
PC data. We want to emphasize that the primary bottlenecks in PC
inference – sample and neighbor search stages – are stemmed from
the irregular and unstructured nature of the PC data. Hence, driven
by insights from 2D image data, where sampling and neighbor
search is faster due to its structured representation, “structurizing”
or “re-ordering” the unstructured 3D PC data can provide potential
opportunities for accelerating PC inferences.

Morton Code [27], a geometrical data representation method for
mapping a multi-dimensional data to one-dimension while keeping
the locality among data in tact, can be a potential candidate to
achieve such structured representation. However, it is not straight-
forward to employ Morton Code to speedup the PC inference due
to following challenges: 1) how to effectively structurize the PC
data using Morton code ? ; 2) how to efficiently utilize the Morton re-
ordered data ? ; and 3) what are the trade offs between performance
benefits, memory overheads as well as the inference accuracy?

Towards this, in this work, we present and evaluate EdgePC, a
framework to accelerate the PC inference pipeline as well as im-
prove its energy efficiency on edge devices, with minimal accuracy
loss. The key idea is to leverage Morton Code to re-arrange the raw
points (which are irregular and unstructured) and eventually maxi-
mize the “structuredness” of point cloud frame. In an ideal scenario,
the point cloud frames can be as structured as 2D images. As the

re-ordered point cloud frame is more structured, the neighborhood
property of the points can be directly inferred by the indexes of
each point. In other words, we can treat the re-arranged 3D point
cloud similar to a 2D image when performing the CNN inference.
Therefore, instead of optimizing the SOTA sampler and neighbor
searcher to reduce the execution latency (which have been the focus
of prior works [17, 35, 71]), in this paper, we decide to intelligently
“skip” these two stages by approximating the sampled points as
well as their neighbors by simply picking the points with proper
indexes from the “structured” point cloud frame, with minimal
computation. Note however that, such approximation will yield
sub-optimal samples and false neighbors (more details in Sec. 5),
resulting in the accuracy drop in CNN inference. Therefore, to
avoid such accuracy loss, we integrate the aforementioned Morton
Code-based approximations into the CNN models and retrain the
networks.

In summary, our major contributions are listed below:
• We first perform a detailed “end-to-end” (E2E) characterization

of the typical PC inference application on the state-of-the-art
(SOTA) PC analytics workloads and identify the sample and
neighbor search stages to be the primary bottlenecks, due to
their inefficient execution on the existing hardware. Furthermore,
we demonstrate that this inefficiency stems from the inherent
irregular and unstructured nature of the PC data.

• To address such inefficiencies, we propose a mechanism for us-
ing the Morton Code to structurize the raw PC data. Both our
qualitative and quantitative analysis show the advantages of
using Morton code in structural data representation. Next, we
propose two complementary approaches to efficiently utilize this
structured PC data to speedup inference: 1) approximate the sam-
ple stage by uniform sampling on structured PC data, and 2) an
index-based neighbor searcher to approximate the SOTA neighbor
searchers. Finally, to minimize the impact of these approxima-
tions on the CNNmodel precision, we conduct a thorough design
space exploration to find an optimal design point to strike the
right balance among inference accuracy, performance improve-
ment and memory consumption, which is particularly critical
for the limited compute-energy budget edge devices. We also
incorporate our approximations for sample and neighbor search
stages into the PC CNN models and retrain the weight matrices
to minimize the inference accuracy drop.

• We implement our design on an edgeGPU development board [43]
and evaluate it on six different PC workloads. Our experimental
results show that, EdgePC can speedup the sample and neighbor
search stages by 3.68× which in turn translates to 1.55× speedup
of the end-to-end PC inference latency. It also saves 33% of the
original overall inference energy consumption with a negligible
impact on inference accuracy (compared to the baseline setup).

2 BACKGROUND AND RELATED WORK
2.1 Background
2.1.1 Point Cloud and its Applications. Point cloud (PC), typically
captured by the LiDAR cameras, consists of a set of unordered
points, with each point associated with a 3D coordinate and its
attributes like RGB colors, normals, reflectances, etc. Note that PC
is being widely used to represent the 3D models due to its simplicity

EdgePC: Efficient Deep Learning Analytics for Point Clouds on Edge Devices ISCA ’23, June 17–21, 2023, Orlando, FL, USA.

(a) Example application. (b) 2D CNN Vs. PC CNN.

Figure 1: (a) PC CNN application example: autonomous driv-
ing car; (b) Comparison between 2D CNN and point cloud
CNN.

(it does not require triangle mesh generation to construct surface)
and high accuracy (it can preserve the original geometric informa-
tion [30]). Such representation is essential for many applications
like VR/AR [5, 49, 62], 3D reconstruction [8, 34, 37], autonomous
driving [7, 9, 19], etc. Recently, deep learning has been utilized in
these applications as it can achieve very high accuracy [10]. Fig. 1a
shows an example to detect objects for autonomous vehicles using
a PC-based CNN model. Specifically, the LiDAR camera first scans
the surroundings and constructs the PC, following that the underly-
ing compute engine (CPUs, GPUs or NPUs, etc.) performs the CNN
inference on the captured PCs. Finally, the detected results (e.g., the
cars, pedestrians, trees, etc.) are forwarded to the decision-making
engine for the next steps. Such applications not only need high
inference accuracy, but also execution efficiency in terms of faster
execution for real-time updates, as well as low energy consumption
when performed on edge devices. Therefore, the PC CNN inference
needs to be carefully designed to meet the above requirements.

2.1.2 PCCNNPipeline. Unlike CNN inference on 2D images, where
the inputs are "well-structured" and each pixel and its neighbors can
be easily located via "indexes", 3D PCs are essentially unstructured
data, and thus, cannot be directly fed into the convolution layers.
Given a PC frame, the first step in a PC-based CNN is sampling
(obtain a global coverage for the PC frame) and followed by neigh-
bor searching (find local neighbors for each sampled point). For
example, as shown in Fig. 1b, first, points 𝑃2 and 𝑃5 (green color)
are sampled from a PC frame. Then, their corresponding neighbors
(the points within the dotted circle boundary) are determined. Next,
these sampled points and their neighbors (𝑃2,𝑃1,𝑃3; 𝑃5,𝑃4,𝑃6) form
a 2D matrix (similar to the input shown in Fig. 1b for 2D CNN) and
then the convolution layers are employed to extract the features.
While the feature computations (FC) (which fundamentally perform
matrix multiplications) can be accelerated using the off-the-shelf
specialized accelerators like TPUs or NPUs, there are no such cus-
tomized hardware for sample and neighbor search stages (primary
bottlenecks). Thus, minimizing the execution time of these two
critical stages and thereby reducing the overall PC CNN execution
and energy consumption is the focus of this work.

2.2 Related Work
2.2.1 PC Analysis. Since Charles et al. proposed the PointNet [47]
(the first/leading work that directly handles 3D PC data using deep

(a) PointNet++ (b) DGCNN
Figure 2: Architecture for (a) PointNet++(s) and (b) DGCNN(s).

learning CNNs), deep learning on PCs have been extensively stud-
ied in various domains, like 3D shape classification [64, 67, 70],
object detection [33, 46, 56, 75] and tracking [20, 55, 59] or seg-
mentation [11, 31, 47, 48]. While most of these prior works focus
on improving the inference accuracy by designing better CNN ar-
chitectures, there are also a few targeting to reduce the inference
latency and/or improving the energy efficiency, as discussed next.

2.2.2 Accelerating PC CNN. To accelerate PC CNN, Mesorasi [18]
proposed a delayed-aggregation technique to minimize the fea-
ture computation (FC) latency and pipelined the FC and neighbor
search stages, while PointAcc [35] proposed a specialized accel-
erator for mapping and memory management units. In [71], the
authors minimized the data movement overheads by increasing the
spatial locality of the PC data. Crescent [17] solved the irregular
memory accesses in k-d tree-based neighbor search by splitting
the tree into top- and bottom-trees. While these techniques can
improve the performance of PC CNN to some extent, they have
their own limitations. For example, [18] and [17] can only benefit
the neighbor search step, but ignore the optimization opportunities
for the sample stage, whereas [71] only targets graph-based CNNs,
which has a limited application scope. Finally, PointAcc customizes
specialized accelerators, which not only involves complex design
and tuning cycles, but also misses the potential software-level opti-
mizations, and therefore, could not fully exploit the off-the-shelf
hardware such as edge GPUs.

Thus, to the best of our knowledge, there is no prior work inves-
tigating the optimization opportunities for the two critical stages
in PC pipeline - sample and neighbor search - to minimize the
execution time of PC inferences on edge devices.

3 MOTIVATION
We first study two widely-used PC CNN pipelines, and then break-
down their latencies to understand their inefficiencies.

3.1 PC CNN Latency Characterization
Fig. 2 shows the model architectures of two popular PC CNNs used
for semantic segmentation tasks – PointNet++ [48] andDGCNN [72].
Primarily, PointNet++ consists of two basic modules, namely, SetAb-
straction (SA) and FeaturePropagation (FP), with 4 consecutive SA
modules followed by 4 consecutive FP modules. In each SA module,
the input PC (𝑁×𝐶 matrix, where 𝑁 is the number of points and 𝐶
is the feature dimension of each point) is first down-sampled into 𝑛
points, which can serve as a good coverage of the original input PC.
An efficient sampling algorithm for PC CNNs is the farthest point
sampling (FPS) [16] , which iteratively selects the farthest point
from a set of unsampled points until all the 𝑛 points are sampled
(more details in Sec. 5.1). Next, in the SA module, neighbors for
each sampled point are searched. Two commonly-used neighbor

ISCA ’23, June 17–21, 2023, Orlando, FL, USA. Ziyu Ying and Sandeepa Bhuyan, et al.

search methods for this step are ball query [45] and k-nearest neigh-
bor (k-NN) [15]. Finally, the features for these sampled points and
their neighbors are grouped into a feature matrix (of dimension
𝑛×𝑆×𝐶 , where 𝑆 is the number of neighbors for each sampled point)
which is subsequently fed into the feature computation (FC) stage
for feature extraction. The FP module can be viewed as reverse-SA,
where the given 𝑛 points are first up-sampled/interpolated into 𝑁

points and then convolved with the convolutional kernels in the
FC step. Similar to PointNet++, DGCNN consists of 3 successively
connected basic modules (𝐸𝑑𝑔𝑒𝐶𝑜𝑛𝑣 (𝐸𝐶)), as depicted in Fig. 2b.
Since the number of points is fixed throughout this network, there
is no sampling stage in 𝐸𝐶 (i.e., same number of input points are
fed into its subsequent stages).

To better understand the performance implication of these stages,
we plot the inference latency of these two CNN models on four
datasets using a typical edge SoC (NVIDIA AGX Xavier [43]) in
Fig. 3. Specifically, the execution latency is characterized into two
main components: sample & neighbor search and feature compute.

0%

25%

50%

75%

100%

 S3DIS ScatNet ModelNet ShapeNet S3DIS ScanNet
PointNet++ DGCNN

Sample (PointNet++ Only) and Neighbor Search Feature Compute Other

Figure 3: Latency breakdown for
PointNet++ [48] and DGCNN [72].

Overall, across the stud-
iedworkloads, the sam-
ple and neighbor stage
can take from 38%
to 80% of the end-to-
end inference latency.
Also, as the number of
points increases, these
stages take even more
time. For example, compared to the ModelNet [66] dataset (with
1024 points/PC), the sample and neighbor search execution latency
with the ScanNet [13] dataset (with 8192 points/PC), increases to
80%, making these two stages the primary bottlenecks in the entire
inference pipeline. Driven by these observations, we next investi-
gate the reasons behind such inefficiencies, and further explore the
potential opportunities for speeding up these stages.

