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Abstract— The problem of quickest detection of a change in the
mean of a sequence of independent observations is studied. The
pre-change observations are assumed to be stationary, while
the post-change observations are allowed to be non-stationary.
The case where the pre-change distribution is known is studied
first, and then the extension where only the mean and variance
of the pre-change distribution are known. No knowledge of the
post-change distributions is assumed other than that the means
of the observations are above some pre-specified threshold larger
than the pre-change mean. For the case where the pre-change
distribution is known, a test is derived that asymptotically
minimizes the worst-case detection delay over all possible post-
change distributions, as the false alarm rate goes to zero. Towards
deriving this asymptotically optimal test, some new results are
provided for the general problem of asymptotic minimax robust
quickest change detection in non-stationary settings. Then, the
limiting form of the optimal test is studied as the gap between the
pre- and post-change means goes to zero, called the Mean-Change
Test (MCT). It is shown that the MCT can be designed with
only knowledge of the mean and variance of the pre-change
distribution. The performance of the MCT is also characterized
when the mean gap is moderate, under the additional assumption
that the distributions of the observations have bounded support.
The analysis is validated through numerical results for detecting
a change in the mean of a beta distribution. The use of the MCT
in monitoring pandemics is also demonstrated.

Index Terms— Quickest change detection (QCD), non-
parametric methods, minimax robust detection, non-stationary
observations.

I. INTRODUCTION

QUICKEST change detection (QCD) is a fundamental
problem in mathematical statistics (see, e.g., [2] for an

overview). Given a stochastic sequence whose distribution
changes at some unknown change-point, the goal is to detect
the change after it occurs as quickly as possible, subject
to false alarm constraints. The QCD framework has seen a
wide range of applications, including line-outage in power
systems [3], dim-target manoeuvre detection [4], stochastic
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process control [5], structural health monitoring [6], and
piece-wise stationary multi-armed bandits [7]. The two main
formulations of the classical QCD problem are the Bayesian
formulation [8], [9], where the change-point is assumed to
follow a known prior distribution, and the minimax formula-
tion [10], [11], where the worst-case detection delay is min-
imized over all possible change-points, subject to false alarm
constraints. In both the Bayesian and minimax settings, if the
pre- and post-change distributions are known, low-complexity
efficient solutions to the QCD problem can be found [2].

In many practical situations, we may not know the exact
distribution in the pre- or post-change regimes. While it is
reasonable to assume that we can obtain a large amount of
data in the pre-change regime, this may not be the case
for the post-change regime. Also, in applications such as
epidemic monitoring and piece-wise stationary multi-armed
bandits, a change in a specific statistic (e.g., the mean) of the
distribution is of interest. This is different from the original
QCD problem where any distributional change needs to be
detected. Furthermore, in many applications, the support of
the distribution is bounded. For example, the observations
representing the fraction of some specific group in the entire
population are bounded between 0 and 1. This is the case, for
example, in the pandemic monitoring problem that we discuss
in detail in Section IV. In many applications, including the
pandemic monitoring problem, the system has usually reached
some nominal steady-state distribution before the change-
point. In these situations, the pre-change observations can be
assumed to be stationary.

In this paper, we study the problem of quickest detection
of a change in the mean of a sequence of independent
observations. The pre-change observations are assumed to be
stationary, while the post-change observations are allowed to
be non-stationary. We first study the case where the pre-change
distribution is known, and then study the extension where
only the mean and variance of the pre-change distribution
are known. No knowledge of the post-change distributions is
assumed other than that the means of the observations are
above some threshold larger than the pre-change mean.

There have been a number of lines of work on the QCD
problem when the pre- and/or post-change distributions are
not completely known. The most prevalent is the generalized
likelihood ratio (GLR) approach, introduced in [10] for the
parametric case where the post-change distribution has an
unknown parameter. This GLR approach is studied in detail for
the problem of detecting the change in the mean of a Gaussian
distribution with unknown post-change mean in [12]. A GLR
test for the case where the pre- and post-change distributions
come from an one-parameter exponential family, and both the
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pre- and post-change parameters are unknown, is analyzed
in [13].

