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Abstract
We consider a symmetric mixture of linear regressions with random samples from the pairwise
comparison design, which can be seen as a noisy version of a type of Euclidean distance geome-
try problem. We analyze the expectation-maximization (EM) algorithm locally around the ground
truth and establish that the sequence converges linearly, providing an `∞-norm guarantee on the es-
timation error of the iterates. Furthermore, we show that the limit of the EM sequence achieves the
sharp rate of estimation in the `2-norm, matching the information-theoretically optimal constant.
We also argue through simulation that convergence from a random initialization is much more deli-
cate in this setting, and does not appear to occur in general. Our results show that the EM algorithm
can exhibit several unique behaviors when the covariate distribution is suitably structured.
Keywords: Mixture of linear regressions, pairwise comparison, EM algorithm, Euclidean distance
geometry problem

1. Introduction

Mixtures of linear regressions are classical methods used to model heterogeneous populations (Jor-
dan and Jacobs, 1994; Xu et al., 1994; Viele and Tong, 2002) and have been widely studied in
recent years (see, e.g., Chaganty and Liang (2013); Chen et al. (2017); Balakrishnan et al. (2017);
Li and Liang (2018); Kwon et al. (2019); Chen et al. (2020)). A common approach is to apply a
spectral algorithm to initialize the parameters of interest, and then run a locally convergent non-
convex optimization algorithm; alternatively, one could even run the nonconvex algorithm from a
random initialization. These nonconvex optimization algorithms have been extensively analyzed
under Gaussian assumptions on the covariates (see, e.g. Balakrishnan et al. (2017); Klusowski et al.
(2019); Chen et al. (2019); Kwon and Caramanis (2020)), and it is known that they can exhibit
favorable behavior globally in some settings.

In many tasks such as ranking (Bradley and Terry, 1952), crowd-labeling (Dawid and Skene,
1979) and web search (Chen et al., 2013), however, measurements are taken as pairwise compar-
isons between entities, which renders the covariates inherently discrete. These designs or covariates
are far from Gaussian, and it is natural to ask how standard nonconvex optimization algorithms now
perform. Motivated by this question, we study how the celebrated expectation-maximization (EM)
algorithm behaves when estimating a mixture of symmetric linear regressions under the pairwise
comparison design. More specifically, we consider the following model of a symmetric mixture of
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two linear regressions with parameter vectors θ∗,−θ∗ ∈ Rd. For r = 1, . . . , N , suppose that we
observe (xr, yr) ∈ Rd × R satisfying

yr = zr x
>
r θ
∗ + εr. (1)

Here the covariates xr follow the pairwise comparison design, i.e., xr = eir −ejr for ir, jr ∈ [d] :=
{1, . . . , d}, where ei is the ith standard basis vector in Rd; zr ∈ {−1, 1} is a latent sign indicating
whether the observation is from component θ∗ or−θ∗; εr models additive noise, assumed to be i.i.d.
Gaussian for theoretical results. Our goal is to estimate the parameter vector θ∗ ∈ Rd.

The model (1) can also be seen as a special case of the Euclidean distance geometry prob-
lem (Gower, 1982; Liberti et al., 2014) and multidimensional scaling (Borg and Groenen, 2005),
and bears some resemblance to real phase retrieval (see Eldar and Mendelson (2014); Chen et al.
(2019) and the references therein). Let y′r = |yr| be the observation and ε′r = zrεr denote noise.
Because the sign zr is unobserved, (1) is equivalent to

y′r = |x>r θ∗ + ε′r|. (2)

Since xr = eir − ejr , we observe |θ∗ir − θ
∗
jr

+ ε′r| which is the distance between two parameters
contaminated by noise1. Hence our goal is to reconstruct θ∗1, . . . , θ

∗
d from pairwise distances. This

is a noisy version of the classical Euclidean distance geometry problem, also known as multidi-
mensional scaling (although the latter is more often used for a class of visualization methods). The
above model is also related to the problem of angular or phase synchronization (Singer, 2011; Zhong
and Boumal, 2018; Gao and Zhang, 2021), where angles θ∗1, . . . , θ

∗
d ∈ [0, 2π) are estimated from

noisy measurements of θ∗i −θ∗j mod 2π. Moreover, a heterogeneous version of angular synchroniza-
tion (Cucuringu and Tyagi, 2020) aims to reconstruct multiple groups of angles from a mixture of
pairwise differences between angles from unknown groups. For all the aforementioned observation
models, researchers have considered convex, spectral, and nonconvex fitting approaches.

As mentioned previously, our focus is on the EM algorithm (Dempster et al., 1977)—and we
discuss other estimation procedures briefly in Section 4—which has long been used for estimation
in latent variable models. Asymptotic convergence guarantees for EM to local optima in general
latent variable models are classical (Wu, 1983). For Gaussian covariates xr in (1), nonasymptotic,
local linear convergence of the EM algorithm for symmetric mixtures of linear regressions was
established in Balakrishnan et al. (2017). In the same setting, a form of “global convergence”—
where the EM algorithm is first initialized with a close relative called “Easy-EM” which is in itself
randomly initialized (see the background section to follow)—was established in Kwon et al. (2019).
There is a large literature on EM and other iterative algorithms for mixtures of regressions and
related models; see, e.g., Daskalakis et al. (2017); Xu et al. (2016); Li and Liang (2018); Klusowski
et al. (2019); Wu and Zhou (2021); Dwivedi et al. (2020); Kwon and Caramanis (2020); Kwon et al.
(2021) and references therein. EM has also been analyzed in progressively more complex settings,
most recently in Gaussian latent tree models (Dagan et al., 2022). Our paper should be seen, in
spirit, as extending this line of investigation.

1.1. Contributions and organization

In this paper, we apply the EM algorithm to model (1) and establish its local linear convergence
around the ground truth θ∗, proving that once the algorithm is initialized sufficiently close to the

1. It is more natural to have the noise ε′r inside the absolute value because the distance is nonnegative.
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ground truth θ∗, it converges linearly fast to a fixed point θ̂. Moreover, we provide optimal bounds
on the `∞ and `2 estimation errors achieved by the EM fixed point in estimating θ∗. Despite the
extensive study of the EM algorithm for mixture models, our results differ from existing works in
several crucial ways.

First, we establish entrywise guarantees on the EM algorithm—our results hold in the stronger
`∞-norm, not just the `2-norm. Second, and in contrast to several results in the Gaussian case for
mixtures of linear regressions (Kwon et al., 2019; Chandrasekher et al., 2021), we do not assume that
each iterate of the EM algorithm takes in a fresh sample, i.e., our convergence guarantee is not based
on sample-splitting2. Third, our result for the `2-norm is sharp in that it also is optimal in terms of
the constant factor, while most previous results for EM only achieve the optimal rate up to constant
factors. Fourth, our simulation results show that EM’s convergence from a random initialization
is quite delicate: convergence does not occur in general and this stands in sharp contrast to the
case with Gaussian covariates. On a technical level, our results are enabled by analyzing the finite-
sample EM operator directly, whereas many previous results proceed through the population update.
En route to establishing our results, we analyze the `∞→∞ operator norm of the psedoinverse of the
sample covariance in this problem, a result that may be of independent interest (see Section 5).

The rest of this paper is organized as follows. In Section 2, we formally introduce our assump-
tions and the EM iteration that we study. In Section 3, we state and discuss the main theorems
proved in this paper. In Section 4, we present a host of experiments showing that the conditions
appearing in our theorem statements are indeed necessary in some respect. These experiments also
confirm that global convergence of EM in this setting is a delicate phenomenon and does not ap-
pear to occur in general. Section 4 also discusses other algorithms and the related literature, and
discusses the (non-)identifiability of mixtures with more than two components. We conclude with a
sketch of the proof techniques in Section 5. Full proofs can be found in Section A.

1.2. Notation

Let d and N be positive integers such that 3 ≤ d ≤ N throughout the paper. Define [d] :=
{1, . . . , d} and

(
[d]
2

)
:= {(i, j) : i, j ∈ [d], i < j}. Let 1 denote the all-ones vector in Rd, and letH

denote the orthogonal complement of 1 in Rd. We use the standard asymptotic notation O(·) and
o(·) as N → ∞; we use Op(·) and op(·) when the asymptotic relation holds between two random
variables with high probability. We also write aN � bN if aN = o(bN ), aN � bN if bN = o(aN ),
and aN . bN if aN = O(bN ). For a matrix A ∈ Rd×d, we denote the trace of A by tr(A).

2. Background and problem formulation

For the results to follow, we consider model (1) with the following assumptions.

Assumption 1 In (1), the covariates are xr = eir − ejr where (ir, jr)
N
r=1 are i.i.d. and uniformly

random in
(

[d]
2

)
= {(i, j) : i, j ∈ [d], i < j}. The noise terms (εr)

N
r=1 are i.i.d. N (0, σ2) and

independent from the covariates. Moreover, 1>θ∗ = 0, i.e., θ∗ ∈ H where H is the orthogonal
complement of the all-ones vector 1 in Rd.

The assumption on the covariates states that the comparisons are chosen uniformly at random and
with replacement among all pairs of indices. There is no loss of generality in assuming 1>θ∗ = 0,

2. Some results of Balakrishnan et al. (2017) do not assume sample-splitting but are suboptimal in the low-noise regime.
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because the model (1) is invariant under any constant shift of θ∗: If θ∗ is replaced by θ∗ + c1
for a constant c ∈ R, the response yr stays the same. Define the sample covariance matrix of the
covariates to be

Σ̂ :=
d− 1

2N

N∑
r=1

xrx
>
r . (3)

Note that 1 is in the kernel of Σ̂ andH is an invariant subspace of Σ̂. Therefore, Σ̂ can be viewed as
a linear map onH. Let Σ̂† denote the pseudoinverse of Σ̂; it is the true inverse of Σ̂ if Σ̂ is restricted
toH and is invertible. Moreover, the normalization d−1

2N is chosen so that E[Σ̂] ∈ Rd×d has entries

(E[Σ̂])ij =

{
(d− 1)/d if i = j,

−1/d if i 6= j.

It is not hard to check that E[Σ̂] is the identity map onH.
It is convenient to define the so-called “Easy-EM” operator Q̄ : H → H (Kwon et al., 2019)

and write the EM operator Q̂ : H → H in terms of it:

Q̄(θ) :=
d− 1

2N

N∑
r=1

tanh
(yr x>r θ

σ2

)
yrxr, (4a)

Q̂(θ) := Σ̂†Q̄(θ). (4b)

See Balakrishnan et al. (2017) for a derivation of the EM operator. Starting from an initialization
θ(0), the EM iteration is then given by

θ(t+1) := Q̂(θ(t)) =

( N∑
r=1

xrx
>
r

)† N∑
r=1

tanh
(yr x>r θ(t)

σ2

)
yrxr, t ≥ 0. (5)

3. Main results

It is helpful to define the following class of parameter vectors. For a constant β > 0, let

Θ(β) :=

{
θ ∈ H : θ1 ≤ · · · ≤ θd, |θi − θj | ≥ β

|i− j|
d

for any (i, j) ∈
(

[d]

2

)}
. (6)

Operationally, the set Θ(β) is a natural family of parameters to consider. First, up to a relabeling of
the coordinates, there is no loss of generality in restricting our attention to parameter vectors with
nondecreasing entries. Second, each parameter vector in Θ(β) has its ith and jth entries separated
by at least β |i−j|d . This separation condition is imposed to simplify the statement of our main results.
It also appeared in, e.g., Chen et al. (2022), where the pairwise comparison design was studied. Our
full results in Section A are more general, assuming a condition weaker than that in (6) (see (36b)
in particular). In short, for every i ∈ [d], we require the set {j ∈ [d] : |θi − θj | ≤ c1β} to contain
at most c2 d elements for some constants c1, c2 > 0; in other words, θi should not have too many
“neighbors” θj . This weaker condition is satisfied with high probability if θ∗i are i.i.d. uniform
random variables in [−1, 1], for example.

With this setup in hand, we are now ready to state our main results. Our first result shows that
the EM sequence {θ(t)}t≥0 converges linearly to a limit θ̂ around the ground truth θ∗, and provides
an estimation error guarantee in the `∞-norm with high probability.
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Theorem 1 Consider the model in (1) satisfying Assumption 1. For any fixed constants ρ,D > 0,
there exist constants N0, c1, C2 > 0 depending only on ρ and D such that the following holds. For
β > 0, suppose θ∗ ∈ Θ(β) as defined in (6). Suppose N ≥ max{d1+ρ, N0} and σ ≤ c1β. Fix
θ(0) ∈ H such that ‖θ(0) − θ∗‖∞ ≤ c1β. Let {θ(t)}t≥0 be the EM iterates defined in (5). Moreover,
let

τ := C2σ

√
d

N
logN, T := max

{
0,

⌈
log4/3

(
‖θ(0) − θ∗‖∞

4τ

)⌉}
.

Then it holds with probability at least 1−N−D that

• there exists θ̂ ∈ H such that Q̂(θ̂) = θ̂ and ‖θ̂ − θ∗‖∞ ≤ 4τ ;

• the sequence {θ(t)}t≥0 converges to θ̂;

• ‖θ(T+t) − θ̂ ‖∞ ≤ 8τ/2t for all t ≥ 0.

Theorem 1 is proved in Section A.6 and is a result of Proposition 17. We begin with a discussion
of the conditions in the theorem. First, the setting is nearly high-dimensional because we only
require N ≥ d1+ρ for an arbitrarily small ρ > 0. We remark that it is possible to improve this
condition to N ≥ d · polylog(d) by a more careful application of Proposition 17 at the cost of
complicating the conditions on the other parameters (see Section C for details). Focusing on the
setting where β is a constant for clarity, we have |θ∗i − θ∗j | � |i − j|/d, and θ∗i = O(1) for all
i, j ∈ [d]. The constant-sized noise condition σ ≤ c1β is mild, because it should be compared
against the minimum signal strength |θ∗i − θ∗i+1| � 1/d (see Eq. (6)). Next, the initialization θ(0)

has to be close to the true parameter vector θ∗ so that ‖θ(0) − θ∗‖∞ ≤ c1β. This is the sense in
which the convergence guarantee is local, and we conjecture that some such condition is necessary
(see Section 4 for experimental verification of this conjecture).

With these conditions assumed, we now explain the conclusions of Theorem 1. It is useful to

note that τ � σ
√

d
N logN is the optimal rate3 we expect to have when estimating each entry θ∗i of a

d-dimensional vector fromN samples with probability 1−N−D. It is easiest to interpret Theorem 1
as a two-stage result for the EM iteration:

• First, the quantity T indicates that it takes at most a logarithmic number of steps for the EM
iteration to get from distance ‖θ(0)− θ∗‖∞ to an O(τ)-neighborhood around the ground truth
θ∗. By the bounds ‖θ̂ − θ∗‖∞ ≤ 4τ and ‖θ(T ) − θ̂‖∞ ≤ 8τ (by taking t = 0 in the last
statement), we have ‖θ(T ) − θ∗‖∞ = O(τ). Hence, θ(T ) already achieves the optimal rate of
estimation in the `∞-norm.