3.2 Reasons for Inefficiencies and Potential
Opportunities

As discussed earlier, the sampling and/or neighbor search stages
are the main bottlenecks in the PC CNN inference pipeline. How-
ever, considering a 2D image as shown in Fig. 4 a -i, sampling
and neighbor searching can be easily achieved by selecting the
pixels with proper indexes with negligible overheads (Fig. 4 a -ii).
Unfortunately, due to the inherent properties (i.e., unstructured-
ness and randomness) of PCs, simply performing uniform sam-
pling for PC data will result in loss of information. For example,
as shown in Fig. 4 b -i, given a PC frame that contains 12 points
(i.e., {𝑃1, ..., 𝑃12}), by the uniform sampling approach, the selected
points would be {𝑃2, 𝑃4, ..., 𝑃10, 𝑃12} (yellow colored points). As,
these sampled points cover only half of the input PC, which is not
a good representation of the original PC, this would hurt the CNN
models’ accuracy. Further, as shown in Fig. 4 a -iii, for a given pixel
(e.g., 𝑝2) in a 2D image, its neighbors can be found simply via index-
ing (e.g., 𝑝1, 𝑝3, 𝑝6). However, for the point 𝑃2 in PC (Fig. 4 b -iii),
simply choosing the points with its nearby indices {1, 3, 4} would
return 2 “false neighbors”.

Hence, due to the unstructured nature of PC data, we cannot
directly employ the sample and neighbor search techniques used

Figure 4: Sample and neighbor search for a 2D image (e.g.,
pixel p2) in (a); 3D PC (e.g., point P2) via indexing in (b); Re-
organized 3D PC (e.g., point Q2) via indexing in (c).

in 2D images (e.g., index-based approaches) for raw PC data. There-
fore, 3D PC data uses FPS (for down-sampling), ball query or k-NN
(for neighbor search) in order to avoid the loss of important infor-
mation, at the expense of doubling the execution latency (Fig. 3).
However, if we can make the PC data more “structured” (a best case
would be similar to a 2D image, i.e., 100% structured), then the 2D
image sampling and neighbor search techniques can be applied for
3D PC analysis with negligible overheads (e.g., comparing to FPS,
ball query or k-NN, etc.), while maintaining an reasonable accuracy.
Fig. 4 c -i shows such an example, specifically, after the PCs are re-
arranged into a more structured shape, simply performing uniform
sampling can return a good coverage for the input PCs (Fig. 4 c -ii).
Similarly, the index-based neighbor search accurately determines
the neighbors on this structured PC (Fig. 4 c -iii). Compared to the
original PC data, this re-organized data is more structured, thus
providing the opportunity to utilize the index-based sampling and
neighbor search techniques. Note however that, it is not trivial to
achieve such conversion. Specifically, this conversion technique
should meet three requirements: 1) low complexity to minimize the
overheads; 2) high parallelism to fully exploit the existing parallel
hardware platforms like GPUs; and 3) high accuracy to avoid CNN
inference accuracy drop. Fortunately, Morton code, which describes
the geometrical relationship between points and can map multi-
dimensional data to one dimension while preserving the spatial
locality of the data points, is a perfect candidate to achieve such
conversion [68].

In fact, Morton code has been applied to optimize the neighbor
search for 3D data in prior works or software libraries. For instance,
RTNN [76] has proposed to sort the query points spatially by using
the Morton codes (i.e., group the points that are spatially close
together), in order to reduce the control flow divergence and better
utilize the hardware. In comparison, works like [22, 26, 39, 50] have
proposed/implemented grid-based solution strategies for neighbor
searching and utilize Morton code to reduce the search space by
skipping the searching process for the grids which are far away from
the query point. We want to emphasize however that these works
focus on “non-approximate” neighborhood search and/or have lim-
ited applicability scope. For example, [26] only targets at the ball
query-like neighbor search. [12] proposes a (1 + 𝜖)-approximate
nearest neighbor search technique on Morton-sorted points, how-
ever, additional computations are required to achieve the specified
error bound (i.e., 𝜖). On the other hand, as demonstrated later in
Sec. 5.2.3, our design is an approximation-based solution with no re-
strictions on the type of neighbor searcher and even further reduces

EdgePC: Efficient Deep Learning Analytics for Point Clouds on Edge Devices ISCA ’23, June 17–21, 2023, Orlando, FL, USA.

search space/computations and can trade off accuracy for better
performance/latency. In other words, while these prior efforts aim
to enhance the efficiency for neighbor search with negligible to no
accuracy loss, our work prioritizes achieving higher performance
with acceptable searching errors, which is more applicable/suitable
to PC CNN inference in the context of edge devices.

4 STRUCTURIZING POINT CLOUDWITH
MORTON CODE

In this section, we first introduce the Morton code and explain how
to generate and utilize Morton code for the PC analysis (Sec. 4.1).
Next, we demonstrate the effectiveness of applying Morton code
for structurizing the PCs using both the qualitative (Sec. 4.2) and
quantitative (Sec. 4.3) results.

4.1 What is Morton code?
Morton code (also known as Z-curve [27]), maps data from an
n-dimensional space to one dimensional by performing bitwise
interleaving on 𝑛-d integer coordinates. For example, a point with
coordinate (2, 3, 4) = (010, 011, 100)𝑏 translates to Morton code
282 = 100, 011, 010𝑏 due to bitwise interleaving. Such mapping can
preserve the spatial locality of data points and has been applied
in many operations like texture mapping[14], N-body problem[52]
and matrix multiplication[6]. However, considering our application
(PC), where each point is stored as 3 floating-point coordinates, one
critical question is, how to generate Morton code for non-integer data
points? Simply quantizing the coordinates to the nearest integers
might result in information loss. For example, all the points within
the [0, 0.5)×[0, 0.5)×[0, 0.5) bounds would be quantized as (0, 0, 0).
To avoid this, we first divide/voxelize the PC data space (the cuboid
of dimension 𝐿×𝑊×𝐻) into several smaller cubes (SC)/voxels of di-
mension 𝑟×𝑟×𝑟 , where 𝑟<min(𝐿,𝑊 ,𝐻) is the predefined grid_size.
Next, each SC/voxel can be indexed by 3 integers – (𝑖, 𝑗, 𝑘) where
0≤𝑖<𝐿/𝑟 , 0≤ 𝑗<𝑊 /𝑟 and 0≤𝑘<𝐻/𝑟 . Given a point, its coordinates
can be voxelized into 3 integers depending on which SC/voxel it
belongs to, and then the Morton code can be generated by bitwise
interleaving. Such transformation from 3-D to 1-D space (3 x, y,
z-indexes to 1 Morton code) can simplify the subsequent compu-
tations. Due to the spatial locality preservation, the points nearby
in space will have similar Morton codes. Thus, to “structurize” the
input PC, we re-order the points as their Morton codes. Especially,
if the original indexes for input points are 𝐼={0,..., 𝑁−1} where 𝑁
is the number of points, after sorting, the new indexes will become
𝐼 ′={𝑖0,..., 𝑖𝑁−1}, where 𝑖0 and 𝑖𝑁−1 are the indexes of the points
with minimum and maximum Morton code values, respectively.
The re-arranged points are more structured (e.g., like the pixels in
2D image), and thus, can enable index-based sampling and neighbor
searching.

4.2 Sampling Structurized Point Cloud
To demonstrate the effectiveness of using “structurized” PC for
sampling, in Fig. 5, we plot the (down-)sampling results on different
PC data (raw PC [58] and “structurized” PC) using two sampling
approaches: farthest point sampling (FPS) and uniform sampling.
In general, both the FPS on raw data (Fig. 5 a) and the uniform
sampling on ”structurized” PC (Fig. 5 c) provide a good coverage

for input PC (the sampled points are uniformly distributed across
the PC model). While the distribution of the uniformly sampled
points on raw PC (Fig. 5 b) is either too dense (almost become a
continuous line) or too sparse (very few points in certain regions).
This “uneven distribution” of points becomes more apparent on
further zooming into the PC. On the other hand, although FPS can
achieve very good sampling quality, its overhead is too high. Based
on our profiling on an edge device (Nvidia AGX Xavier board),
sampling 1024 points from the Bunny model [58] (which contains
40256 points) with FPS takes ≈ 81.7𝑚𝑠 , while the uniform sampling
consumes only ≈ 1𝑚𝑠 . Clearly, such performance gap between FPS
and uniform sampling is expected to further widenwhen employing
larger models (with more points). Fortunately, with the Morton
code serving as the bridge to “structurize” the PC data, we can
directly perform uniform sampling on the “re-ordered” PC data
with minimal sampling overhead, while still maintaining a very
good quality (similar to the FPS sampling results), as depicted in
Fig. 5 c .

a b c

Figure 5: Sampled Bunny [58] model via (a) FPS on raw PC;
(b) uniform sampling on raw PC; and (c) uniform sampling
on sorted/structurized PC data with Morton code.

4.3 Neighbor Search for Structurized Point
Cloud

Apart from sampling, the other time-consuming stage in PC CNN
inference pipeline is the neighbor search stage. This is mainly be-
cause of the randomness of PC data, due to which we have to iterate
through the whole point set when searching the neighbors for any
given point. In this section, we discuss the potential opportunities
of “skipping” the neighbor search stage by utilizing the “structured”
PC data. For example, given the re-arranged points as well as the
new indexes (𝐼 ′ = {𝑖0, ..., 𝑖𝑁−1} as discussed in Sec. 4.1), we do
not need to use complex state-of-the-art (SOTA) neighbor search
algorithms (e.g., ball query or k-nearest neighbor (k-NN) which
have been widely used in current SOTA PC CNNs). Instead, we can
bypass the search process by directly selecting 𝑘 consecutive points
near the target data point, where 𝑘 is the number of neighbors. This
means, the 𝑘 neighbors for the point with index 𝑖𝑝 would be the
points with indexes {𝑖𝑝−𝑘/2, ..., 𝑖𝑝 , ..., 𝑖𝑝+𝑘/2}. By doing so, we can
deploy a neighbor search technique similar to the ones used with
2D images (e.g., index-based approach), for 3D PC data as well.

0
0.25

0.5
0.75

1

 S3DIS Scan-
Net

Shape-
Net

Model-
Net

S3DIS Scan-
Net

Ball Query kNNFa
ls

e
N

ei
gh

bo
r R

at
io

Configurations

Figure 6: False neighbor ratio on dif-
ferent datasets.

To show the effec-
tiveness of the index-
based neighbor search-
ing, Fig. 6 plots the
false neighbor ratio (de-
fined by the ratio of
the “neighbors” picked
by our above-mentioned
scheme but are not iden-
tified as neighbors by the

ISCA ’23, June 17–21, 2023, Orlando, FL, USA. Ziyu Ying and Sandeepa Bhuyan, et al.

SOTA techniques) , where the x-axis is the configurations (i.e., ap-
plying different SOTA neighbor search algorithms on different
datasets), while the y-axis shows the false neighbor ratio. As we
can observe, the false neighbor ratio can be as low as 23%. Further-
more, if we increase the search window (that is, search 𝑘 neigh-
bors from {𝑖𝑝−𝑊 /2, ..., 𝑖𝑝 , ..., 𝑖𝑝+𝑊 /2} instead of directly selecting
the {𝑖𝑝−𝑘/2, ..., 𝑖𝑝 , ..., 𝑖𝑝+𝑘/2}, where𝑊 is the search window size
and𝑊 >𝑘), the false neighbor ratio can be further decreased to 5%
(shown later in Sec. 6.3).
Takeaways: While such index-based solutions are efficient and
fast, they often lead to suboptimal samples and false neighbors.
Therefore, simply utilizing the pre-trained PC CNN models will
result in decreased inference accuracy; instead, it is required to
include the approximations when retraining the models.

