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ABSTRACT: We propose a unified perspective on two sets of objects that usually arise in
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a toric Calabi-Yau, and a quiver theory. We refer to the two sets of objects as original and
twin. In the simplest cases, the two sides of the correspondence are connected by the graph
operation known as untwisting. The democratic treatment that we advocate raises new
questions regarding the connections between these objects, some of which we explore.

With this motivation in mind, we establish a correspondence between the mutations of
the original polytope and the twin quiver. This leads us to propose that non-toric twin
quivers are naturally associated to generalized toric polygons (GTPs) and we explore various
aspects of this idea. Supporting evidence includes global symmetries, the ability of twin
quivers to encode the generalized s-rule, and the connection between the mutations of
polytopes and of configurations of webs of 5-branes suspended from 7-branes. We introduce
three methods for constructing twin quivers for GTPs. We also investigate the connection
between twin quivers obtained using different toric phases. Twin quivers provide a powerful
new perspective on GTPs. The ideas presented in this paper may represent a step towards
the generalization of brane tilings to GTPs.
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1 Introduction

Brane tilings encode the 4d quiver gauge theories on D3-branes probing toric Calabi-
Yau (CY) 3-fold singularities [1-3]. They are not only physical brane configurations related
to the D-branes at singularities by T-duality, but they also significantly simplify the map
between gauge theory and geometry. This family of theories was later generalized to the
much broader class of bipartite field theories (BFTs), which are defined by bipartite graphs
on Riemann surfaces and share many of the combinatorial properties and connections to
toric geometry of brane tilings [4-9].

Interestingly, the same geometries and quiver theories are relevant for superconformal
field theories in a different dimension. M-theory on CY3 singularities engineers 5d supercon-
formal field theories [10-13]. Moreover, the BPS spectrum of such theories can be described
by so-called 5d BPS quivers which, for toric CY3’s, are indeed the theories associated to
the corresponding brane tilings [14].

The study of BFTs leads to various quiver theories and polytopes. These objects and
their mutations are naturally divided into two sets, which we denote original and twin,
connected by the combinatorial operation of untwisting. For brane tilings, untwisting is
intimately related to mirror symmetry [15]. Motivated by applications, some of these objects
have been thoroughly studied, while others are rarely discussed in the literature. This is
also the case for their mutations and the connections between them. One of the main points
of this paper is to emphasize that the original and twin sides are on a symmetric footing
and hence all these objects should be treated democratically. This new perspective will lead
us to consider connections between the two sides that were previously overlooked.

On a seemingly independent line of developments, generalized toric polygons (GTPs)
have been introduced to describe brane configurations engineering 5d SCFTs [16-18]. Given
that GTPs extend the usual notion of toric geometry, it is natural to ask whether some
of the objects mentioned above can be generalized to GTPs. For example, it would be
particularly interesting to find a generalization of brane tilings to GTPs, since they could
shed light on the BPS spectrum of the associated 5d theories. Remarkably, guided by the
unified perspective advocated in the first part of the paper, we will propose that non-toric
twin quivers are connected to GTPs. We will investigate various aspects of the proposed
correspondence and show that these quivers are indeed useful tools, e.g. when analyzing
the generalized s-rule.

This paper is organized as follows. In section 2, we review BFTs and several of the tools
involved in their study, including perfect matchings, zig-zag paths and their connection to
toric geometry via their moduli spaces. We also discuss quiver and polytope mutations. We
finally present untwisting, which plays a central role throughout the paper. In section 3, we
consider an original BFT and the corresponding polytope, quiver mutation and polytope
mutation. We also discuss how untwisting produces a twin BFT, which also comes with
its associated polytope, quiver mutation and polytope mutation. We advocate that the
original and twin sides should be regarded on an equal footing and therefore it is interesting
to investigate the correspondence between objects and mutations on both sides. This
democratic perspective underlies the rest of the paper. Section 4 explains how the toric



diagrams for the moduli spaces of the original and twin BFTs are different projections of
a single underlying polytope. Section 5 provides a brief summary of GTPs. In section 6,
we argue that quiver and polytope mutations are not independent operations. In fact, the
mutation of the original polytope corresponds to the mutation of the twin quiver and vice
versa. Section 7 presents one of the main proposals of the paper: non-toric twin quivers are
naturally associated to GTPs. This section also introduces two algorithms for determining
the twin quiver for a given GTP. Section 8 presents a third method to directly compute the
twin quiver from a GTP and discusses its limitations. Section 9 studies the relation between
the twin quivers for a GTP constructed using different toric phases of the original theory.
Section 10 explains how twin quivers capture the generalized s-rule. Section 11 summarizes
our conclusions and outlines interesting directions for future research. Appendix A presents
additional details for some of the examples considered in the paper.

2 Graphs, gauge theories and polytopes

A significant fraction of the discussion in this and the coming two sections follows previous
works (see [4] and references therein) albeit with a fresh perspective. In order to avoid
repetition, we will keep the presentation of these subjects brief. We refer the interested
reader to the original references for thorough discussions.

2.1 Bipartite field theories

A bipartite field theory is a 4d N = 1 supersymmetric gauge theory defined by a bipartite
graph G embedded in a Riemann surface ¥, possibly including boundaries [4].!

A bipartite graph is a graph in which nodes can be colored white or black, such that
nodes are only connected to nodes of the opposite color. Nodes can be further distinguished
into internal and external. External nodes are those on the boundaries of the Riemann
surface. We refer to the number of edges connected to a given node as its valence. In our
construction, we will restrict to external nodes with valence one.

Faces are regions on the Riemann surface that are surrounded by edges and/or bound-
aries. They can also be classified into external or internal, with external faces being those
whose perimeter includes at least one boundary.

The dictionary connecting a bipartite graph on a Riemann surface and a BFT is

summarized in table 1.

LA closely related class of theories was considered in [19].



Graph ‘ BFT
Internal Face U(N) gauge symmetry group

External Face U(N) global symmetry group

Chiral superfield in the bifundamental representation of

.| groups 7 and j (adjoint representation if i = j). The
Edge between faces 1 o ) ) i s

) chirality, i.e. orientation, of the bifundamental is such
and j . . )
that it goes clockwise around white nodes and counter-

clockwise around black nodes.

Superpotential monomial consisting of & chiral superfields.
k-valent node . . .
Its sign is +/— for a white/black node, respectively.

Table 1. The dictionary relating bipartite graphs on Riemann surfaces to BFTs.

We can equivalently think about these theories in terms of a quiver dual to the graph,
as shown in figure 1. This quiver is such that its plaquettes, i.e. the minimal oriented closed
loops, are in one-to-one correspondence with nodes in the graph and, therefore, with terms
in the superpotential.

5

Figure 1. A bipartite graph on a disk and its dual quiver. Every plaquette in this quiver corresponds
to a node in the original graph and, hence, to a superpotential term.

It is possible, and indeed physically well motivated, to consider the case in which the
ranks of the U(N;) gauge or global symmetry groups associated to different faces are not
equal. For simplicity, we will not consider this possibility in this article. We will often
refer to BF'Ts, namely to theories described by bipartite graphs, as toric phases. The first
part of the paper will be dedicated to toric phases. Starting in section 6, we will also
consider non-toric phases, which can be generated from toric phases by quiver mutation.
For non-toric phases, not only the Lagrangian cannot be captured by bipartite graphs, but
also different ranks are unavoidable.

Perfect matchings. A perfect matching p is a subset of the edges in G such that:?
e Every internal node is the endpoint of exactly one edge in p.

o Every external node belongs to either one or zero edges in p.

When G has boundaries, the objects defined here are often called almost perfect matchings.



Perfect matchings connect bipartite graphs and the corresponding BFTs to toric
geometry, as we explain in section 4. For doing so, it is convenient to consider the following
map between chiral fields in the quiver Xj, i.e. edges in G, and perfect matchings p,

C
P;
Xi= Hpﬂu7 (21)
p=1

where c is the total number of perfect matchings, and P;, is equal to 1 if the edge in the
bipartite graph associated to the chiral field X; is contained in p,, and zero otherwise [2, 4],

Py = T XicD (2.2)
0if X; ¢ py

Perfect matchings are particular useful because they are efficient ways to determine them.

i.e.

These method are base on the Kasteleyn matrix [2] and generalizations in the case of graphs
with boundaries [4].

Zig-zag paths. Zig-zag paths are oriented paths in a bipartite graph embedded in a
Riemann surface that alternate between turning maximally right and maximally left at white
and black nodes, respectively. They can be nicely implemented in terms of a double line
notation for edges [4], such that two zig-zag paths go over every edge in opposite directions,
crossing at the middle point. Figure 2 shows a simple bipartite graph corresponding to the
Fy geometry and its zig-zag paths.