• Second, beyond time T , the EM sequence {θ(t)}t≥0 eventually converges to a limit θ̂, and
the rate of convergence is linear. In other words, the EM operator is locally contractive.
Moreover, the limit θ̂ lies in the 4τ -neighborhood of θ∗ in the `∞-norm.

Finally, we once again remark that the theorem does not require any resampling for the EM iteration.
The conclusions of the theorem hold simultaneously on a high-probability event.

Our second theorem shows that the limit θ̂ of the EM sequence achieves the sharp estimation
error in the `2-norm with high probability in the low-noise regime, in that the constant is also sharp.

3. In fact, this is the optimal rate even if we consider linear regression without a mixture, i.e., where all the signs zr are
known a priori.
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Theorem 2 In the setting of Theorem 1 (which in particular assumes N ≥ d1+ρ for fixed ρ > 0),
we additionally assume σ � β

(logN)2
and d � logN . Then it holds with probability at least

1−N−D that

‖θ̂ − θ∗‖22 ≤ (1 + op(1))σ2d− 1

2N
tr(Σ̂†).

The proof of Theorem 2 is deferred to Section A.6. Compared to the noise condition σ ≤ c1β
in Theorem 1, here we need σ to be smaller by a polylogarithmic factor, and an additional, mild
condition on the dimension. While we assume a random design of xr and thus the right-hand side
of the above equation is random, the result can be understood as follows. Conditional on a typical
realization of the covariates (xr)

N
r=1, the squared error ‖θ̂ − θ∗‖22 is within a (1 + o(1)) factor of

σ2d− 1

2N
tr(Σ̂†) = σ2 tr

(( N∑
r=1

xrx
>
r

)†)
(7)

with high probability over the randomness of the noise (εr)
N
r=1. Note that (7) is the optimal rate

even for vanilla linear regression with a fixed design (see Section D for more discussion). As a
result, we obtain the optimal `2 error (including the sharp constant) for the EM algorithm provided
that the initialization is sufficiently informative and the noise level is sufficiently small.

4. Experiments and discussion

In this section, we further discuss our model and results, related methods, and possible extensions.
Our discussion is accompanied by numerical experiments.

4.1. Failure of random initialization

Theorem 1 requires that the initialization of the EM algorithm satisfies ‖θ(0) − θ∗‖∞ ≤ cβ for a
constant c > 0. We believe that this is not an artifact of the analysis and that some such condition
is necessary. To test this hypothesis, let us numerically test if a “random” initialization suffices for
the convergence of EM.

For simplicity, we take θ∗i = i
d −

d+1
2d for i ∈ [d] so that |θ∗i − θ∗j | = |i−j|

d . Then θ∗ ∈ Θ(β)

with β = 1. Let θ ∈ Rd be a random vector whose entries are i.i.d. uniform in [−0.5, 0.5]; then
define θR = θ − a1 where the scalar a ∈ R is chosen so that 1>θR = 0. The vector θR is a
canonical random initialization, because the entries of both θR and θ∗ are approximately in the
range [−0.5, 0.5], yet θR is random. For η ∈ [0, 1], define θ(0) = θ(0)(η) = (1−η)θ∗+η θR, which
interpolates between the ground truth θ∗ and the random vector θR. We use θ(0) as the initialization
of the EM algorithm and study its performance. Note that

‖θ(0) − θ∗‖∞ = η ‖θR − θ∗‖∞

which is approximately η. Our theory predicts that the EM algorithm performs well when η is a
small constant. On the other hand, if a random initialization is not sufficient, then the EM algorithm
will have poor performance when η is close to 1. We indeed observe this phenomenon in the left
plot of Figure 1.
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Figure 1. Left: Pairwise-comparison design. Right: Gaussian design. We plot the initial squared
error ‖θ(0) − θ∗‖22 (dashed red line) and the eventual squared error ‖θ(T ) − θ∗‖22 (solid blue line)
of the EM algorithm against a varying randomness parameter η in the initialization. The experiment
for each value of η is averaged over 100 repetitions, and the error ‖θ(T ) − θ∗‖22 for each repetition is
indicated by a yellow cross.

To be more precise, we set d = 50, N = 1000, and σ = 0.1. For η ∈ {0.1, 0.2, . . . , 1}, we start
from θ(0) = θ(0)(η) and run the EM algorithm for T = 100 steps4. We plot the initial squared error
‖θ(0)−θ∗‖22 (dashed red line) and the eventual squared error ‖θ(T )−θ∗‖22 (solid blue line)5, averaged
over 100 independent repetitions for each value of η. The error ‖θ(T ) − θ∗‖22 for each repetition is
indicated by a yellow cross. As shown by the left plot of Figure 1, an initialization with η ≤ 0.5
leads to an extremely small error ‖θ(T )− θ∗‖22 with high probability, while for an initialization with
a larger η, the EM algorithm fails to achieve a small error with constant probability.

The failure of random initialization in the setting of the pairwise comparison design stands in
sharp contrast to its behavior for Gaussian designs, as confirmed by the right plot of Figure 1. The
setup and parameters of this experiment are exactly the same as before, except that we now take
i.i.d. covariates xr ∼ N (0, 2

dI), where the normalization 2
d is chosen to match the scaling of xr in

Assumption 1. As we see in the figure, the EM algorithm achieves a small error ‖θ(T ) − θ∗‖22 with
high probability6 even if η is close to 1. We remark that there is a sizable literature on the success
of iterative algorithms with random initialization for a variety of problems, such as phase retrieval
(Chen et al., 2019), Gaussian mixtures (Dwivedi et al., 2020; Wu and Zhou, 2021), mixtures of log-
concave distributions (Qian et al., 2019), and general regression models with Gaussian covariates
(Chandrasekher et al., 2021). However, Gaussianity or continuous density is typically part of the
assumption, and analyzing iterative algorithms beyond the Gaussian setting appears to be a generally
more challenging problem. See also Dudeja et al. (2022); Wang et al. (2022) for recent work in this
direction in the framework of approximate message passing.

4. The EM algorithm typically converges within a few steps, especially when the initialization is close to the ground
truth, but we make the conservative choice T = 100 to ensure convergence.

5. Since the model (1) is invariant if θ∗ is replaced by −θ∗, convergence to a neighborhood of −θ∗ should also be con-
sidered as a success. Hence, we actually compute the error min{‖θ(T )−θ∗‖22, ‖θ(T )+θ∗‖22} in all our experiments.
For brevity, we do no mention this elsewhere.

6. The occasional failures of random initialization with η = 1 can be explained by a few factors, such as our moderate
choices of d and N , the nontrivial error probability, etc.
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An interesting open problem is to offer an explanation for the contrasting behavior of the ran-
domly initialized EM algorithm given the two types of covariates. We speculate that random ini-
tialization tends to fail if the covariates are discrete and sparse. Note that our covariates xr are
supported in the highly structured set {ei − ej : (i, j) ∈

(
[d]
2

)
}, unlike the Gaussian covariates

which are in general positions in Rd. However, we do not have a theoretical explanation for this
phenomenon and leave the question to future work.

4.2. Spectral method, initialization, and comparison

Spectral methods form another popular class of algorithms for tackling mixture models and the
Euclidean distance geometry problem. One canonical spectral method for localizing points given
their pairwise distances is the classical multidimensional scaling (Borg and Groenen, 2005). It takes
the following form for model (1). Define a matrix D ∈ Rd×d that stores noisy pairwise distances by

Dij = Dji =
d(d− 1)

2N

N∑
r=1

(y2
r − σ2)1{xr = ei − ej}.

Since E[y2
r − σ2 | xr = ei − ej ] = E[(θ∗i − θ∗j )2 + 2εrzr(θ

∗
i − θ∗j ) + ε2r − σ2 | xr] = (θ∗i − θ∗j )2,

we see that
E[Dij ] = (θ∗i − θ∗j )2.

In other words, E[D] stores the pairwise distances between the entries of θ∗. Let J = I − 1
d11

>

where I is the identity matrix in Rd×d and 1 is the all-ones vector in Rd. Using that E[D] is the
pairwise distance matrix, it is not hard to verify that

−1

2
J E[D]J = θ∗(θ∗)>,

which is the Gram matrix of θ∗. Therefore, if (λ1, v1) is the leading eigenpair of the matrix−1
2JDJ ,

then we can use θ̃ =
√
λ1 v1 as an estimator of θ∗.

Using standard spectral perturbation theory and random matrix theory, it is straightforward to
analyze the error θ̃ − θ∗ in either the `2 or `∞ norm (see, e.g., Chen et al. (2021)). We do not
provide a theoretical analysis of θ̃ in this work, but let us discuss it qualitatively. There are two
sources of error in the spectral estimator θ̃: the noise εr, which is inevitable, and the incompleteness
of observations. In the regime N <

(
d
2

)
, if we never have xr = ei − ej for a pair of indices (i, j),

then Dij = 0 while E[Dij ] = (θ∗i − θ∗j )2. As a result, the spectral estimator θ̃ does not recover
θ∗ even if σ → 0. On the other hand, the limit of the EM algorithm θ̂ recovers θ∗ as shown by
Theorem 2 in this regime. Nevertheless, this does not mean that the spectral estimator is useless,
because it can be used as an initialization of the EM algorithm. The experiment exhibited in the left
plot of Figure 2 confirms these observations.

In the left plot of Figure 2, we set d = 50, N = 1000, and let the noise variance σ2 vary from
0.002 to 2. Let us first focus on the performance of estimators in the small-noise regime. When
σ → 0, the squared error ‖θ̃− θ∗‖22 of the spectral method (dash-dotted red line) does not converge
to zero. However, we can set θ(0) = θ̃ and run the EM algorithm from this initialization for T = 20
steps. The squared error ‖θ(T )−θ∗‖22 (solid blue line) goes to zero as σ → 0. Recall that Theorem 2
predicts a sharp optimal rate (7) for the EM algorithm in the small-noise regime. We also plot this
optimal error (dashed yellow line) and observe that it is very close to the actual error ‖θ(T ) − θ∗‖22

8
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Figure 2. Left: Varying noise standard deviation. Right: Varying sample size. The log-log plots show
the performance of different algorithms against the varying parameters. The squared error ‖θ̃− θ∗‖22
for the spectral estimator is shown in dash-dotted red lines. The EM and Easy-EM algorithms are
initialized with θ(0) = θ̃ and run for T = 20 steps. Their eventual squared errors ‖θ(T ) − θ∗‖22 are
shown in solid blue lines and dotted green lines respectively. The experiment for each value of σ2 or
N is averaged over 100 independent repetitions. The theoretically predicted optimal rate is shown in
dashed yellow lines.

as σ → 0. In addition, we consider the Easy-EM iteration with θ(t+1) = Q̄(θ(t)) where Q̄ is defined
in (4a). Compared to the EM iteration, Easy-EM does not have the multiplication by Σ̂† at each
step, which turns out to be crucial: We observe that the Easy-EM algorithm (dotted green line) fails
to achieve a small error as σ → 0.

Next, we consider the regime of large noise in the left plot of Figure 2. The error of the EM
algorithm no longer follows the sharp rate predicted by Theorem 2, which suggests that some con-
dition on the noise may be necessary for this theorem (although the condition σ � β

(logN)2
we

impose may not be optimal). Nevertheless, the EM and Easy-EM algorithms still improve upon the
spectral initialization, and all the three algorithms appear to differ only by a constant factor from
the optimal rate as σ2 grows.

To further investigate the rate of estimation achieved by these algorithms, we consider another
experiment shown in the right plot of Figure 2. We take d = 50, σ = 0.1, and let the sample size
N vary from 500 to 2000. We again run the EM and the Easy-EM algorithm from the spectral
initialization θ(0) = θ̃ for T = 20 steps, and plot the squared errors. Given that the noise is small,
the optimal rate from Theorem 2 accurately predicts the actual error of the EM algorithm. The
spectral estimator and the Easy-EM algorithm clearly have worse performance, but their rates of
estimation appear to be optimal as N grows.

4.3. Extensions of the model

There are several directions for extending our model. For example, one may consider a mixture of
k linear regressions

yr = x>r θ
[`r] + εr,

where we have θ[1], . . . , θ[k] ∈ Rd and (`r)
N
r=1 are i.i.d. from the distribution

∑k
`=1w`δ` with

weights satisfying w` ≥ 0 and
∑k

`=1w` = 1. When the covariates xr are from a discrete distribu-
tion, even the identifiability of the mixture model is a nontrivial open problem.

9
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To see the difficulty of the problem, let us consider a negative example. Suppose that we have a
mixture of k = 3 equally weighted linear regressions, and the covariates are pairwise comparisons
xr = eir − ejr for ir, jr ∈ [d]. For simplicity, suppose that the noise εr is zero. Let

θ[1] =


1
2
θ3
...
θd

 , θ[2] =


3
3
θ3
...
θd

 , θ[3] =


2
4
θ3
...
θd

 , θ̃[1] =


2
2
θ3
...
θd

 , θ̃[2] =


1
3
θ3
...
θd

 , θ̃[3] =


3
4
θ3
...
θd

 ,

where the unspecified entries θ3, . . . , θd can take any values. It is not hard to see that, even if we
observe the sets {

θ
[`]
i − θ

[`]
j : ` = 1, 2, 3

}
for all (i, j) ∈

(
[d]

2

)
with no noise, the two mixtures {θ[`] : ` = 1, 2, 3} and {θ̃[`] : ` = 1, 2, 3} yield the same sets of
observations. As a consequence, the mixture model with 3 components is not identifiable with the
pairwise comparison design.

Therefore, to have an identifiable mixture model with multiple components, it is necessary
to assume a richer design of covariates xr. Instead of pairwise comparisons, one may consider
comparisons between multiple objects as in the Plackett–Luce model (Luce, 1959; Plackett, 1975)
or groups of pairwise comparisons used for mixtures of permutations (Mao and Wu, 2022). We
leave this interesting topic to future research.

Beyond a mixture of linear regressions with additive noise, one may consider a mixture of
generalized linear regressions (see, e.g., Heumann et al. (2008); Sun et al. (2014); Sedghi et al.
(2016)), and in particular, the case of binary response is of practical interest in classification tasks.
Similar to the linear setting, existing theories for mixtures of generalized linear models are often
based on a Gaussian or continuous design. In the discrete setting, there have been a series of recent
works on mixtures of the Placket–Luce or multinomial logit models motivated by ranking tasks (see,
e.g., Zhao et al. (2016); Mollica and Tardella (2017); Chierichetti et al. (2018); Liu et al. (2019);
Zhao et al. (2022)). In particular, Zhang et al. (2022) show that a mixture of two Bradley–Terry–
Luce models (i.e., logistic regressions with the pairwise comparison design) are identifiable except
when the parameters are in a set of measure zero. Very recently, Nguyen and Zhang (2023) provide
a spectral initialization and an accurate implementation of the EM algorithm for learning a mixture
of Plackett–Luce models. It would be interesting to analyze the convergence of iterative algorithms
such as the EM algorithm for these models.