5 MORTON CODE-BASED SAMPLER AND
NEIGHBOR SEARCH DESIGN

We observed in Sec. 4 that Morton code can be employed to structur-
ize the PC data, thus providing the opportunities to use index-based
sampling and neighbor searching (the technique used in 2D image).
Thus, unlike prior works [17, 35] which try to optimize the sam-
ple and/or neighbor search stages by customized accelerators or
by choosing specific data structures (e.g., k-d tree, where the tree
construction process itself brings non-negligible overheads), in this
work, instead of optimizing these two stages, we choose to “skip”
them by approximating the complex computations on raw PC data
(performed by the SOTA PC CNNs) with the simple index-based
methods on “structured” PC data.

5.1 Morton-code-based Sampler
We first present the SOTA down-sampling technique, farthest point
sampling (FPS) [16] and its inefficiencies. We then introduce our
proposed design utilizing the Morton code to “structurize” the PC
data and our design considerations.

5.1.1 Inefficiencies of the SOTA Sampler. To understand the SOTA
sampling technique (FPS) for PC data, we illustrate its processing
steps in Fig. 7 and Fig. 8(a). Given a PC data containing𝑁 points (𝑃 =

{𝑝1, ..., 𝑝𝑁 }) and the desired number of sampled points (𝑛) as inputs,

Output: (sampled pts)p (p
Initialize (, ,)(, ,)
Sample & Update()p p (
For in

Sample farthest
point from S’
Update() [O(n)]

Output: (sampled pts)
Input: (original pts);

Figure 7: Farthest point
sampling (SOTA).

the FPS first initializes the un-sampled(𝑆 ′)
and sampled(𝑆) sets as input PC and
empty set, respectively, while the el-
ements in array 𝐷 (which stores the
distances between un-sampled points
and sampled set) are initialized to be
inf . Next, the first sampled point is ran-
domly picked (e.g., 𝑠0), and then both
the un-sampled set 𝑆 ′ and the sampled
set 𝑆 , as well as the distance array 𝐷

are updated accordingly . For the next
𝑛−1 points, each time a new point is
sampled, all the un-sampled points are
traversed and the point with maximum
distance to the sampled set is picked . Based on the distance array
𝐷 , the next sampled point can be decided. Note that each time
a new point 𝑠𝑖 is sampled, the distance array is updated . The

Figure 8: Examples: (a) Farthest point sampling on raw PC
data; (b) Index-based sampling on Morton code structured
PC data.

time complexity for such update is 𝑂 (𝑁), and considering that
we need to sample 𝑛 points in total, the time complexity becomes
𝑂 (𝑛𝑁)≈𝑂 (𝑁 2) (where 𝑛=𝑂 (𝑁) in practical scenarios). Moreover,
all the points in 𝑆 are inserted sequentially, meaning that there is
limited parallelism in FPS, which further adds to the inefficiencies.

Fig. 8(a) shows an example using the FPS to sample 3 out of 5
points. First, the sampled and un-sampled sets and the distance
array are initialized. Then, 𝑃0 is sampled, and thus, the (squared)
distance array becomes {0, 14, 10, 49, 33} . Next, the point 𝑃3 is
sampled as its distance to the sampled set is maximum (49). The
new distance array is {0, 11, 10, 0, 26} and finally the point 𝑃4 with
maximum distance value (26) is sampled.
Takeaway: Although the FPS can yield a good coverage for the
input PC data, its compute complexity is too high: 𝑂 (𝑁 2) for 𝑁
input points, where 𝑁 is in orders of 106 considering a PC frame
with millions of points. Also, due to the data dependency in the
sampled set (𝑆) when sampling a new point, all the points must
be sampled one-by-one, which limits the performance boosting
scope through parallelism. To improve performance, we explore
the opportunities by directly operating on “structured” PC data (not
considered in prior works), and accelerate both the down-sampling
and interpolation/up-sampling stages using approximation oppor-
tunities.

5.1.2 Optimizing the Sampling Stage.
Optimizing Down-sampling: Since Morton code can make the
PC data more structured, we can perform uniform sampling (with
negligible overhead compared to FPS), while still obtain a near-
optimal coverage of the input PC data (see Fig. 5). Driven by this
observation, we design the Morton code-based PC (down-)sampler
as shown in Algo. 1 and Fig. 8(b). Overall, our proposal consists of
3 steps, 1) Morton code generation; 2) Morton code sorting; and 3)
uniform sampling of the re-ordered/re-organized points. For the
Morton codes generation (shown in Algo. 1), we need two more
inputs, i.e., 𝑟 for the predefined grid_size (discussed in Sec. 4.1) and
{𝑥𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛, 𝑧𝑚𝑖𝑛} array for storing the minimum bounds of PC
data. The Morton code generation process can run in a fully-parallel
manner, where for each point 𝑝𝑖=(𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖), we first calculate which
voxel it belongs to (line#4 in Algo. 1), then the Morton code can be

EdgePC: Efficient Deep Learning Analytics for Point Clouds on Edge Devices ISCA ’23, June 17–21, 2023, Orlando, FL, USA.

obtained by (bitwise) interleaving the indexes for that SC (line#5 in
Algo. 1). Due to the high parallelism, generating MC for 8192 points
using an edge GPU only takes 0.1ms (0.07% of end-to-end latency).
The next step sorts the generated Morton code and outputs the new
indexes 𝐼 ′=[𝑖0, ..., 𝑖𝑁−1] in Morton order (line#10 in Algo. 1), where
𝑝𝑖0 has minimum the Morton code while 𝑝𝑖𝑁 −1 has the maximum
Morton code. The final step uniformly samples the points with the
new indexes with a step size of 𝑁 /𝑛 (line#11-13 in Algo. 1). Given
a PC frame with 𝑁 points, the time-complexity of this algorithm is
𝑂 (𝑁 log𝑁) (due to the sorting stage). Note that, for most cases we
have 𝑛=𝑂 (𝑁) ≫log𝑁 .

Therefore, with our proposal, we can decrease the compute-
complexity from quadratic to logarithmic-time. Further, as observed
from line#11 in Algo. 1, all the points can be sampled in paral-
lel, which resolves the data dependency issue observed in the
FPS technique, as discussed in Sec. 5.1.1. Similar to Fig. 8(a), in
Fig. 8(b), we sample 3 points from the input PC (consisting of 5
points). Specifically, given these 5 input points in this example
where {𝑥𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛, 𝑧𝑚𝑖𝑛}={0, 0, 0}, with a predefined grid_size 𝑟=1,
we can obtain the Morton codes ({185, 23, 114, 0, 67}) using the Mor-
ton code generation algorithm described in Algo. 1. Sorting these
Morton codes outputs the new index array ({3, 1, 4, 2, 0}), and we
can simply perform uniform sampling and pick points 𝑃3, 𝑃4 and 𝑃0,
which are exactly the same points (when using the FPS algorithm).
However, if we increase the grid_size 𝑟 , the sampled results might
differ from the baseline (FPS) results. For example, if the grid_size is
defined as 𝑟=4, then the Morton codes would become {2, 0, 1, 0, 1},
for which the sorted indexes are {1, 3, 2, 4, 0} and finally the sampled
points are {1, 2, 0}. In such cases, simply approximating the FPS
results with the results of the Morton code-based sampler might
degrade the inference accuracy. Thus, we have to carefully decide
the grid_size when using the Morton code-based sampler to achieve
a good balance between the inference accuracy and the memory
overheads for storing theMorton codes (note that a higher grid_size
value means having fewer small cubes, and therefore would need
fewer bits to represent the indexes for these SCs; more details in
Sec. 5.1.3).

Algorithm 1: Proposed Morton Code-based Sampler
Input :𝑃={𝑝0, ..., 𝑝𝑁 −1}:input points; {𝑥𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛, 𝑧𝑚𝑖𝑛 }
Input :𝑛: number of sampling points; 𝑟 : preset resolution
Output :𝑆 = {𝑠0, ..., 𝑠𝑛−1}: sampled points

1 procedure MC_Gen(𝑃 ,𝑟 ,{𝑥𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛, 𝑧𝑚𝑖𝑛 })
2 Init:𝑀𝐶= [0] × 𝑁

3 for 𝑝𝑖 in 𝑃 do // fully parallel
4 𝑥=(𝑥𝑖 -𝑥𝑚𝑖𝑛)/𝑟 ; 𝑦=(𝑦𝑖 -𝑦𝑚𝑖𝑛)/𝑟 ; 𝑧=(𝑧𝑖 -𝑧𝑚𝑖𝑛)/𝑟
5 𝑀𝐶 [𝑖]=𝑏𝑖𝑡𝑤𝑖𝑠𝑒_𝑖𝑛𝑡𝑒𝑟𝑙𝑒𝑎𝑣𝑒 (𝑥, 𝑦, 𝑧)
6 return𝑀𝐶

7 procedure MC Sampler(𝑃 ,𝑛,𝑟 ,{𝑥𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛, 𝑧𝑚𝑖𝑛 })
8 Init: 𝑆=∅
9 𝑀𝐶=MC_Gen(𝑃 ,𝑟 ,{𝑥𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛, 𝑧𝑚𝑖𝑛 })

10 [𝑖0, 𝑖1, ..., 𝑖𝑁 −1] =𝑚𝑒𝑟𝑔𝑒_𝑠𝑜𝑟𝑡 (𝑀𝐶)
11 for 𝑘 in [0, ..., 𝑛 − 1] do // fully parallel
12 𝑖𝑛𝑑𝑒𝑥 = 𝑘 × 𝑁 /𝑛; 𝑆 = 𝑆 ∪ {𝑝𝑖𝑖𝑛𝑑𝑒𝑥 }
13 return 𝑆

Optimizing Up-sampling: As discussed in Sec. 3.1, the interpo-
lation/ up-sampling stage in PC CNN (e.g., PointNet++) can be
viewed as the “reverse” of the down-sampling stage. Thus, the Mor-
ton code-based down-sampling proposal is also applicable for the
up-sampling stage. Specifically, the goal of interpolation stage is to
“recover” the feature of the original points ({𝑓 (𝑝0), ..., 𝑓 (𝑝𝑁−1)})
from the sampled points ({𝑓 (𝑠0), ..., 𝑓 (𝑠𝑛−1)}). For example, the fea-
ture for point 𝑝𝑡 can be obtained by 𝑓 (𝑝𝑡)=𝑔[𝑓 (𝑠𝑖), 𝑓 (𝑠 𝑗), 𝑓 (𝑠𝑘)],
where 𝑠𝑖 , 𝑠 𝑗 , and 𝑠𝑘 are the 3 closest points to 𝑝𝑡 in space where 𝑔[]
is a predefined function like weighted average. As all the points
in 𝑆 are uniformly sampled from the “structured” PC by picking
the points {𝑝𝑖0 , 𝑝𝑖𝑠𝑡𝑒𝑝 , 𝑝𝑖2𝑠𝑡𝑒𝑝 , ..., 𝑝𝑖 (𝑛−1)𝑠𝑡𝑒𝑝 }, where 𝑠𝑡𝑒𝑝 is the step
size (𝑁 /𝑛). Therefore, for any given point with index 𝑖 𝑗 (𝑝𝑖 𝑗) where
𝑗 ∈ {0, ..., 𝑁 − 1}, its 4 (approximately) closest points from 𝑆 should
be {𝑝𝑖 𝑗 ′−2𝑠𝑡𝑒𝑝 , 𝑝𝑖 𝑗 ′−𝑠𝑡𝑒𝑝 , 𝑝𝑖 𝑗 ′+𝑠𝑡𝑒𝑝 , 𝑝𝑖 𝑗 ′+2𝑠𝑡𝑒𝑝 } where 𝑗 ′= 𝑗- 𝑗%𝑠𝑡𝑒𝑝 . With
this knowledge, we only need to pick 3 closest points out of these 4
points to perform the interpolation, instead of searching through
the entire sampled point set 𝑆 . Therefore, with our Morton code-
based up-sampler, the compute-complexity can be decreased by
𝑛/4 = 𝑂 (𝑛).
Takeaway: Our Morton code-based sampler’s output can serve
as a good approximation for the sampling results obtained from
the SOTA, and thus enables fast and efficient uniform sampling for
PC data. However, due to such approximation, the sampled points
are sub-optimal (especially for a large predefined grid_size value),
which may degrade the precision of CNNmodels. Also, as this work
targets edge devices with limited resources, we need to carefully
configure our designs such that we can achieve a good balance
between performance improvement, memory usage, and inference
accuracy.

