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Abstract— The problem of quickest detection of a change in the
mean of a sequence of independent observations is studied. The
pre-change observations are assumed to be stationary, while
the post-change observations are allowed to be non-stationary.
The case where the pre-change distribution is known is studied
first, and then the extension where only the mean and variance
of the pre-change distribution are known. No knowledge of the
post-change distributions is assumed other than that the means
of the observations are above some pre-specified threshold larger
than the pre-change mean. For the case where the pre-change
distribution is known, a test is derived that asymptotically
minimizes the worst-case detection delay over all possible post-
change distributions, as the false alarm rate goes to zero. Towards
deriving this asymptotically optimal test, some new results are
provided for the general problem of asymptotic minimax robust
quickest change detection in non-stationary settings. Then, the
limiting form of the optimal test is studied as the gap between the
pre- and post-change means goes to zero, called the Mean-Change
Test (MCT). It is shown that the MCT can be designed with
only knowledge of the mean and variance of the pre-change
distribution. The performance of the MCT is also characterized
when the mean gap is moderate, under the additional assumption
that the distributions of the observations have bounded support.
The analysis is validated through numerical results for detecting
a change in the mean of a beta distribution. The use of the MCT
in monitoring pandemics is also demonstrated.

Index Terms— Quickest change detection (QCD), non-
parametric methods, minimax robust detection, non-stationary
observations.

I. INTRODUCTION

UICKEST change detection (QCD) is a fundamental

problem in mathematical statistics (see, e.g., [2] for an
overview). Given a stochastic sequence whose distribution
changes at some unknown change-point, the goal is to detect
the change after it occurs as quickly as possible, subject
to false alarm constraints. The QCD framework has seen a
wide range of applications, including line-outage in power
systems [3], dim-target manoeuvre detection [4], stochastic
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process control [5], structural health monitoring [6], and
piece-wise stationary multi-armed bandits [7]. The two main
formulations of the classical QCD problem are the Bayesian
formulation [8], [9], where the change-point is assumed to
follow a known prior distribution, and the minimax formula-
tion [10], [11], where the worst-case detection delay is min-
imized over all possible change-points, subject to false alarm
constraints. In both the Bayesian and minimax settings, if the
pre- and post-change distributions are known, low-complexity
efficient solutions to the QCD problem can be found [2].

In many practical situations, we may not know the exact
distribution in the pre- or post-change regimes. While it is
reasonable to assume that we can obtain a large amount of
data in the pre-change regime, this may not be the case
for the post-change regime. Also, in applications such as
epidemic monitoring and piece-wise stationary multi-armed
bandits, a change in a specific statistic (e.g., the mean) of the
distribution is of interest. This is different from the original
QCD problem where any distributional change needs to be
detected. Furthermore, in many applications, the support of
the distribution is bounded. For example, the observations
representing the fraction of some specific group in the entire
population are bounded between O and 1. This is the case, for
example, in the pandemic monitoring problem that we discuss
in detail in Section IV. In many applications, including the
pandemic monitoring problem, the system has usually reached
some nominal steady-state distribution before the change-
point. In these situations, the pre-change observations can be
assumed to be stationary.

In this paper, we study the problem of quickest detection
of a change in the mean of a sequence of independent
observations. The pre-change observations are assumed to be
stationary, while the post-change observations are allowed to
be non-stationary. We first study the case where the pre-change
distribution is known, and then study the extension where
only the mean and variance of the pre-change distribution
are known. No knowledge of the post-change distributions is
assumed other than that the means of the observations are
above some threshold larger than the pre-change mean.

There have been a number of lines of work on the QCD
problem when the pre- and/or post-change distributions are
not completely known. The most prevalent is the generalized
likelihood ratio (GLR) approach, introduced in [10] for the
parametric case where the post-change distribution has an
unknown parameter. This GLR approach is studied in detail for
the problem of detecting the change in the mean of a Gaussian
distribution with unknown post-change mean in [12]. A GLR
test for the case where the pre- and post-change distributions
come from an one-parameter exponential family, and both the
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pre- and post-change parameters are unknown, is analyzed
in [13].

The QCD problem has also been studied in a non-parametric
setting. In particular, for detecting a change in the mean of an
observation sequence, one approach has been to use maximum
scan statistics. The scan statistic of an observation sequence
is defined as the absolute difference of the averages before
and after a potential change-point. In [14], the case where
the pre- and post-change distributions have finite moment
generating functions in some neighborhood around zero is
considered. At each time greater than a window size N, the
scan statistic at each potential change-point is calculated using
the last IV observations. The maximum scan statistic is then
calculated over the set of potential change-points, and an alarm
is raised if this maximum exceeds some threshold. In [15],
the case of sub-Gaussian pre- and post-change distributions
is studied. The scan statistic is calculated over the entire
observation sequence, and the maximum is compared to a
threshold determined by the current time and the desired false
alarm rate. This approach is further applied to the piece-wise
stationary multi-armed bandit problem in [7]. We compare
our approach to mean-change detection with a test using scan
statistics in Section IV.

We note that for both the GLR the scan statistics approaches,
the complexity of computing the test statistic at each time-step
grows at least linearly with the number of samples. In practice,
a windowed version of the test statistic is often used to
reduce computational complexity, while suffering some loss
in performance.

Still another line of work is the one based on a minimax
robust approach [16], [17], in which it is assumed that the dis-
tributions come from mutually exclusive uncertainty classes.
Under certain conditions on the uncertainty classes, e.g., joint
stochastic boundedness [18], low-complexity solutions to the
minimax robust QCD problem can be found [19]. Under
more general conditions, e.g., weak stochastic boundedness,
a solution that is asymptotically close to the minimax solution
can be found [4].

In this paper, we use an asymptotic (in the sense of letting
the false alarm rate go to zero) version of the minimax
robust QCD problem formulation [4] to develop algorithms
for the non-parametric detection of a change in mean of an
observation sequence. Our contributions are as follows:

1) We extend the asymptotic minimax robust QCD problem
introduced in [4] to the more general non-stationary
setting, where the weak law of large numbers is not
directly applicable as in [4].

2) We study the problem of quickest detection of a change
in the mean of an observation sequence under the
assumption that no knowledge of the post-change dis-
tribution is available other than that its mean is above
some threshold larger than the pre-change mean.