Along another direction, one may extend the model (2) to the noisy Euclidean distance geometry
problem in dimension m > 1. Namely, we aim to estimate vectors θ∗1, . . . , θ

∗
d ∈ Rm based on

incomplete, noisy observations of pairwise distances ‖θ∗i −θ∗j‖2. While this problem and its variants
have long been studied (see the survey by Liberti et al. (2014)), progress in understanding the sample
complexity has been made only in recent years using tools of matrix completion (Lai and Li, 2017;
Tasissa and Lai, 2018), and the theory is even less complete in the noisy setting (Drusvyatskiy
et al., 2017; Sremac et al., 2019). Compared to semidefinite programs used in many of these works,
iterative algorithms are faster to run, but remain to be understood for this problem.
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5. Proof techniques

We now informally discuss the strategies and key ingredients in the proofs of our main results; full
proofs are provided in Section A.

5.1. Contraction in the `∞ norm

The first main result of this work is the linear convergence of the EM iteration in the `∞-norm in
Theorem 1. To shed light on this result, let us first consider the zero-noise limit of the EM algorithm
for simplicity. Suppose that the noise εr is zero in (1). Letting σ → 0 in (5), we see that the EM
iteration becomes

θ(t+1) =

( N∑
r=1

xrx
>
r

)† N∑
r=1

sign(yr x
>
r θ

(t)) yrxr (8)

for t ≥ 0, where sign(a) = 1 if a > 0, sign(a) = 0 if a = 0, and sign(a) = −1 if a < 0. In fact,
this is equivalent to the alternating minimization procedure where we iteratively compute

• z(t)
r := minz∈{−1,1}(yr − z x>r θ(t))2 = sign(yr x

>
r θ

(t)) for r ∈ [N ];

• θ(t+1) := minθ∈H
∑N

r=1(yr − z(t)
r x>r θ)

2 =
(∑N

r=1 xrx
>
r

)†∑N
r=1 z

(t)
r yrxr.

We now explain why the iteration (8) contracts to θ∗ locally. By slightly abusing the notation,
we denote (only in this subsection) the noiseless Easy-EM and EM operators respectively by

Q̄(θ) =
d− 1

2N

N∑
r=1

sign(yr x
>
r θ) yrxr, Q̂(θ) = Σ̂†Q̄(θ),

where the sample covariance Σ̂ is defined in (3). We first note that θ∗ is a fixed point of the operator
Q̂. Indeed, since yr = zrx

>
r θ
∗, we have

Q̂(θ∗) =

( N∑
r=1

xrx
>
r

)† N∑
r=1

sign
(
zr(x

>
r θ
∗)2
)
zr(x

>
r θ
∗)xr =

( N∑
r=1

xrx
>
r

)† N∑
r=1

xrx
>
r θ
∗ = θ∗.

Next, fix θ ∈ H in an `∞ neighborhood of θ∗. We have Q̂(θ)− θ∗ = Σ̂†
(
Q̄(θ)− Q̄(θ∗)

)
, so

‖Q̂(θ)− θ∗‖∞ ≤ ‖Σ̂†‖∞
∥∥Q̄(θ)− Q̄(θ∗)

∥∥
∞ , (9)

where ‖Σ̂†‖∞ := maxv∈H:‖v‖∞=1 ‖Σ̂†v‖∞. It remains to show, for example, that for a quantity
L > 0, we have

‖Σ̂†‖∞ ≤ L,
∥∥Q̄(θ)− Q̄(θ∗)

∥∥
∞ ≤

1

2L
,

so that we have the desired contraction ‖Q̂(θ)− θ∗‖∞ ≤ 1
2‖θ − θ

∗‖∞.
In fact, bounding ‖Σ̂†‖∞ is one of the most important and technical steps of our proof. We dis-

cuss this step in more detail in Section 5.3 below and establish a bound formally in Proposition 11.
For the remaining portion of the proof, we must bound

∥∥Q̄(θ)− Q̄(θ∗)
∥∥
∞. Note that

Q̄(θ)− Q̄(θ∗) =
d− 1

2N

N∑
r=1

[
sign

(
yrx
>
r θ
)
− sign

(
yrx
>
r θ
∗)]yrxr. (10)
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If θ is in an `∞ neighborhood of θ∗, i.e., θ is close to θ∗ entrywise, then x>r θ = θir − θjr is close
to x>r θ

∗ = θ∗ir − θ
∗
jr

. As a result, sign
(
yrx
>
r θ
)

will coincide with sign
(
yrx
>
r θ
∗) for most r ∈ [N ],

and a majority of terms in the above sum will vanish. Based on this intuition, we can perform an
entrywise analysis of Q̄(θ)− Q̄(θ∗) and obtain a bound on ‖Q̄(θ)− Q̄(θ∗)‖∞. We omit the details.

In the noisy setting, the strategy for analyzing the EM iteration (5) is similar to the above noise-
less analysis. However, there are complications due to the presence of noise. First, the fixed point
of the EM operator Q̂ is the random vector θ̂, not the deterministic vector θ∗. Therefore, we cannot
directly show Q(θ̂) = θ̂; rather, it follows as a consequence of Q̂ being a contraction locally around
θ∗. Second, to prove that Q̂ is contractive, we again reduce it to analyzing the Easy-EM operator Q̄
via (9), but now for θ, θ′ ∈ H,

Q̄(θ)− Q̄(θ′) =
d− 1

2N

N∑
r=1

[
tanh

(yr x>r θ
σ2

)
− tanh

(yr x>r θ′
σ2

)]
yrxr.

As the function tanh(·) is a soft approximation of the sign(·) function in (10), the intuition for why
we can control Q̄(θ) − Q̄(θ′) remains the same, but a more quantitative analysis is necessary. See
Section A.4 for details.

5.2. Expansion around the ground truth

Our second main result is the sharp `2 bound for the EM fixed point θ̂ in Theorem 2. The strategy for
proving this result consists in an expansion of θ̂ around the ground truth θ∗. Recall the definitions
of Q̄ and Q̂ in (4). Since θ̂ is a fixed point of Q̂, we have

θ̂ − θ∗ = Q̂(θ̂)− Q̂(θ∗) + Q̂(θ∗)− θ∗

= Σ̂†
d− 1

2N

N∑
r=1

(
tanh

(yrx>r θ̂
σ2

)
− tanh

(yrx>r θ∗
σ2

))
yrxr + Q̂(θ∗)− θ∗.

Applying Taylor’s expansion of the function tanh(·), we obtain

θ̂ − θ∗ ≈ Σ̂†A(θ̂ − θ∗) + Q̂(θ∗)− θ∗,

where A := d−1
2N

∑N
r=1

y2r
σ2 tanh′

(
yrx>r θ

∗

σ2

)
xrx

>
r . By analyzing the matrix A, we then show that

‖Σ̂†A(θ̂ − θ∗)‖2 � ‖θ̂ − θ∗‖2 and so

‖θ̂ − θ∗‖2 ≈ ‖Q̂(θ∗)− θ∗‖2.

It remains to study how far the one-step EM iterate Q̂(θ∗) moves away from the ground truth θ∗.
Since Q̂(θ∗) is an independent sum conditional on the covariates x1, . . . , xN , and θ∗ is deterministic,
we can apply tools from matrix concentration to obtain the desired sharp bound

‖Q̂(θ∗)− θ∗‖22 ≤ (1 + o(1))σ2d− 1

2N
tr(Σ̂†).

12
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5.3. Infinity operator norm of the inverse covariance

As discussed in Section 5.1 above, a key ingredient in our analysis of the EM iteration is an upper
bound on ‖Σ̂†‖∞ := maxv∈H:‖v‖∞=1 ‖Σ̂†v‖∞. Recall that E[Σ̂] is the identity map on H by the
discussion after the definition of Σ̂ in (3). Hence, it is plausible that Σ̂ and Σ̂† have bounded norms.
To prove ‖Σ̂†‖∞ ≤ L for a quantity L > 0, we start with the relation (see Lemma 6)

‖Σ̂†‖∞ =
(

min
u∈H:‖u‖∞=1

‖Σ̂u‖∞
)−1

.

It therefore suffices to prove
min

u∈H:‖u‖∞=1
‖Σ̂u‖∞ ≥ 1/L. (11)

The proof of (11) is the most technical step in our analysis and spans Lemmas 7, 8, 9, 10, and
Proposition 11. In short, it is not sufficient to control ‖Σ̂u‖∞ for each fixed u and then apply a
union bound. Instead, we carefully split the constraint set {u ∈ H : ‖u‖∞ = 1} into a union of
subsets according to the sizes of entries u1, . . . , ud. On each subset consisting of vectors u, we use
the specific properties of sizes of entries u1, . . . , ud to bound ‖Σ̂u‖∞ simultaneously for all u in
that subset. Finally, we combine all the subsets using a union bound. See Section A.2 for details.

While (11) arises as a technical ingredient in our work, we believe the analysis of the quantity
minu∈H:‖u‖∞=1 ‖Σ̂u‖∞ is interesting in its own right in view of its connection to the literature.
First, consider the graph G with vertex set [d] and edge set {(ir, jr) : xr = eir − ejr , r ∈ [N ]}.
Then the graph G resembles an Erdős–Rényi graph G

(
d,N/

(
d
2

))
except that the edges are sampled

with replacement. Moreover, it is not hard to see that Σ̂ is a rescaled version of the Laplacian matrix
of the graph G, which is a well-researched object. In fact, if the `∞-norms in (11) were replaced by
the `2-norms, then the quantity minu∈H:‖u‖2=1 ‖Σ̂u‖2 would be the second-smallest eigenvalue of
the Laplacian matrix, known as the algebraic connectivity or the Fiedler value. This eigenvalue for
an Erdős–Rényi graph has long been studied; see, e.g., Feige and Ofek (2005); Coja-Oghlan (2007);
Chung and Radcliffe (2011); Kolokolnikov et al. (2014). However, we are not aware of an existing
bound for the `∞-norm that would imply (11).

Moreover, if the minimization problem in (11) were over u ∈ {−1, 1}d, then it would be related
to the vast literature on discrepancy theory: minu∈{−1,1}d ‖Σ̂u‖∞ is the combinatorial discrepancy
of the matrix Σ̂. We refer the interested reader to the celebrated work by Spencer (1985) which has
generated extensive research on this topic, and see, e.g., Perkins and Xu (2021); Abbe et al. (2022);
Altschuler (2022) for recent breakthroughs. The relaxation that we study is thus a natural object.

5.4. Proof organization

Finally, we overview how the proofs are organized in Section A. Recall that our results do not re-
quire a fresh sample for each step of the EM iteration. To achieve this, we first condition on a
high-probability event globally, and then show that the EM operator is contractive deterministically
on this event. More precisely, this high-probability event consists of two sets of conditions: Sec-
tion A.1 proves that certain preliminary conditions hold for the observations (xr, yr)

N
r=1 with high

probability (Lemma 3); Section A.2 mainly establishes a high probability bound on ‖Σ̂†‖∞ (Propo-
sition 11) together with a few other conditions on Σ̂. With these conditions assumed, Lemma 16 in
Section A.4 shows that the EM operator is contractive locally around θ∗, and note that this lemma
is completely deterministic. Finally, using an additional bound on ‖Q̂(θ∗) − θ∗‖∞ in Section A.3,

13
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Proposition 17 in Section A.4 summarizes the convergence of the EM sequence and directly leads
to Theorem 1.

For Theorem 2, we first need a sharp analysis of ‖Q̂(θ∗) − θ∗‖2 in Section A.3: its expecta-
tion and concentration are controlled by Lemmas 14 and 15 respectively. Then, in Section A.5,
we analyze the lower order terms and conclude with Proposition 20, which immediately implies
Theorem 2.
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Appendix A. Analysis of the EM algorithm

Throughout the proof section, we use C,C1, C
′, etc., to denote universal, positive constants that

may change from line to line. Recall the definitions of Q̄ and Q̂ in (4) and that yr = zr x
>
r θ
∗ + εr

where zr = ±1. Since tanh(·) is an odd function, we may assume without loss of generality that
zr = 1 for all r = 1, . . . , N , which does not change the EM operator. Therefore, we take the liberty
of assuming that the observations take the form yr = x>r θ

∗ + εr when analyzing the EM operator.
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A.1. Preliminaries

For i ∈ [d], defineRi to be the set of indices r ∈ [N ] for which the entry (xr)i is non-zero, i.e.,

Ri :=
{
r ∈ [N ] : xr = ±(ei − ej), j ∈ [d] \ {i}

}
, (12)

where ± is + if i < j and is − if i > j. In addition, for a fixed separation parameter ∆ > 0, define

Si(∆) := {j ∈ [d] \ {i} : |θ∗i − θ∗j | ≤ ∆} and (13a)

Ri(∆) := {r ∈ [N ] : xr = ±(ei − ej), j ∈ Si(∆)}. (13b)

In other words, Si(∆) is the set of indices j such that θ∗j is close to θ∗i , andRi(∆) is a subset ofRi
consisting of indices r ∈ [N ] for which xr compares θ∗i to a nearby parameter θ∗j .

Lemma 3 There is an absolute constant C > 0 such that the following holds for any δ ∈ (0, 0.1).
Suppose that N ≥ Cd log d

δ . It holds with probability at least 1 − δ that, for all i ∈ [d] and all
∆ ≥ σ:

• 1.9N
d ≤ |Ri| ≤ 2.1N

d ;

•
∑

r∈Ri(∆) |yr| ≤ C∆
(
|Si(∆)|N

d2
+ log d

δ

)
;

•
∑

r∈Ri(∆) y
2
r ≤ C∆2

(
|Si(∆)|N

d2
+ log d

δ

)
.

Proof For a fixed i ∈ [d], each xr is equal to ±(ei − ej) for some j ∈ [d] \ {i} with probability
(d− 1)/

(
d
2

)
= 2/d. Hence |Ri| ∼ Bin (N, 2/d). It then follows from a binomial tail bound for any

δ ∈ (0, 0.1) that ∣∣∣∣|Ri| − 2N

d

∣∣∣∣ ≤ C1

√
N

d
log

d

δ
+ C1 log

d

δ

with probability at least 1− δ
d for an absolute constant C1 > 0. Taking a union bound over i ∈ [d]

and using the condition N ≥ Cd log d
δ , we obtain the desired bound on |Ri|.