The QCD problem has also been studied in a non-parametric
setting. In particular, for detecting a change in the mean of an
observation sequence, one approach has been to use maximum
scan statistics. The scan statistic of an observation sequence
is defined as the absolute difference of the averages before
and after a potential change-point. In [14], the case where
the pre- and post-change distributions have finite moment
generating functions in some neighborhood around zero is
considered. At each time greater than a window size N , the
scan statistic at each potential change-point is calculated using
the last N observations. The maximum scan statistic is then
calculated over the set of potential change-points, and an alarm
is raised if this maximum exceeds some threshold. In [15],
the case of sub-Gaussian pre- and post-change distributions
is studied. The scan statistic is calculated over the entire
observation sequence, and the maximum is compared to a
threshold determined by the current time and the desired false
alarm rate. This approach is further applied to the piece-wise
stationary multi-armed bandit problem in [7]. We compare
our approach to mean-change detection with a test using scan
statistics in Section IV.

We note that for both the GLR the scan statistics approaches,
the complexity of computing the test statistic at each time-step
grows at least linearly with the number of samples. In practice,
a windowed version of the test statistic is often used to
reduce computational complexity, while suffering some loss
in performance.

Still another line of work is the one based on a minimax
robust approach [16], [17], in which it is assumed that the dis-
tributions come from mutually exclusive uncertainty classes.
Under certain conditions on the uncertainty classes, e.g., joint
stochastic boundedness [18], low-complexity solutions to the
minimax robust QCD problem can be found [19]. Under
more general conditions, e.g., weak stochastic boundedness,
a solution that is asymptotically close to the minimax solution
can be found [4].

In this paper, we use an asymptotic (in the sense of letting
the false alarm rate go to zero) version of the minimax
robust QCD problem formulation [4] to develop algorithms
for the non-parametric detection of a change in mean of an
observation sequence. Our contributions are as follows:

1) We extend the asymptotic minimax robust QCD problem
introduced in [4] to the more general non-stationary
setting, where the weak law of large numbers is not
directly applicable as in [4].

2) We study the problem of quickest detection of a change
in the mean of an observation sequence under the
assumption that no knowledge of the post-change dis-
tribution is available other than that its mean is above
some threshold larger than the pre-change mean.

3) For the case where the pre-change distribution is known,
we derive a test that asymptotically minimizes the
worst-case detection delay over all possible post-change
distributions, as the false alarm rate goes to zero.

4) We study the limiting form of the optimal test as the gap
between the pre- and post-change means goes to zero,

which we call the Mean-Change Test (MCT). We show
that the MCT can be designed with only knowledge of
the mean and variance of the pre-change distribution.

5) We also characterize the performance of the MCT when
the mean gap is moderate, under the assumption that the
distributions of the observations have bounded support.

6) We validate our analysis through numerical results for
detecting a change in the mean of a beta distribution.
We also demonstrate the use of the MCT for pandemic
monitoring.

The rest of the paper is structured as follows. In Section II,
we describe the quickest change detection problem under
distributional uncertainty and provide some new results regard-
ing asymptotically robust tests in the non-stationary setting.
In Section III, we formulate the mean-change detection prob-
lem, and propose and analyze the mean-change test (MCT),
which solves the problem asymptotically. In Section IV,
we validate our analysis through numerical results for detect-
ing a change in the mean of a beta distribution, and
also demonstrate the use of the MCT in monitoring pan-
demics. Finally, in Section V, we provide some concluding
remarks.