73

Figure 2. Brane tiling for F) and its zig-zag paths. Dashed green lines indicate the unit cell.

Zig-zag paths play a central role in the study of bipartite graphs for several reasons.
First, it is possible to reconstruct the graph G from knowledge of its zig-zags [20]. Second,
the conditions for consistency /irreducibility of a bipartite graph can be elegantly formulated
in terms of properties of its zig-zag paths [21]. Finally, similarly to perfect matchings,
zig-zag paths provide a powerful tool for connecting BFTs to their moduli spaces.

BFTs and toric geometry. BFTs are intimately related to two non-compact toric CYs,
which correspond to their moduli and master spaces [4]. They are therefore associated to two
convex lattice polytopes, which are the toric diagrams of the two CYs. The dimensionality



of these CYs, equivalently the dimensionality of their toric diagrams, can be directly
determined from general properties of the bipartite graph and the Riemann surface it is
embedded in. We refer the interested reader to [22] for an extensive discussion of this issue.

2.2 The special case of T?: 2d toric diagrams, (p, q)-webs and 5d theories

At various points of the paper we will focus on brane tilings, namely BFTs defined by
bipartite graphs on T2, so let us discuss them in further detail. The moduli space for such
a theory is a toric CY3 Xa, where A denotes the corresponding 2d toric diagram.

2d toric diagrams are closely related to (p, ¢)-webs (see [23-25] for detailed presentations).
Given a triangulation of a toric diagram, we obtain a (p,q)-web by graph dualization,
as illustrated in figure 3. Every line in the web corresponds to a (p,q) 5-brane. The
information regarding lengths of lines in the (p, ¢)-web is lost when going to the corresponding
toric diagram.

For discussing the boundary of a toric diagram, it will be useful to introduce the notions
of sides and edges. As usual, we refer to a side as the line connecting two consecutive corners
of the toric diagram. Within a given side, an edge is a segment between two consecutive
points in the toric diagram. The distinction between the two becomes relevant in the case of
sides consisting of more than one edge. Figure 3.a shows a toric diagram in which every side
involves a single edge. On the other hand, figure 3.b shows a toric diagram in which one
of the sides consists of two edges. The corresponding (p, ¢)-web therefore has two parallel

(a) \

external legs.

side
] edge

Figure 3. Two toric diagrams and their dual (p, g)-webs.

The orientation of every external leg ¢ of the (p, q)-web, which represents the outward
normal vector to the corresponding boundary edge 7 of the toric diagram, takes the form

n = (p; q;) € 27 (2.3)

Every edge of the toric diagram or, equivalently, every leg of the (p, ¢)-web is in one-
to-one correspondence with a zig-zag path of the associated brane tiling. The vectors



17; are the winding numbers of the zig-zags along the two fundamental cycles of T? [15].
Clearly, sides with multiple edges correspond to parallel legs in the dual (p, g)-web. This
also means that the associated brane tiling contains more than one zig-zag path with the
same winding numbers.

Many of the objects previously discussed beautifully interplay in the context of 5d
theories. The low energy limit of M-theory on R times the local CY3 associated to a
toric diagram gives rise to a 5d N/ = 1 theory [11]. The same theory is also engineered by
the corresponding (p, ¢)-web [23, 24]. The BPS spectrum of such a 5d theory is encoded in
a quiver theory that is precisely the one defined by the corresponding brane tiling [14].

2.3 Quiver mutation

This section reviews the mutation of quiver theories, equivalently Seiberg duality [26].% Let us
consider acting with the mutation on a node j of the quiver, which we assume does not have
adjoint chiral fields. Below we summarize how the quiver and the superpotential transform.

Quiver

e Flavors. Chiral fields connected to the mutated node transform as follows. Incoming
fields X;; and outgoing fields X are replaced by dual flavors pointing in the opposite
directions X ji and X kj» respectively.

e Mesons. Mesons M;;, are added for every 2-path consisting of flavors X;; and Xj;.

e Ranks. The rank of node j transform as Nj’- = Ny ; — Nj, where Ny ; is the number
of flavors at the node j, given by

Nyj= Z”ijNi = anka 5 (2.4)
i k

where n;; is the number of bifundamental fields between nodes 7 and j.

The above transformation on the quiver is illustrated in figure 4.

i Xi j Xy ok

i X j Xk k
O_>—O_>—O —_>
N; i j

Miy

Figure 4. Quiver mutation.

3Throughout this paper, we will use the term quiver theory to refer to the full gauge theory, namely not
only to its quiver but also its superpotential.



Superpotential

 Instances of X;;X;; in the original superpotential are replaced by the meson M;,.

e A cubic term of the form MikajX ji is added for every meson.

The transformation of the superpotential can result in mass terms, i.e. quadratic terms.
Massive fields can be integrated out using the equations of motion. Due to gauge invariance,
to admit a mass term chiral fields must be adjoints or pairs of fields forming a bidirectional
arrow. However, not every adjoint or bidirectional arrow necessarily participates in a mass
term. Such fields should not be removed from the quiver.

2.3.1 Quiver mutations connecting toric phases

It is interesting to discuss in further detail the case of quiver mutations in which the two
dual theories are BFTs on the same Riemann surface. This constraint implies that we can
only dualize Ny = 2N, gauge groups, where N. = N, the common rank of all gauge and
global symmetry groups. This class of gauge groups are represented by internal square faces
in the bipartite graph. The quiver mutation of such gauge groups is beautifully realized by
a local transformation of the graph denoted square move, which is shown in figure 5 [2, 4].
In this case, the rank of the gauge group remains constant.

N "/ N "/
~ g ~ g
W /. SO /.
) ~ - ~
a4 AN ‘v AN
", 1y S i 1y S
7 |\ [N 7 |\ [N

Figure 5. A quiver mutation connecting two toric phases maps to a square move in the bipar-
tite graph.

2.4 Polytope mutation

This section is devoted to polytope mutation. This operation can be defined for lattice
polytopes in arbitrary dimensions (see e.g. [27]). It is reasonable to expect that such general
definition will play a role when the ideas presented later in this paper are considered in
full generality. We leave this for future work. Motivated by specific questions that will be



addressed in sections 7 to 10, we will now focus on the case of 2-dimensional polytopes,
which can be interpreted as toric diagrams of CY 3-folds.

We can discuss toric diagrams in terms the outward pointing normal vectors. We will
now consider one such vector for each side of the toric diagram, regardless of how many
edges it contains. Following the notation of section 2.2, we define the intersection number
between two sides of the toric diagram with normal vectors 7; and 1; as follows

(7, m5) = det (pf q;) : (2.5)

Pj 4j
The normal vectors need to satisfy the following relation

Z Nanz =0, (2.6)

where NV; is the number of edges in a given side, i.e. the multiplicity of legs in the (p, ¢)-web
that have the same (p;, ¢;)-charges. Equation (2.6) is simply the equilibrium condition for
the (p, q)-web.

Mutating a polytope with respect to a side j, corresponds to changing the normal
vectors as follows

L

i# g = m+ (ngm)my - for (m5,m5) >0 (2.7)
7 =1 otherwise

In order to satisfy (2.6) after the mutation, N; must transform according to

EEE.},_

where E is the set of sides of the toric diagram with (775-, 7;) > 0. We will later argue that
it is more appropriate to regard configurations in which some N; > 1 as GTPs rather than
as ordinary toric diagrams.

There is an equivalent transformation in which, for a given mutated side j with charge
1;, the roles of the n;’s with (n;,7;) > 0 and (n;,7;) < 0 are exchanged in (2.7). More
precisely, this corresponds to replacing (n;,7;) by —(n;,7;) everywhere in (2.7). Figure 7
illustrates a polytope mutation on the toric diagram of dPj;, which acts on a side j such
that its rank does not change, i.e. N; = N;.’. We show the results of the mutations that
modify either the sides with <7]3, 17:) > 0 or <773, 1;) > 0. Both results are equivalent up to
SL(2,Z) transformations. From now on, we denote the toric diagram before the polytope
mutation as A and after the polytope mutation on 7; as ,u;(A).



’/L/i (1,2)
Ny =1

n; = (~1,0)

Ny =

ni(A)
(ui, ;) >0

ny = (-1,-1) s = (1,-1)

i
m=(~1.-1) = (1,-1) ) <0
Ns =1 Ny =1 = (~1,0)

Figure 6. Polytope mutation on the toric diagram of dP;. The mutated side is such that its rank
does not change.