Similarly, |Ri(∆)| ∼ Bin
(
N, 2|Si(∆)|

d(d−1)

)
and

|Ri(∆)| ≤ 2N |Si(∆)|
d(d− 1)

+ C2

√
N |Si(∆)|
d(d− 1)

log
d

δ
+ C2 log

d

δ
≤ 3N |Si(∆)|

d(d− 1)
+ C3 log

d

δ

with probability at least 1− δ
d2

for absolute constants C2, C3 > 0.
Condition on Ri(∆) henceforth. For r ∈ Ri(∆), we have |yr| = |x>r θ∗ + εr| ≤ ∆ + |εr| and

so y2
r ≤ 2∆2 + 2ε2r . Consequently, by a sub-Gaussian tail bound on

∑
r∈Ri(∆) |εr|, we obtain

∑
r∈Ri(∆)

|yr| ≤ ∆ |Ri(∆)|+
∑

r∈Ri(∆)

|εr| ≤ ∆ |Ri(∆)|+
√

2

π
σ |Ri(∆)|+ C4σ

√
|Ri(∆)| log

d

δ

with probability at least 1 − δ
d2

for an absolute constant C4 > 0. Moreover, by a χ2 tail bound on∑
r∈Ri(∆) ε

2
r , we obtain

∑
r∈Ri(∆)

y2
r ≤ 2∆2 |Ri(∆)|+2

∑
r∈Ri(∆)

ε2r ≤ 2∆2 |Ri(∆)|+2σ2 |Ri(∆)|+C5σ
2
(√
|Ri(∆)| log

d

δ
+log

d

δ

)
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with probability at least 1− δ
d2

for an absolute constant C5 > 0.
Combining the above three bounds and using the condition ∆ ≥ σ, we obtain

∑
r∈Ri(∆)

|yr| ≤ 2∆
(3N |Si(∆)|
d(d− 1)

+ C3 log
d

δ

)
+ C4σ

√(3N |Si(∆)|
d(d− 1)

+ C3 log
d

δ

)
log

d

δ

≤ 7N∆|Si(∆)|
d(d− 1)

+ C6∆ log
d

δ

for an absolute constant C6 > 0 and

∑
r∈Ri(∆)

y2
r ≤ 4∆2

(3N |Si(∆)|
d(d− 1)

+ C3 log
d

δ

)
+ C5σ

2

(√(3N |Si(∆)|
d(d− 1)

+ C3 log
d

δ

)
log

d

δ
+ log

d

δ

)

≤ 13N∆2|Si(∆)|
d(d− 1)

+ C7∆2 log
d

δ

for an absolute constant C7 > 0.
Finally, note that the sets Si(∆) are nested as ∆ varies, and Si(∆) can take at most d−1 values;

hence, the same statements are true for Ri(∆). We can then take a union bound over all (≤ d− 1)
possibilities forRi(∆) as ∆ varies, together with a union bound over i ∈ [d] to conclude.

A.2. Sample covariance

In this section, we study the sample covariance matrix (3). Recall that H denotes the orthogonal
complement of 1 in Rd, and the pseudoinverse Σ̂† is the inverse of Σ̂ when viewed as a map on H.
We first bound the spectral norms of Σ̂ and Σ̂†.

Proposition 4 There is an absolute constant C > 0 such that the following holds for any δ ∈
(0, 0.1). If N ≥ Cd log d

δ , then with probability at least 1− δ,

• ‖Σ̂‖op ≤ 3;

• Σ̂ has d− 1 nonzero eigenvalues;

• ‖Σ̂†‖op ≤ 5.

Proof Since Σ̂ is positive semidefinite, we have ‖Σ̂‖op = λmax(Σ̂). Let us first upper-bound
λmax(Σ̂). Let v ∈ Rd such that ‖v‖2 = 1. By the definition (3), we have

v>Σ̂v =
d− 1

2N

N∑
r=1

(x>r v)2 =
d− 1

2N

N∑
r=1

(vir − vjr)2 ≤ d− 1

N

N∑
r=1

(v2
ir + v2

jr) =
d− 1

N

d∑
i=1

|Ri|v2
i ,

where the inequality follows since (a − b)2 ≤ 2(a2 + b2) for any a, b ∈ R, and Ri is defined in
(12). By the bound on |Ri| from Lemma 3, we conclude that with probability at least 1− δ,

‖Σ̂‖op = max
v∈Rd:‖v‖2=1

v>Σ̂v ≤ d− 1

N
· 2.1N

d
≤ 3.
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Note since Σ̂† is also positive semidefinite, we have ‖Σ̂†‖op = λmax(Σ̂†). Furthermore, we have

λmax(Σ̂†) = 1/λ,

where λ is the minimum nonzero eigenvalue of Σ̂. It suffices to lower-bound the smallest eigenvalue
of Σ̂ as a map onH, and then this eigenvalue is precisely λ.

To this end, let us make a few definitions. First define the set

S := {v ∈ H : ‖v‖2 = 1}.

Then define the random matrices

D ∈ Rd×d, such that Dij =

{
|Ri| i = j,

0 i 6= j,

A ∈ Rd×d, such that Aij =

{ ∑N
r=1 1{xr = ±(ei − ej)} i 6= j,

0 i = j,

M =
N(
d
2

)(J − I)−A,

where J = 11>. With these in hand, we have the following

λ = min
v∈S

v>Σ̂v =
d− 1

2N
min
v∈S

v>(D −A)v ≥ d− 1

2N

(
min
v∈S

v>Dv −max
u∈S

u>Au

)
. (14)

Let us consider the first term. We have

min
v∈S

v>Dv = min
v∈S

d∑
i=1

|Ri|v2
i ≥ min

v∈S

d∑
i=1

1.9N

d
v2
i =

1.9N

d
, (15)

where the inequality holds with probability at least 1− δ by Lemma 3.
Let us now consider the second term. Note that (I − J)u = u for u ∈ S. By the definition of

A, we have

max
u∈S

u>Au = max
u∈S

u>(−M)u+
N(
d
2

)u>(I − J)u

≤ max
u,v∈S

u>(−M)v +
N(
d
2

)
≤ ‖(−M)‖op +

N(
d
2

) = ‖M‖op +
N(
d
2

) . (16)

It remains to bound ‖M‖op using Lemma 24. To this end, let us define random matrices

Xr =
1(
d
2

)(J − I)−
∑

1≤i<j≤d
1{xr = ±(ei − ej)}(eie>j + eje

>
i ),

and then M =
∑N

r=1Xr. First, let us show E[Xr] = 0. We have

E[Xr] =
1(
d
2

)(J − I)−
∑

1≤i<j≤d

1(
d
2

)(eie
>
j + eje

>
i ) =

1(
d
2

)(J − I −∑
i6=j

eie
>
j

)
= 0.
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Next, we find a bound on ‖Xr‖op. Note that
∑

1≤i<j≤d 1{xr = ±(ei−ej)} = 1 for every r ∈ [N ].
With this in mind, we have

‖Xr‖op ≤
1(
d
2

)(‖J‖op+‖I‖op) +
∑

1≤i<j≤d
1{xr = ±(ei− ej)} ‖eie>j + eje

>
i ‖op =

d+ 1(
d
2

) + 1 ≤ 2.

Finally, we need a bound on ‖
∑N

r=1 E[X2
r ]‖op. To this end, we compute

X2
r =

1(
d
2

)2 ((d− 2)J + I) +
∑

1≤i<j≤d
1{xr = ±(ei − ej)}(eie>i + eje

>
j )

− 1(
d
2

) ∑
1≤i<j≤d

1{xr = ±(ei − ej)}
(
1e>j + 1e>i + ei1

> + ej1
> − 2(eie

>
j + eje

>
i )
)
,

which implies

E[X2
r ] =

1(
d
2

)2 ((d− 2)J + I) +
1(
d
2

) ∑
1≤i<j≤d

(eie
>
i + eje

>
j )

− 1(
d
2

)2 ∑
1≤i<j≤d

(
1e>j + 1e>i + ei1

> + ej1
> − 2(eie

>
j + eje

>
i )
)

=
1(
d
2

)2 ((d− 2)J + I) +
d− 1(
d
2

) I − 2(
d
2

)2 ((d− 2)J + I)

=
d− 1(
d
2

) I − 1(
d
2

)2 ((d− 2)J + I).

Finally, we have

v(M) =
∥∥N E[X2

1 ]
∥∥
op
≤ N

(
2

d
+

4(d− 1)2

d2(d− 1)2

)
≤ 4N

d
.

By Lemma 24, we have that for some absolute constant C ′ > 0,

‖M‖op ≤ C ′
(√

N

d
log

d

δ
+ log

d

δ

)
,

with probability at least 1− δ.
Putting the above together with (15) and (16), we have

min
v∈S

v>Dv −max
u∈S

u>Au ≥ 1.9N

d
− N(

d
2

) − C ′(√N

d
log

d

δ
+ log

d

δ

)
,

with probability at least 1− 2δ. Since d ≥ 3, combining this with (14) yields that for some absolute
constant C ′′ > 0,

λ ≥ 0.3− C ′′
(√

d

N
log

d

δ
+

d

N
log

d

δ

)
,
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with probability at least 1− 2δ. In particular, for N ≥ C d log d
δ , we have λ ≥ 0.2 and

‖Σ̂†‖op = 1/λ ≤ 5

with probability at least 1− 2δ.

Lemma 5 There is an absolute constant C > 0 such that the following holds for any δ ∈ (0, 0.1).
Suppose that N ≥ Cd log d

δ . With probability at least 1− δ, we have

tr(Σ̂†) ≥ (d− 1)/3.

Proof Condition on the event where the bounds in Proposition 4 hold. Let λ1 ≥ · · · ≥ λd−1 > 0
be the nonzero eigenvalues of Σ̂. Then we have λ1 ≤ 3 and so tr(Σ̂†) =

∑d−1
i=1

1
λi
≥ d−1

3 .

For any linear map A : H → H, define the norm

‖A‖∞ := max
v∈H:‖v‖∞=1

‖Av‖∞.

We bound the norm ‖Σ̂†‖∞ in the rest of this section: starting with Lemmas 7, 8, 9, and 10, the
bound is completed in Proposition 11.

Lemma 6 Suppose that
min

u∈H:‖u‖∞=1
‖Σ̂u‖∞ > 0.

Then we have

‖Σ̂†‖∞ =

(
min

u∈H:‖u‖∞=1
‖Σ̂u‖∞

)−1

.

Proof By the assumption, there is no vector u ∈ H such that Σ̂u = 0, so Σ̂ is invertible onH. Then
we have

‖Σ̂†‖∞ = max
v∈H:‖v‖∞=1

‖Σ̂†v‖∞ = max
u∈H:‖Σ̂u‖∞=1

‖u‖∞ = max
u∈H:‖Σ̂u‖∞>0

‖u‖∞
‖Σ̂u‖∞

= max
u∈H:‖u‖∞=1

1

‖Σ̂u‖∞

which yields the desired result.

Lemma 7 There exists an absolute constant C > 0 such that the following holds for any fixed
δ ∈ (0, 0.1), κ ∈ (0, 1], and u ∈ H with ‖u‖∞ = 1. Define I := {i ∈ [d] : ui ≥ κ}. Suppose that
N |I| ≥ d log 1

δ . With probability at least 1− δ, we have

‖Σ̂u‖∞ ≥ κ− C

√
d

N |I|
log

1

δ
.
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Proof For any i ∈ [d], we have

(Σ̂u)i =
d∑
j=1

Σ̂ijuj =
d∑
j=1

Σ̂ij(uj − ui),

since
∑d

j=1 Σ̂ij = (Σ̂1)i = 0. Then, by the definition of Σ̂,

(Σ̂u)i =
d− 1

2N

∑
j∈[d]\{i}

N∑
r=1

(
xrx

>
r

)
ij

(uj−ui) =
d− 1

2N

N∑
r=1

∑
j∈[d]\{i}

(ui−uj)1{xr = ±(ei− ej)}.

(17)
Then it holds that

‖Σ̂u‖∞ ≥
1

|I|
∑
i∈I

(Σ̂u)i =
d− 1

2N |I|

N∑
r=1

∑
i∈I

∑
j∈[d]\{i}

(ui − uj)1{xr = ±(ei − ej)}. (18)

For any r ∈ [N ], define

Xr :=
d− 1

2

∑
i∈I

∑
j∈[d]\{i}

(ui − uj)1{xr = ±(ei − ej)}.

Then we have

E[Xr] =
d− 1

2

∑
i∈I

∑
j∈[d]\{i}

(ui − uj)
2

d(d− 1)
=
∑
i∈I

dui −
∑d

j=1 uj

d
=
∑
i∈I

ui ∈
[
κ |I|, |I|

]
since

∑d
j=1 uj = 0 and κ ≤ ui ≤ ‖u‖∞ = 1 for i ∈ I . Moreover, it follows that

|Xr −E[Xr]| ≤ |Xr|+E[Xr] ≤ d · 2‖u‖∞ + |I| ≤ 3d

and that

Var(Xr) ≤ E[X2
r ] =

(d− 1)2

4

∑
i∈I

∑
j∈[d]\{i}

(ui − uj)2 2

d(d− 1)
≤ 2d |I|.

Since X1, . . . , XN are independent, Bernstein’s inequality together with (18) implies that

‖Σ̂u‖∞ ≥
1

N |I|

N∑
r=1

Xr ≥ κ− C1

(√
d

N |I|
log

1

δ
+

d

N |I|
log

1

δ

)
with probability at least 1 − δ for an absolute constant C1 > 0. This completes the proof since
N |I| ≥ d log 1

δ by assumption.

Lemma 8 There exists an absolute constant C > 0 such that the following holds for any fixed
δ ∈ (0, 0.1) and α, κ ∈ (0, 1]. Suppose that N ≥ C d

ακ2
log 2

κδ . Define

U :=
{
u ∈ H : ‖u‖∞ = 1, |{i ∈ [d] : ui ≥ κ}| ≥ αd

}
.

With probability at least 1− δ, we have

min
u∈U
‖Σ̂u‖∞ ≥ κ/2.
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Proof For ε ∈ (0, 1), the set

N := {u ∈ U : ui = 0,±ε,±2ε, . . . ,±b1/εcε for all i ∈ [d]}

is clearly an ε-net of U in the `∞ norm, and it has cardinality |N | ≤ (2/ε)d.
For any u ∈ U , let v ∈ N be such that ‖u− v‖∞ ≤ ε. Then we have

‖Σ̂v‖∞ = ‖Σ̂(v − u+ u)‖∞ ≤ ‖Σ̂‖∞‖v − u‖∞ + ‖Σ̂u‖∞ ≤ ε‖Σ̂‖∞ + ‖Σ̂u‖∞. (19)

By the definition of Σ̂ and the fact that
∑d

j=1 Σ̂ij = 0 for any i ∈ [d], we obtain

‖Σ̂‖∞ = max
i∈[d]

d∑
j=1

|Σ̂ij | = 2 max
i∈[d]

∑
j∈[d]\{i}

|Σ̂ij | =
d− 1

N
max
i∈[d]

∑
j∈[d]\{i}

∣∣∣∣ N∑
r=1

(xrx
>
r )ij

∣∣∣∣
=
d− 1

N
max
i∈[d]

∑
j∈[d]\{i}

N∑
r=1

1{xr = ±(ei − ej)}.