3) For the case where the pre-change distribution is known,
we derive a test that asymptotically minimizes the
worst-case detection delay over all possible post-change
distributions, as the false alarm rate goes to zero.

4) We study the limiting form of the optimal test as the gap
between the pre- and post-change means goes to zero,
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which we call the Mean-Change Test (MCT). We show
that the MCT can be designed with only knowledge of
the mean and variance of the pre-change distribution.

5) We also characterize the performance of the MCT when

the mean gap is moderate, under the assumption that the
distributions of the observations have bounded support.

6) We validate our analysis through numerical results for

detecting a change in the mean of a beta distribution.
We also demonstrate the use of the MCT for pandemic
monitoring.

The rest of the paper is structured as follows. In Section II,
we describe the quickest change detection problem under
distributional uncertainty and provide some new results regard-
ing asymptotically robust tests in the non-stationary setting.
In Section III, we formulate the mean-change detection prob-
lem, and propose and analyze the mean-change test (MCT),
which solves the problem asymptotically. In Section IV,
we validate our analysis through numerical results for detect-
ing a change in the mean of a beta distribution, and
also demonstrate the use of the MCT in monitoring pan-
demics. Finally, in Section V, we provide some concluding
remarks.

II. QUICKEST CHANGE DETECTION UNDER
DISTRIBUTIONAL UNCERTAINTY

Let Xq,...,X4,--- € R be a sequence of independent
random variables, and let v be a change-point. Let Py =
{Po,t}+>1 and Py = {P;,};>1 be two sequences of prob-
ability measures, where Py € Py and P;; € P; for all
t > 1. Further, assume that P;; has probability density
pj,+ with respect to the Lebesgue measure on R and that
the first moment of P;; exists, for j = 0,1 and ¢ > 1.
Let PPo-P1 L.} denote the probability measure on the entire
sequence of observations when the pre-change distributions
are { Py 1 }+<, and the post-change distributions are { P ¢ };>,,
with X; ~ Py, V1 <t <vand X; ~ Py, V& > v, and
let EFo-P1 [.] denote the corresponding expectation. When Py
and Py are stationary, i.e., Py, = Py, Vt > 1 and P, ; = P,
Vt > 1, we use the notations PZ0:1 {.} and EFo-#1 [.] in place
of PPo.P1 1.3 and EFo-P1 [, respectively.

The change-time v is assumed to be unknown but deter-
ministic. The problem is to detect the change quickly while
not causing too many false alarms. Let 7 be a stopping
time [18] defined on the observation sequence associated with
the detection rule, i.e. 7 is the time at which we stop taking
observations and declare that the change has occurred.

For the case where both the pre- and post-change distribu-
tions are stationary and known, Lorden [10] proposed solving
the following optimization problem to find the best stopping
time 7:

inf WADD?*" (1) (D)

TECfO

where
WADD? ™ (7) =

sup ess sup EX0-F1 [(T—V+1)+ [ X1, Xvoq 2)
v>1
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is a worst-case delay metric, and

C(‘:—)O = {’7’ : FART® (1) < a} 3)

with 1
FARP (1) = ————. 4
(T) EOPg’Pl [T] ( )

Here EL0:P1[] is the expectation operator when the change
never happens, and ()" := max{0, -}.

Lorden also showed that Page’s Cumulative Sum (CuSum)
algorithm [20] whose test statistic is given by:

t
APPr(#) = max In LPo-Pr(X5)
1<k<t+1 4

i=k

= (AP - 1) + LR (X)) )

solves the problem in (1) asymptotically. Here L0 is the
likelihood ratio:

Po,Py( _pl(JU)

and we use the convention that Z§=t+1 In LPo-P1(X;) = 0.
The CuSum stopping rule is given by:

T (AP b)) = imf{t: ATOTU() > 00} (D)

where b, := |Inal. It was shown by Moustakides [21] that
the CuSum algorithm is exactly optimal for the problem in (1).

When the pre-change and post-change distributions are
unknown but belong to known uncertainty sets and are possi-
bly non-stationary, a minimax robust formulation can be used
in place of (1):

inf sup WADDP-P1 (1) (8)
reCl®  (Po,P1):(Pot,P1¢)€Pox Py Vi
where

WADD Pt (1) :=

sup ess sup Ef"’Pl
v>1

(v XL X ] ©
and the feasible set is defined as

CZfO = {T:

FARP® (1) < a} (10)

sup
Po:Py t€Po
with 1
FARP (7) i= ———. (11)
(1) B[]

We now address the solution to the problem in (8). To this
end, we give the following using definitions.

Definition 2.1 (see, e.g., [18]): A pair of uncertainty sets
(Po, P1) is said to be jointly stochastically (JS) bounded by
(Po, Py) € Py x Py if, for any (Py, Py) € Py x P; and any
h >0,

Po{L™P(X) > h} < B{LPP(X) > h}
P{L™P(X) > n} > B {LPP(X) >k} (12)

where LT0-P1 s the likelihood ratio between P; and Py (see
(6)). The distributions Py and P; are called least favorable dis-
tributions (LFDs) within the classes Py and P, respectively.
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If the pair of pre- and post-change uncertainty sets is JS
bounded, the CuSum test statistic A7>F1(¢) (see (5)), with
stopping rule 7(ATo:F1 b)) (see (7)), solves (8) exactly both
when Py and P; are stationary [19] and when they are
potentially non-stationary [22].

Definition 2.2 (see [4]): A pair of uncertainty sets (Py, P; )
is said to be weakly stochastically (WS) bounded by (Py, Py) €
Po x Py if

D(Py||Py) < D(Py||Py) — D(P1||Pr) (13)
for all P, € Py, and
EFo [Lf’mﬁl (X)} <EP {Lﬁ‘”ﬁl (X)} -1 (14

for all Py € Po. Here, EF [-] denotes the expectation oper-
ator with respect to distribution P, and D(P||Q) denotes
KL-divergence:

D(P||Q) =EF [mL"9(X)]. (15)

It is shown in [4] that if the pair of uncertainty sets is JS
bounded by (P,, Py), it is also WS bounded by (P, P,). It is
also shown in [4] that if the pair of pre- and post-change uncer-
tainty sets is WS bounded, the CuSum test statistic AFo-F1(¢)
with stopping rule 7(AT0-P1 b, solves (8) asymptotically as
a — 0 when Py and P; are both stationary.