Figure 7 shows the mutation of the same polytope acting on a different side. This time,
the number of edges in the mutated side goes from one to two.

2.5 Untwisting

A central ingredient of our discussion will be the operation denoted untwisting which is
illustrated in figure 8 (see e.g [4, 15] for further discussion).

Bl Al Bl BZ
+
A2 BQ A2 Al

Figure 8. The untwisting map.

This operation exchanges zig-zag paths and faces. When doing so, it preserves the
bipartite graph but it generically changes the Riemann surface in which it is embedded.
The graph G on the new Riemann surface ¥ can be interpreted as defining a new BF'T, to
which we will refer as . We can summarize the action of the untwisting map as follows:

Q on X > Qon X
zig-zag path n; < face/gauge group i . (2.9)
face/gauge group i <> zig-zag path n;



n3(8)
(n3:m5) >0

\ n=(1,1)
n3(8)

3
(3, 7/]> <0

Figure 7. The toric diagram for dP; before and after the polytope mutation on 7n;, where we show
both the mutation with the condition (n;,n;) > 0 and (ng,7;) < 0.

3 A democratic tale of polytopes, quivers and mutations

In the previous section we reviewed BFTs and their associated polytopes. We also introduced
mutations for both of them. These objects and transformations can be naturally organized
into pairs, where untwisting serves as the bridge taking back and forth between them.

In order to organize our discussion, we will refer to the two sets of objects and mutations
connected by untwisting as the original and twin sides. Since there is a symmetry that
exchanges both sides, the distinction between what we call original or twin is arbitrary.

We will focus on the following objects:
Original

e (: original BFT, i.e. both quiver and superpotential, defined by G on X. Later we
will extend the class of objects we consider, allowing also for ) to be a non-toric
phase of these theories.

o A: toric diagram of the moduli space of the theory Q.

o 1;(Q): theory obtained by acting with a quiver mutation on node i of Q.

~10 -



e 11:(A): polytope obtained by acting with a polytope mutation on side iof A*
The analogous objects on the twin side are:

Twin

e Q: BFT obtained from @ by untwisting, namely defined by G on ¥. As previously
mentioned, we will later generalize the discussion to include non-toric phases.

o A: toric diagram of the moduli space of the theory Q.

. ,u;(@) theory obtained by acting with a quiver mutation on node i of Q. Here we
have used the fact that untwisting exchanges zig-zags and faces, so the nodes of Q
correspond to zig-zags of the original theory.

. ul(A) polytope obtained by acting with a polytope mutation on side i of A. Here we
have used the fact the zig-zags of Q, i.e. the edges of A, correspond to the nodes/faces

1 of Q.

Figure 9 illustrates these ideas with an explicit example. To be able to properly
represent the two sides, we have chosen an example in which the original and twin BFTs
are given by brane tilings on T? and, as a result, both polytopes are 2-dimensional. In this
case, this is guaranteed because the polytopes are reflexive, i.e. they have a single internal
point. Generically, however, even if one of the two sides corresponds to a brane tiling and a
2-dimensional polytope, the Riemann surface 3 for the BFT obtained by untwisting might
have a different genus and the corresponding toric diagram might not be 2-dimensional.
The original and twin theories correspond to dP» and PdP», respectively.

The two models in figure 9 are such that the number of faces and zig-zag paths in the
BFTs, equivalently the area and perimeter of the corresponding polytopes, are equal. This
property is not generic and it also follows from the fact that these polytopes are reflexive.

Many of the objects and transformations discussed above have been studied at length
in the literature, within specific contexts. For example, () and A have been considered in
the context of gauge theories on D-branes probing toric singularities [2, 28-33] or, more
generally, BFTs and their associated geometries [4, 5, 9]. In addition, the invariance of A
under 1;(Q) has been thoroughly investigated, since it corresponds to the invariance of the
moduli space of @) under Seiberg duality [2, 30-33]. Equivalently, it underlies the fact that
multiple gauge theories correspond to the same underlying geometry. Finally, Q, or more
precisely the embedding of G into a new Riemann surface obtained by untwisting, plays a
central role in mirror symmetry for D-branes at singularities [15]. The associated BFTs
were studied further in [4, 5, 9] and in relation with specular duality [34].

One of the main points that we would like to advocate in this paper is that the original
and twin sides, as well as the connections between them, must be studied in a unified way.

4For simplicity, we use p to indicate both quiver and polytope mutations. The meaning should always be
clear from the object they act on.

- 11 -



untwisting

i

i

Figure 9. An example of original and twin polytopes and quiver theories. The two sides of the
correspondence are connected by untwisting.

More broadly, this story falls into the general spirit underlying several recent developments
in physics: combinatorial objects, associated positive/convex geometries, the existence of
more than one perspective (with each of them making different aspects manifest or simple),
the existence of certain objects interpolating between them, etc.

The democratic perspective that we propose leads to new questions that are not often
considered. For example, it is natural to ask what a mutation of the original quiver theory
1i(Q) maps to on the twin side. This problem will be addressed in section 6.

4 Two projections of the matching polytope

We now discuss the connection between A and A and how they are obtained as two different
projections of a single underlying polytope. Throughout this section, we will assume that
Q and Q are toric phases, namely that they are BFTs defined by bipartite graphs. In turn,
as previously mentioned, this implies that A and A can be interpreted as toric diagrams.
In section 7, we will revisit this perspective and explain under which circumstances we
consider that it is more appropriate to regard these polytopes, more generally, as GTPs.

- 12 —



As explained in section 3, A and A are the toric diagrams for the moduli spaces
of the BFTs Q and Q, respectively.” Moduli spaces can be constructed in two stages.
The first step is the determination of the master space, which is defined as the space of
solutions to vanishing F-term equations [35, 36]. The moduli spaces of BFTs are toric
and perfect matchings are in one-to-one correspondence with fields in their gauged linear
sigma model (GLSM) description. Indeed, if chiral fields are expressed in terms of perfect
matchings as in (2.2)

c
P;
X = [ ob, (4.1)
pn=1

then F-term equations are automatically satisfied (see e.g. [4] for an explanation). The
master space of a BFT is therefore naturally parameterized in terms of perfect matchings.
In GLSM language, F-term conditions can be translated into certain U(1) charges of the
perfect matchings, which are encoded in a charge matrix Qg defined as

QF = Ker P. (4.2)

The toric diagram of the master space, which we will denote Ay, is given by Ker Q g, which
is the P-matrix. In the mathematics literature, Ajs is also referred to as the matching
polytope [37]. Since both theories are defined by the same graph and differ only in its
embedding into a Riemann surface, they share the same master space and hence Aj;.%

Let us illustrate our discussion with the examples in figure 9. The toric diagram for the
master space Ay is common to both theories and is given by the P-matrix. To visualize
the resulting geometry, it is convenient to row-reduce P, which in this case becomes

b1 P2 P3 P4 P5| 41 42 43 44 G5 g6

1 1 0 0|1 0 0 0 O 1
1 0 0 001 0 O 0 1 0

G — 1 1.0 0 0|0 O O 1 0 O (4.3)

0O 01 0 0j0O O 1 0 0 O
0O 0 -10 O0O|—-11 0 0 0 O
0O -1-10 10 0 0 O 0 O
-10 1 1 0j]0 0 0O O O O

Every column in this matrix gives the coordinates of a point in Ajs. The master space
is 7-complex dimensional and its toric diagram consists of 11 points. Moreover, the entries
in every column of Gast add up to 1, which implies that the master space is CY. Since A
lives on a hyperplane at distance 1 from the origin, we can project it down to 6 dimensions
by dropping one of the rows in (4.3). In order to visualize the resulting polytope, we still
need to project it to a lower dimension. Figure 10 shows one possible projection of Ay
to 3d.

5Here we are interested in the mesonic moduli spaces.
®Theories related in this way have been denoted specular duals in [34].

~13 -



According to (4.2), the kernel of P, or equivalently of Gpast, produces the charge matrix
implementing the F-term relations

P1 P2 P3 P4 P5| q1 42 43 44 45 (g6
1 0 01 0|0 O 0 —-1-120
Qr = O 1.0 0 1/{0 0 O -10 —119. (4.4)
0O 0 1 -11{0 1 -10 0 —1
0O 0o 0 00j1 1 0 0 -1-1

The moduli space is the space of solutions to both vanishing F and D-terms. Therefore,
it is a projection of the master space onto the subspace of vanishing D-terms. There is a
D-term for every gauge group in the theory, with chiral fields contributing to them according
to how they transform under the gauge symmetry. Moreover, given the map between GLSM
and chiral fields in (4.1), D-terms can be encoded in a charge matrix for GLSM fields, or
equivalently perfect matchings, under the gauge groups. We refer to [4] for details on how
this matrix is constructed.