It then follows from the definition ofRi in (12) and Lemma 3 that

‖Σ̂‖∞ =
d− 1

N
max
i∈[d]
|Ri| ≤ 3

with probability at least 1− δ/2. Combining this bound with (19) gives

min
u∈U
‖Σ̂u‖∞ ≥ min

v∈N
‖Σ̂v‖∞ − 3ε.

Recall that |{i ∈ [d] : vi ≥ κ}| ≥ αd for every v ∈ N ⊂ U . Let ε = κ/10. We apply Lemma 7
with δ replaced by δ

2(2/ε)d
and a union bound over all v ∈ N to obtain that, with probability at least

1− δ/2,

min
v∈N
‖Σ̂v‖∞ ≥ κ− C1

√
d

Nαd
log

2(2/ε)d

δ
≥ κ− C2

√
d

Nα
log

2

κδ

for absolute constants C1, C2 > 0.
In view of the above two displays together with the condition N ≥ C d

ακ2
log 2

κδ for a large
constant C > 0, we conclude that minu∈U ‖Σ̂u‖∞ ≥ κ/2 with probability at least 1− δ.

Lemma 9 There exists an absolute constant C > 0 such that the following holds for any fixed
δ ∈ (0, 0.1), 0 ≤ λ < κ ≤ 1, and nonempty subsets I ⊂ J ⊂ [d]. With probability at least 1 − δ,
we have that

‖Σ̂u‖∞ ≥ (κ− λ)
d− |J |
d

− |I|
d
− C

(√
d

N |I|
log

1

δ
+

d

N |I|
log

1

δ

)
for all u ∈ H with ‖u‖∞ = 1, {i ∈ [d] : ui ≥ κ} = I , and {i ∈ [d] : ui ≥ λ} = J .
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Proof By (17), we have

‖Σ̂u‖∞ ≥
1

|I|
∑
i∈I

(Σ̂u)i =
d− 1

2N |I|

N∑
r=1

∑
i∈I

∑
j∈[d]\{i}

(ui − uj)1{xr = ±(ei − ej)}

=
d− 1

2N |I|

N∑
r=1

(∑
i∈I

∑
j∈I\{i}

(ui − uj)1{xr = ±(ei − ej)}

+
∑
i∈I

∑
j∈J\I

(ui − uj)1{xr = ±(ei − ej)}

+
∑
i∈I

∑
j∈[d]\J

(ui − uj)1{xr = ±(ei − ej)}
)
.

In view of the assumptions ‖u‖∞ = 1, {i ∈ [d] : ui ≥ κ} = I , and {i ∈ [d] : ui ≥ λ} = J , we see
that for i ∈ I ,

ui − uj ≥


−1 if j ∈ I \ {i},
0 if j ∈ J \ I,
κ− λ if j ∈ [d] \ J.

It then follows that

‖Σ̂u‖∞ ≥ −
1

N |I|

N∑
r=1

d− 1

2

∑
i∈I

∑
j∈I\{i}

1{xr = ±(ei − ej)} (20)

+
κ− λ
N |I|

N∑
r=1

d− 1

2

∑
i∈I

∑
j∈[d]\J

1{xr = ±(ei − ej)}. (21)

We now bound the above two terms. To control (20), we define

Xr :=
d− 1

2

∑
i∈I

∑
j∈I\{i}

1{xr = ±(ei − ej)}

for r ∈ [N ]. Then we have

E[Xr] =
d− 1

2

∑
i∈I

∑
j∈I\{i}

2

d(d− 1)
=
|I|(|I| − 1)

d
≤ |I|

2

d
, |Xr −E[Xr]| ≤ d,

and

Var(Xr) ≤ E[X2
r ] =

(d− 1)2

4

∑
i∈I

∑
j∈I\{i}

2

d(d− 1)
≤ |I|

2

2
.

Since X1, . . . , XN are independent, Bernstein’s inequality implies that

N∑
r=1

Xr ≤ N
|I|2

d
+ C1

(√
N |I|2 log

1

δ
+ d log

1

δ

)
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with probability at least 1−δ/2 for an absolute constantC1 > 0 and any δ ∈ (0, 0.1). Consequently,
the term (20) can be bounded as

1

N |I|

N∑
r=1

d− 1

2

∑
i∈I

∑
j∈I\{i}

1{xr = ±(ei − ej)} ≤
|I|
d

+ C1

(√
1

N
log

1

δ
+

d

N |I|
log

1

δ

)
.

Analogously, if we define

X ′r :=
d− 1

2

∑
i∈I

∑
j∈[d]\J

1{xr = ±(ei − ej)},

we can apply Bernstein’s inequality to obtain that

N∑
r=1

X ′r ≥ N
|I|(d− |J |)

d
− C2

(√
N |I|(d− |J |) log

1

δ
+ d log

1

δ

)
with probability at least 1 − δ/2 for an absolute constant C2 > 0 and any δ ∈ (0, 0.1). Then the
term (21) can be bounded as

κ− λ
N |I|

N∑
r=1

d− 1

2

∑
i∈I

∑
j∈[d]\J

1{xr = ±(ei−ej)} ≥ (κ−λ)
d− |J |
d
−C2

(√
d

N |I|
log

1

δ
+

d

N |I|
log

1

δ

)
.

Plugging the above bounds into (20) and (21) respectively completes the proof.

Lemma 10 There exists an absolute constant C > 0 such that the following holds for any fixed
δ ∈ (0, 0.1) and 0 ≤ λ < κ ≤ 1. For u ∈ Rd, define

`(u) := |{i ∈ [d] : ui ≥ κ}|, m(u) := |{i ∈ [d] : ui ≥ λ}|.

With probability at least 1− δ, we have that

‖Σ̂u‖∞ ≥
κ− λ

2

for all u ∈ H with ‖u‖∞ = 1, m(u) ≤ d
4 , `(u) ≤ (κ− λ)d8 , and N ≥ Cdm(u)

(κ−λ)2`(u)
log d

δ .

Proof For fixed positive integers ` ≤ m ≤ d, there are at most
(
d
m

)(
m
`

)
≤ dm pairs of subsets

(I, J) such that |I| = `, |J | = m, and I ⊂ J ⊂ [d]. Therefore, by Lemma 9 with δ replaced by
δ/dm and a union bound over all possible (I, J), we obtain the following: With probability at least
1− δ,

‖Σ̂u‖∞ ≥ (κ− λ)
d−m
d
− `

d
− C1

(√
dm

N`
log

d

δ
+
dm

N`
log

d

δ

)
(22)

for all u ∈ H with ‖u‖∞ = 1, `(u) = `, and m(u) = m, where C1 > 0 is an absolute constant,
and `(u) and m(u) are defined as in the lemma. Moreover, there are at most d2 possible choices for
the pair of integers (`,m). Thus, by a further union bound over (`,m), the bound (22) holds for all
u ∈ H with ‖u‖∞ = 1, provided that the constant C1 is replaced by a larger absolute constant. The
conclusion then follows from the imposed conditionsm ≤ d

4 , ` ≤ (κ−λ)d8 , andN ≥ Cdm
(κ−λ)2`

log d
δ .
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Proposition 11 There exists an absolute constant C > 0 such that the following holds for any
δ ∈ (0, 0.1). Fix an integer L ≥ 2. Suppose that

N ≥ C max
{
L2d

L
L−1 log

dL

δ
, L3d log

L

δ

}
.

Then it holds with probability at least 1− δ that,

min
u∈H:‖u‖∞=1

‖Σ̂u‖∞ ≥
1

2L

and, as a result,
‖Σ̂†‖∞ ≤ 2L.

Proof By Lemma 6, it suffices to prove the lower bound on ‖Σ̂u‖∞ for u ∈ H with ‖u‖∞ = 1.
For t = 0, 1, . . . , L, define

κt := 1− t/L, `t(u) := |{i ∈ [d] : ui ≥ κt}|.

For t = 1, 2, . . . , L− 1, define

Ut :=

{
u ∈ H : ‖u‖∞ = 1, `t(u) ≤ d

4
, `t−1(u) ≤ d

8L
, N ≥ C1dL

2`t(u)

`t−1(u)
log

dL

δ

}
,

where C1 > 0 is a constant to be chosen. In addition, define

UL :=

{
u ∈ H : ‖u‖∞ = 1, `L−1(u) ≥ d

8L

}
.

We claim that
L⋃
t=1

Ut =

{
u ∈ H : ‖u‖∞ = 1, max

i∈[d]
ui = 1

}
. (23)

We first finish the proof based on the above claim. For u ∈
⋃L−1
t=1 Ut, we apply Lemma 10 with

κ = κt−1, λ = κt, `(u) = `t−1(u), m(u) = `t(u), and δ replaced by δ
2L , together with a union

bound over t ∈ [L − 1]. Note that κ − λ = 1/L. Hence we obtain that, with probability at least
1− δ/2,

min
u∈

⋃L−1
t=1 Ut

‖Σ̂u‖∞ ≥
1

2L
,

provided that C1 is a sufficiently large absolute constant. Moreover, for u ∈ UL, we apply Lemma 8
with κ = KL−1 = 1/L and α = 1/(8L) to obtain that, with probability at least 1− δ/2,

min
u∈UL

‖Σ̂u‖∞ ≥
1

2L
,

provided that N ≥ C2L
3d log L

δ for a large constant C2 > 0.
The above two bounds together with (23) imply that, with probability at least 1 − δ, we have

‖Σ̂u‖∞ ≥ 1/(2L) for all u ∈ H with ‖u‖∞ = 1 and maxi∈[d] ui = 1. Finally, for u ∈ H with
‖u‖∞ = 1 and mini∈[d] ui = −1, it suffices to apply the bound to −u.
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Proof [Proof of Claim (23)] Consider u ∈ Hwith ‖u‖∞ = 1 and maxi∈[d] ui = 1. Suppose that u /∈⋃L−1
t=1 Ut. Then for any t ∈ [L − 1], we have `t(u) > d

4 , `t−1(u) > d
8L , or N < C1dL2`t(u)

`t−1(u) log dL
δ .

If either of the first two conditions holds, then we have `t(u) > d
8L for some t ∈ {0, 1, . . . , L− 1}.

Since κL−1 ≤ κt, by the definition of `t(u), we have `L−1(u) ≥ `t(u) > d
8L . Thus u ∈ UL. Let us

further suppose that u /∈ UL. Then, for all t ∈ [L− 1], we must have

N <
C1dL

2`t(u)

`t−1(u)
log

dL

δ
⇐⇒ `t(u) > `t−1(u) · N

C1L2d log(dL/δ)
.

Since κ0 = 1 and `0(u) = |{i ∈ [d] : ui = 1}| ≥ 1, we apply the above bound iteratively to obtain

`L−1(u) ≥
(

N

C1L2d log(dL/δ)

)L−1

≥ d > d

8L
,

where the second inequality holds by the assumption N ≥ CL2d
L

L−1 log dL
δ . As a result, u ∈ UL,

finishing the proof.

A.3. One-step iterate from the ground truth

In this subsection, we study the difference between the ground truth θ∗ and the one-step EM iterate
Q̂(θ∗) from it. All the results in this subsection are conditional on a realization of x1, . . . , xN .
For brevity, we often take the liberty of using E and P to denote the conditional expectation and
probability on x1, . . . , xN respectively. Let us start with a lemma.

Lemma 12 Let X ∼ N (µ, σ2). Then we have

E
[
X tanh

(
µX

σ2

)]
= µ, (24)

and

Var

(
X tanh

(
µX

σ2

))
≤ σ2. (25)

Proof Equation (24) is well-known, but we provide a proof for completeness. By a change of
variable ν = µ

σ and Z = X
σ ∼ N (ν, 1), it suffices to show that

E [Z tanh(νZ)] = ν. (26)

We have E[Z] = ν and

E [Z (tanh(νZ)− 1)] =
1√
2π

∫
R
z
−2e−νz

eνz + e−νz
e−(z−ν)2/2 dz = −2e−ν

2/2

√
2π

∫
R

ze−z
2/2

eνz + e−νz
dz = 0,

(27)
because the integrand is an odd function. Then (26) immediately follows.

Next, it holds that

Var
(
X tanh(µX/σ2)

)
= σ2 Var (Z tanh(νZ)) = σ2

E
[
(Z tanh(νZ)− ν)2

]
. (28)
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Furthermore, we have

(Z tanh(νZ)− ν)2 = (Z − ν)2 − 2vZ(tanh(νZ)− 1) + Z2(tanh(νZ)2 − 1)

≤ (Z − ν)2 − 2vZ(tanh(νZ)− 1) + Z2 tanh(νZ) (tanh(νZ)− 1)

since tanh(νZ) ≤ 1. Let us compute the expectations of these three terms. We have

E[(Z − ν)2] = 1, E[2vZ(tanh(νZ)− 1)] = 0,

by Z ∼ N (ν, 1) and (27) respectively. For the third term,

E[Z2 tanh(νZ) (tanh(νZ)− 1)] =
1√
2π

∫
R
z2 (eνz − e−νz)(−2e−νz)

(eνz + e−νz)2
e−(z−ν)2/2 dz

=
−2e−v

2/2

√
2π

∫
R
z2e−z

2/2 eνz − e−νz

(eνz + e−νz)2
dz = 0,

because the integrand is an odd function. Combining the three terms with (28) proves (25).

We now control Q̂(θ∗)− θ∗ in the `∞-norm.

Lemma 13 Condition on a realization of x1, . . . , xN such that ‖Σ̂†‖∞ ≤ 2L. There is an absolute
constant C > 0 such that for any δ ∈ (0, 0.1), it holds with (conditional) probability at least 1− δ
that

‖Q̂(θ∗)− θ∗‖∞ ≤ Cσ
√
Ld

N
log

d

δ
.

Proof Let us first check that E[Q̂(θ∗)] = θ∗. By (24), we have

Eyr∼N (x>r θ
∗,σ2)

[
yr tanh

(
yrx
>
r θ
∗

σ2

)]
= x>r θ

∗. (29)

Then, it follows that

E[Q̄(θ∗)] =
d− 1

2N

N∑
r=1

xrx
>
r θ
∗ = Σ̂ θ∗, E[Q̂(θ∗)] = θ∗. (30)

Next, we study Q̂(θ∗)− θ∗, whose ith entry is

e>i
(
Q̂(θ∗)− θ∗

)
= e>i Σ̂†

(
Q̄(θ∗)−E[Q̄(θ∗)]

)
. (31)

For w ∈ H, define

fw(y) := w>Q̄(θ∗) =
d− 1

2N

N∑
r=1

yrx
>
r w tanh

(
yrx
>
r θ
∗

σ2

)
. (32)

We will show that fw(y)−Ey[fw(y)] is sub-Gaussian with variance parameter of order σ
2Ld
N when

w> is a row of Σ̂†. The proof is similar to that of Proposition 11 of Kwon et al. (2019), with the
main tool being Lemma 25, a standard concentration result for Gaussian random variables. To this
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end, let vr = yr−x>r θ∗
σ = εr

σ be i.i.d. standard Gaussians and introduce another independent set of
i.i.d. standard Gaussians ζ1, . . . , ζN . Let us define a new function

gw(v) := fw(y) =
d− 1

2N

N∑
r=1

(σvr + x>r θ
∗)x>r w tanh

(
(σvr + x>r θ

∗)x>r θ
∗

σ2

)
.