A. Asymptotically Optimal Solution in the
Non-Stationary Setting

Let Py, P; be such that Py x P; is WS bounded by (]50, 151).
In the following, we extend the result in [4] to the case
where Py and P; are potentially non-stationary and derive
an asymptotically optimal solution as o — 0. Specifically,
through Lemma 2.1 we upper bound the asymptotic delay,
through Lemma 2.2 we control the false alarm rate, and in
Theorem 2.3 we combine the lemmas to provide an asymp-
totically optimal solution to the problem in (8) when Py and
P; are potentially non-stationary.

Lemma 2.1: Consider Py x P; WS bounded by (P, P;).
Let Py and P; be such that Py, € Py and Py, € Py for all
t > 1. Suppose that for all P, ; € P,

sup Varft (1nLP“’151 (Xt)) =o(n)asn—oo (16)
1<t<n

where Var® (X) denotes the variance of X when X ~ P.

Then, 7-(A1507151 ,b) satisfies

WADDPe-P1 (T(APO’Pl,b)) < (1+0(1)) (L)
D(Py||Po)
(17)
as b — oo, where o(1) — 0 as b — .
Lemma 2.2: Consider Py x P; WS bounded by (]50, 151).
Let Py and P; be such that Py, € Py and Py, € Py for all
t > 1. Then, for any such Py, € Py,

EPo [T(Apo’pl,b)} > b (18)

for any threshold b > 0.
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Theorem 2.3: Consider the same assumptions as in
Lemma 2.1. Then, the CuSum test (A"t b,) solves the
problem in (8) asymptotically as o — 0, and

sup WADDFo-P: (T(Aﬁo’ﬁl,ba))
(Po,P1):(Po,t,P1,t)€PoxP1,Vt
| In o]
=u+dm(—7—f (19)
D(P||Py)

where o(1) — 0 as o — 0.

The proofs of Lemma 2.1, Lemma 2.2 and Theorem 2.3
are given in the appendix. Note that all results given in this
section continue to hold when the observations are random
vectors, i.e., X; € R?, for some d > 1.

III. MEAN-CHANGE DETECTION PROBLEM

Until now, we have considered the general QCD problem
formulated in (8). In this paper, we are mainly interested in
a special case of the problem, described as follows. The pre-
change distribution is stationary, i.e., Py = Fp,Vt > 1, with
pre-change mean oy = Ef [X] < oo and variance 03 =
Var™ (X) < co. Thus, Py = {Py} is a singleton. The post-
change distribution could be non-stationary, and at each time
it belongs to the following uncertainty set:

Pi=M,; :={P: uy<n <EF[X],Var’ (X) < By < oc}.
(20)

In this expression, X denotes a generic observation in the
sequence, 1 is a pre-designed threshold, and By is some
finite upper bound on the post-change variance. Note that
this definition of uncertainty set only makes sense for the
case where the the observations are (one-dimensional) random

variables. Define
A = 1 — Ho

2
which is half of the worst-case mean-change gap.
The minimax robust mean-change problem, which is a
reformulation of (8) is given by:

>0

21

inf sup WADD#1 (7).

(22)
reco PP eMyVE

Our goal is to find a stopping time that solves (22) asymptot-
ically as the false alarm rate o — 0.

A. Known Pre-Change Distribution

Define

Ko(A) = ME™ [e*X] (23)

to be the cumulant-generating function (cgf) of the obser-
vations under Py. In the following theorem, we provide a
solution to the problem stated in (22).

Theorem 3.1: Consider Py = {Py}, and M; as given
in (20). Define

pr(x) = po(x)er oD (24)
where k() is the cgf under Py and \* satisfies
d EPo [XerX] 5
—hro(\*) = ——— =B [X] = 25
d}\K/O( ) EPO [e)\*x] [ ] "7 ( )
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Then, the CuSum statistic
5 t
Py, Py — *Y. *
A (t) | hex _ (N X — ko(A\Y)) (26)

1=

and the stopping rule (A 0, P 1 b,) (see (7)) with threshold
bo, = |lna| solves the minimax robust problem in (22)
asymptotically as o — 0, and

inf sup WADD-P1 (1)
recl®  Py:Py,eMy Vi
[In o
- q451) @
S (1 o(1)

Proof: ~ The proof follows from an application of
Theorem 2.3. First, with p; as defined in (24),

Var’™¢ <1nLP°’151 (Xt)) = (\")?Var™ (X;) < (\*)*By.

Since 17 < oo and A* < oo, condition (16) is satisfied. We now
establish that Py x M; is WS bounded by (P, ]51). By [4,
Prop. 1 (iii)], since M is convex and Py is a singleton, if P,
minimizes the KL-divergence D(P;||Fy) over P; € My, then
Po x M is WS bounded by (P, ]51). Therefore, it remains to
show that P, specified in (24) minimizes D(Py||Fy), subject
to 1 [X] > . To this end, we follow the procedure outlined
in [23, Sec. 6.4.1]. Consider the Lagrangian

J(pr, A, p) = EP [In L7 (X)] + A(n — EP [ X))

+p <1 - /pl(x)ddx>

—/<lnp1(x) —Ax—u) pr(@)dz + M+

po(z)

(28)
where the Lagrange multiplier A > 0 corresponds to the
constraint that the post-change mean is greater than 7, and
u corresponds to the constraint that pi(z) is a probability
measure. For an arbitrary direction z, we take the Gateaux
derivative with respect to py:

. J(p1+ bz A pu) — J(p1, A,
V2 (P1: A 1) ::%,li% (p1 /;L) (p1, A, 1)

= / <ln % —\r — /Z> zdx (29)

where i = ;1 — 1, and since z is arbitrary, we arrive at

pi(z)
po(z)
By the Generalized Kuhn-Tucker Theorem [24], since po(z)
is bounded, p; () = po(x)e ™ is a necessary condition for
optimality. Furthermore, since J(p1, A, i) is convex in p, this
is also a global optimum. To satisfy the constraints, we have

In - X —f=0 (30)

= —n [ pola) ¥do = xa() G31)
and that \* satisfies,
5 . a1 EP[XeNX]
_ mbP _ mP MNX—ro(\)] _
2= 3] - o] L B K]
d .
= 5/@0(/\ ). (32)
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Thus, 15 1
E™ [X] > 1.
Furthermore, the minimum KL-divergence is

in (24) minimizes D(Py||P), subject to

D(By||Py) = /(/\*x ~ ko )pu(z) dx

= A" — ro(A") (33)
Hence, the worst-case delay satisfies
inf sup WADD? -1 (7)
recle  Pi:PieMy Vi
[In o
= —=—=(1+o0(1))
D(P1||Fy)
|In o
=—— (1401 (34)
as o — 0. 0

Note that p; is an exponentially-tilted version (or the
Esscher transform') of py.