5.1.3 Design Considerations. In this subsection, we discuss how
our design can consider tradeoffs between the performance im-
provement, inference accuracy and memory overheads.
Performance improvement vs. inference accuracy: As the
proposed Morton code-based sampler can boost the PC CNN per-
formance by enabling uniform sampling and the PC CNNs always
have multiple sampling layers (recall from Sec. 3.1, PointNet++ [48]
consists of 4 down-sampling and 4 up-sampling layers), one may
consider to apply such optimization to all the sampling layers.

0
30
60
90

La
te

nc
y

(m
s)

Modules

10.6x
5.2xOursSOTA

Figure 9: Down-sample (in SA mod-
ules) and up-sample (in FP modules)
latency in PointNet++(s).

However, as observed
in Sec. 5.1.2, due to the
sub-optimal sampled re-
sults, the precision of
CNN model might be
degraded. So, instead
of applying our Mor-
ton code-based approx-
imation to all the sam-
pling layers, we only op-
timize the critical sam-
pling layer(s), i.e., the
ones contributing most to the execution latency. Next, we use Point-
Net++ on ScanNet dataset as an example and discuss the details of
our design. Fig. 9 (black bars) plots the execution latency for all the
8 sampling layers in PointNet++. As can be observed, the down sam-
pling layer in the first SA module and the up-sampling layer in the

ISCA ’23, June 17–21, 2023, Orlando, FL, USA. Ziyu Ying and Sandeepa Bhuyan, et al.

last FPmodule are themost time-consuming sampling layers. There-
fore, we choose to apply the Morton code-based sampling for these
two layers and use the the state-of-the-art samplers for the rest sam-
pling layers. As shown in Fig. 9 (yellow bars), we can accelerate the
down-sampling layer by 10.6× and the up-sampling/interpolation
layer by 5.2×.
Memory overheads vs. inference accuracy: As depicted in
Algo. 1, in order to utilize the index-based sampler, first we need to
generate the Morton code for each point to structurize the PC data.
However, to store these Morton codes, we need to allocate extra
space. Considering a PC frame which contains 𝑁 points, with each
point corresponding to a 𝑎-bits Morton codes, 𝑁𝑎/8 Bytes more
space will be used. On the other hand, as the PC data contains the
3D coordinate information, these 𝑎 bits need to be further split into
3 parts (⌊𝑎/3⌋ bits for each dimension), meaning that the entire
space can be divided into 2⌊𝑎/3⌋ × 2⌊𝑎/3⌋ × 2⌊𝑎/3⌋ small cubes (SCs),
which will further translate to a grid_size value of 𝑟=𝐷/2⌊𝑎/3⌋ ,
where 𝐷 is the dimension of the PC’s bounding box. Intuitively, the
inference accuracy of the CNN models can benefit from a larger 𝑎
(corresponding to a smaller 𝑟), at the expense of higher memory
overheads, and vice verse. In this work, we choose 𝑎=32 to achieve
a good balance between the memory overhead and the inference
accuracy degradation.

5.2 Morton Code-based Neighbor Search
In the previous section, we have explored the opportunities of
using Morton code to structurize the raw PC data and thus boost
the performance for sample stages. Recall from Sec. 4.3 that, the
neighbor search stage can also benefit from the “structured” PC data.
Before diving into the details of our proposed optimizations, let us
first understand the state-of-the-art neighbor search approaches
and their inefficiencies.

5.2.1 Inefficiencies of the SOTANeighbor Search. Ball-Query (BQ) [45]
and k-NN [15] are two of themost commonly used neighbor searchers.
Specifically, given a point 𝑝𝑖 and the number of neighbors to be
searched (e.g., 𝑘), the BQ algorithm searches through the candidate
points set (e.g., 𝑃={𝑝0, ..., 𝑝𝑁−1}) and returns the points inside the
ball with center 𝑝𝑖 and a predefined radius 𝑅. To achieve this, the
distance between 𝑝𝑖 and any other points (𝑑𝑖𝑠𝑡 (𝑝𝑖 , 𝑝 𝑗)) for any 𝑗 in
{0, ..., 𝑁 -1} needs to be computed in 𝑂 (𝑁) time. Thus, searching
the neighbors for all the 𝑁 points would take𝑂 (𝑁 2) time. Fig. 10(a)
shows an example using the BQ algorithm to search 3 neighbors
for 𝑃2, which takes the same PC data in Fig. 8 as input, and defines
the radius (𝑅) as 11. Following the above-mentioned flow, first, it
computes the distance between 𝑃2 and the other points. Next, 𝑃0,
𝑃1, and 𝑃4 are picked as their distance to 𝑃2 is less than 𝑅. Simi-
larly for k-NN, the first step is also obtaining the distance matrix
(with a time complexity of 𝑂 (𝑁 2)1; next, the 3 points with green
background are selected as they have minimum distances.
Takeaway: As the PC data contains up to millions of points, any
algorithm with 𝑂 (𝑁 2) complexity would be too costly for edge
devices. So, an efficient neighbor searcher needs to be designed to

1Although prior ball-query or k-NN implementations – like the kd-tree-based ap-
proaches, have lower complexity (𝑂 (𝑁𝑙𝑜𝑔𝑁)), both tree construction and traversal
have limited parallelism, and hence, are inefficient.

Figure 10: Examples for (a) ball-query and kNN; (b) index-
based neighbor search with Morton code structured PC data.

reduce the computation complexity, while still maintaining a high
parallelism and inference accuracy.

5.2.2 Optimizing the Neighbor Search Stage. Motivated by the
index-based neighbor searcher used for 2D images and by the ob-
servation that Morton code can be used to structurize the PC data
from Sec. 4 and Sec. 5.1.2, in this section, we propose to approximate
the SOTA neighbor search process by simply selecting/searching
the points whose indexes are near the target point (the point for
which we search the neighbors) in the “structured” PC data. For
example, after we obtain the new index array (𝐼 ′={𝑖0, ..., 𝑖𝑁−1}, by
sorting the Morton codes, as discussed in Sec. 5.1.2), for any given
point 𝑝𝑖 𝑗 , instead of searching its neighbors from the entire space
(which is the case in SOTA works), now we only need to search
through the points with indexes of {𝑖 𝑗−𝑊 /2, ..., 𝑖 𝑗+𝑊 /2} (𝑘≤𝑊 ≤𝑁
is a predefined search window size), by which the time complexity
is reduced from 𝑂 (𝑁) to 𝑂 (𝑊). Note that,𝑊 is normally set to be
much smaller than 𝑁 , meaning that the performance improvement
brought by our proposal is expected to be high. In the example
shown in Fig. 10(b),𝑊 is defined as 𝑘+1 (4=3+1), within which 𝑃1,
𝑃4, and 𝑃0 are selected.
Takeaway: Our index-based neighbor searcher on “structured” PC
data can reduce the time complexity of the neighbor search stage
by 𝑂 (𝑁 /𝑊) ≈ 𝑂 (𝑁), thus improving the performance. However,
similar to the issue of the proposed sampler discussed before, since
the the Morton code cannot make the PC data 100% structured,
the searched neighbors using this proposal is also sub-optimal and
might contain “false neighbors”. This can potentially lead to quality
degradation of CNN models. Therefore, in next section, we explain
our design considerations on how to maximize the performance
improvement, while minimizing the impact (caused by the proposed
approximations) on CNN models.

5.2.3 Design Considerations. Similarly, the first question we want

0
0.1
0.2
0.3

0
2
4
6

SA1 SA2 SA3 SA4 Fa
ls

e
N

ei
gh

bo
r

R
at

io

Sp
ee

du
p

(x
)

Module

False Neighbor Ratio
Speedup

Figure 11: Our neighbor searcher
speedup vs. false neighbor ratio
for 4 modules in PointNet++(s).

to ask here is: for which
layer(s) should we apply
our approximations? Recall
that, PointNet++ [48] has
4 neighbor search layers.
We plot the performance
improvement and the ratio
of false neighbors for each
layer in Fig. 11 to show the
impact of our proposal on
these layers. As observed,
layer1 has the most signifi-
cant speedup and the least false neighbor ratio. As a result, it is a

EdgePC: Efficient Deep Learning Analytics for Point Clouds on Edge Devices ISCA ’23, June 17–21, 2023, Orlando, FL, USA.

perfect candidate for applying our optimizations. Moreover, since
we also apply the Morton code-based approximations for the first
sample layer (Sec. 5.1.3), and the neighbor search is right after the
sample stage, we can simply reuse theMorton code for our neighbor
searcher without any extra overhead. However, for the rest layers,
we can only obtain limited performance boost at the expense of
much larger false neighbor ratios, which may further result in CNN
model degradation. Also, generating the Morton codes for these
layers would introduce extra overheads and further decrease the
benefits of our proposal.

Therefore, similar to the design for sampler discussed in Sec. 5.1.2,
we only apply the optimization for the first neighbor search layer. As
opposed to PointNet++ where all the modules use the x, y, z coordi-
nates of input PC for neighbor searching, in DGCNN [72], only first
module uses the geometry coordinates for determining the near-
est neighbors. For the next several modules, the distance between
points are measured using the features (i.e., 𝑑𝑖𝑠𝑡 (𝑝𝑖 , 𝑝 𝑗)=𝑑𝑖𝑠𝑡 (𝑓𝑖 , 𝑓𝑗)
where 𝑓𝑖 is the feature vector of 𝑝𝑖 and always has higher dimen-
sionality (e.g., 64)). Due to this, our Morton code-based optimization
can only be applied for the first module as it cannot process higher-
dimensional data. For the following neighbor search layers, instead
of performing the SOTA computations, we decide to interleave the
“reuse” and “compute”. For example, with the reuse distance of 1,
we reuse the neighbor search results from layer1 for layer2, and
employ the SOTA algorithm for layer3. The intuition behind this is
that, during the propagation the the CNN model, the neighborhood
of points would not vary much across consecutive layers.