For each r ∈ [N ], we have

(∇gw(v))r =
d− 1

2N
x>r w

[
σ tanh

(
(σvr + x>r θ

∗)x>r θ
∗

σ2

)
+ (σvr + x>r θ

∗)
x>r θ

∗

σ
tanh′

(
(σvr + x>r θ

∗)x>r θ
∗

σ2

)]
=
d− 1

2N
x>r wσ · h

(
(σvr + x>r θ

∗)x>r θ
∗

σ2

)
,

where h(t) := tanh(t) + t · tanh′(t). We will use the inequality |h(t)| ≤ 2 for all t ∈ R. By
Lemma 25,

E[exp(λ(fw(y)− E[fw(y)]))] = E[exp(λ(gw(v)− E[gw(v)]))]

≤ Ev,ζ
[
exp

(
λπ

2
〈∇g, ζ〉

)]
= EvEζ

[
exp

(
λπ

2

(
d− 1

2N

N∑
r=1

ζrx
>
r wσ · h

(
(σvr + x>r θ

∗)x>r θ
∗

σ2

)))]

= Ev

[
exp

((
λ2σ2π2(d− 1)

16N

)(
d− 1

2N

N∑
r=1

(
x>r w · h((σvr + x>r θ

∗)x>r θ
∗)
)2
))]

≤ exp

((
λ2σ2π2(d− 1)

4N

)(
d− 1

2N

N∑
r=1

(x>r w)2

))

≤ exp

(
λ2σ2π2d

4N
w>Σ̂w

)
.

If w> is the ith row of Σ̂†, we have w = Σ̂†ei and

w>Σ̂w = e>i Σ̂†ei ≤ ‖Σ̂†‖∞ ≤ 2L

by assumption. It follows that

E[exp(λ(fw(y)− E[fw(y)]))] ≤ exp

(
λ2σ2π2dL

2N

)
,

so fw(y) is sub-Gaussian with variance parameter σ2π2dL
N . Therefore, it holds with probability at

least 1− δ/d that ∣∣fw(y)− E[fw(y)]
∣∣ ≤ Cσ√Ld

N
log

d

δ
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for a constant C > 0. In view of (31) and (32), the left-hand side of the above bound is precisely
|e>i (Q̂(θ∗) − θ∗)| when w> is the ith row of Σ̂†. Taking a union bound over i ∈ [d] proves the
desired result on ‖Q̂(θ∗)− θ∗‖∞.

The following two lemmas provide a sharp control on Q̂(θ∗)− θ∗ in the `2-norm: they respec-
tively bound the expectation and deviation of ‖Q̂(θ∗)− θ∗‖22.

Lemma 14 Condition on a realization of x1, . . . , xN such that Σ̂† is the inverse of Σ̂ as a map on
H. Let E[·] denote the conditional expectation. Then we have

E
[
‖Q̂(θ∗)− θ∗‖22

]
≤ σ2d− 1

2N
tr(Σ̂†).

Proof By the definition of Q̂ in (4b), it is not difficult to see that

Q̂(θ∗)− θ∗ =

( N∑
r=1

xrx
>
r

)† N∑
r=1

(
tanh

(yr x>r θ∗
σ2

)
yr − x>r θ∗

)
xr.

Then it follows that

E
[
(Q̂(θ∗)− θ∗)(Q̂(θ∗)− θ∗)>

]
=

( N∑
r=1

xrx
>
r

)†( N∑
r=1

E

[(
tanh

(yr x>r θ∗
σ2

)
yr − x>r θ∗

)2]
xrx

>
r

)( N∑
r=1

xrx
>
r

)†
,

where the cross terms vanish thanks to (29). By (25), we have

σr := E

[(
tanh

(yr x>r θ∗
σ2

)
yr − x>r θ∗

)2]
≤ σ2.

As a result, the matrix

σ2

( N∑
r=1

xrx
>
r

)†
−E

[
(Q̂(θ∗)−θ∗)(Q̂(θ∗)−θ∗)>

]
=

( N∑
r=1

xrx
>
r

)†( N∑
r=1

(σ2−σ2
r )xrx

>
r

)( N∑
r=1

xrx
>
r

)†
is positive semi-definite. In other words,

E
[
(Q̂(θ∗)− θ∗)(Q̂(θ∗)− θ∗)>

]
4 σ2

( N∑
r=1

xrx
>
r

)†
in the Loewner order. Since the trace operator is monotone in the Loewner order, we obtain

E
[
‖Q̂(θ∗)− θ∗‖22

]
= tr

(
E
[
(Q̂(θ∗)− θ∗)(Q̂(θ∗)− θ∗)>

])
≤ σ2 tr

(( N∑
r=1

xrx
>
r

)†)
,

which completes the proof.
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Lemma 15 Condition on a realization of x1, . . . , xN such that ‖Σ̂‖op ≤ 3 and ‖Σ̂†‖op ≤ 5. Then
there exists an absolute constant C > 0 such that for any δ ∈ (0, 0.1), we have∣∣∣‖Q̂(θ∗)− θ∗‖22 − E

[
‖Q̂(θ∗)− θ∗‖22

]∣∣∣ ≤ Cσ2

(
d3/2

N

√
log

1

δ
+

d

N
log

1

δ

)
with (conditional) probability at least 1− δ.

Proof Let ε′ := ε/σ ∼ N (0, IN ), and then yr = x>r θ
∗ + σε′r. Consider the random vector

f(ε′) := Q̂(θ∗)− θ∗ = Σ̂†

(
d− 1

2N

N∑
r=1

tanh

(
(x>r θ

∗ + σε′r)x
>
r θ
∗

σ2

)
(x>r θ

∗ + σε′r)xr

)
− θ∗.

We claim that the function f(·) is 15σ
√
d/N -Lipschitz in the Euclidean distance.

Assuming the claim for a moment, we now show that the random vector f(ε′) satisfies the con-
vex concentration property in Definition 22. To this end, let φ be an arbitrary 1-Lipschitz function.
(Note that we do not require φ to be convex and hence prove something stronger.) Then φ ◦ f is
15σ

√
d/N -Lipschitz, so by Lemma 21,

P
{∣∣φ(f(ε′))− E[φ(f(ε′))]

∣∣ ≥ t} ≤ 2 exp

(
−t2

C2
1σ

2d/N

)
for an absolute constant C1 > 0. Therefore, f(ε′) satisfies the convex concentration property for
K = C1 σ

√
d/N . We have seen in (30) that E[f(ε′)] = 0. Then Lemma 23 with A = Id yields

that for an absolute constant C2 > 0,

Pr
{∣∣‖Q̂(θ∗)− θ∗‖22 − E[‖Q̂(θ∗)− θ∗‖22]

∣∣ ≥ t} ≤ 2 exp

(
− 1

C2
min

(
N2t2

σ4d3
,
Nt

σ2d

))
.

From here, the lemma follows.
It remains to prove the claim that the function f(·) is 15σ

√
d/N -Lipschitz. Let ε′, ε′′ ∈ RN .

By Taylor’s theorem, we have for some tr ∈ (0, 1),

tanh

(
(x>r θ

∗ + σε′′r )x
>
r θ
∗

σ2

)
(x>r θ

∗ + σε′′r )− tanh

(
(x>r θ

∗ + σε′r)x
>
r θ
∗

σ2

)
(x>r θ

∗ + σε′r)

= (ε′′r − ε′r)
d

dε̃

(
tanh

(
(x>r θ

∗ + σε̃)x>r θ
∗

σ2

)
(x>r θ

∗ + σε̃)

) ∣∣∣∣
ε̃=ε′r+tr(ε′′r−ε′r)

= (ε′′r − ε′r)σ h
(

(x>r θ
∗ + σε̃r)x

>
r θ
∗

σ2

)
,

where h(t) := tanh(t) + t tanh′(t) for t ∈ R, and ε̃r := ε′r + tr(ε
′′
r − ε′r). Then we have

f(ε′′)− f(ε′) = Σ̂†

(
d− 1

2N

N∑
r=1

(ε′′r − ε′r)σ h
(

(x>r θ
∗ + σε̃r)x

>
r θ
∗

σ2

)
xr

)
= σΣ̂†X̃D(ε′′ − ε′),

where X̃ ∈ Rd×N is the matrix whose rth column is d−1
2N xr, andD ∈ RN×N is the diagonal matrix

defined by

Drr := h

(
(yr + tr(yr − yr))x>r θ∗

σ2

)
.
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As a result,
‖f(ε′′)− f(ε′)‖2 ≤ σ‖Σ̂†‖op‖X̃‖op‖D‖op‖ε′ − ε′′‖2.

Note that X̃X̃> = d−1
2N Σ̂ and so we have

‖X̃‖op =

√
d− 1

2N
‖Σ̂‖op ≤

√
3d

2N

by the conditioning. Moreover, we have ‖Σ̂†‖op ≤ 5 by the conditioning, and ‖D‖op ≤ 2 by the
fact that |h(t)| = | tanh(t) + t tanh′(t)| ≤ 2 for all t ∈ R. Combining all the bounds gives

‖f(ε′′)− f(ε′)‖2 ≤ 15σ

√
d

N
‖ε′′ − ε′‖2,

completing the proof.

A.4. Convergence analysis

Assuming the bounds in Lemma 3 and the control on ‖Σ̂†‖∞ in Proposition 11, the following result
shows that the EM operator is contractive locally around θ∗, deterministically.

Lemma 16 There exist absolute constants C,C ′ > 0 such that the following holds. Suppose that
all the bounds in Lemma 3 hold with C > 0 and δ ∈ (0, 0.1). Consider θ, θ′ ∈ H, λ ∈ (0, 1), and
∆ := max{ 1

λ‖θ − θ
′‖∞, 3σ√

λ
}, such that

max{‖θ − θ∗‖∞, ‖θ′ − θ∗‖∞} ≤
∆

6
, N ≥ C ′ d

λ2
log

d

δ
, max

i∈[d]
|Si(∆)| ≤ λ2

C ′
d,

where Si(·) is defined as in (13a). Then we have

‖Q̄(θ)− Q̄(θ′)‖∞ ≤ λ‖θ − θ′‖∞.

If, in addition, ‖Σ̂†‖∞ ≤ 1
2λ , then

‖Q̂(θ)− Q̂(θ′)‖∞ ≤
1

2
‖θ − θ′‖∞.

Proof For notational simplicity, let us consider iteration of the first entry of each vector and bound
|Q̄(θ)1 − Q̄(θ′)1|. The same analysis applies to any other entry with straightforward modification.
We can write the iteration of the first entry as

Q̄(θ)1 =
d− 1

2N

∑
r∈R1

tanh
(yr x>r θ

σ2

)
yr,

whereR1 is defined as in (12). It follows that

|Q̄(θ)1 − Q̄(θ′)1| ≤
d− 1

2N

∑
r∈R1

∣∣∣∣tanh
(yr x>r θ

σ2

)
− tanh

(yr x>r θ′
σ2

)∣∣∣∣ |yr|.
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Define θ(z) := θ′ + z(θ − θ′) for z ∈ [0, 1]. By the fundamental theorem of calculus, we have∣∣∣∣tanh

(
yr x

>
r θ

σ2

)
− tanh

(
yr x

>
r θ
′

σ2

)∣∣∣∣ =

∣∣∣∣∫ 1

0
tanh′

(
yr x

>
r θ(z)

σ2

) (
yr x

>
r (θ − θ′)
σ2

)
dz

∣∣∣∣
≤ |yr x

>
r (θ − θ′)|
σ2

∫ 1

0
4 exp

(
−2
|yr x>r θ(z)|

σ2

)
dz

≤ 4
|yr x>r (θ − θ′)|

σ2
exp

(
−2 min

0≤z≤1

|yr x>r θ(z)|
σ2

)
,

where we used the fact 0 ≤ tanh′(t) = (cosh(t))−2 ≤ 4 exp(−2|t|) for all t ∈ R. Combining the
above bounds with the trivial bound | tanh(t)| ≤ 1 for t ∈ R, we obtain

|Q̄(θ)1 − Q̄(θ′)1| ≤
d

N

∑
r∈R1

min

{
|yr|, 2

y2
r |x>r (θ − θ′)|

σ2
exp

(
−2 min

0≤z≤1

|yr x>r θ(z)|
σ2

)}
. (33)

For brevity, we let η := ‖θ − θ′‖∞ in the sequel. Then ∆ = max{ ηλ ,
3σ√
λ
} by definition. Recall

that the sets S1(∆) and R1(∆) are defined in (13a) and (13b) respectively. We now analyze the
summands in (33) for r ∈ R1(∆) and r ∈ R1 \ R1(∆) separately.

First, for r ∈ R1 \R1(∆), we have xr = e1− ej such that |x>r θ∗| = |θ∗1 − θ∗j | > ∆. Moreover,
‖θ − θ∗‖∞ ≤ ∆/6 and ‖θ′ − θ∗‖∞ ≤ ∆/6 by assumption. It follows that

|x>r θ(z)| = |θ(z)1 − θ(z)j | ≥ |θ∗1 − θ∗j | − |θ(z)1 − θ∗1| − |θ(z)j − θ∗j |
≥ |θ∗1 − θ∗j | − z|θ1 − θ∗1| − (1− z)|θ′1 − θ∗1| − z|θj − θ∗j | − (1− z)|θ′j − θ∗j |

≥ |x>r θ∗| −
∆

3
>

2

3
|x>r θ∗|

for any z ∈ [0, 1]. Moreover, it holds that |x>r (θ − θ′)| ≤ 2‖θ − θ′‖∞ = 2η. Therefore,

2
y2
r |x>r (θ − θ′)|

σ2
exp

(
−2 min

0≤z≤1

|yr x>r θ(z)|
σ2

)
≤ 4η

y2
r

σ2
exp

(
−4 |yr| |x>r θ∗|

3σ2

)
.

It is not hard to see that maxa≥0 a
2 exp(−ab) = 4/(eb)2 for b > 0. Taking a = |yr| and b = 4 |x>r θ∗|

3σ2

in the above bound then yields

2
y2
r |x>r (θ − θ′)|

σ2
exp

(
−2 min

0≤z≤1

|yr x>r θ(z)|
σ2

)
≤ 9σ2

e2 |x>r θ∗|2
η ≤

( 3σ

e∆

)2
η.