B. Approximation for Small A

Even though we have an expression for the test statistic
when Py is known, as given in (26), the exact solution of
A* is not available in closed-form. Fortunately, if the mean-
change gap A is small, we obtain a low-complexity test in
terms of only the pre-change mean and variance that closely
approximates the performance of the asymptotically minimax
optimal test in the previous section.

As A — 0, 7 — po, and hence \* — 0. In this subsection,
we denote the first and second derivative of kg by & and k(j,
respectively. Since 119, 03 < oo, the first and second derivative
of ko(\) exist within some neighborhood around 0. From a
second-order Taylor expansion on x( around 0, we obtain

ko(3%) = mo(0) + rp ()2 + Y (o2 1 o(any2)

2
* 08 *)2 *)2
= poA +7(>\ )7+ o((A)7) (35
In this same regime, by continuity of x{(-),
rp(A) = £6(0)
A\F = 0 0 A
o)
nm— Ho
= A
4ol
2A
= 0'_8 + O(A) (36)
where we have used k{(A\*) = 7. Hence, the approximate

log-likelihood ratio at time ¢ is

A X = Ro(A) = XX, (X + T (1)) (1))

_2A o2 (207 )

~ 20— - 2 () o)

- % <Xt - M) +0(A2) 37)
oG 2

The Esscher transform has seen a number of applications in finance and
actuarial science (see, e.g., [25]).
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and the corresponding minimum KL-divergence is approxi-
mated as:

- 2A2 9
0
Now
2A -
— (Xt—uﬁ_n) > by Xt_uo+77 > b (39)
o 2 2
where ) )
B = [In oo _ |lna|00. 40)
2A 1 — 1o

Therefore, the stopping rule 7(A” “{3 1. b,) can be approxi-
mated by the stopping rule 7(A*0:" b,,), where

t
i < X, - Mo_+77)
1<k<t+1 P 2

+
- ([\“’0”’(1& —1)+ (Xt — MOTM» (41)

with A#07(0) = 0. We call 7(A#0-" b,) the Mean-Change
Test (MCT), and A#0" the MCT statistic.

From (38), it follows that as &« — 0 and A — 0, the
worst-case delay satisfies

[\Moﬂl(t) -

_ |Inalo?

Py, Py
WADDP Pt (7) = 2

inf

sup
TGCfU

Py:Py €M,V

(14 o0(1)).

(42)

Therefore, if A is small, it is sufficient to know only
the mean and variance to construct a good approximation to
the asymptotically minimax robust test. Furthermore, only the
mean of the pre-change distribution is needed to construct
the MCT statistic. From the simulation results in Section IV,
we see that the performance of the MCT can be very close
to that of the asymptotically minimax robust test even for
moderate values of A. Since the mean and variance of a
distribution are much easier and more accurate to estimate than
the entire density, this test can be useful and accurate when
only a moderate number of observations in the pre-change
regime is available.

Remark 1: 1t is interesting that the form of MCT statistic in
(41) coincides with that of the CuSum statistic (see (5)) with
known stationary pre- and post-change distributions, Py ~
N (o, 0?) and Py ~ N (n,0?), respectively, where N(u, 0?)
denotes a Gaussian distribution with mean £ and variance o2.
This is simply a coincidence; in particular, if we make the
assumption that the observations have bounded support as we
do in the remainder of the paper, then the Gaussian distribution
is not admissible as a possible distribution for the observations.

C. Performance Analysis of MCT for Moderate A

We now study the asymptotic performance of the MCT for
fixed A, as a — 0. For this part of the analysis, we assume
that the pre- and post-change distributions have supports
that are uniformly bounded, and without loss of generality,
we assume that the bounding interval is [0, 1]. This assumption
holds in many practical applications, including the pandemic
monitoring problem discussed in Section IV.
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Define
Zy= X, - PO sy (43)
Then the MCT statistic of (41) can be written as:
Rron(ey = (Rron(e —1) + Zt)+ (44)
with A#07(0) = 0. The MCT stopping time is given by:
(AP0 b) = inf{t : AT > b} (45)
where b has to be chosen to meet the FAR constraint:
FAR' (T(Mom,b)) — ! <a  (46)

ELo-Pr [T(AHOW, b)}

In what follows, we write T(/N\“'O”’ ,b) as 7(b), with the
understanding that the test statistic being used throughout is
the MCT statistic A0,

1) False Alarm Analysis: In Lemma 3.2 below, we first
control the boundary crossing probability of S; in the pre-
change regime. Then, in Theorem 3.3, we use Lemma 3.2 to
bound the false alarm rate of the MCT asymptotically using
the procedure outlined in [26].

Lemma 3.2: Assume that the pre-change distribution Py has
known pre-change mean p and variance o2, and that the
post-change distribution is non-stationary with P, € My,
for all ¢ > 1. For b > 0, define the supplementary stopping
time

7'(b) :==inf{t: S; ¢ (0,b)}
where S; := 22:1 Z;, with Z; defined in (43). Then,

PP {8 ) > b}

2 2
om, b <R0bA> (

2mo3 RZA
= 72730[) exp (— g b) (1+0(1)), as b — oo, (48)
79

(47)

R%A )

where
Ry = 03/ (0(2) + A - max{po, 1 — Mo}/?))

and K (%) is the modified Bessel function of the second kind
of order f3.