Note that, both the reused Morton codes and search results are
stored in the GPU memory. As the PC data is processed in batches
(shown later in Table. 1), the per-batch size of the Morton code and
reused search data are only up to 32KB and 160KB, respectively,
leading to reduced memory access overheads. Further, our opti-
mization reduces the neighbor search computations, resulting in
fewer GPU memory accesses and also reducing the overall data
request stalls by 4-5%.

After deciding the layer where approximation will be applied,
the next question is: how to decide the search window size, which is
the key parameter to trade off between execution latency and model
precision? In fact, with our proposal, the user can adaptively se-
lect proper search window size to accommodate the application
requirement. We further investigate how different search window
sizes shape the behavior of our approach in a sensitivity study in
Sec. 6.3.

5.3 What are the Pros and Cons of
Approximation?

As discussed in Sec. 5.1.2 and 5.2.2, compared to the SOTA sampling
and neighbor search techniques, our proposal first uses the Mor-
ton codes to structurize the unordered PC data, thereby enabling
the index-based operations. This is expected to be much faster. In
fact, we show later in Sec. 6.2, with our proposal, the sampling
and neighbor search can achieve up to 5.2× speedup. However, as
discussed earlier, due to the suboptimality of the sampled points
and the existence of false neighbors as well as the reuse of neighbor
indexes across CNN modules, the inference precision of CNN mod-
els is expected to be degraded. To address this issue, we must retrain

the CNN models taking into consideration the Morton code-based
approximation (discussed further in Sec. 6.2).

5.4 Architectural Insights – Optimizing the
Shifted Bottlenecks

Our Morton code-based approximation techniques can accelerate
the sample and neighbor search stages by 3.68x(shown in Sec. 6.2).
In this section, we explore further opportunities to improve perfor-
mance/energy efficiency and provide some architectural insights
as future research directions.

5.4.1 Increase Tensor Core Utilization for Feature Computation. Re-
call from the execution latency breakdown in Fig. 3 that, after our
optimizations, now the main bottleneck for PC inference shifts
to the feature compute (convolution) stage. Fortunately, as recent
edge devices are equipped with the tensor cores [44], which are
customized for accelerating matrix multiplications, as shown later
in Sec. 6.2, by employing the tensor cores, the inference can be
further accelerated by 27%. However, we observe that the tensor
core utilization is basically zero for several layers. This is mainly be-
cause the channel dimension of the input matrix is below a certain
threshold, and the tensor cores are not invoked. In fact, based on
our profiling, with an input matrix of dimension 32×1000×12×32
and the weight matrix of dimension of 12×64×1×1, the convolu-
tional layer takes 40.4ms to execute with no tensor core utilization.
However, if we resize the input matrix into 32×100×120×32 shape
and convolve it with a 120×64×1×1 dimensional weight matrix,
although the compute complexity remains the same, the execu-
tion latency reduces to 18.3ms, with a 40% tensor core utilization.
Driven by this observation, one optimization direction might be
extending the input feature dimension by gathering the features of
several nearby points. For example, given an input matrix of 𝑁x𝑘x𝐶
where 𝑘 is the number of neighbors for each of the 𝑁 points, and𝐶
is the original feature dimension, instead of performing the feature
computation for each point 𝑃𝑖 , we can first merge the features of
several (𝑡) nearby points (like [𝑓𝑖𝑡 ,...,𝑓(𝑖+1)𝑡−1], by which the feature
dimension is increased to 𝐶𝑡) and then perform the FC. Finally, we
can split the convolution result back for these 𝑡 points (e.g., by
averaging). With our Morton code based reordering, the points
which are nearby in the input matrix are also close to each other
in the space. Therefore, such approximation (merge and split) is
not expected to degrade the model quality much. To make this
work, the data layout and the approximation techniques have to
be carefully designed to avoid any memory access overheads and
maintain the CNN model precision.

5.4.2 Decreasing the Data Movement Overheads in Grouping. An-
other time-consuming operation in the optimized PC CNN pipeline
is the grouping, which gathers the features of each sampled point
and that of their neighbors to form a new feature matrix. For exam-
ple, given an input feature map of shape 𝑁x𝐶 and a neighbor index
matrix 𝐼𝑀 of shape 𝑛x𝑘 , where 𝑁 and 𝑛 are the number of points
and the number of sampled points, respectively, while 𝐶 is feature
dimension of each point, after the grouping stage, the dimension
of new feature matrix is 𝑛𝑘x𝐶 . In practice, 𝑛𝑘 is larger than 𝑁 (e.g.,
for PointNet++, 𝑛𝑘=8𝑁), assuming that each GPU thread gathers
the feature for one index (out of 𝑛𝑘 in total), there must be some

ISCA ’23, June 17–21, 2023, Orlando, FL, USA. Ziyu Ying and Sandeepa Bhuyan, et al.

threads reading exactly the same data from memory. Driven by
this observation, we want to ask, can we properly schedule the GPU
threads such that there are data sharing/reuse opportunities across
them? In fact, based on our profiling, with simply sorting the index
matrix (after which the indexes in each row of 𝐼𝑀 is in ascending
order), the amount of data transferred/read from L2 cache and sys-
tem memory can be decreased by 53.9% and 25.7%, respectively.
These initial results are encouraging to pursue Morton code-based
architectural design space exploration in future.

6 EXPERIMENTAL EVALUATION
We implement and evaluate our proposals against the SOTA PC
inference across three metrics critical for PC CNN application:
execution latency (for both sampling and neighbor search stages
as well as the E2E inference pipeline), energy consumption, and
model precision (accuracy). We first describe our experimental
platform, PC CNN workloads (the CNN models and the datasets),
and the design configurations (Sec. 6.1). Next, we analyze the results
(Sec. 6.2) and vary the design points to present the sensitivity study
(Sec. 6.3). Finally, we compare our proposal to prior works (Sec. 6.4).

6.1 Methodology
6.1.1 Experimental Platform. WeuseNVIDIA JetsonAGXXavier [43],
an edge development board (Fig. 12), which consists of a 512-core
Volta GPU with 64 Tensor cores, a 8-core ARMv8 64-bit CPU, and
16GB LPDDR4x memory.

6.1.2 Workloads. To demonstrate the effectiveness of our propos-
als, we use two popular PC CNNs, namely, PointNet++ [48] and
DGCNN [72] and four datasets as listed in Table. 1. Specifically, both
S3DIS [3] and ScanNet [13] are indoor scene datasets, on which the
PointNet++(s) [48] and DGCNN(s) [72] are employed to perform
the semantic segmentation. ModelNet40 [66] and ShapeNet [65]
are two synthetic datasets. We use DGCNN(c) and DGCNN(p) to
perform classification and part segmentation on these two datasets,
respectively. All PC frames in these datasets are preprocessed into
several mini-batches, with each batch having a fixed number of
points, as shown in Table 1.

Figure 12: Experimental setup.

6.1.3 Configurations.
Baseline: We evaluate the baseline inference on the Volta edge
GPU and implement the CNN inference using PyTorch [60] with

Table 1: Workloads used in this work.

Workload Model Dataset #Points/Batch Task
W1
W2 PointNet++(s)[48] S3DIS[3]

ScanNet[13]
8192
8192

Semantic
Segmentation

W3 DGCNN(c)[72] ModelNet40[66] 1024 Classification

W4 DGCNN(p)[72] ShapeNet[65] 2048 Part
Segmentation

W5
W6 DGCNN(s)[72] S3DIS[3]

ScanNet[13]
4096
8192

Semantic
Segmentation

cuDNN (for feature compute stage). The sampling and neighbor
search stages are optimized using CUDA kernels.
S+N:We implement the proposed Morton code-based approxima-
tion techniques with custom CUDA kernels and apply them to both
Sample and Neighbor search stages (step- 2 in Fig. 12). We use 32
bits for the Morton code because based on our sensitivity study, as
the number of bits required to store Morton code increase, the false
neighbor percentage (in neighbor search stage) reduces till 32 bits
and further increasing the bits does not yield much benefit.
S+N+F: To further boost the end-to-end inference pipeline, we
deploy the Feature compute (FC) stage to Tensor cores available on
the Volta GPU (step- 3’ in Fig. 12).

6.2 Performance Results
We present and compare the normalized execution latency (left
axis) and speedup (right axis)of our proposals w.r.t. to baseline
and energy consumption (via the built-in tegrastats[42] tool on the
Jetson board) for each workload, as well as the accuracy to evaluate
our proposals’ effectiveness, and plot the experimental results in
Fig. 13 and observe the following:
Execution Latency: Overall, our optimizations can accelerate the
sampling (SMP) and neighbor search (NS) stages by 3.7×, on aver-
age, w.r.t. the baseline, as shown in Fig. 13a. Across the workloads
using the PointNet++ model, W1 can benefit more from our propos-
als compared to W2 (e.g., 5.21× vs. 3.44× speedup). This is mainly
because the inference is performed at batch-level as mentioned
in Sec. 6.1.2, and the batch size of W1 is fixed (32) and is usually
larger than that of W2 (ranging from 4 to 41 depending on the
PC frame, with an average batch size of 14). Recall that, as men-
tioned in Sec. 5, the baseline sampler and neighbor searcher have
quadratic-time compute complexity, as a result, each batch is pro-
cessed sequentially due to lack of available compute resources on
the resource-constrained edge device. As a result, the execution
time for the SMP and NS stages increases from about 33ms/batch
for ScanNet to 76ms/batch for S3DIS. On the other hand, as our
proposal can decrease the computational complexity of the down-
and up-sampling stages by𝑂 (𝑁 /𝑙𝑜𝑔𝑁) and𝑂 (𝑁), respectively, and
thus enabling to process multiple batches in parallel, the gap be-
tween the execution latency for the SMP and NS stages on ScanNet
and S3DIS reduces to only 4.9ms/batch (it takes 9.7ms/batch for
ScanNet and 14.6ms/batch for S3DIS), which is the main reason for
the performance gains observed in W1 and W2. The speedup for
the rest of the workloads with DGCNN are ≈3 or 4. Specifically, for
both W3 and W4, our proposal can achieve around 3.7× speedup.
Such acceleration comes from two sources: 1) due to the approxi-
mation of the SOTA neighbor searcher with our proposal for first

EdgePC: Efficient Deep Learning Analytics for Point Clouds on Edge Devices ISCA ’23, June 17–21, 2023, Orlando, FL, USA.

1
2
3
4
5
6

0%
20%
40%
60%
80%

100%

B
SL S+

N
B

SL S+
N

B
SL S+

N
B

SL S+
N

B
SL S+

N
B

SL S+
N

B
SL S+

N

W1 W2 W3 W4 W5 W6 AVG.

Sp
ee

du
p

(x
)

N
or

m
al

iz
ed

 L
at

en
cy

Workloads

Sample (SMP) Neighbor Search (NS) Speedup

3.7x

(a) Speedup (Sample and Neighbor Search)

1

1.4

1.8

2.2

2.6

0%
20%
40%
60%
80%

100%

B
SL S+

N
S+

N
+F

B
SL S+

N
S+

N
+F

B
SL S+

N
S+

N
+F

B
SL S+
N

S+
N

+F
B

SL S+
N

S+
N

+F
B

SL S+
N

S+
N

+F
B

SL S+
N

S+
N

+F

W1 W2 W3 W4 W5 W6 AVG

E2
E

Sp
ee

du
p

(x
)

N
or

m
al

iz
ed

 E
2E

 L
at

en
cy

Workloads

Sample (SMP) Neighbor Search (NS) Feature Compute (FC) Other Speedup

1.8x

(b) Speedup (end-to-end, E2E)

0%

20%

40%

60%

S+
N

S+
N

+F
S+

N
S+

N
+F

S+
N

S+
N

+F
S+

N
S+

N
+F

S+
N

S+
N

+F
S+

N
S+

N
+F

S+
N

S+
N

+F

W1 W2 W3 W4 W5 W6 AVG.