Gauge groups in the original and twin BFTs correspond to faces and zig-zags of the
original brane tiling, respectively. We denote the resulting D-term charge matrices as Qp
and @ p. Concatenating each of them with @, we obtain the full charge matrices

®@p Q@p
The toric diagrams for the moduli spaces of the original and twin BFTs are then given
by
G = KerQ G =KerQ (4.6)

i.e. the columns in G and G give the positions of the points in A and A, respectively.
For the example at hand, we have

PL P2 P3 P4 D5 41 G2 43 G4 45 6 PL P2 P3 P4 P5| Q1 G2 43 94 G5 46
00 00 0|1 0 0—-10 0 1 -10 0 0|0 0 0 0 0 O
p=| 0 0 0 0 0|0 1 -1 0 0 O Qp=| 0 1 -1 0 0|0 0 0 0 0 O
00 00 0[0 0 1 0 —10 001 -10/0 0 0 0 0 0
00 00 0[0 00 0 1 —1 00 01 -1/0 0 0 0 0 0
(4.7)
which leads to A and A defined by
P1 P2 P3 P4 P5| 41 42 43 44 g5 g6 P1 P2 P3 P4 P5| 41 G2 43 44 G5 ge
G- 0 -1-10 10 0 O O O O G O 0 00 01 1 0-111
-10 1 1 0f{0 0 O O O O 0O 0o 00 0|-11 1 0 00
1 1 1 1 1|1 1 1 1 1 1 11 1 1 1|1 1 1 1 1 1

(4.8)
As for the master space, the entries in every column add up to 1, implying the moduli
spaces are CY. This also means that we can drop one row from these matrices, effectively
reducing the dimension of the polytope by 1. For these example, A and A turn out to be
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Figure 10. The matching polytope Aj; and the two toric diagrams A and A obtained from it by
imposing different D-terms. Every perfect matching corresponds to a distinct point in Aj,;. Since
Ay is 6-dimensional in this example, we imposed a 3-dimensional projection to visualize it. The
fact that some perfect matchings seem to coincide in Ay is an artifact of this projection.

2-dimensional, which correspond to CY 3-folds. These two geometries are known as dP,
and PdP,. Figure 10 shows the different polytopes involved in this example.
In summary A and A arise as two different projections of a single underlying polytope

Ay as follows
Matching Polytope A

vd N\
Gauging faces  Gauging zig-zags
! !
A A

where we have identified the gauge groups with the faces and zig-zags of the original
brane tiling.

5 Generalized toric polygons

For the subsequent discussion, it is interesting to enlarge the class of polytopes under
consideration. Generalized toric polygons (GTPs), also known as dot diagrams, were
introduced in [16] to study (p,q) 5-brane webs ending on 7-branes. In particular, GTPs are
useful tools for visualizing the s-rule, which controls how branes can terminate on others
while preserving supersymmetry. We now proceed with a basic review of GTPs and refer
the reader to [16-18] for detailed discussions. GTPs are convex polygons on a Z? lattice
consisting of two types of points, which we indicate as black and white. GTPs therefore
contain and generalize ordinary toric diagrams.

Let us first consider (p,q) 5-branes webs without 7-branes, i.e. webs in which the
external legs are semi-infinite 5-branes. In this case, the corresponding GTP is a standard
toric diagram, i.e. one involving only black dots, obtained from the (p,q)-web by graph
dualization. Figure 11 shows a (p, ¢)-web and the corresponding toric diagram.
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(a) / (b)
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Figure 11. A (p,q)-web and the corresponding triangulated toric diagram.

Let us now introduce suitable 7-branes to these configurations, such that the legs of
the (p, q)-web terminate on them. A (p,q) 5-brane can end on a [p, q] 7-brane. Adding 7-is
useful for visualizing the Higgs branch of the corresponding gauge theories. The 7-branes
can be encoded on the boundary of the GTP as follows. If two parallel legs of the (p, g)-web
terminate on the same 7-brane, we color the dot that separates the corresponding edges in
the polytope in white. Similarly, n consecutive edges on a given side of the GTP separated
by n — 1 white dots represent n parallel legs of the web terminating on a single 7-brane.
More generally, a side 7 of the polytope consisting of N> edges corresponds to IN; parallel

legs of the web, which can be grouped into sets of /-céi) legs that end on the a* 7-brane. This
results into a classification of the corresponding boundary conditions in terms of partitions
of N: or, equivalently, Young tableaux with N; boxes. Such configurations translate into
different ways of dlstrlbutlng Whlte dots within the correspondmg side of the GTP. For
a general partition {k;" ) } into J; sets, with Za 1 k:c(b) = N, the side of the GTP
under consideration splits into sets of k:((l) edges, in which the internal k,(l)
white. Here J; is the number of 7-branes associated to side i and the k‘c(li)’s are the numbers
of parallel 5-branes ending on each of them. Such a side of the GTP contributes an SU(J;)

factor to the global symmetry of the 5d theory engineered by such configuration and of

— 1 dots are

the 4d Gaiotto-type theory obtained from it by compactification. In the case of Gaiotto
theories, these boundary conditions correspond to different types of punctures.

Finally, once the boundary of the GTP is determined, its interior is constructed by
tessellating it with minimal triangles and trapeziums. These building blocks need to obey
certain conditions, which can be regarded as the propagation of the s-rule into the GTP.
This process can result in additional white dots in the interior of the GTP and we refer
to [16] for details. We will return to these conditions in section 10. Figure 12 show some
examples of GTPs and the dual brane configurations.

5.1 Polytope mutations and transformations of configurations with 7-branes

In the correspondence between polytopes and brane configurations outlined above, polytope
mutation is interpreted as a reorganization of the 7-branes. It is often standard to orient the
branch cuts of the 7-branes towards infinity, away from the 5-brane web that is suspended
from them, as shown in figure 13 for an example. The 7-branes are thus endowed with a
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Figure 12. Two GTPs and the corresponding brane configurations. Blue circles represent 7-branes.

cyclic ordering around the web, which coincides with the ordering of the corresponding
sides of the polygon.

The polytope mutation on side j corresponds to the following transformation of the
brane setup:

 The 7-brane j moves to the opposite side of the configuration. This reversal is captured
by the first line in (2.7).

e The relocation of 7-brane j can be attained by passing over the subset of the 7-branes
with either (j,7) > 0 or (j,4) < 0. In either case, when these 7-branes cross the branch
cut of brane j, their charges 7; pick a contribution proportional to 7; as given by the
second line of (2.7).

o The change in rank in (2.8) amounts to the brane creation effect when the 7-brane j
crosses the 5-brane web, and the subsequent brane-antibrane annihilation whenever
necessary.

Figure 14 shows an example of the brane web transformation associated to a polytope
mutation.
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Figure 13. The first brane configuration in figure 12, now explicitly showing the branch cuts for
the 7-branes as dashed red lines.

12

%
(1,0] Ui

....... (ng,m;) <0

-1

Figure 14. Polytope mutation and the corresponding transformation of a brane configuration.
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5.2 Toric diagrams, 5d gauge theories, BPS quivers and beyond

Brane tilings define quiver theories that can be interpreted as either the worldvolume theory
on D3-branes probing the toric CY3 [2] or as BPS quivers encoding the BPS spectrum
of the corresponding 5d theories [14]. The generalizations of brane tilings/BPS quivers
for GTPs are currently unknown. We expect the ideas presented in this paper are a step
towards answering this question.

6 Connecting quiver and polytope mutations

As mentioned in section 3, the unified treatment of the original and twin realms that
we propose raises new questions regarding relations between objects on both sides of the
correspondence. With this motivation in mind, in this section we will establish a connection
between the mutation of the original polytope at a side 1, p:(A), and the mutation of
the twin quiver on the corresponding node 1, u;(@). Due to the symmetry between the
original and twin sides, the same argument connects Mz(A) to the mutation of the original
quiver 1;(Q).

The alert reader might recognize that the transformation in (2.7) and (2.8) defining
the polytope mutation, often appears in geometric realizations of Seiberg duality/quiver
mutation, where the 7; represent brane charges (see e.g. [38]). Generally speaking, in all
these constructions, the dualization of the gauge group associated to the branes of type m;
is attained by inverting m; and “moving itover” all the branes with positive intersection
with it, i.e. <173, 7;) > 0.7 From the point of view of quivers, those are the nodes at the end
of arrows coming out of node ;.8 Equation (2.7) summarizes the transformation of brane
charges in this process and (2.8) states how the multiplicity of branes of type j needs to
change in order to preserve the total brane charge.