Proof: Note that Ef* [Z;] = (up — n)/2 = —A. Since
X; € [0,1], we have Z; + A € [—po, 1 — po]. Let M =
max{po/3, (1 —uo)/3}; then |Z; + A| < 3M. Thus, we have

PO {Sra) 2 b} = Py {Srr) > b}
- (b)
=P > Zi=b

(49)

O{Xf:(zHA)szA}

i=1

8045

= (b+tA)?
< e (_2@03 M+ m)))
i) [o (b+zA)?
< ew (‘2<m§+M<b+xA>>) e
(aAy +C) )dy

(o ]
=a exp | —
/0 ( 2y

_ ge0AC / (@22 DT 2y g
0

(@ ge_“AcKl(aAC)

A
where a = (02 + MA)™! and C = 02b/(c2 + MA).
In the series of inequalities above, (i) follows from Bern-
stein’s inequality [27, p. 9], (é¢) follows from bounding the
sum with an integral, and (ii7) follows from Lemma A.2

in the appendix, with u = a?A?/2 and v = C?/2. Since
= \/a=e *(1+0(1)) as |z| — oo, the asymptotic result
follows. 0

Theorem 3.3: ~Under the
Lemma 3.2, let b/, be such that

2 b’
Toh exp (_

same assumptions as in

2R2A -
R% b;) =«
)

Then, the MCT with E; ie., T(E/a) meets the FAR constraint
(46) asymptotically as o« — 0.
Furthermore, as o — 0,

5 (50)

. b
b/
[e3 RO
where Ba is defined in (40) and Ry is defined in (49).
Proof: As a — 0, b, — oo. Recall the definition
of 7/(b) in (47). From Lemma 3.2, for any P,; € M;,
Py {ST,(E,) > B;} < a(1+0(1)). Then, using [26, Sec. 2.6],

-z (1+0(1)) (51

it can be shown that
ER |7 (0)]
Po{ S, 2 W}

L a1+
Fo{ S,y > 0}

where (*) follows because EF° [7”(5;)} > 1. Thus, (46) is
satisfied asymptotically.

_ For the second result, it is sufficient to show that (IB’Q —
ba)/ba = Ry? — 1+ 0(1). Let

B 7(E,)] =

(*
>

N

(52)

2A ~
D = —Qb; —|lnal. (53)
)
Then, recalling the definition of Ba in (40), we have
b, —bo 20D D
- 0‘2 —-1=— (54)
b, |1no¢|0O [ In o
and we need to show that
= (Ry? —1)|Ina| + o(|Inal). (55)
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Rearranging the terms in (54), we can express l}fl as:

o= (14 -2 ) = U—§(|1na|—|—D). (56)
o |In o 2A
Plugging this expression for l~)’a into (48), we have
4
M(D—i— |lna|)e_Rg(D+“na|) =a. (57)

A4

Taking log on both sides, we obtain

1 ogm 9
-3 In (F(D + |lna|)> +R5(D+|Inal) = |Inal. (58)

In the following, we first hypothesize that D = D;|In«a| +
o(|In o), where D; is not a function of «, and then validate
the hypothesis. Using this expression of D, the first term
becomes

4
In (UAO—Z(D + |1na|))

0'471'
—In (ﬁ((pl +1)|Ina| + o] 1nal)>

=o(|Ina]).
Therefore, (58) can be restated as:

D = (Ry?—1)|Ina| + o(|Inal). (59)

This validates our hypothesis on D, and also establishes (55).
The proof is now complete. (]

Remark 2: The threshold l;fl that meets the FAR constraint
(46) asymptotically can be obtained by solving (50) numer-
ically. Alternatively, we can use the approximation in (51)
along with (40) to set:

i b B o2 Ina

=2 =0 "1 60
“ R 2RIA (60)

2) Worst-Case Delay Analysis: We now turn to the delay
analysis of MCT. The following two lemmas are useful in
establishing the delay performance. Specifically, Lemma 3.4
is used to guarantee that MCT statistic is finite in expectation,
Lemma 3.5 is used to extend Wald’s identity to the non-
stationary setting, and finally Theorem 3.6 is used to upper
bound the asymptotic delay of MCT in the case where P; ;’s
are non-stationary.

Lemma 3.4: Suppose that P, € M for all ¢t > 1. Then,
for any b > 0, EXOP* [7(b)] < .

Lemma 3.5: Let Z1,Z5,... be independent random vari-
ables. For any t > 1, Z; ~ P, and E* [Z;] > A. Let T be

any stopping time w.r.t. Zy, Zs, ... such that EF [T] < oc.
Then,
EP

> EP [T]A. (61)

T
> %
t=1

The proofs of the lemmas are given in the appendix. Using
these lemmas, we can upper bound the asymptotic delay as
follows.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 12, DECEMBER 2022

Theorem 3.6: Under the same assumptions as in
Lemma 3.2, the worst-case delay satisfies

_ |Inalog

WADDP P ((3,)) = Sarge (L+ o)

(62)

sup
Py:P ;eM

as o — 0, where B’a is defined in (50).

Proof: Following Lemma 3.4, the MCT stopping time is
finite in expectation even when the post-change distributions
are non-stationary (but lie in M). Thus, for any P; ; € M;,

WADD?:P1 (T(Bla)) <EP [7(5;)}

W1, &)

< RET D 4
t=1

. r(B)-1

_ — P

=REM | X 4+ Z,
t=1

@) 1 4

<X (b;+1)

_ |Inalo?

= 1 1 63
sz (1 ol1) (©3)
where (i) follows by Lemma 3.5, and (i7) follows because
ZT(E/) < 1. Thus,

sup
P11P11t eEMq,Vt>1

1 /- |In a|od
< (v 1) = 914001
where o(1) — 0 as o« — 0.

For the other direction, consider stationary P ; = P €
M with the post-change mean E% [X;] = 7, which implies
EPT [Z;] = A. Then, as o — 0,

WADDAP: (7 )

e

(64)

7

WADDPo-Fr (T(B;)) _ Ya (14 001))

A
|In a|o?
= 1 1 65
sazg (LHol)  (69)
where the first line follows by a standard renewal theory
argument [28, Sec. 2.5]. O

Remark 3: As A — 0, Ry — 1. Thus, the result in
Theorem 3.6 becomes

sup WADD"0-F1 (T(A“O’", Bg))

Py:Py €My VE>1
|Inalod
T 2A?
where o(1) goes zero as « and A go to zero, which coincides
with the minimax robust worst-case delay in (42).