II. QUICKEST CHANGE DETECTION UNDER

DISTRIBUTIONAL UNCERTAINTY

Let X1, . . . , Xt, · · · ∈ R be a sequence of independent
random variables, and let ν be a change-point. Let P0 =
{P0,t}t≥1 and P1 = {P1,t}t≥1 be two sequences of prob-
ability measures, where P0,t ∈ P0 and P1,t ∈ P1 for all
t ≥ 1. Further, assume that Pj,t has probability density
pj,t with respect to the Lebesgue measure on R and that
the first moment of Pj,t exists, for j = 0, 1 and t ≥ 1.
Let PP0,P1

ν {·} denote the probability measure on the entire
sequence of observations when the pre-change distributions
are {P0,t}t<ν and the post-change distributions are {P1,t}t≥ν ,
with Xt ∼ P0,t, ∀1 ≤ t < ν and Xt ∼ P1,t, ∀t ≥ ν, and
let EP0,P1

ν [·] denote the corresponding expectation. When P0

and P1 are stationary, i.e., P0,t = P0, ∀t ≥ 1 and P1,t = P1,
∀t ≥ 1, we use the notations PP0,P1

ν {·} and EP0,P1
ν [·] in place

of PP0,P1
ν {·} and EP0,P1

ν [·], respectively.
The change-time ν is assumed to be unknown but deter-

ministic. The problem is to detect the change quickly while
not causing too many false alarms. Let τ be a stopping
time [18] defined on the observation sequence associated with
the detection rule, i.e. τ is the time at which we stop taking
observations and declare that the change has occurred.

For the case where both the pre- and post-change distribu-
tions are stationary and known, Lorden [10] proposed solving
the following optimization problem to find the best stopping
time τ :

inf
τ∈CP0

α

WADDP0,P1 (τ) (1)

where

WADDP0,P1 (τ) :=

sup
ν≥1

ess supEP0,P1
ν

[
(τ − ν + 1)+ |X1, . . . , Xν−1

]
(2)
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is a worst-case delay metric, and

CP0
α :=

{
τ : FARP0 (τ) ≤ α

}
(3)

with
FARP0 (τ) :=

1
EP0,P1
∞ [τ ]

. (4)

Here EP0,P1
∞ [·] is the expectation operator when the change

never happens, and (·)+ := max{0, ·}.
Lorden also showed that Page’s Cumulative Sum (CuSum)

algorithm [20] whose test statistic is given by:

ΛP0,P1(t) = max
1≤k≤t+1

t∑

i=k

ln LP0,P1(Xi)

=
(
ΛP0,P1(t − 1) + ln LP0,P1(Xt)

)+
(5)

solves the problem in (1) asymptotically. Here LP0,P1 is the
likelihood ratio:

LP0,P1(x) =
p1(x)
p0(x)

(6)

and we use the convention that
∑t

i=t+1 ln LP0,P1(Xi) = 0.
The CuSum stopping rule is given by:

τ
(
ΛP0,P1 , bα

)
:= inf{t : ΛP0,P1(t) ≥ bα} (7)

where bα := | ln α|. It was shown by Moustakides [21] that
the CuSum algorithm is exactly optimal for the problem in (1).

When the pre-change and post-change distributions are
unknown but belong to known uncertainty sets and are possi-
bly non-stationary, a minimax robust formulation can be used
in place of (1):

inf
τ∈CP0

α

sup
(P0,P1):(P0,t,P1,t)∈P0×P1,∀t

WADDP0,P1 (τ) (8)

where

WADDP0,P1 (τ) :=

sup
ν≥1

ess supEP0,P1
ν

[
(τ − ν + 1)+ |X1, . . . , Xν−1

]
(9)

and the feasible set is defined as

CP0
α =

{
τ : sup

P0:P0,t∈P0

FARP0 (τ) ≤ α

}
(10)

with
FARP0 (τ) :=

1
EP0,P1
∞ [τ ]

. (11)

We now address the solution to the problem in (8). To this
end, we give the following using definitions.