But what is the quiver whose mutation corresponds to polytope mutation? Let us first
consider the case in which all N; = 1, namely a polytope in which all sides have a single
edge. Clearly, this transformation is the mutation of a quiver whose nodes correspond to
zig-zag paths. But this quiver is precisely the theory @ obtained from the original one by
untwisting. We therefore conclude that the mutation of the original polytope corresponds
to the mutation of the twin quiver. Loosely speaking,

i (8) = (@) - (6.1)

To illustrate these ideas, let us revisit the example discussed in section 2.4. The original
polytope shown in figure 15 is dP;, whose quiver theory (equivalently dimer model) has

"In [39], the interesting possibility of moving n; over only a subset of the branes with (n;,7;) > 0 was
suggested. This operation was denoted fractional Seiberg duality. However, based on what happens if
we partially realize the brane reorganization associated to Seiberg duality in other simple setups, such as
Hanany-Witten configurations [40], it is natural to expect that such configurations would break SUSY.

8As in polytope mutation, we can alternatively move the branes with (773, ;) < 0, which correspond to
nodes in the quiver from which arrows go into node j.
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been studied at length [2, 30, 31, 41]. This theory is rather special, since the twin theory
obtained by untwisting coincides with the original one, namely Q = Q and A = A [34].9

s = (—1,-1) s = (1,-1)
Ny = 1 Ny = 1

Figure 15. Toric diagram for dP; and the corresponding twin quiver. This case is special in that
the twin and original quivers coincide.

We see that there are two qualitative different types of nodes in the quiver. Nodes 1 and
2, which have two incoming (outgoing) arrows and hence Ny = 2N.. Such nodes are often
referred to as toric nodes in the literature. Starting from a toric phase and dualizing a toric
node results in a new toric phase. On the other hand, Nodes 3 and 4 have more than two
incoming (outgoing) arrows and hence Ny > 2N..'0 In fact, the number of arrows between
two nodes 7 and j in the quiver Q can be directly computed from the toric diagram as the
intersection number (1;,7;) defined in (2.5), where the sign determines the orientation.!!
Starting from a toric phase and dualizing a non-toric node results in a non-toric phase.
Below we consider the mutation on each type of node and how the transformation of the

quiver correlates with what happen to the polytope.

Mutation of Q on a toric node

Let us mutate Q on node 1 (mutating node 2 is equivalent) and, correspondingly, the
polytope A on side 1. Figure 16 shows the effect of the polytope and quiver mutations.

9For all regular reflexive polytopes, there is at least one toric phase with the property that the original
and twin theories coincide. However, this feature is not generic. For example, it clearly cannot hold for
polytopes in which the area and perimeter are not equal, since this corresponds to a different number of
faces and zig-zag paths in the corresponding BFT and, consequently, different numbers of nodes in the
original and twin quivers. This special behavior is interesting in its own right, but it will not play any role in
our subsequent discussion. It merely simplifies our presentation, since everything reduces to a single theory
that has been thoroughly studied in the literature.

0Formally, we can also act with quiver mutations on nodes with N ¢t = Nc or Ny < Ne. In the first case,
the rank of the mutated node is zero, which corresponds to the disappearance of the associated side of A.
The second case, in which the rank of the mutated node becomes negative, will be considered in section 10.

1YWe will elaborate on this in section 8. These intersection numbers are insensitive to the symmetric part
of the adjacency matrix, namely to vector-like pairs of arrows connecting two nodes in opposite directions.
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Figure 16. Mutation of Q on a toric node and corresponding mutation of A.

As expected, the mutated twin quiver is again a toric phase. In fact, this example is
even more special, since Mi(@) is identical to Q up to a relabeling of the nodes. This is
nicely mirrored by the fact that the mutated polytope is equal to the original one. More
generally, the mutation of the twin quiver on a toric node might result on a different toric
phase. In such a case, the mutated polytope pz(A) would be different from A,'? but every
side would still have Ng.’ = 1, corresponding to a toric phase.

Notice that we applied quiver mutation to a node with rank 1. If we want to interpret
the mutation as Seiberg duality, nodes need to be non-abelian. This is simply addressed by
interpreting the N;’s as giving ranks only up to an overall common factor N. Alternatively,
we can simply regard the quiver mutation as a formal operation.

Mutation of Q on a non-toric node

Let us now mutate Q on node 3 (mutating node 4 is equivalent) and, correspondingly, the
polytope A on side 3. Figure 17 shows the effect of the polytope and quiver mutations.

In this case, the rank of the dualized node becomes Né:Q and therefore the mutated
twin quiver is a non-toric phase. Accordingly, the mutated polytope p3(A) exhibits a side
of length 2. Of course, the new quiver can also be determined from the polytope p5(A) by
computing the new intersection numbers <7I§> né)

It is worth noting that a discussion similar to the one in this section can be found
in [39]. That work investigated the realization of Seiberg duality on theories on D3-branes
probing toric CY 3-folds as Picard-Lefschetz transformations in the mirror geometry, where
they are related to mutations of (p, ¢)-webs (equivalently polytopes). The main difference
between those references and our work is that those earlier papers did not carefully take into
account the distinction between the two sides of the correspondence, namely between () and
Q or A and A. One reason for this is that [39] primarily focused on reflexive polytopes for

12We consider n-dimensional polytopes up to SL(n,Z) equivalences.
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Figure 17. Mutation of Q on a non-toric node and corresponding mutation of A.

which, as mentioned above, there is always a phase for which @Q and Q coincide. Moreover,
the concept of untwisting was not available in the pre-brane tiling era. In the language of
this paper, the work in [39] can be regarded as studying the equivalent problem of quiver
mutations y;(Q) as mutations on the twin polytope p;(A).

Interestingly, some earlier works incorrectly emphasized the apparent independence
of quiver and polytope mutations, see e.g. [27]. We have just shown that they are indeed
intimately related. The key point is to think in terms of twin quivers, instead of the

original ones.

7 Twin quivers for toric diagrams and GTPs

Motivated by the correspondence between polytope and quiver mutations, we observed
in the previous section that non-toric twin quivers Q are associated with polytopes A for
which some of the sides have more than one edge, i.e. N; > 1. However, it is still necessary
to think more carefully about the precise interpretation of this polytope. We will now argue
that the natural interpretation of the mutated polytope associated to a non-toric Q is not
as a toric diagram, but as a GTP.

We will illustrate our ideas with the example in the top right of figure 17. Let us forget
that this polytope was obtained by mutation and simply call it A. We will alternatively
interpret the polytope as a toric diagram and as certain GTP, and conclude that a non-toric
Q captures properties of the latter.

7.1 A as a toric diagram

Let us first think about A as a toric diagram, as shown in figure 18.a. We have applied an
SL(2,Z) transformation to take the toric diagram to a standard form. It is straightforward
to see that interpreting the polytope as a toric diagram contradicts the discussion in the
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previous section, whose salient feature is that it leads to a beautiful correspondence between
polytope and quiver mutations. We can construct a brane tiling for A regarded as a toric
diagram or, equivalently, the corresponding theory (). There are several efficient methods
for doing so, see e.g. [2, 4, 20]. The toric diagram under consideration corresponds to
X33 in the classification of [42], where the corresponding quiver theory was explicitly
constructed. We can simply borrow these results to construct the brane tiling, which is
shown in figure 18.'% A has four sides, but one of them contains two segments, so its
perimeter consists of five segments. This implies that the brane tiling for @ has five zig-zag
paths, as explicitly shown in figure 18. Interestingly, we can conclude this directly from A,
even without constructing Q. Correspondingly, we know in advance that in this case @ has
five nodes, each of them with N; = 1.

(a) (b)

S

=

Figure 18. Toric diagram A for X33 and the brane tiling for the corresponding quiver theory Q.

Once we have the brane tiling for @, the BFT for @ is constructed by untwisting,
as shown in figure 19. This procedure not only produces the twin quiver, but also its
superpotential. As expected, Q has five N; = 1 nodes. Clearly, this is not the non-toric
quiver in figure 17. However, we will see in section 7.3 that the two are related.

An interesting algorithm for deriving brane tilings for mutated polytopes, regarding
them as toric diagrams, was introduced in [27]. We will not explain the details of this
construction here and instead refer the reader to the original paper. As we mentioned
earlier, there are many ways of deriving a brane tiling directly from the new toric diagram.
However, this algorithm is special in that it connects the brane tiling for the initial toric
diagram to a specific new brane tiling determined by the mutation. We will use this feature
in the analysis of section 9.