En
er

gy
 S

av
in

g

Workloads

Energy Saving 46%33%

(c) Energy Saving

Figure 13: Performance of six workloads w.r.t. the baseline: (a) sample and neighbor search, and (b) E2E speedup; (c) energy
saving.

0%

25%

50%

75%

100%

W1 W2 W3 W4 W5 W6

Ac
cu

ra
cy

Workloads

BSL
S+N

(a) Accuracy comparison (b) Ground truth vs baseline vs ours

Figure 14: (a). Accuracy; (b). Demo: part segmentation with
the baseline inference and our proposal.

EC module (described in Sec. 3), the NS stage can get 29× (W3)
and 14.2× (W4) speedup (due to the reduction in time complexity
as explained in Sec. 5.2.3); 2) owing to the reuse of the neighbor
indexes, the NS computation can be skipped for the second and
fourth EC modules. A similar trend can be observed in W5 and W6
as well. The performance improvement for the SMP and NS stages
can further translate to a 1.55× average speedup in terms of the
end-to-end (E2E) latency as shown in Fig. 13b. Moreover, when the
tensor cores are employed for accelerating the FC stage, the E2E
inference can be further accelerated by up to 2.25× (W6).
Energy Consumption: Furthermore, the computation reduction
for the SMP and NS stages when using our Morton code-based
schemes can reduce the energy consumption as well. As shown in
Fig. 13c, with our design, the energy consumption for inferencing
one PC frame is decreased by 33% on average, and 13% more energy
can be saved by deploying the feature compute stage (comprising
of matrix multiplication operations) into the tensor cores (instead
of just using the CUDA cores). For W1 and W2 which employ the
PointNet++, our proposal can achieve 38% and 31% energy savings,
respectively. Apart from the reduced execution latency as discussed
above, another reason for such savings come from a lower power
consumption when applying our approximation techniques (e.g.,
power consumption decreased from 4.5𝑊 to 4.2𝑊 for W1). For the
remaining four workloads, however, the energy savings are slightly
lower compared to their corresponding execution latency reduction.
For example, the 1.32× speedup observed with W3 (Fig. 13b), only
translates to 16% energy savings (Fig. 13c). This is due to our reuse
proposal which induces an increased memory pressure when the
neighbor index array from the previous EC module is cached/stored
for later reuse. Based on our measurements, the power consumption

of the memory increases from 1.35𝑊 for the baseline setting to
1.63𝑊 in our proposal.
Accuracy: Due to the suboptimality of our Morton code-based
sampler and neighbor searcher, directly using the pretrained CNN
models to perform the inference can cause an accuracy drop. So, to
maintain the accuracy, we need to retrain the CNNmodels with our
proposed approximations. Fig. 14a shows the accuracy comparison
of our retrained models with the baseline. As observed, the accuracy
drop is within 2%, thereby having a minimal impact on the inference
quality, as shown in Fig. 14b. Moreover, for the accuracy-sensitive
applications, we can opt to trade the performance for accuracy. For
example, for workload W3, with a larger search window size, our
accuracy drop can be as low as 0.7% while simultaneously achiev-
ing 4.2× speedup. This reflects the "flexibility" of our proposal in
adapting to different application-level requirements and execution
environment constraints (accuracy- vs latency-sensitive).
6.3 Sensitivity Study

0

5

10

0

0.25

0.5

W
2

W
5

W
2

W
5

W
2

W
5

W
2

W
5

W
2

W
5

1k 2k 4k 6k 8k

N
ei

gh
bo

r S
ea

rc
h

Sp
ee

du
p

(x
)

Fa
ls

e
N

ei
gh

bo
r

R
at

io
 (F

N
R

)

Configuration

86x

(a) False neighbor ratio vs search window
size vs neighbor search speedup.

1

2

3

4

44%

50%

56%

S+
N

 S
pe

ed
up

 (x
)

Ac
cu

ra
cy

Number of
Opt. Layers

Accuracy Speedup

(b) Accuracy vs number of opti-
mization layers vs speedup.

Figure 15: Sensitivity study.

We study the sensitivity of our proposal by varying the design
points discussed in Sec. 5. Fig. 15a shows the tradeoffs between
false neighbor ratio (FNR) and speedup for the neighbor search (NS)
stage when varying the search window size (where 𝑘 is the number
of neighbors), thus providing insights into efficiently choosing the
proper search window size. For example, the accuracy-sensitive
applications can use a larger search window for preserving the
accuracy, while the high throughput demanding applications can
prefer a smaller search window to boost the performance. Another
design consideration is the number of layers/modules to apply
our MC-based optimization. As shown in Fig. 15b, with only the
first SA module (and the corresponding FP module) being opti-
mized, the sampling and neighbor search stages can be sped up

ISCA ’23, June 17–21, 2023, Orlando, FL, USA. Ziyu Ying and Sandeepa Bhuyan, et al.

by 2.9× with only 1.2% accuracy drop. However, when we apply
the MC-based approximation to more layers, the performance only
improves slightly with the significant accuracy drop. This demon-
strates the effectiveness of our proposal. To summarize, given new
workloads, the developer can first perform the characterization
(like the one in Sec. 3) to identify the bottleneck layer(s), for which
the MC-based optimizations will be applied and the parameters
(e.g., search window size) can be adaptively chosen to accommodate
the application’s requirement.
6.4 Comparison against Prior Works
We compare our proposal with the prior works from both the quanti-
tative and qualitative perspectives. We first implemented the delay-
aggregation (DA) technique in [18] for PointNet++ [48] and tested
on S3DIS [3]. The feature compute (FC) stage can be accelerated
by 2.1× with DA (88.2ms to 42.2ms per batch). However, as also
depicted in [18], since the feature dimension usually increases after
convolutional layers, the aggregation/feature grouping stage will
become the primary bottleneck. For example, after applying DA,
the latency for feature grouping stage increases by 2.73×. Further,
as it has no optimization for sampling stage, DA can only achieve
1.12× speedup for the E2E inference latency. PointAcc [35] is an-
other work which optimize the PC CNN by customizing specific
accelerators (e.g., mapping unit and memory management unit).

Table 2: Qualitative comparisons.

AccuracyGeneralityDesign Overhead
Crescent [17] ✓ ✓ ✗

PointAcc [35] ✓ ✓ ✗

Point-X [71] ✓ ✗ ✗

EdgePC ✓ ✓ ✓

Note however that,
our work is orthogo-
nal to PointAcc. Es-
pecially, the key
module in the map-
ping unit in [35] is
the distance calcu-
lation (with𝑂 (𝑁 2)
time complexity).
With our work, we only need to calculate the Morton codes for each
point (with𝑂 (𝑁) time complexity), meaning that, by deploying our
proposal in the mapping unit in PointAcc [35], the performance of
PC CNN inference can be further boosted. Point-X [71] increases
the energy efficiency for graph-based PC CNNs by extracting the
spatial locality via a SBFS graph traversal algorithm. However, we
want to emphasize that, compared to graph traversal, Morton code
is a better candidate for capturing the spatial locality of PC data
due to its simplicity and has also been proven to be efficient in a
recent work [68]. Furthermore, Point-X [71] has very limited appli-
cation scope and lacks generality as shown in Table. 2 since it is
only targets the graph-based PC CNNs. Recently, [17] addresses the
irregular memory access issue in neighbor search stage by splitting
the k-d tree into top- and bottom-trees. This work, however, over-
looks the sampling stage. Finally, all these prior works introduce
extra design overheads for hardware customization, while EdgePC
favors the commercially available hardwares and can boost the
performance without any overheads.

7 CONCLUSION
Point Cloud (PC) has recently gained huge attention with the in-
creasing availability of low-cost PC acquisition devices like smart-
phones with LiDAR cameras. In particular, the availability of spe-
cialized accelerators (e.g, NPU, TPU) on smartphones/handhelds

have made PC inference on edge devices an attractive option. In 3D
PC deep learning analytics, sampling and neighbor search stages
contribute to more than 50% of the end-to-end inference latency,
thus are the primary bottlenecks in the entire PC inference pipeline.
Although few prior works have either designed custom PC ac-
celerators in hardware or proposed software optimizations, they
have missed opportunities to optimize these two critical stages,
especially considering the unique characteristics of the PC data
(irregular and unstructured). In this paper, we present a novel tech-
nique to utilize Morton code to “structurize” the raw PC data and
minimize the sampling and neighbor search latencies by intelli-
gently skipping computations on the structured PC data. Towards
this, we design EdgePC, which is an edge-friendly framework with
two complementary approximation techniques for the sampling
and neighbor search stages in order to accelerate the PC inference
as well as improve its energy efficiency. Our evaluations of six
different PC workloads on an NVIDIA Jetson Xavier edge board
demonstrate that the proposed design does not only achieve an
average speedup of 3.68× for the sampling and neighbor search
stages (which translates to 1.55× speedup of the end-to-end PC
inference latency) with minimal accuracy loss, but it also saves 33%
of the overall PC inference energy.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their helpful feedback and
suggestions towards improving the paper content. This research
is supported in part by NSF grants #1931531, #2116962, #2122155,
#2211018, #1763681 and #2028929.

REFERENCES
[1] Apple Inc. 2022. iPhone 13 Pro. "https://www.apple.com/am/iphone-13-pro/".
[2] Alan Walford. 2017. What is Photogrammetry? "https://www.photogrammetry.

com/".
[3] Iro Armeni, Ozan Sener, Amir R Zamir, Helen Jiang, Ioannis Brilakis, Martin

Fischer, and Silvio Savarese. 2016. 3D Semantic Parsing of Large-Scale Indoor
Spaces. In 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). IEEE Computer Society, Los Alamitos, CA, USA, 1534–1543.

[4] Sandeepa Bhuyan, Shulin Zhao, Ziyu Ying, Mahmut T. Kandemir, and Chita R.
Das. 2022. End-to-End Characterization of Game Streaming Applications on
Mobile Platforms. Proc. ACM Meas. Anal. Comput. Syst. 6, 1 (2022), 25 pages.

[5] Thomas Blanc, Mohamed El Beheiry, Clément Caporal, Jean-Baptiste Masson,
and Bassam Hajj. 2020. Genuage: visualize and analyze multidimensional single-
molecule point cloud data in virtual reality. Nature Methods 17, 11 (2020), 1100–
1102.

[6] Aydin Buluç, Jeremy T. Fineman, Matteo Frigo, John R. Gilbert, and Charles E.
Leiserson. 2009. Parallel Sparse Matrix-Vector and Matrix-Transpose-Vector
Multiplication Using Compressed Sparse Blocks. In Proceedings of the Twenty-First
Annual Symposium on Parallelism in Algorithms and Architectures. Association
for Computing Machinery, New York, NY, USA, 233–244.

[7] ByteBridge. 2021. How 3D Point Cloud Annotation Service Fuels the Field
of Automatic Driving? "https://medium.com/nerd-for-tech/application-of-3d-
point-cloud-in-the-field-of-automatic-driving-723ec9544a6c".

[8] Jingdao Chen, Zsolt Kira, and Yong K Cho. 2019. Deep learning approach to point
cloud scene understanding for automated scan to 3D reconstruction. Journal of
Computing in Civil Engineering 33, 4 (2019), 04019027.