As a result,

d

N

∑
r∈R1\R1(∆)

2
y2
r |x>r (θ − θ′)|

σ2
exp

(
−2 min

0≤z≤1

|yr x>r θ(z)|
σ2

)
≤ d

N
|R1|

( 3σ

e∆

)2
η ≤ λ

2
η (34)

by the bound |R1| ≤ 3N/d in Lemma 3 and the condition ∆ ≥ 3σ√
λ

.
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Second, for r ∈ R1(∆), since exp(−t) ≤ 1 for t ≥ 0 and |x>r (θ − θ′)| ≤ 2η, we have

d

N

∑
r∈R1(∆)

min

{
|yr|, 2

y2
r |x>r (θ − θ′)|

σ2
exp

(
−2 min

0≤z≤1

|yr x>r θ(z)|
σ2

)}

≤ d

N

∑
r∈R1(∆)

min

{
|yr|, 4η

y2
r

σ2

}
≤ d

N
min

{ ∑
r∈R1(∆)

|yr|,
4η

σ2

∑
r∈R1(∆)

y2
r

}
.

Plugging the bounds from Lemma 3 into the above then yields

d

N

∑
r∈R1(∆)

min

{
|yr|, 2

y2
r |x>r (θ − θ∗)|

σ2
exp

(
−2 min

0≤z≤1

|yr x>r θ(z)|
σ2

)}

≤ C d

N

(
|S1(∆)|N

d2
+ log

d

δ

)
min

{
∆,

4η

σ2
∆2

}
. (35)

Lastly, combining (34) and (35) with (33) gives

|Q̄(θ)1 − Q̄(θ′)1| ≤
λ

2
η + C

(
|S1(∆)|

d
+

d

N
log

d

δ

)
min

{
∆,

4η

σ2
∆2

}
.

Since ∆ = max{ ηλ ,
3σ√
λ
}, we have

min

{
∆,

4η

σ2
∆2

}
≤ max

{
η

λ
,

4η

σ2

( 3σ√
λ

)2
}
≤ 36

η

λ
.

The above two bounds together with the assumptions N ≥ C ′ d
λ2

log d
δ and |S1(∆)| ≤ λ2

C′d yield

|Q̄(θ)1 − Q̄(θ′)1| ≤
λ

2
η + C

(
λ2

C ′
+
λ2

C ′

)
· 64

η

λ
≤ λη,

once C ′ is chosen to be sufficiently large.
For the final statement of the lemma, note that Q̂(θ) = Σ̂†Q̄(θ), so we have

‖Q̂(θ)− Q̂(θ′)‖∞ ≤ ‖Σ̂†‖∞‖Q̄(θ)− Q̄(θ′)‖∞,

from which the conclusion follows.

We summarize the convergence results for the EM sequence in the following proposition.

Proposition 17 There exist absolute constants C,C ′ > 0 such that the following holds for any
δ ∈ (0, 0.1) and any integer L ≥ 2. Fix θ(0) ∈ H and let ∆(0) := max{4L‖θ(0) − θ∗‖∞, 6

√
Lσ}.

Suppose that

N ≥ C max
{
L2d

L
L−1 log

dL

δ
, L3d log

L

δ

}
, (36a)

max
i∈[d]
|Si(∆(0))| ≤ d

CL2
, (36b)
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where Si(·) is defined in (13a). Let {θ(t)}t≥0 be the EM iterates defined in (5). Moreover, let

τ := C ′σ

√
Ld

N
log

d

δ
, T := max

{
0,

⌈
log4/3

(
‖θ(0) − θ∗‖∞

4τ

)⌉}
.

Then it holds with probability at least 1− δ that

• there exists θ̂ ∈ H such that Q̂(θ̂) = θ̂ and ‖θ̂ − θ∗‖∞ ≤ 4τ ;

• the sequence {θ(t)}t≥0 converges to θ̂;

• ‖θ(T+t) − θ̂ ‖∞ ≤ 8τ/2t for all t ≥ 0.

Proof By Proposition 11 and the assumption on N , it holds with probability at least 1− δ/3 that

‖Σ̂†‖∞ ≤ 2L.

By Lemma 13, it holds with probability at least 1− δ/3 that

‖Q̂(θ∗)− θ∗‖∞ ≤ C ′σ
√
Ld

N
log

d

δ
= τ (37)

for a constantC ′ > 0. Applying Lemma 3 and Lemma 16 with λ = 1
4L , we see that with probability

at least 1− δ/3, the following holds: For all θ, θ′ ∈ H and ∆ := max{4L‖θ− θ′‖∞, 6
√
Lσ} such

that
max{‖θ − θ∗‖∞, ‖θ′ − θ∗‖∞} ≤

∆

6
, max

i∈[d]
|Si(∆)| ≤ d

CL2
, (38)

we have
‖Q̂(θ)− Q̂(θ′)‖∞ ≤

1

2
‖θ − θ′‖∞. (39)

In the sequel, we condition on the event of probability at least 1− δ that all the above bounds hold.
We split the rest of the proof into two parts as we will use the above conclusion twice.

Part I: Convergence to a neighborhood of the ground truth. Let us take θ = θ(t) for t ≥ 0
and θ′ = θ∗ in (38) and (39). Let ∆(t) := max{4L‖θ(t) − θ∗‖∞, 6

√
Lσ}. Note that we have

‖θ(t) − θ∗‖∞ ≤ 4L
6 ‖θ

(t) − θ∗‖∞ ≤ ∆(t)

6 , so the first condition in (38) holds. We now show
inductively that, for t ≥ 0,

∆(t) ≤ ∆(0), (40)

and furthermore,

‖θ(t+1) − θ∗‖∞ ≤
1

2
‖θ(t) − θ∗‖∞ + τ. (41)

First, (40) is trivial for t = 0. Suppose that (40) holds. Then, by maxi∈[d] |Si(∆(0))| ≤ d
CL2

and that Si(·) is a nondecreasing function defined in (13a), we see that maxi∈[d] |Si(∆(t))| ≤ d
CL2 .

Hence (38) is satisfied, and then (39) implies

‖θ(t+1) − Q̂(θ∗)‖∞ ≤
1

2
‖θ(t) − θ∗‖∞.

Combining this bound with (37) gives (41).
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Next, suppose that (41) holds. If ‖θ(t) − θ∗‖∞ ≥ 2τ , then (41) implies that ‖θ(t+1) − θ∗‖∞ ≤
‖θ(t) − θ∗‖∞. As a result, ∆(t+1) ≤ ∆(t), so (40) holds for t + 1 in place of t. On the other
hand, if ‖θ(t) − θ∗‖∞ ≤ 2τ , then (41) implies that ‖θ(t+1) − θ∗‖∞ ≤ 2τ . By the definition of
τ and our assumption on N , it is clear that 4L‖θ(t+1) − θ∗‖∞ ≤ 8Lτ ≤ 6

√
Lσ. As a result,

∆(t+1) ≤ 6
√
Lσ ≤ ∆(0), so again (40) holds for t+ 1 in place of t. This completes the induction.

To conclude this part, note that by (41), the EM iterates {θ(t)}t≥0 satisfy

‖θ(t+1) − θ∗‖∞ ≤
3

4
‖θ(t) − θ∗‖∞ (42)

if ‖θ(t) − θ∗‖∞ > 4τ . Moreover, define

B := {θ ∈ H : ‖θ − θ∗‖∞ ≤ 4τ}, T1 := min
{
t ≥ 0 : θ(t) ∈ B

}
.

By (42), we have

T1 ≤ max

{
0,

⌈
log4/3

(
‖θ(0) − θ∗‖∞

4τ

)⌉}
= T.

Finally, θ(t) ∈ B for all t ≥ T1 by (41).

Part II: Convergence to a fixed point. We now focus on the set B defined above. Fix any θ, θ′ ∈ B.
We have ‖θ − θ′‖∞ ≤ 8τ . By the definition of τ and our assumption on N , it holds that 4L‖θ −
θ′‖∞ ≤ 16Lτ ≤ 6

√
Lσ. Hence, ∆ = max{4L‖θ − θ′‖∞, 6

√
Lσ} = 6

√
Lσ ≤ ∆(0). By our

assumption on ∆(0) and that Si(·) is a nondecreasing function, we obtain maxi∈[d] |Si(∆)| ≤ d
CL2 .

In addition, max{‖θ − θ∗‖∞, ‖θ′ − θ∗‖∞} ≤ 4τ ≤
√
Lσ = ∆

6 . Therefore, (38) is satisfied, and
so (39) holds.

Similar to Part I, taking θ′ = θ∗ in (39), we obtain

‖Q̂(θ)− θ∗‖∞ ≤ ‖Q̂(θ)− Q̂(θ∗)‖∞ + ‖Q̂(θ∗)− θ∗‖∞ ≤
1

2
‖θ − θ∗‖∞ + τ ≤ 4τ,

so the EM operator Q̂ can be viewed as a map on B. Furthermore, (39) says that Q̂ is a contraction
on B. By the Banach fixed-point theorem, Q̂ has a unique fixed point θ̂ in B, and the EM sequence
{θ(t)}t≥0 converges to θ̂ with

‖θ(t+1) − θ̂ ‖∞ ≤
1

2
‖θ(t) − θ̂ ‖∞

for all t ≥ T1. Since ‖θ(T1) − θ̂‖∞ ≤ 8τ , the conclusion follows immediately.

A.5. Sharp results in the low-noise regime

Before proving the sharp bound on ‖θ̂ − θ∗‖2, let us start with two lemmas that control the lower
order terms.

Lemma 18 There exist absolute constants C,C ′ > 0 such as the following holds for any δ ∈
(0, 0.1). Suppose that all the bounds in Lemma 3 hold with the constant C, and that |yr − x>r θ∗| ≤
Cσ
√

log N
δ for all r ∈ [N ]. Define

A :=
d− 1

2N

N∑
r=1

y2
r

σ2
tanh′

(
yrx
>
r θ
∗

σ2

)
xrx

>
r . (43)
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Moreover, let ∆ := 2Cσ
√

log N
δ , and define Si(∆) as in (13a). Then we have

‖A‖∞ ≤ C ′
(

max
i∈[d]

|Si(∆)|
d

+
d

N
log

d

δ

)
log

N

δ
.

Proof We have ‖A‖∞ = maxi∈[d]

∑d
j=1 |Aij |. If xr = ei − ej , then xrx>r is the matrix with

entries (xrx
>
r )ii = (xrx

>
r )jj = 1, (xrx

>
r )ij = (xrx

>
r )ji = −1, and 0 elsewhere. Also, note that

y2r
σ2 tanh′

(yrx>r θ∗
σ2

)
≥ 0. Then, by the definition of A, it is not hard to see that

d∑
j=1

|Aij | =
d− 1

N

∑
r∈Ri

y2
r

σ2
tanh′

(
yrx
>
r θ
∗

σ2

)
≤ 4d

N

∑
r∈Ri

y2
r

σ2
exp

(
− 2

∣∣∣∣yrx>r θ∗σ2

∣∣∣∣) (44)

whereRi is defined in (12), and the inequality follows from the fact 0 ≤ tanh′(t) = (cosh(t))−2 ≤
4 exp(−2|t|) for all t ∈ R.

For ∆ = 2Cσ
√

log N
δ , let Ri(∆) be defined in (13b). Similar to the proof of Lemma 16, we

split the analysis of the sum in (44) into two parts. First, let us consider r ∈ Ri \ Ri(∆). Then

|x>r θ∗| > ∆, and by the assumption |yr − x>r θ∗| ≤ Cσ
√

log N
δ = ∆/2, we have

∣∣∣∣yrx>r θ∗σ2

∣∣∣∣ ≥ (x>r θ
∗)2

2σ2
.

Consequently,

4d

N

∑
r∈Ri\Ri(∆)

y2
r

σ2
exp

(
− 2

∣∣∣∣yrx>r θ∗σ2

∣∣∣∣) ≤ 4d

N
N

4(x>r θ
∗)2

σ2
exp

(
− (x>r θ

∗)2

σ2

)
(a)

≤ 16 d
∆2

σ2
exp

(
− ∆2

σ2

)
(b)

≤ 1

N10
,

where (a) holds as the function t exp(−t) is decreasing for t ≥ 1, and (b) holds by the definition of
∆ provided that the constant C is sufficiently large.

Next, consider r ∈ Ri(∆). We have

4d

N

∑
r∈Ri(∆)

y2
r

σ2
exp

(
− 2

∣∣∣∣yrx>r θ∗σ2

∣∣∣∣) ≤ 4d

σ2N

∑
r∈Ri(∆)

y2
r

≤ 4d

σ2N
C∆2

(
|Si(∆)|N

d2
+ log

d

δ

)
= 16C3

(
|Si(∆)|
d

+
d

N
log

d

δ

)
log

N

δ
,

where the second inequality follows from Lemma 3.
Finally, combining the above two bounds with (44) finishes the proof.
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Lemma 19 There exist absolute constants C,C ′ > 0 such as the following holds for any δ ∈
(0, 0.1). Suppose that all the bounds in Lemma 3 hold with the constant C, and that |yr − x>r θ∗| ≤
Cσ
√

log N
δ for all r ∈ [N ]. For θ ∈ H, t ∈ [0, 1]d, and r ∈ [N ], define

ω(θ, r, tr) :=
y2
r

2σ4
tanh′′

(
yrx
>
r (θ∗ + tr(θ − θ∗))

σ2

)
(x>r (θ − θ∗))2, (45a)

ω(θ, t) :=
d− 1

2N

N∑
r=1

ω(θ, r, tr) yr xr. (45b)

Suppose further that ‖θ − θ∗‖∞ ≤ C
4 σ
√

log N
δ . Then we have

‖ω(θ, t)‖∞ ≤
C ′

σ
‖θ − θ∗‖2∞

(
log

N

δ

)3/2
.

Proof Fix i ∈ [d]. By (45) and the definition ofRi in (13b), we have

|ω(θ, t)i| ≤
d− 1

2N

∑
r∈Ri

|ω(θ, r, tr) yr| ≤
d

4N

∑
r∈Ri

|y3
r |
σ4

∣∣∣∣tanh′′
(
yrx
>
r (θ∗ + tr(θ − θ∗))

σ2

)∣∣∣∣ (x>r (θ−θ∗))2.

Using that
∣∣tanh′′ (t)

∣∣ ≤ 8 exp(−2|t|) for all t ∈ R and (x>r (θ − θ∗))2 ≤ 4‖θ − θ∗‖2∞, we obtain

|ω(θ, t)i| ≤
8d

σN
‖θ − θ∗‖2∞

∑
r∈Ri

|y3
r |
σ3

exp

(
−2

∣∣∣∣yrx>r (θ∗ + tr(θ − θ∗))
σ2

∣∣∣∣) . (46)

Similar to the proof of the previous lemma, we again split the analysis into two parts. Define

∆ := 2Cσ
√

log N
δ . First, consider r ∈ Ri \ Ri(∆). Then |x>r θ∗| > ∆, and by the assumptions

|yr − x>r θ∗| ≤ ∆/2 and ‖θ − θ∗‖∞ ≤ ∆/4, we have tr|x>r (θ − θ∗)| ≤ 2‖θ − θ∗‖∞ ≤ ∆/2 and∣∣∣∣yrx>r (θ∗ + tr(θ − θ∗))
σ2

∣∣∣∣ ≥ (x>r θ
∗)2

4σ2
.