(I+0(1)) (66)

IV. NUMERICAL RESULTS AND DISCUSSION
A. Numerical Performance of MCT
In this subsection, we study the performance of the proposed
tests through simulations for the case where the pre- and

post-change distributions are Beta(4,16) (o = 0.2) and
Beta(4.5,16) (u1 = 0.2195), respectively. The mean-threshold
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1607 —e— CuSum Test
Asym. Robust Test

1407 —e— MCT Test

= =
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3 o
L

Worst-case Delay
©
o
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40 -
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[log(a)|

Fig. 1. Performances of tests with different statistics. The pre- and
post-change distribution are Beta(4,16) (1o = 0.2) and Beta(4.5,16) (1 =
0.2195), respectively. The mean-threshold 7 = 0.21. Note that in this case,
Po is a singleton, and Py is defined in (20).

7 is set to be 0.21. In particular, we compare the performances
for the following three tests:

1) The CuSum test for the case where both the pre- and
post-change distributions are known, defined in (5).

2) The asymptotically minimax robust test when only the
pre-change distribution is known, defined in (26). The
value of \* is obtained solving equation (25) numeri-
cally offline.

3) The MCT test defined in (41).

Since all three tests use statistics with a recursive structure and
the observations are independent, it is easy to show that the
worst-case value of the change-point for computing WADD in
(1) is v = 1. Therefore we can estimate the worst-case delays
of the tests by simulating the post-change distribution from
time 1.

We see in Fig. 1 that the performance of MCT is very close
to that of the asymptotically minimax robust optimal test that
uses the full knowledge of the pre-change distribution. Note
that the MCT statistic uses only the pre-change mean; the
variance is required for setting the threshold to meet a given
FAR constraint.

In Fig. 2, we compare the performance of the MCT when
the post-change distribution is non-stationary with that when
the post-change distribution is stationary, for beta distrib-
uted observations. In the stationary case, we choose the
post-change distribution to have mean p; = 7, and in the
non-stationary we choose the post-change distributions such
that they all have mean greater than or equal to 7. We observe,
as expected, that the worst-case delay in the non-stationary
case is always smaller than that in the stationary case.

B. Comparing MCT With Scan Statistics

In this subsection, we compare our MCT test with a test
using scan statistics (without windowing), defined as (see,

e.g., [15]):

Tsean(D) := Inf{t : Is € [2,t] : |fi1.5—1 — fos:t| = b} (67)
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401 —— Sstationary MCT
Non-stationary MCT
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Fig. 2. Performances of MCT under stationary and non-stationary post-

change distributions. In the stationary case, the pre- and post-change distribu-
tion are Beta(2,2) (1o = 0.5) and Beta(3.5,2) (11 = 0.636), respectively, and
the mean-threshold 77 = p1. In the non-stationary case, the post-change obser-
vations are drawn from Beta(A,2) at each time ¢, where A ~ Unif(3.5,4.5).

—— MCT
4001 —— SST
300 1
>
L
[0}
O 2001
100 1 //
45 5.0 5.5 6.0 6.5 7.0
[log(a)|
Fig. 3. Performances of MCT and SST (7san as defined in (67)). The

pre- and post-change distribution are Beta(4,16) (1.0 = 0.2) and Beta(4.5,16)
(1 = 0.2195), respectively.

where, assuming s < ¢,

t
1
ey = ———— ST X
Hs:t t—s+12;

The scan statistic test (SST) 7Tycan is designed to detect a
change in the mean of the observation sequence, but does not
incorporate the knowledge that the post-change mean is greater
than or equal to 7. The SST also does not require knowledge
of the pre-change mean, but it requires the change-point to be
large enough so that a reasonable estimate of the pre-change
mean can be obtained from fij.5_1.

In the results shown in Fig. 3, we assume that the
change-point occurs after the first 100 observations are col-
lected. To allow for a fair comparison between MCT and
SST, we use the first 100 observations to estimate g for
use in the MCT statistic, instead of assuming that pg is
known. For the MCT simulation, the statistic is initialized

(68)
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Fig. 4. COVID-19 monitoring example. The upper subplot is the three-day
moving average of the new cases of COVID-19 as a fraction of the population
in Wayne County, MI (left), St. Louis County, MO (middle), and Hamilton
County, OH (right). The x-axis is the number days elapsed after January
21, 2020. The pre-change mean and variance are estimated using data from
days 120 to 150. The FAR threshold « is set to 0.01. For each county, the
mean-threshold 7 (in green) is set to be 3.3 times of the estimated pre-change
mean (in cyan). The lower subplot shows the evolution of the statistic A in
the corresponding county. The A-threshold be (in red) is calculated using
equation (40).

after the estimation of po from the first 100 samples, and
therefore the delay is simulated by assuming that the change
happens immediately after initialization, which corresponds to
v = 1, the worst-case value of the change-point. For the SST
simulation, the change-point is set v = 101, which may not
necessarily result in the worst-case delay. In Fig. 3, we see that
the worst-case delay for MCT is much smaller than the delay
of Tscan at ¥ = 101, which is a lower bound of the worst-case
delay of 7.y over all possible change-points.

C. Application: Detecting the Onset of a New Wave of an
Existing Pandemic

In Fig. 4, we apply the MCT to monitoring the spread
of COVID-19 using new case data from various counties in
the US [29]. The incremental cases from day to day can be
assumed to be roughly independent. The goal is to detect the
onset of a new wave of the pandemic based on the incremental
cases as a fraction of the county population exceeding some
pre-specified level. The pre-change mean and variance are esti-
mated using observations for periods in which the increments
remain low and roughly constant. We set the mean-threshold
7 to be a multiple of the pre-change mean, with understanding
that such a threshold might be indicative of a new wave. With
this choice, we observe that the MCT statistic significantly and
persistently crosses the test-threshold around late November
in all counties, which is strong indication of a new wave of
the pandemic. More importantly, unlike the raw observations
which are highly varying, the MCT statistic shows a clear
dichotomy between the pre- and post-change settings, with
the statistic staying near zero before the purported onset of
the new wave, and taking off nearly vertically after the onset.