[9] Siheng Chen, Baoan Liu, Chen Feng, Carlos Vallespi-Gonzalez, and Carl Welling-
ton. 2020. 3D Point Cloud Processing and Learning for Autonomous Driving:
Impacting Map Creation, Localization, and Perception. IEEE Audio and Electroa-
coustics Newsletter 38, 1 (2020), 68–86.

[10] Xiaozhi Chen, Huimin Ma, Ji Wan, Bo Li, and Tian Xia. 2017. Multi-view 3D
Object Detection Network for Autonomous Driving. In 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). IEEE Computer Society, Los
Alamitos, CA, USA, 6526–6534.

[11] Christopher Choy, JunYoung Gwak, and Silvio Savarese. 2019. 4D Spatio-
Temporal ConvNets: Minkowski Convolutional Neural Networks. In 2019

"https://www.apple.com/am/iphone-13-pro/"
"https://www.photogrammetry.com/"
"https://www.photogrammetry.com/"
"https://medium.com/nerd-for-tech/application-of-3d-point-cloud-in-the-field-of-automatic-driving-723ec9544a6c"
"https://medium.com/nerd-for-tech/application-of-3d-point-cloud-in-the-field-of-automatic-driving-723ec9544a6c"

EdgePC: Efficient Deep Learning Analytics for Point Clouds on Edge Devices ISCA ’23, June 17–21, 2023, Orlando, FL, USA.

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE
Computer Society, Los Alamitos, CA, USA, 3070–3079.

[12] Michael F Connor. 2007. Simple, Thread-Safe, Approximate Nearest Neighbor
Algorithm. Master’s thesis.

[13] Angela Dai, Angel X Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser,
and Matthias Nießner. 2017. Scannet: Richly-annotated 3d reconstructions of
indoor scenes. In 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). IEEE Computer Society, Los Alamitos, CA, USA, 2432–2443.

[14] DISCOVER three.js. 2022. A Brief Introduction to Texture Mapping. "https:
//discoverthreejs.com/book/first-steps/textures-intro/".

[15] Richard O Duda, Peter E Hart, and David G Stork. 1973. Pattern classification and
scene analysis. Wiley New York.

[16] Yuval Eldar, Michael Lindenbaum, Moshe Porat, and Yehoshua Y Zeevi. 1997.
The farthest point strategy for progressive image sampling. IEEE Transactions on
Image Processing 6, 9 (1997), 1305–1315.

[17] Yu Feng, Gunnar Hammonds, Yiming Gan, and Yuhao Zhu. 2022. Crescent:
Taming Memory Irregularities for Accelerating Deep Point Cloud Analytics. In
Proceedings of the 49th Annual International Symposium on Computer Architecture.
Association for Computing Machinery, New York, NY, USA, 962–977.

[18] Yu Feng, Boyuan Tian, Tiancheng Xu, Paul Whatmough, and Yuhao Zhu.
2020. Mesorasi: Architecture Support for Point Cloud Analytics via Delayed-
Aggregation. In 2020 53rd Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO). IEEE Computer Society, Los Alamitos, CA, USA, 1037–1050.

[19] Andreas Geiger, Philip Lenz, and Raquel Urtasun. 2012. Are We Ready for
Autonomous Driving? The KITTI Vision Benchmark Suite. In Proceedings of the
2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE
Computer Society, USA, 3354–3361.

[20] Silvio Giancola, Jesus Zarzar, and Bernard Ghanem. 2019. Leveraging Shape
Completion for 3D Siamese Tracking. In 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). IEEE Computer Society, Los Alamitos, CA,
USA, 1359–1368.

[21] GlobeNewswire, Inc. 2022. Straits Research. "https://www.globenewswire.com/
en/news-release/2022/09/14/2516327/0/en/LIDAR-Market-Size-is-projected-
to-reach-USD-6-93-Billion-by-2030-growing-at-a-CAGR-of-19-27-Straits-
Research.html".

[22] Julian Gross, Marcel Köster, and Antonio Krüger. 2019. Fast and Efficient Nearest
Neighbor Search for Particle Simulations.. In CGVC. 55–63.

[23] Taisuke Hashimoto and Masaki Saito. 2019. Normal Estimation for Accurate
3D Mesh Reconstruction with Point Cloud Model Incorporating Spatial Struc-
ture. In IEEE Conference on Computer Vision and Pattern Recognition Workshops,
CVPR Workshops 2019, Long Beach, CA, USA, June 16-20, 2019. Computer Vision
Foundation / IEEE, 54–63.

[24] Mohsen Imani, Mohammad Samragh, Yeseong Kim, Saransh Gupta, Farinaz
Koushanfar, and Tajana Rosing. 2018. RAPIDNN: In-Memory Deep Neural Net-
work Acceleration Framework. CoRR abs/1806.05794 (2018).

[25] Intel Corporation. 2022. Intel RealSense Depth and Tracking cameras . "https:
//www.intelrealsense.com/".

[26] Jan Bender, Weiler Marcel and Stephan Seitz. 2022. cuNSearch. https://github.
com/InteractiveComputerGraphics/cuNSearch.

[27] Jeroen Baert. 2013. Morton encoding/decoding through bit interleaving: Imple-
mentations. "https://www.forceflow.be/2013/10/07/morton-encodingdecoding-
through-bit-interleaving-implementations/".

[28] Artem Komarichev, Zichun Zhong, and Jing Hua. 2019. A-CNN: Annularly
Convolutional Neural Networks on Point Clouds. In 2019 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR). IEEE Computer Society, Los
Alamitos, CA, USA, 7413–7422.

[29] Zeqi Lai, Y. Charlie Hu, Yong Cui, Linhui Sun, and Ningwei Dai. 2017. Furion:
Engineering High-Quality Immersive Virtual Reality on Today’s Mobile Devices.
In Proceedings of the 23rd Annual International Conference on Mobile Computing
and Networking. Association for Computing Machinery, New York, NY, USA,
409–421.

[30] Shiyi Lan, Ruichi Yu, Gang Yu, and Larry S Davis. 2019. Modeling Local Geometric
Structure of 3D Point Clouds Using Geo-CNN. In 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). IEEE Computer Society, Los
Alamitos, CA, USA, 998–1008.

[31] Loic Landrieu and Martin Simonovsky. 2018. Large-Scale Point Cloud Semantic
Segmentation with Superpoint Graphs. In 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). IEEE Computer Society, Los Alamitos, CA,
USA, 4558–4567.

[32] Kyungjin Lee, Juheon Yi, Youngki Lee, Sunghyun Choi, and Young Min Kim. 2020.
GROOT: A Real-Time Streaming System of High-Fidelity Volumetric Videos. In
Proceedings of the 26th Annual International Conference on Mobile Computing
and Networking. Association for Computing Machinery, New York, NY, USA,
14 pages.

[33] Bo Li. 2017. 3D Fully Convolutional Network for Vehicle Detection in Point
Cloud. In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE Press, 1513–1518.

[34] Chen-Hsuan Lin, Chen Kong, and Simon Lucey. 2018. Learning Efficient Point
Cloud Generation for Dense 3D Object Reconstruction. In Proceedings of the
Thirty-Second AAAI Conference on Artificial Intelligence and Thirtieth Innovative
Applications of Artificial Intelligence Conference and Eighth AAAI Symposium on
Educational Advances in Artificial Intelligence. AAAI Press, 8 pages.

[35] Yujun Lin, Zhekai Zhang, Haotian Tang, Hanrui Wang, and Song Han. 2021.
PointAcc: Efficient Point Cloud Accelerator. InMICRO-54: 54th Annual IEEE/ACM
International Symposium on Microarchitecture. Association for Computing Ma-
chinery, New York, NY, USA, 449–461.

[36] Xingyu Liu, Charles R Qi, and Leonidas J Guibas. 2019. FlowNet3D: Learning
Scene Flow in 3D Point Clouds. In 2019 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR). IEEE Computer Society, Los Alamitos, CA, USA,
529–537.

[37] Xiangjun Liu, Wenfeng Zheng, Yuanyuan Mou, Yulin Li, and Lirong Yin. 2021. Mi-
croscopic 3D reconstruction based on point cloud data generated using defocused
images. Measurement and Control 54, 9-10 (2021), 1309–1318.

[38] Zhi Liu, Qiyue Li, Xianfu Chen, Celimuge Wu, Susumu Ishihara, Jie Li, and
Yusheng Ji. 2021. Point cloud video streaming: Challenges and solutions. IEEE
Network 35, 5 (2021), 202–209.

[39] Lixin Xue and Oliver Batchelor. 2022. FRNN. https://github.com/lxxue/FRNN.
[40] Rufael Mekuria, Kees Blom, and Pablo Cesar. 2016. Design, implementation, and

evaluation of a point cloud codec for tele-immersive video. IEEE Transactions on
Circuits and Systems for Video Technology 27, 4 (2016), 828–842.

[41] Microsoft. 2022. Kinect for Windows. "https://learn.microsoft.com/en-us/
windows/apps/design/devices/kinect-for-windows".

[42] NVIDIA Corporation. 2019. tegrastats Utility. "https://docs.nvidia.com/
drive/drive_os_5.1.6.1L/nvvib_docs/index.html#page/DRIVE_OS_Linux_SDK_
Development_Guide/Utilities/util_tegrastats.html".

[43] NVIDIA Corporation. 2022. Jetson AGX Xavier Series. "https://www.nvidia.com/
en-us/autonomous-machines/embedded-systems/jetson-agx-xavier/".

[44] NVIDIA Corporation. 2022. NVIDIA Tensor Cores. "https://www.nvidia.com/en-
us/data-center/tensor-cores/".

[45] Stephen M Omohundro. 1989. Five balltree construction algorithms. International
Computer Science Institute Berkeley.

[46] Charles R. Qi, Wei Liu, Chenxia Wu, Hao Su, and Leonidas J. Guibas. 2018.
Frustum PointNets for 3D Object Detection from RGB-D Data. In 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). IEEE Computer
Society, Los Alamitos, CA, USA, 918–927.

[47] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. 2017. PointNet: Deep
Learning on Point Sets for 3D Classification and Segmentation. In 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). IEEE Computer
Society, Los Alamitos, CA, USA, 77–85.

[48] Charles R. Qi, Li Yi, Hao Su, and Leonidas J. Guibas. 2017. PointNet++: Deep
Hierarchical Feature Learning on Point Sets in a Metric Space. In Proceedings of
the 31st International Conference on Neural Information Processing Systems. Curran
Associates Inc., Red Hook, NY, USA, 5105–5114.

[49] Mayank Raj. 2020. Point Clouds and it’s significance in AR! "https://medium.
com/arway/point-clouds-and-its-significance-in-ar-155db2673865".

[50] Rama C. Hoetzlein. 2014. Fast Fixed-Radius Nearest Neighbor Search on the GPU.
https://tinyurl.com/4rcjdu7p.

[51] Joshua Romphf, Elias Neuman-Donihue, Gregory Heyworth, and Yuhao Zhu.
2021. Resurrect3D: An Open and Customizable Platform for Visualizing and
Analyzing Cultural Heritage Artifacts. In The 26th International Conference on
3D Web Technology. Association for Computing Machinery, New York, NY, USA,
7 pages.

[52] Ari Rubinsztejn. 2018. What Is The N-body Problem? "https://gereshes.com/
2018/05/07/what-is-the-n-body-problem/".

[53] SAMSUNG. 2022. Specifications | Galaxy S20, S20+ and S20 Ultra - Samsung.
"https://www.samsung.com/levant/smartphones/galaxy-s20/specs/".