It follows that

|y3
r |
σ3

exp

(
−2

∣∣∣∣yrx>r (θ∗ + tr(θ − θ∗))
σ2

∣∣∣∣) ≤ 8
|x>r θ∗|3

σ3
exp

(
−(x>r θ

∗)2

2σ2

)
≤ 16

since the function t3 exp(−t2/2) ≤ 2 for t ∈ R. Next, consider r ∈ Ri(∆). Then |x>r θ∗| ≤ ∆ and
so |yr| ≤ 2∆. Hence we have

|y3
r |
σ3

exp

(
−2

∣∣∣∣yrx>r (θ∗ + tr(θ − θ∗))
σ2

∣∣∣∣) ≤ 8
∆3

σ3
= 64C3

(
log

N

δ

)3/2
.

Putting the two cases together with (46), we obtain

|ω(θ, t)i| ≤
8d

σN
‖θ − θ∗‖2∞ |Ri| · 64C3

(
log

N

δ

)3/2
≤ C ′

σ
‖θ − θ∗‖2∞

(
log

N

δ

)3/2
,

where the second inequality follows from Lemma 3. This holds for any i ∈ [d], so the proof is
complete.

With these results in hand, we are now ready to perform a sharp analysis of ‖θ̂ − θ∗‖2.
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Proposition 20 There exist absolute constants C,C ′ > 0 such that the following holds for any
δ ∈ (0, 0.1) and any integer L ≥ 2. Fix θ(0) ∈ H and let ∆(0) := max{4L‖θ(0) − θ∗‖∞, 6

√
Lσ}.

Also, let ∆ := 2Cσ
√

log N
δ . Suppose that

N ≥ C max
{
L2d

L
L−1 log

dL

δ
, L3d log

L

δ

}
, N � L4 d

(
log

N

δ

)5

, (47a)

max
i∈[d]
|Si(∆(0))| ≤ d

CL2
, max

i∈[d]
|Si(∆)| = o

(
d

(L log(N/δ))3/2

)
, (47b)

where Si(·) is defined in (13a). Let θ̂ be the limit of the EM sequence {θ(t)}t≥0 defined in (5) as
guaranteed by Proposition 17. Then we have

‖θ̂ − θ∗‖22 ≤ (1 + o(1))σ2d− 1

2N
tr(Σ̂†) + C ′σ2

(
d3/2

N

√
log

1

δ
+

d

N
log

1

δ

)
.

Proof There is an event E of probability at least 1− δ on which

• |yr − x>r θ∗| ≤ Cσ
√

log N
δ for all r ∈ [N ];

• the bounds in Lemma 3 hold;

• ‖Σ̂‖op ≤ 3, ‖Σ̂†‖op ≤ 5, and tr(Σ̂†) ≥ (d− 1)/3 by Proposition 4 and Lemma 5;

• ‖Σ̂†‖∞ ≤ 2L by Proposition 11;

• ‖Q̂(θ∗)− θ∗‖22 ≤ σ2 d−1
2N tr(Σ̂†) + Cσ2

(
d3/2

N

√
log 1

δ + d
N log 1

δ

)
by Lemmas 14 and 15;

• ‖θ̂ − θ∗‖∞ ≤ Cσ
√

Ld
N log d

δ by Proposition 17;

• ‖A‖∞ ≤ C ′
(

maxi∈[d]
|Si(∆)|

d + d
N log d

δ

)
log N

δ ≤ o

(
1

L3/2
√

log(d/δ)

)
by Lemma 18 and

the assumptions (47a) and (47b);

• ‖ω(θ̂, t)‖∞ ≤ C′

σ ‖θ̂−θ
∗‖2∞

(
log N

δ

)3/2 ≤ C ′C2σLdN
(
log N

δ

)5/2 ≤ o( σ
L

√
d
N

)
by Lemma 19,

the above bound on ‖θ̂ − θ∗‖∞, and (47a).

Let us condition on the event E in the rest of the proof.
Since Σ̂θ̂ = Σ̂Q̂(θ̂) = Q̄(θ̂), we have

Σ̂(θ̂ − θ∗) = Q̄(θ̂)− Q̄(θ∗) + Q̄(θ∗)− Σ̂θ∗

=
d− 1

2N

N∑
r=1

(
tanh

(
yrx
>
r θ̂

σ2

)
− tanh

(
yrx
>
r θ
∗

σ2

))
yrxr + Q̄(θ∗)− Σ̂θ∗.

By Taylor’s theorem, it holds that

tanh

(
yrx
>
r θ̂

σ2

)
− tanh

(
yrx
>
r θ
∗

σ2

)
= tanh′

(
yrx
>
r θ
∗

σ2

)
yrx
>
r (θ̂ − θ∗)
σ2

+ ω(θ̂, r, tr),
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where the error term ω(θ̂, r, tr) is defined in (45a) for some tr ∈ [0, 1]. With this in hand, we have

Σ̂(θ̂ − θ∗) =
d− 1

2N

N∑
r=1

tanh′
(
yrx
>
r θ
∗

σ2

)
yrx
>
r (θ̂ − θ∗)
σ2

yrxr + ω(θ̂, t) + Q̄(θ∗)− Σ̂θ∗

= A(θ̂ − θ∗) + Q̄(θ∗)− Σ̂θ∗ + ω(θ̂, t),

where ω(θ̂, t) is defined in (45b) for t = (t1, . . . , td), and A is defined in (43). It follows that

θ̂ − θ∗ = Q̂(θ∗)− θ∗ + Σ̂†A(θ̂ − θ∗) + Σ̂†ω(θ̂, t). (48)

On the event E , the main term Q̂(θ∗)− θ∗ in the above formula satisfies

‖Q̂(θ∗)− θ∗‖22 ≤ σ2d− 1

2N
tr(Σ̂†) + Cσ2

(
d3/2

N

√
log

1

δ
+

d

N
log

1

δ

)
. (49)

The error term satisfies

‖Σ̂†A(θ̂ − θ∗) + Σ̂†ω(θ̂, t)‖∞ ≤ ‖Σ̂†‖∞‖A‖∞‖θ̂ − θ∗‖∞ + ‖Σ̂†‖∞‖ω(θ̂, t)‖∞ ≤ o
(
σ
√
d/N

)
in view of the bounds ‖Σ̂†‖∞ ≤ 2L, ‖θ̂ − θ∗‖∞ ≤ Cσ

√
Ld
N log d

δ , ‖A‖∞ ≤ o

(
1

L3/2
√

log(d/δ)

)
,

and ‖ω(θ̂, t)‖∞ ≤ o
(
σ
L

√
d
N

)
on the event E . It follows that

‖Σ̂†A(θ̂ − θ∗) + Σ̂†ω(θ̂, t)‖22 ≤ o
(
σ2d2/N

)
. (50)

Finally, since tr(Σ̂†) ≥ (d − 1)/3 on the event E , the first term of the bound in (49) dominates the
bound in (50). Combining (49) and (50) with (48) then completes the proof.

A.6. Proof of main results

Proof [Proof of Theorem 1] The theorem follows from Proposition 17 together with the assumption
θ∗ ∈ Θ(β). We first check that the conditions in Theorem 1 imply the conditions in (36).
Checking (36a): On the one hand, and as claimed in the statement of the theorem,

N ≥ max{d1+ρ, N0}. (51)

On the other hand, choosing L = 1 + d2/ρe and δ = N−D in Proposition 17, we obtain the sample
size requirement

N ≥ C max
{
L2d

L
L−1 log

dL

δ
, L3d log

L

δ

}
. (52)

It can be easily verified that for a sufficiently large constant N0 > 0, (51) implies (52).
Checking (36b): Furthermore, since θ∗ ∈ Θ(β), if |θ∗i − θ∗j | ≤ ∆, then |i− j| ≤ ∆d/β. Therefore,
we have

Si(∆) = {j ∈ [d] \ {i} : |θ∗i − θ∗j | ≤ ∆} ⊂ {j ∈ [d] \ {i} : |i− j| ≤ ∆d/β},
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so
|Si(∆)| ≤ 2∆d/β.

As a result, for ∆(0) = max{4L‖θ(0) − θ∗‖∞, 6
√
Lσ}, it holds that

max
i∈[d]
|Si(∆(0))| ≤ max{8L‖θ(0) − θ∗‖∞d/β, 12

√
Lσd/β} ≤ d

CL2
(53)

in view of the assumptions ‖θ(0) − θ∗‖∞ ≤ c1β and σ ≤ c1β.
It remains to compare τ in Theorem 1 and Proposition 17: once we set δ = N−D, the two are

the same up to multiplicative factors depending solely on the pair (ρ,D).

Proof [Proof of Theorem 2] The theorem follows from Proposition 20. Continuing from the proof
of Theorem 1, we check the two additional conditions in (47) compared to (36).
Checking (47a): Choosing L = 1 + d2/ρe and δ = N−D again, we can use the assumption
N ≥ max{d1+ρ, N0} to verify that

N � L4 d

(
log

N

δ

)5

.

Checking (47b): We again have |Si(∆)| ≤ 2∆d/β, so for ∆ = 2Cσ
√

log N
δ , it holds

max
i∈[d]
|Si(∆)| ≤ 4Cσd

β

√
log

N

δ
= o

(
d

(L log(N/δ))3/2

)
in view of the assumption σ = o

(
β

(logN)2

)
.

Implication: Proposition 20 then gives

‖θ̂ − θ∗‖22 ≤ (1 + o(1))σ2d− 1

2N
tr(Σ̂†) + C ′σ2

(
d3/2

N

√
logN +

d

N
logN

)
.

Finally, tr(Σ̂†) ≥ (d − 1)/3 with high probability by Lemma 5, so the first term above dominates
the other terms when d� logN . Therefore, Theorem 2 follows.

Appendix B. Probability tools

Lemma 21 (Gaussian concentration, Theorem 5.2.2 of Vershynin (2018)) Consider a random
vector X ∼ N (0, In) and an L-Lipschitz function f : Rn → R. Then we have

Pr{|f(X)− E[f(X)]| ≥ t} ≤ 2 exp
(
−c t2/L2

)
for an absolute constant c > 0.

Definition 22 (Convex concentration property) Let X be a random vector in Rn. We say that
X has the convex concentration property with constant K if for every 1-Lipschitz convex function
φ : Rn → R, we have E[|φ(X)|] <∞, and for every t > 0,

Pr{|φ(X)− E[φ(X)]| ≥ t} ≤ 2 exp
(
−t2/K2

)
.
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Lemma 23 (Theorem 2.3 of Adamczak (2015)) Let X be a mean zero random vector in Rn. If
X has the convex concentration property with constant K, then for any A ∈ Rn×n and any t > 0,

Pr{|X>AX − E[X>AX]| ≥ t} ≤ 2 exp

(
− 1

C
min

(
t2

K4‖A‖2F
,

t

K2‖A‖op

))
,

for an absolute constant C > 0.

Lemma 24 (Matrix Bernstein, Theorem 1.6.2 of Tropp (2015)) Consider a finite sequence {Xk}Nk=1

of independent, random, Hermitian matrices in Rd×d. Assume that

E[Xk] = 0 and ‖Xk‖op ≤ L for each k ∈ [N ].

Introduce the random matrix

Y =
N∑
k=1

Xk.

Let v(Y ) be the matrix variance statistic of the sum:

v(Y ) = ‖E[Y 2]‖ =

∥∥∥∥ N∑
k=1

E[X2
k ]

∥∥∥∥.
Then

E[‖Y ‖] ≤
√

2v(Y ) log(2d) +
1

3
L log(2d).

Furthermore, for all t > 0,

Pr{‖Y ‖ ≥ t} ≤ 2d exp

(
− t2/2

v(Y ) + Lt/3

)
.

Lemma 25 (Lemma 2.27 of Wainwright (2019)) Let f : RN → R be a differentiable function.
Then for every convex function φ : R→ R, we have

E[φ(f(X)− E[f(X)])] ≤ E
[
φ
(π

2
〈∇f, Y 〉

)]
,

where X, Y ∼ N (0, IN ) are independent standard Gaussians.

Appendix C. Improved sample complexity

In Theorem 1, we assume the conditions

• (sample size) N ≥ d1+ρ;

• (noise) σ ≤ c1β;

• (initialization) ‖θ(0) − θ∗‖∞ ≤ c1β.

It is possible to improve the sample complexity at the cost of strengthening the other two conditions.
Namely, we may assume the alternative conditions
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• (sample size) N ≥ d (log d)C1 ;

• (noise) σ ≤ c2 β
(log d)5/2

;

• (initialization) ‖θ(0) − θ∗‖∞ ≤ c2 β
(log d)3

.

To see the sufficiency of this set of conditions, we apply Proposition 17 with L =
⌈ log d

log log de and
δ = N−D for a constant D > 0. It suffices to check the two conditions in (36). We have

d
1

L−1 ≤ d
2 log log d

log d = (log d)2.

Therefore, if N ≥ d (log d)C1 for a sufficiently large constant C1 = C1(D) > 0, then

N ≥ C max
{
L2d

L
L−1 log

dL

δ
, L3d log

L

δ

}
.

Further, as in (53), we have

max
i∈[d]
|Si(∆(0))| ≤ max{8L‖θ(0) − θ∗‖∞d/β, 12

√
Lσd/β} ≤ d

CL2

provided that ‖θ(0) − θ∗‖∞ ≤ β
8CL3 and σ ≤ β

12CL5/2 . These are satisfied once we choose c2 > 0
to be sufficiently small.

Appendix D. Minimax lower bounds with a fixed design

If the signs zr are given in the model (1) and the covariates xr are fixed, then the problem reduces
to linear regression with a fixed design. It is an elementary fact that the least squares estimator θ̂LS

achieves the risk

E ‖θ̂LS − θ∗‖22 = σ2 tr

(( N∑
r=1

xrx
>
r

)†)
.

It is well-known that this risk is minimax-optimal. To show that σ2 tr
((∑N

r=1 xrx
>
r

)†) is a lower
bound on the minimax risk, the standard proof is via the Bayes risk assuming that θ∗ has the prior
distribution N

(
0, τ2

(∑N
r=1 xrx

>
r

)†) for a parameter τ . One can compute the Bayes-optimal es-
timator which is the posterior mean of θ∗. Then the Bayes risk achieved by the posterior mean
evaluates to τ2

1+τ2
σ2 tr

((∑N
r=1 xrx

>
r

)†). Since the Bayes risk is a lower bound on the minimax
risk, letting τ →∞ proves the desired lower bound.

If the signs zr are unknown in the mixture model (1) and the covariates xr are fixed, then
σ2 tr

((∑N
r=1 xrx

>
r

)†) is still a lower bound on the minimax risk for estimating θ∗. Therefore,

conditional on a typical realization of (xr)
N
r=1, the proof of Theorem 2 in fact shows that the EM

fixed point θ̂ achieves the minimax rate with the sharp constant (see Theorem 2 and Eq. (7)). Since
this work assumes a random design of the covariates, to keep our terminology consistent, we do not
further formalize a minimax result in the fixed-design setting.
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