7.2 A as a GTP

We propose that the non-toric twin quiver is naturally associated to a GTP, as shown in
figure 20. This correspondence is partly motivated by the facts that Q has a node for
each side of the polygon, the number of segments in each side correspond to their ranks,

13We constructed the toric phase with a minimal number of chiral fields. In section 9, we will discuss the
twin quivers associated to different toric phases.
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Figure 19. The BFT Q obtained by untwisting the brane tiling in figure 18. The bipartite graph is
now embedded on a genus 2 Riemann surface, as expected from A. We show the fundamental domain
and how the segments on its boundary are identified. On the right, we show the corresponding quiver.

and polytope and quiver mutations are elegantly unified in this interpretation. In coming
sections, we will argue that global symmetries and the s-rule also support this interpretation.
While we will not discuss its superpotential in further detail, when the non-toric phase is
obtained by mutation, it can be determined from the original theory by the standard rules
of Seiberg duality.

i ¢ 3

Figure 20. We proposed that the twin quiver @ associated to a GTP with white does is a non-toric
phase. Therefore, the polytope obtained in figure 17 by mutation should be interpreted as a GTP.

While we arrived to the correspondence between GTPs and non-toric twin quivers via
mutations, we propose that it holds in general. Namely, that toric diagrams and GTPs
correspond to toric and non-toric twin quivers, respectively. In section 8.1, we will elaborate
on the twin quivers for more general GTPs, in which not all the internal dots in a side
are white.

7.3 Connection between the toric diagram and the GTP

To simplify the discussion in this subsection, we will refer to the twin quivers for the toric
diagram and GTP as QT and QGTP, respectively. The previous examples show that both
twin quivers are related in a simple way, which can be summarized as follows:

. QT — QGTP: combine NV; rank-1 nodes into a single rank-/V: node.
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. QGTP — QT: split a rank-/NV; node into N; rank-1 nodes.

Figure 21 illustrates this process for the two twin quivers discussed in the previous
Sections 7.1 and 7.2. We can think about the process taking from QGTP to QT as adjoint
higgsing.'4

Qr Qere
Figure 21. Starting from QT? we obtain QGTP by combining nodes 3, and 3; into a single rank-2
node 3.

This connection provides an alternative algorithm for generating QGTP that does not
rely on mutations:

1. Regarding the polytope under consideration as a toric diagram, we construct the
corresponding brane tiling.

2. Acting on it with untwisting, we obtain the BFT for QT, which contains one node
for every zig-zag path of the original tiling/edge of the original toric diagram.

3. Finally, the N; nodes associated to every side with N; edges in the original toric

diagram are merged into a single node of rank V;.

8 Direct construction of the twin quiver for a GTP

It is possible to construct twin quivers directly from GTPs as follows:
1. For every side i of the GTP introduce a rank-N; node.

2. The arrows connecting every pair of nodes 7 and j are given by the intersection number
in (2.5), i.e.
p; 4
Az = (5, m;) = det ( t ) ; (8.1)
Pj 4q;
where the sign of A;; determines the orientation of the corresponding arrow(s). In our
previous discussions, we have adopted the convention in which Ag; > 0 corresponds
to 1 — j arrows and Agj < 0 corresponds to j — ¢ arrows.

1The field in the adjoint representation of node 7 that would be responsible for such higgsing is not part
of the quiver QGTP'
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Strictly speaking, this procedure is only sensitive to the antisymmetric part of the
adjacency matrix and therefore cannot detect the possible presence of bidirectional arrows
between nodes or adjoint fields. We will revisit this issue in section 9. In addition, it does
not produce the superpotential for Q. When Q is a toric phase, the superpotential can be
obtained by deriving the full BFT by untwisting. For non-toric Q, the superpotential can
be determined if the theory can be connected to a BFT by quiver mutations. It is therefore
reasonable to expect that a general method for deriving the superpotential from a GTP
without relying on mutations exists. We leave this interesting question for future work.

8.1 Twin quivers for general boundary conditions

So far we have discussed GTPs in which all dots on a side other than the corners are white.
This corresponds to all the 5-branes associated those edges terminating on a single D7-brane.
The discussion in the previous sections leads to a natural candidate for the twin quivers
corresponding to the more general boundary conditions mentioned in section 5, which are
represented by GTPs with more general arrangements of white and black dots on their
boundary. For each of side, we have a partition of N;, {kgi), e kf]i)}

In this case, we propose that Q is given by the straightforward generalization of the
method in section 8:

1. For every side 1 of the GTP introduce J; nodes, each of them with rank k:l(j).

2. Every node in the set ¢ is connected to every node in the set j by arrows given by the
intersection number (1;, ;).

We can also construct Q for general boundary conditions with a similar generalization
with the procedure in section 7.3, namely:

1. Regarding the polytope under consideration as a toric diagram, construct the corre-
sponding brane tiling.

2. Generate the BFT for QT by untwisting. This quiver has one node for every zig-zag
path of the original tiling/edge of the original toric diagram.

3. Finally, the IV; nodes associated to every side with IV; edges in the original toric

diagram are merged into J; nodes of rank kzg), cee kf,l)

Figure 22 shows an example of this construction.
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Figure 22. A GTP with general boundary conditions, for which we only show the boundary, and
the corresponding twin quiver.

Global symmetry. Twin quivers reflect the global symmetry of the 4d theories associated
to GTPs. These symmetries arise as permutations of nodes in the twin quiver. The simplest
example corresponds to the so called full or maximal punctures. A theory in which all
punctures are of this type correspond to a 7-brane for each segment on the boundary of the
polytope, namely to J; = N; for all i. In this case the GTP is a standard toric diagram,
there are N; nodes for each side i of the GTP and the quiver exhibits an S N; symmetry that
permutes them. This permutation group is the Weyl group of the SU(V;) global symmetry
that arises when the corresponding 7-branes coincide.

9 Twin quivers from different toric phases

In previous sections, to simplify our presentation, we often talked about the brane tiling
or BFT @ for an original toric diagram A. However, generically, a given toric diagram
is associated to multiple BF'Ts. These different theories are known as toric phases and
are connected to each other by mutations on toric nodes. Below, we investigate how the
non-uniqueness of Q reflects on the twin quivers @, focusing on the generic case of GTPs.
This issue impacts the different methods that we introduced for deriving twin quivers
for GTPs.

We will illustrate the discussion using explicit examples. In each case, we will construct
Q for a GTP in two independent ways, via mutation as in section 6 and using the method in
section 7.3. The method in section 8 does not use an original quiver theory @) as a starting
point, so its result cannot depend on toric phases. Our discussion will clarify how this
apparent discrepancy is accounted for by the known limitations of this method.

All the explanation that follows refers to subfigures in figure 23. Let us consider
d Py, whose toric diagram is shown in (a). This theory has been studied at length in the
literature and has two toric phases, which we will denote dPy ) and dPy 3 [2, 31, 41].
Additional details about the models considered in this section, including graphs before and
after untwisting, are presented in appendix A. Let us start from dP; (), as shown in ().
Mutating the toric diagram on side 1 results in the GTP in (d). We are interested in finding
the corresponding twin quiver. The first approach is summarized on the top row of the
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figure. Acting with untwisting on dP, ) we obtain the twin quiver in (c). Mutating this
quiver on node 1 produces the theory in (e), which is the twin quiver for the GTP we are
interested in. The mutation also produces the superpotential for this theory. Notice that,
as in previous examples, we do not assign an original quiver ) to the GTP. This is an
important open question that we revisit in the conclusions.

Let us derive the same theory with a different procedure, shown on the bottom row of
figure 23. This time, we first trade the GTP for a toric diagram, as in (f). We then build
a brane tiling for it, for which we can use several methods. This particular toric diagram
has multiple toric phases, i.e. multiple brane tilings associated to it. In order to single out
which toric phase to consider, we used the algorithm of [27]. Without going into details,
this construction generates a specific phase of the toric diagram, which is determined by the
original phase, in this case dP, (), and the mutation of the polytope under consideration.
The result is shown in (g). We then untwist this phase to obtain (k). Finally we combine
nodes 1, and 1, which correspond to the two edges on side 1, into a rank-2 node. The
result is again the quiver in (e). The fact that we obtained the same result in two different
ways is a nice test of the proposed algorithms.

pi(n) 2

Figure 23. Derivation of the twin quiver for the GTP in (d) via two methods, using dP, (,) as a
starting point. The top row uses the algorithm presented in section 6, while the bottom row uses
the one in section 7.3. Both methods produce the same twin quiver, which is shown in (e).
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We now repeat the analysis, but starting instead from the other toric phase, dP; ).
All steps are shown in figure 24. On the top row, we observe that untwisting dP () results
in the quiver in (¢) which is identical to the one in figure 23(c), with the exception of a
bidirectional arrow connecting nodes 2 and 5. Mutating this quiver on node 1 produces
the twin quiver for the GTP, which is shown in (e). As in the previous example, the
superpotential for this theory is also known. Interestingly, this quiver only differs from
the one in figure 23 by the presence of a bidirectional arrow between nodes 3 and 4. As
in the previous example, the alternative method shown in the bottom row produces the
same result.