V. CONCLUSION

We studied the problem of quickest detection of a change
in the mean of an observation sequence to a value above a

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 12, DECEMBER 2022

pre-specified threshold in a non-parametric setting, allowing
for the post-change distribution to be non-stationary. For the
case where the pre-change distribution is known, we derived
a test that asymptotically minimizes the worst-case detection
delay over all post-change distributions, as the false alarm rate
goes to zero. In the process of deriving this asymptotically
optimal test, we provided some new results for the general
problem of asymptotic minimax robust quickest change detec-
tion in non-stationary settings, which should be of independent
interest. We then studied the limiting form of the optimal test
as the gap between the pre- and post-change means goes to
zero, the MCT. The MCT statistic only requires knowledge
of the pre-change mean. Under the additional assumption that
the distributions of the observations have bounded support,
we derived an asymptotic upper bound on the FAR of the
MCT for moderate values of mean gap, which can be used
to set the threshold of the MCT using only knowledge of
the pre-change mean and variance. We also characterized the
asymptotic worst-case delay of the MCT for moderate values
of the mean gap.

We validated our analysis through numerical results for
detecting a change in the mean of a beta distribution. In par-
ticular, we found that the MCT suffers little performance
loss relative to the asymptotically optimal test with known
pre-change distribution. We also showed that the MCT can
significantly outperform tests based on prior work on scan
statistics, which do not use information about the post-change
mean threshold . We also demonstrated the use of the MCT
for detecting the onset of a new wave of an existing pandemic.

A possible avenue for future research on this topic is the
detection of a change in statistics other than the mean. Another
possible avenue of interest is to formulate the mean-change
detection problem in the Bayesian setting. It is also of interest
to study the mean-change detection problem in sensor network
settings.

APPENDIX

The following lemma is useful for the proof of Lemma 2.1.
Lemma A.lI: Let Yi,...,Y, be independent, zero-mean
random variables. Suppose

sup E [V*] = o(n)

1<t<n

as n — oo. Then, as n — oo,

n
nt ZY’ 0.
i=1

Proof of Lemma A.1: Denote U,, = )" | Y;. By Cheby-
shev’s inequality, for any € > 0,

PQn > Y| >ep =P{U? > (ne)?}
i=1

E [U7]
= n2e?

() nmaxlgignE [Yf} n—00

< 0

n2e?
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where (x) is due to the fact that Y;’s are independent with

zero-mean. U
Proof of Lemma 2.1: Fix 0 < § < 1. Denote m(Py, P1)

as a short-hand notation for 7(AT0-F1 b). For any ¢ > v, let

1P = B LR (X)| = D(PulIy) = D(PLIPY).
(69)
By definition of WS boundedness,
1FoP > D(By||By). (70)
Let
nczz\‘ b~ = J 71
(1 =68)D(P| )

Define Py as the sequence of probability measures such that
Pyt = Py, Vt > 1. Similarly define P;. For simplicity, denote

Y; = In LPP ().
From the proof of Theorem 4 in [30] (and also Theorem 1
in [4]), if we can establish

n— o0 -
1=t

t+n—1
lim PFo-F1 {n—1 > Y <D(A||P)(1 - 5)} -0
(72)

for any ¢t > v, then, with a large enough b, we can get a large
enough n. to satisfy

t+n.—1

PPo.Pr {ncl > Y < D(Py||Ry)(1 - 5)} <o, (73)
i=t
or equivalently,

t+n.—1
pFo.F1 { Y vi< b} <.
i=t

Now, despite the non-stationarity of the post-change obser-
vations, SY7"~1 |y, and F,_; are independent for all

(74)

i=v+(G—1)n.
. v+jne—1 v+kn.—1 .
j>1, and ) imit =) Y; and ) i= v+ (k—1)ne Y; are inde-

pendent whenever j # k. Therefore, we obtain

ess sup PFo-F1 {(Tb(l%,pl) —v+ 1T >1x nc|.7:l,_1}

= Pfo’Pl {(Tb(po,pl)—l/—l- 1)+>1ch}

v+jne—1
< pPo.Pr > Yi<h Vi<l
i=v+(j—1)n.
l v+ine—1
= [[ i Y Yi<bp<d
7j=1 i=v+(j—1)nc
(75)
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for any v > 1 and [ > 1. Therefore,
esssup EFo- P1 [(Tb(pmpl) —v+ 1)+|-7:V71}
= ncesssupEf"’P:l [n;l(Tb(poapl) — v+ 1)+|‘7:V—1}

o0
< ne z:esssupIE"f"’P1 {n;l(Tb(pm151)—”+1)+>Z|‘7:V—1}
=1

o0
< ncgél = (76)
and from the definition of n.,
WADDFo-P (Tb(ﬁo, 151))
< (1+0(1)) ( L > L_ o
D(Py||Py)) (1=10)?

Because 0 is arbitrary, we can take 6 — 0 and the proof is
complete.
It remains to show (72). For any ¢ > v and § > 0,

t+n—1
Pfo,Pl{ -1 Z Y; <(1-96 (P1||P0)}
(%) t+n 1 t+n—-1 _ -~
< mepl {nl Z Y; Snfl Z IiPO,Pl_éD(Plnpo)}
i=t i=t
t+n—1

=PRP S (Vi— IR < —oD(By|Ry)
i=t S——————

zero mean, independent
under measure Pfﬁ’Pl

(78)

Note that (x) follows from the WS boundedness assumption,
and 0D(Py||Py) is some strictly positive constant. Next,
we will use the previous lemma. Denote Y; := Y; — Iip 0,1
as the centered version of Y; under measure PFo-P1. Since

by assumption sup; <, Var™t (V;) = o(n) as n — oo,

we obtain that sup,,., EF [?ﬂ = o(n). Thus, by
Lemma A.1,
t+n—1

D

under measure PXo-P1 when t > v as n — oco. Thus, (72) is
proved, and the proof is complete. U
Proof of Lemma 2.2: Recall that if no change ever
happens, X; ~ Py € Py forall t > 1 and Py = {Po+}t>1.
Here P, .’s are independent, but could be non-stationary.
We follow the procedure in [30, Thm. 4]. For simplicity,
denote Y; := In LT0-P1(X,).
Define the stopping times:

IPO’PI 20 (79)

t
> n<o}, (80)