Definition 2.1 (see, e.g., [18]): A pair of uncertainty sets
(P0,P1) is said to be jointly stochastically (JS) bounded by
(P̄0, P̄1) ∈ P0 × P1 if, for any (P0, P1) ∈ P0 × P1 and any
h > 0,

P0{LP̄0,P̄1(X) > h} ≤ P̄0{LP̄0,P̄1(X) > h}
P1{LP̄0,P̄1(X) > h} ≥ P̄1{LP̄0,P̄1(X) > h} (12)

where LP̄0,P̄1 is the likelihood ratio between P̄1 and P̄0 (see
(6)). The distributions P̄0 and P̄1 are called least favorable dis-
tributions (LFDs) within the classes P0 and P1, respectively.

If the pair of pre- and post-change uncertainty sets is JS
bounded, the CuSum test statistic ΛP̄0,P̄1(t) (see (5)), with
stopping rule τ(ΛP̄0,P̄1 , bα) (see (7)), solves (8) exactly both
when P0 and P1 are stationary [19] and when they are
potentially non-stationary [22].

Definition 2.2 (see [4]): A pair of uncertainty sets (P0,P1)
is said to be weakly stochastically (WS) bounded by (P̃0, P̃1) ∈
P0 × P1 if

D(P̃1||P̃0) ≤ D(P1||P̃0) − D(P1||P̃1) (13)

for all P1 ∈ P1, and

EP0
[
LP̃0,P̃1(X)

]
≤ EP̃0

[
LP̃0,P̃1(X)

]
= 1 (14)

for all P0 ∈ P0. Here, EP [·] denotes the expectation oper-
ator with respect to distribution P , and D(P ||Q) denotes
KL-divergence:

D(P ||Q) = EP
[
ln LP,Q(X)

]
. (15)

It is shown in [4] that if the pair of uncertainty sets is JS
bounded by (P̄0, P̄1), it is also WS bounded by (P̄0, P̄1). It is
also shown in [4] that if the pair of pre- and post-change uncer-
tainty sets is WS bounded, the CuSum test statistic ΛP̃0,P̃1(t)
with stopping rule τ(ΛP̃0,P̃1 , bα) solves (8) asymptotically as
α → 0 when P0 and P1 are both stationary.

A. Asymptotically Optimal Solution in the
Non-Stationary Setting

Let P̃0, P̃1 be such that P0×P1 is WS bounded by (P̃0, P̃1).
In the following, we extend the result in [4] to the case
where P0 and P1 are potentially non-stationary and derive
an asymptotically optimal solution as α → 0. Specifically,
through Lemma 2.1 we upper bound the asymptotic delay,
through Lemma 2.2 we control the false alarm rate, and in
Theorem 2.3 we combine the lemmas to provide an asymp-
totically optimal solution to the problem in (8) when P0 and
P1 are potentially non-stationary.

Lemma 2.1: Consider P0 × P1 WS bounded by (P̃0, P̃1).
Let P0 and P1 be such that P0,t ∈ P0 and P1,t ∈ P1 for all
t ≥ 1. Suppose that for all P1,t ∈ P1,

sup
1≤t≤n

VarP1,t

(
ln LP̃0,P̃1(Xt)

)
= o(n) as n → ∞ (16)

where VarP (X) denotes the variance of X when X ∼ P .

Then, τ(ΛP̃0,P̃1 , b) satisfies

WADDP0,P1

(
τ(ΛP̃0,P̃1 , b)

)
≤ (1 + o(1))

(
b

D(P̃1||P̃0)

)

(17)

as b → ∞, where o(1) → 0 as b → ∞.
Lemma 2.2: Consider P0 × P1 WS bounded by (P̃0, P̃1).