Figure 24. Derivation of the twin quiver for the GTP in (d) via two methods, using dP; () as a
starting point. The top row uses the algorithm presented in section 6, while the bottom row uses
the one in section 7.3. Both methods produce the same twin quiver, which is shown in (e).

We conclude that twin quivers for a given GTP constructed using different toric phases
of @) differ by bidirectional arrows. While we reached this conclusion in terms of examples,
it can be understood on general grounds as follows. Here we focus on the approach on the
bottom row of figures 23 and 24. After replacing the GTP by a toric diagram, let us refer to
the two toric phases associated to it as Qr (,) and Qr 1,). The (sequence of) Seiberg duality
transformation(s) connecting Qr (,) and Qr(p,) corresponds to a reorganization of some of
the zig-zag paths that preserves their homology [20]. When doing so, the intersections
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between zig-zags change, but they appear/disappear in pairs, with opposite signs. Since
nodes in QT’(a) and QT(b) correspond to zig-zags, they only differ by bidirectional arrows.
This property is preserved when nodes are combined into higher rank ones to form QGTR(a)

and Qarp(m)-

10 The generalized s-rule and SUSY breaking in the twin quiver

In this section we explain how twin quivers elegantly capture the generalized s-rule of GTPs.
This observation not only provides a practical tool, but also gives additional support for
the correspondence between twin quivers and GTPs. As we will stress, our understanding
of this issue is not yet complete. In particularly, currently we do not always know the
superpotentials of non-toric twin quivers for general GTPs. As we mentioned earlier, one
exception is when the non-toric quivers can be obtained via mutations of toric phases.
Having said that, we feel that the ideas presented in this section are worth presenting in
their current form, since they may inspire further progress.

We propose that violation of the s-rule by the GTP corresponds to ordinary SUSY
breaking in the twin quiver. The latter corresponds to the presence of a node ¢ in the quiver
with V i <N If we further mutate the quiver on such a node, its rank becomes negative.
Generically, a sequence of quiver mutations might be necessary in order to make the SUSY
breaking nature of a twin quiver manifest. In terms of the twin quiver, the s-rules becomes:

e Rule 1: a GTP preserves SUSY if there is no duality frame of the corresponding
twin quiver that simultaneously has positive and negative ranks.

The simultaneous presence of positive and negative ranks corresponds to the coexistence of
branes and anti-branes.

10.1 The basic building blocks of GTPs

GTPs can be tessellated by two types of elementary building blocks: triangular and
trapezium GTPs with only black dots at their corners [16]. The generalized s-rule can then
be phrased as conditions that these basic constituents need to satisfy in order for SUSY
to be preserved. Below we discuss how the notion of SUSY breaking in the twin quiver
captures the s-rule for these basic GTPs.

10.1.1 Triangles

Let us first consider triangular GTPs. Without loss of generality, we can make sides 1 and
2 perpendicular, as shown in figure 25.
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N5 = ged(Ng, N3)
s = (Ni, N)
3 ng(Niv Ni)

Ny
M = (O~ 71)

Figure 25. General triangular GTP.

We therefore have

nm = (_LO) Ni
n; = (0,-1) Ns (10.1)

_ (N~7N~) _

3 = gcd(]l\/ij\fé) Nf’) - ng(N17 NQ)
where Nj follows from the fact that side 3 of the triangle intersects additional lattice points
if N7 and N3 are not coprime. With this information, we use the method in section 8 to
derive the twin quiver for a general GTP of this form, which we show in figure 26.

Figure 26. Twin quiver for a general triangular GTP.

As expected, the quiver is free of anomalies, namely every node has an equal number
of incoming and outgoing arrows. Without loss of generality, we can assume that N5 > Nj.
The number of flavors for node 2 is equal to Nj. Therefore, if the inequality is strict, i.e. if
N5 > Ni, node 2 has N 15 < N_3 and the quiver dynamically breaks SUSY. If we formally
apply a quiver mutation at node 2, we obtain the quiver in figure 27, which simultaneously
has positive and negative ranks. Arrows connected to a negative rank node should be
interpreted as going in the opposite direction. This phenomenon will also appear in some
of the subsequent examples.
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i

N5 — Ny
ng(Ni’ Ni)

Figure 27. Mutating the twin quiver in figure 26 on node 2, we obtain a quiver with both positive
and negative ranks.

We conclude that SUSY is only preserved if N; = N5 = N3. This is precisely the s-rule
condition for triangular GTPs derived in [16].
10.1.2 Trapeziums

Trapezium GTPs can always be taken to the form in figure 28. The normal vectors and
numbers of edges in each of the sides are

m = (07_1) Ni
Nz = (_170) NQ
(10.2)
nz = (1,0) N3
(N5 —Ns,N1)

Ny = (N5 — N3, Ny)
* 7 ged(N3 — Nj, Ny)

75 = (-1,0) 1

= (0 71)

Figure 28. General trapezium GTP.
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Using the method in section 8 we obtain the quiver shown in figure 29.

1 2
. S
ged(Ns — N3, Ny)

Ns — Ny
2 3 w
ged(Ns — N, Ny)
= N- -
i ! 3

ged(Ns — N, Ny)

Figure 29. Twin quiver for a general trapezium GTP.

The s-rule for general trapeziums is rather involved, so we will focus on explicit examples.
We will see that the treatment of trapeziums leads to a new rule that complements the
Rule 1 introduced above. Let us first consider N5 = 2 and N; = N3 = N; = 1. This
example is SUSY and has been considered in [16]. Figure 30 shows the GTP and twin
quiver in this case.

2
N

i i 3

Figure 30. Trapezium GTP with N5 = 2 and N; = N3 = N; = 1 and the corresponding
twin quiver.

From the quiver, we immediately see that NV 13 < N 37 SO this would naively result in
SUSY breaking. Let us consider this example more carefully as shown in figure 31. (a)
shows again the twin quiver for this GTP and (b) shows the result of mutating it on node 2.
When going from (a) to (b), we have deleted the chiral field connecting nodes 1 and 4. This
assumes that the superpotential of the theory in (b) contains a cubic coupling associated
to the (1,4,2) loop in the quiver. If such a term is present, after the mutation it would
become a mass term combining the field from 1 to 4 and a meson that goes in the opposite
direction, and both would disappear from the quiver, as we assumed. If this term was
not present, the twin quiver in (b) would contain a bidirectional arrow between nodes 1
and 4, which we show as a dashed orange arrow. Which of the two situations is realized
in this case affects the final quiver but does not change our conclusion regarding SUSY
breaking, so we leave this interesting question for future work. In what follows, we will
always assume that such mass terms are present and remove the massive fields. In all the
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examples considered in the paper, the presence of such fields may modify the final quiver
but does not affect our diagnostic of SUSY breaking. However, such fields are important
for determining whether SUSY is broken in more involved examples, since omitting them
we might incorrectly conclude that N i <Ng; for some node of the twin quiver.

As expected, the mutation on node 2 produces a negative N5 which, combined with the
other positive ranks, would seem to indicate SUSY breaking. However, we know that this
particular GTP is SUSY preserving. This example suggests that we have to add a new rule:

e Rule 2: Combine nodes with vanishing intersection and ranks of opposite signs.

We will say that a GTP breaks SUSY if there is a duality frame in which ranks of opposite
signs coexist even after applying Rule 2.

When combining nodes, we simply add their ranks. Moreover, since their mutual
intersection is zero, the intersections with the rest of the nodes in the quiver differ at most
by a sign. In this example, these nodes are 2 and 3. They have opposite ranks and hence
cancel each other. This operation is shown in figure 31 (¢). The final result only has ranks of
a given sign, in this case positive, so we conclude that the GTP is indeed SUSY preserving.
As mentioned earlier, whether we end up with two isolated nodes as in the figure or with a
bidirectional arrow connecting them depends on detailed structure of the superpotential.
In section 10.2 we will comment on the brane interpretation of the new rule.

i P! i 3 i
@)
e e
H3 combine
3 and 3 @)
4 3 4 3 4

(@) (b) ()

Figure 31. Mutation and node condensation on the twin quiver in figure 30.