Om+1 = inf {t > oy
i=0m+1
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and let o := 0 and inf () := co. Suppose for now that we can
establish that, on {0, < oo},

t
Py { Z Y; > b for some ¢ > am‘fam} <e’ (8
i=0m+1

for any threshold b > 0. Define the number of zero-crossings
before hitting the threshold as

M :=inf{m >0 :0,, < co and
t
Z Y; > b for some ¢t > o, }. (82)

i=0m+1
Thus, for any m > 0,
Py{M > m}
=E™ [1{M > m}]
— P [EPO []1{M >m}l{M >m — 1}‘7amﬂ
= EP [Py{M > m|F,, J1{M > m — 1}]

t
:EH)}%{ 2: n<@Vt>%me}1U4>m—U]
1=om+1
> (1 —e YPo{M >m—1}
>(1—e )™ (83)

where the first inequality follows from (81) and the second
one follows from recursion. Therefore,

EPo [T(APO’Pl,b)} SEP (M) > 3 (1—e )= (84)
m=0
It remains to show (81). By WS boundedness condi-
tion, EFot [exp(Y;)] < 1 for any ¢ > 1. Therefore,
{exp (31, Y;),Fn.n > k} is a non-negative supermartin-
gale under Py, and, on {0, < oo},

t
Po{ Z Y; > b for some ¢t > o,, fgm}
i=0m+1

n
<Py max Y Vi b‘}'g,
om+1<n<t "

1=0m+1

—

*

N

< e P EMrnt [exp(Yo, 41))]
<e’ (85)
where (x) follows from Lemma 1 in [4]. The proof is now
complete. (|
Proof of Theorem 2.3: The proof steps are similar to [4].
From max-min inequality, it is true that
inf

sup
Teclo

(Po,P1):(Po,t,P1,4)EPoxP1,Vt

inf  WADD®o-P1 (7).
Tecko

WADDFo- P ()

> sup

(PO,Pl)I(PO,t,Pl,t)e’PO X P1,Vt
(86)

It suffices to prove the other direction.
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For any (Py, Py) such that (Py¢, P ;) € Py x Py for any
t > 1, we have

WADDP P (£(ARP p,))
i) b
L o) (5 )

D(P1||Fy)

= WADDPP (AT b))
(i)

—~

inf WADD'>" (T

Tecko

@ inf WADD? P (7))
Tecl®

(v) ) PP

< sup inf WADD™ " (T)
(P07P1):(P0,f,7P1,t)E'Po><'P1,Vt TECZ:O

(87)

where o(1) — 0 as a — 0. In the above series of inequalities,
(¢) follows directly from Lemma 2.1, (i¢) and (iii) follow
from standard CuSum analyses (e.g., [30]), (iv) is justified
below, and (v) follows from the fact that (P, P) € Py x P;.
Note that (ii7) — (v) are satisfied for any 0 < av < 1.

We now justify (iv). Since Py € Py CPo C
C;’;”O.~ Following standard CuSum analysis (e.g., [30]),
(AP ) € CPo. From Lemma 2.2, for any Py, € Po,
FARF® (T(Apo’pl,ba)) < «, and therefore T(A‘E’O’pl,ba) €

CPo. For any «, since (AP F1b,,) achieves the infimum over
the set C10, it also does over the subset C20.

Since (87) holds for any (Po, P1) : (Pot, Pit) € Po X
Plv Vt 2 ]-,

sup WADDPoP (r(APF1 )

(Po,P1):(Po,t,P1,t)EPoxP1,Vt

< sup inf  WADDo-Pr (T,
(P07P1):(P0,f,7P1,t)€’Po><'P1,Vt TECZ:O
(88)
and thus
inf sup WADDo-P1 (T)
Tecl®  (Po,P1):(Po¢,P1,t)EPoxP1Vt

inf WADDo-P1 (7).

< sup
Tecko

T (Po,Py1):(Po.i,Pr 1 )EPo X P1VE
(89)

Therefore, 7'(/\15 0,1 ,bs) asymptotically solves (8) as o — 0,
and

sup

WADDPo-P1 (T(Apof’l , ba))
(Po,P]_)Z(PO,t,PLt)E,PQ X P1,Vt

B ( [In
D(P1||Py)
where o(1) — 0 as a — 0. O

The following Lemma is useful for the proof of Lemma 3.2.
Lemma A.2: Let u,v be some constant. Then,

[ ool o

> (14 0(1)) (90)
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where K(z) is the modified Bessel function of the second Therefore, for any P, , € My, EL0P [7(b)] = EPr [7(b)] <
kind of order 3. co. Finally, it follows directly that EI*F*[r(h)] <
Proof: Let y = €%\/v/u. Then, the integral becomes Ef 0. P [7/(b)] < 0. O
. Proof of Lemma 3.5: For each t > 1, let Zt+ =
/ exp (_ (uy—l— 3)) dy max{0,7Z;} and Z; := —min{0, Z;}. Note that Z,", Z, >
o Yy 0 and Z; = Z;” — Z; . Therefore,
= exp (—vuw (e? +e7%)) /v uel df n n
/m p(=vum( ) vl EP |lim )z 1{t <T}| =lim Y EF [Z}1{t < T}]
o0 n n
= v/u/ exp (—2y/uv cosh(f)) e’df =t =
oo o7

= 4 /v/u/ exp (_2, /uv Cosh(ﬂ)) (cosh(f) + sinh(#))dd by Monotone Convergence Theorem, since Zle ZF1{t <
—o0 T} is non-decreasing in n. The same argument applies to Z, .

) 2«/v/u/ exp (—2v/uv cosh(#)) cosh()do Hence,
0

T T T
= 2v/v/ukK 1 (2y/uv) ©2) EF Dz =8 >z | B >z
t=1 t=1 t=1
where (x) follows because cosh(f) is an even function while N R Pl _
sinh(@) is an odd function. =E t:ZI Zy{t<T} —E ; Z, H{t < T}

Proof of Lemma 3.4: Recall that Z; := X;—(0+n)/2 and
Sy = Ele Z;. By assumption on M, let Z; have mean
Ay > A for any ¢t under measure P ;. Fix b > 0. Define the
supplementary stopping time

EF [z - Z7 | EP [1{t < T}]

M

o
Il

\\Mg -

>AY EV [T > t}]
—/ . t=1
() :=inf{t >1:85; >0b}. (93) _EP[7]A 98)
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