[54] Anup Sarma, Sonali Singh, Huaipan Jiang, Ashutosh Pattnaik, Asit K. Mishra,
Vijaykrishnan Narayanan, Mahmut T. Kandemir, and Chita R. Das. 2021. Exploit-
ing Activation based Gradient Output Sparsity to Accelerate Backpropagation in
CNNs. CoRR abs/2109.07710 (2021).

[55] John Schulman, Alex Lee, Jonathan Ho, and Pieter Abbeel. 2013. Tracking
deformable objects with point clouds. In 2013 IEEE International Conference on
Robotics and Automation. IEEE, 1130–1137.

[56] Martin Simon, Karl Amende, Andrea Kraus, Jens Honer, Timo Samann, Hauke
Kaulbersch, Stefan Milz, and Horst Michael Gross. 2019. Complexer-YOLO:
Real-Time 3D Object Detection and Tracking on Semantic Point Clouds. In 2019
IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW). IEEE Computer Society, Los Alamitos, CA, USA, 1190–1199.

[57] Sonali Singh, Anup Sarma, Sen Lu, Abhronil Sengupta, Mahmut T. Kandemir,
Emre Neftci, Vijaykrishnan Narayanan, and Chita R. Das. 2022. Skipper: Enabling
efficient SNN training through activation-checkpointing and time-skipping. In
2022 55th IEEE/ACM International Symposium on Microarchitecture (MICRO). IEEE
Computer Society, Los Alamitos, CA, USA, 565–581.

[58] Stanford University Computer Graphics Laboratory. 1994. The Stanford Models.
"http://graphics.stanford.edu/data/3Dscanrep/".

"https://discoverthreejs.com/book/first-steps/textures-intro/"
"https://discoverthreejs.com/book/first-steps/textures-intro/"
"https://www.globenewswire.com/en/news-release/2022/09/14/2516327/0/en/LIDAR-Market-Size-is-projected-to-reach-USD-6-93-Billion-by-2030-growing-at-a-CAGR-of-19-27-Straits-Research.html"
"https://www.globenewswire.com/en/news-release/2022/09/14/2516327/0/en/LIDAR-Market-Size-is-projected-to-reach-USD-6-93-Billion-by-2030-growing-at-a-CAGR-of-19-27-Straits-Research.html"
"https://www.globenewswire.com/en/news-release/2022/09/14/2516327/0/en/LIDAR-Market-Size-is-projected-to-reach-USD-6-93-Billion-by-2030-growing-at-a-CAGR-of-19-27-Straits-Research.html"
"https://www.globenewswire.com/en/news-release/2022/09/14/2516327/0/en/LIDAR-Market-Size-is-projected-to-reach-USD-6-93-Billion-by-2030-growing-at-a-CAGR-of-19-27-Straits-Research.html"
"https://www.intelrealsense.com/"
"https://www.intelrealsense.com/"
https://github.com/InteractiveComputerGraphics/cuNSearch
https://github.com/InteractiveComputerGraphics/cuNSearch
"https://www.forceflow.be/2013/10/07/morton-encodingdecoding-through-bit-interleaving-implementations/"
"https://www.forceflow.be/2013/10/07/morton-encodingdecoding-through-bit-interleaving-implementations/"
https://github.com/lxxue/FRNN
"https://learn.microsoft.com/en-us/windows/apps/design/devices/kinect-for-windows"
"https://learn.microsoft.com/en-us/windows/apps/design/devices/kinect-for-windows"
"https://docs.nvidia.com/drive/drive_os_5.1.6.1L/nvvib_docs/index.html##page/DRIVE_OS_Linux_SDK_Development_Guide/Utilities/util_tegrastats.html"
"https://docs.nvidia.com/drive/drive_os_5.1.6.1L/nvvib_docs/index.html##page/DRIVE_OS_Linux_SDK_Development_Guide/Utilities/util_tegrastats.html"
"https://docs.nvidia.com/drive/drive_os_5.1.6.1L/nvvib_docs/index.html##page/DRIVE_OS_Linux_SDK_Development_Guide/Utilities/util_tegrastats.html"
"https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-agx-xavier/"
"https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-agx-xavier/"
"https://www.nvidia.com/en-us/data-center/tensor-cores/"
"https://www.nvidia.com/en-us/data-center/tensor-cores/"
"https://medium.com/arway/point-clouds-and-its-significance-in-ar-155db2673865"
"https://medium.com/arway/point-clouds-and-its-significance-in-ar-155db2673865"
https://tinyurl.com/4rcjdu7p
"https://gereshes.com/2018/05/07/what-is-the-n-body-problem/"
"https://gereshes.com/2018/05/07/what-is-the-n-body-problem/"
"https://www.samsung.com/levant/smartphones/galaxy-s20/specs/"
"http://graphics.stanford.edu/data/3Dscanrep/"

ISCA ’23, June 17–21, 2023, Orlando, FL, USA. Ziyu Ying and Sandeepa Bhuyan, et al.

[59] Jiaming Sun, Yiming Xie, Siyu Zhang, Guofeng Zhang, Hujun Bao, and Xiaowei
Zhou. 2021. You Don’t Only Look Once: Constructing Spatial-Temporal Memory
for Integrated 3D Object Detection and Tracking. In 2021 IEEE/CVF International
Conference on Computer Vision (ICCV). IEEE Computer Society, Los Alamitos,
CA, USA, 3265–3174.

[60] The PyTorch Foundation. 2022. An open source machine learning framework
that accelerates the path from research prototyping to production deployment.
"https://pytorch.org/".

[61] TruePoint Laser Scanning, LLC. 2022. What Is 3D Laser Scanning? "https:
//www.truepointscanning.com/what-is-3d-laser-scanning".

[62] VREX. 2022. How to Bring Point Clouds into VR. "https://www.vrex.no/blog/
point-cloud-vr/".

[63] XiaogangWang, Yuelang Xu, Kai Xu, Andrea Tagliasacchi, Bin Zhou, Ali Mahdavi-
Amiri, and Hao Zhang. 2020. Pie-net: Parametric inference of point cloud edges.
Advances in neural information processing systems 33 (2020), 20167–20178.

[64] Wenxuan Wu, Zhongang Qi, and Li Fuxin. 2019. PointConv: Deep Convolutional
Networks on 3D Point Clouds. In 2019 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR). IEEE Computer Society, Los Alamitos, CA, USA,
9613–9622.

[65] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou
Tang, and Jianxiong Xiao. 2015. 3D ShapeNets: A deep representation for volu-
metric shapes. In 2015 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). IEEE Computer Society, Los Alamitos, CA, USA, 1912–1920.

[66] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou
Tang, and Jianxiong Xiao. 2022. Princeton Model Net. "https://modelnet.cs.
princeton.edu/".

[67] Xu Yan, Chaoda Zheng, Zhen Li, Sheng Wang, and Shuguang Cui. 2020.
PointASNL: Robust Point Clouds Processing Using Nonlocal Neural Networks
With Adaptive Sampling. In 2020 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR). IEEE Computer Society, Los Alamitos, CA, USA,
5588–5597.

[68] Ziyu Ying, Shulin Zhao, Sandeepa Bhuyan, Cyan Subhra Mishra, Mahmut T.
Kandemir, and Chita R. Das. 2022. Pushing Point Cloud Compression to the Edge.
In 2022 55th IEEE/ACM International Symposium on Microarchitecture (MICRO).
IEEE Computer Society, Los Alamitos, CA, USA, 282–299.

[69] Ziyu Ying, Shulin Zhao, Haibo Zhang, Cyan Subhra Mishra, Sandeepa Bhuyan,
Mahmut T. Kandemir, Anand Sivasubramaniam, and Chita R. Das. 2022. Exploit-
ing Frame Similarity for Efficient Inference on Edge Devices. In 2022 IEEE 42nd
International Conference on Distributed Computing Systems (ICDCS). 1073–1084.

[70] Haoxuan You, Yifan Feng, Rongrong Ji, and Yue Gao. 2018. PVNet: A Joint Con-
volutional Network of Point Cloud and Multi-View for 3D Shape Recognition. In
Proceedings of the 26th ACM International Conference on Multimedia. Association
for Computing Machinery, New York, NY, USA, 1310–1318.

[71] Jie-Fang Zhang and Zhengya Zhang. 2021. Point-X: A Spatial-Locality-Aware
Architecture for Energy-Efficient Graph-Based Point-Cloud Deep Learning. In
MICRO-54: 54th Annual IEEE/ACM International Symposium on Microarchitecture.
Association for Computing Machinery, New York, NY, USA, 1078–1090.

[72] Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. 2018. An End-
to-End Deep Learning Architecture for Graph Classification. In Proceedings of the
Thirty-Second AAAI Conference on Artificial Intelligence and Thirtieth Innovative
Applications of Artificial Intelligence Conference and Eighth AAAI Symposium on
Educational Advances in Artificial Intelligence. AAAI Press, 8 pages.

[73] Shulin Zhao, Haibo Zhang, Sandeepa Bhuyan, Cyan Subhra Mishra, Ziyu Ying,
Mahmut T. Kandemir, Anand Sivasubramaniam, and Chita R. Das. 2020. DéJà
View: Spatio-Temporal Compute Reuse for Energy-Efficient 360°VRVideo Stream-
ing. In Proceedings of the ACM/IEEE 47th Annual International Symposium on
Computer Architecture. IEEE Press, 241–253.

[74] Shulin Zhao, Haibo Zhang, Cyan Subhra Mishra, Sandeepa Bhuyan, Ziyu Ying,
Mahmut Taylan Kandemir, Anand Sivasubramaniam, and Chita Das. 2021.
HoloAR: On-the-Fly Optimization of 3D Holographic Processing for Augmented
Reality. InMICRO-54: 54th Annual IEEE/ACM International Symposium onMicroar-
chitecture. Association for Computing Machinery, New York, NY, USA, 494–506.

[75] Yin Zhou and Oncel Tuzel. 2018. VoxelNet: End-to-End Learning for Point Cloud
Based 3D Object Detection. In 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR). IEEE Computer Society, Los Alamitos, CA, USA,
4490–4499.

[76] Yuhao Zhu. 2022. RTNN: Accelerating Neighbor Search Using Hardware Ray
Tracing. In Proceedings of the 27th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming. Association for Computing Machinery, New
York, NY, USA, 76–89.

"https://pytorch.org/"
"https://www.truepointscanning.com/what-is-3d-laser-scanning"
"https://www.truepointscanning.com/what-is-3d-laser-scanning"
"https://www.vrex.no/blog/point-cloud-vr/"
"https://www.vrex.no/blog/point-cloud-vr/"
"https://modelnet.cs.princeton.edu/"
"https://modelnet.cs.princeton.edu/"

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Background
	2.2 Related Work

	3 Motivation
	3.1 PC CNN Latency Characterization
	3.2 Reasons for Inefficiencies and Potential Opportunities

	4 Structurizing Point Cloud with Morton code
	4.1 What is Morton code?
	4.2 Sampling Structurized Point Cloud
	4.3 Neighbor Search for Structurized Point Cloud

	5 Morton Code-based Sampler and Neighbor Search Design
	5.1 Morton-code-based Sampler
	5.2 Morton Code-based Neighbor Search
	5.3 What are the Pros and Cons of Approximation?
	5.4 Architectural Insights – Optimizing the Shifted Bottlenecks

	6 Experimental Evaluation
	6.1 Methodology
	6.2 Performance Results
	6.3 Sensitivity Study
	6.4 Comparison against Prior Works

	7 Conclusion
	References