Let us now consider a SUSY breaking trapezium, which was also discussed in [16]. In
this case, Ny = 2, N5 = 2, N3 = 1 and N; = 1. Figure 32 shows the GTP and twin quiver
for this model, which are specializations of the general ones in figures 28 and 29.

i 5
i
. 2
2
3
i i 23

Figure 32. Trapezium GTP with Nj =2, N5 =2, N5 = 1 and Nj = 1 (we only show its boundary)
and the corresponding twin quiver.
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We now consider the sequence of mutations shown in figure 33. At the starting point,
node 1 has N1 = N,g, so it disappears upon the mutation that takes from (a) to (b). The
next mutation on node 2 produces a negative rank that cannot be eliminated by Rule 2.

We therefore conclude that the GTP is SUSY breaking.

i 2 2
2
—> —>
14 13
i 2 3 i 23

(a) (b) (c)

N

Figure 33. Sequence of mutations on the twin quiver in figure 32.

10.1.3 A more general example

Let us finally consider an example that is not an elementary triangle or trapezium. Figure 34
shows the GTP and corresponding twin quiver. This GTP was considered in [16].

1

on
2
N
on
N

4 i 3

Figure 34. A general GTP (we only show its boundary) and the corresponding twin quiver.

Figure 35 shows a sequence of mutations and node condensation terminating in a SUSY
configuration. While we only present one possible manipulation of the twin quiver, it is
easy to convince ourselves that similar sequences of transformations making SUSY breaking
explicit do not exit. We therefore conclude that this GTP is SUSY, in agreement with [16].

The results for this model are encouraging. Having said that, it is natural to expect
that understanding the generalized s-rule in terms of twin quivers for general GTPs, beyond
the basic triangles and trapeziums, may require knowing not only their superpotential, but
also how tessellations of the GTP are captured by the quivers.

10.2 Further thoughts on brane motion and polytope mutation

The connection between polytope mutation and transformations of brane setups was
discussed in section 5.1. This correspondence underlies the twin quiver perspective on the
s-rule. Having said that, the way the brane transformations were presented in [16] might
appear superficially different from ours. In this section we briefly go over the analysis
presented in [16] for a couple of examples and explain how their transformations are indeed
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Figure 35. Sequence of mutations and node condensation on the twin quiver in figure 34.

equivalent to our approach. While the connection might be clear to many readers, it is
instructive to discuss it for completeness.

Figure 36 shows one of the simplest SUSY breaking triangular GTPs. Next to it, we
show the corresponding brane configuration. Two D5-branes stretch from the [—1, 0] 7-brane
to the web. Moving this 7-brane to the right, we are left with an anti D5-brane due to the
brane creation/annihilation mechanism. The full configuration thus breaks SUSY.

[2,1] [2,1]

[-1.0] [1,0]

=

1

[t

[0.-1] [0,—1]

Figure 36. A GTP that violates the s-rule and the corresponding brane configuration. SUSY
breaking becomes manifest in the final figure.

In the final configuration, notice that a (1,1) 5-branes becomes a vertical NS5-brane
when crossing the branch cut. This is the main difference between the approach in [16] and
the one that we used, which we described in section 5.1. In [16], when a 5-brane crosses a
branch cut, it is transformed by the monodromy and changes its slope. This is a schematic
way to represent the bending of the 5-brane on the curved background generated by the
7-brane. Instead, we phrased the same process as a change in the charge of the 7-branes
when crossing branch cuts. The two viewpoints are equivalent.
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Notice that in this perspective the fact that only a subset of the 7-branes (or equivalently
of the 5-brane legs) with either positive or negative <773, 1;) crosses and therefore is affected
by the branch cut of the 7-brane j becomes transparent. The intersection number <773, ;)
defined in (2.5) is simply the cross product of the vectors n; and 1;, which live on the
xy-plane. Therefore, the sign of the intersection distinguishes the two half planes separated
by the branch cut of j. Depending on where we locate the branch cut, only one of the two
sets of b-branes indeed crosses it.

Let us now consider the model in figure 37. Its brane analysis is very similar to the
previous example. In section 10.1.2, we analyzed the s-rule for this model in terms of
the twin quiver. Here we would simple like to point out that Rule 2, which regards the
cancellation of non-intersecting nodes in the quiver, corresponds in this case to branes 2
and 3, which decouple from the rest of the setup and can annihilate each other.

%) [

i
i 2 3 F
3 & U ® >
2 [-1,0] [1,0] [1.0]
3
i’ 1

Figure 37. A GTP that satisfies the s-rule and the corresponding brane configuration.

11 Conclusions and future directions

We have proposed a democratic treatment of two sets of quiver theories, polytopes and
geometries that normally appear in the study of BFTs. We referred to them as the original
and twin theories. The two sides of this correspondence are, in the simplest cases, connected
by the operation known as untwisting. Only a subset of these objects has been normally
considered in the literature. The unified perspective that we advocate gives rise to natural
new questions regarding connections between these objects, some of which we explored in
this paper.

With this motivation, we established a correspondence between the mutations of the
original polytope and the twin quiver (equivalently, the mutations of the twin polytope
and the original quiver). Mutations that result in non-toric phases of the twin quivers are
particularly interesting. We proposed that non-toric twin quivers are naturally associated
to GTPs and investigated various aspects of such correspondence. The evidence supporting
the proposal includes global symmetries, the ability of twin quivers to encode the s-rule,
and the connection between polytope mutations and transformations of configurations of
(p, q)-webs suspended from 7-branes. We introduced three different algorithms for deriving
twin quivers associated to GTPs. The first one is based on mutations, the second one uses
the interpretation of a GTP as a toric diagram as an intermediate step, and a final one
computes the twin quiver from basic information about the GTP. The last method has
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certain limitations, which we discussed. We also studied the relation between twin quivers
for GTPs obtained from different toric phases. Our analysis indicates that twin quivers
provide a powerful new perspective on GTPs.

There are several directions worth pursuing to confirm the proposed correspondence
between non-toric twin quivers and general GTPs and, if correct, to determine what else
can be learned from them. Here we mention some of the most interesting ones, which we
plan to revisit in the future:

e We associated twin quivers to full GTPs. It would be interesting to investigate how
tessellations of GTPs translate into the language of twin quivers.

e The current proposal is summarized in figure 38, where the question mark indicates
an unknown entry in the correspondence, the original theory @ for a generic GTP,
i.e. one that is not a toric diagram. Since in the case of ordinary toric diagrams the
quiver theory/brane tiling ) captures the BPS quiver of the associated 5d theory, we
expect that such a theory would also encode the BPS spectrum of the 5d theories for
generic GTPs. We anticipate that answering this question will require a description
of a non-toric Q in terms of a generalization of BFTs/brane tilings to non-toric
phases obtained from BFTs by mutations and an extension of untwisting to such
constructions. Both problems are extremely interesting in their own right.

1 3

! = 2

"untwisting”

A Q Q

Figure 38. We have proposed that a general GTP A is associated to a non-toric twin quiver
). What would the corresponding original theory @ be in this case remains an open question.
Addressing it would probably require a generalization of untwisting.

o Untwisting plays a central role in the connection between brane tilings and the mirror
configuration of intersecting D6-branes [15]. Recently, [43] introduced a geometric
realization of brane configurations including 7-branes, namely those associated to
GTPs, in terms of D6-branes in a Type ITA frame. It would be interesting to explore
the connection between this approach and our work, and whether the ideas in [43]
can shed light on the question raised in the previous bullet point.

While we have primarily focused on its implications for GTPs, we consider that the
unified perspective put forward in section 3 and elaborated throughout the paper can have
interesting applications in a much wider range of problems.
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A Additional details on some of the models

In this appendix we collect additional information on the models discussed in section 9. We
will present the bipartite graphs for the toric phases in figures 23 and 24. We include the
zig-zag paths in order to understand how untwisting connects the different theories. From
the bipartite graphs, one can not only recover the quivers that were given in section 9, but
also their superpotentials.

Models on the top row of figure 23

el
T N\
AR
@

{
\)

"5

Figure 39. BFTs for the models on the top row of figure 23.

Models on the bottom row of figure 23

Figure 40. BFTs for the models on the bottom row of figure 23.
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Models on the top row of figure 24

Figure 41. BFTs for the models on the top row of figure 24.

Models on the bottom row of figure 24

untwisting
—>

Figure 42. BFTs for the models on the bottom row of figure 24.
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