Let P0 and P1 be such that P0,t ∈ P0 and P1,t ∈ P1 for all
t ≥ 1. Then, for any such P0,t ∈ P0,

EP0

[
τ(ΛP̃0,P̃1 , b)

]
≥ eb (18)

for any threshold b > 0.
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Theorem 2.3: Consider the same assumptions as in
Lemma 2.1. Then, the CuSum test τ(ΛP̃0,P̃1 , bα) solves the
problem in (8) asymptotically as α → 0, and

sup
(P0,P1):(P0,t,P1,t)∈P0×P1,∀t

WADDP0,P1

(
τ(ΛP̃0,P̃1 , bα)

)

= (1 + o(1))
(

| ln α|
D(P̃1||P̃0)

)
(19)

where o(1) → 0 as α → 0.
The proofs of Lemma 2.1, Lemma 2.2 and Theorem 2.3

are given in the appendix. Note that all results given in this
section continue to hold when the observations are random
vectors, i.e., Xt ∈ Rd, for some d ≥ 1.

III. MEAN-CHANGE DETECTION PROBLEM

Until now, we have considered the general QCD problem
formulated in (8). In this paper, we are mainly interested in
a special case of the problem, described as follows. The pre-
change distribution is stationary, i.e., P0,t = P0, ∀t ≥ 1, with
pre-change mean µ0 = EP0 [X ] < ∞ and variance σ2

0 =
VarP0 (X) < ∞. Thus, P0 = {P0} is a singleton. The post-
change distribution could be non-stationary, and at each time
it belongs to the following uncertainty set:

P1 =M1 := {P : µ0 <η ≤ EP [X ] , VarP (X) < BV < ∞}.
(20)

In this expression, X denotes a generic observation in the
sequence, η is a pre-designed threshold, and BV is some
finite upper bound on the post-change variance. Note that
this definition of uncertainty set only makes sense for the
case where the the observations are (one-dimensional) random
variables. Define

∆ :=
η − µ0

2
> 0 (21)

which is half of the worst-case mean-change gap.
The minimax robust mean-change problem, which is a

reformulation of (8) is given by:

inf
τ∈CP0

α

sup
P1:P1,t∈M1,∀t

WADDP0,P1 (τ) . (22)

Our goal is to find a stopping time that solves (22) asymptot-
ically as the false alarm rate α → 0.

A. Known Pre-Change Distribution

Define
κ0(λ) = ln EP0

[
eλX

]
(23)

to be the cumulant-generating function (cgf) of the obser-
vations under P0. In the following theorem, we provide a
solution to the problem stated in (22).

Theorem 3.1: Consider P0 = {P0}, and M1 as given
in (20). Define

p̃1(x) = p0(x)eλ∗x−κ0(λ
∗) (24)

where κ0(λ) is the cgf under P0 and λ∗ satisfies

d

dλ
κ0(λ∗) =

EP0
[
Xeλ∗X

]

EP0 [eλ∗X ]
= EP̃1 [X ] = η (25)

Then, the CuSum statistic

ΛP0,P̃1(t) = max
1≤k≤t+1

t∑

i=k

(λ∗Xi − κ0(λ∗)) (26)

and the stopping rule τ(ΛP0,P̃1 , bα) (see (7)) with threshold
bα = | ln α| solves the minimax robust problem in (22)
asymptotically as α → 0, and

inf
τ∈CP0

α

sup
P1:P1,t∈M1,∀t

WADDP0,P1 (τ)

=
| ln α|

λ∗η − κ0(λ∗)
(1 + o(1)) (27)

Proof: The proof follows from an application of
Theorem 2.3. First, with p̃1 as defined in (24),

VarP1,t

(
ln LP0,P̃1(Xt)

)
= (λ∗)2VarP1,t (Xt) ≤ (λ∗)2BV .

Since η < ∞ and λ∗ < ∞, condition (16) is satisfied. We now
establish that P0 × M1 is WS bounded by (P0, P̃1). By [4,
Prop. 1 (iii)], since M1 is convex and P0 is a singleton, if P̃1

minimizes the KL-divergence D(P1||P0) over P1 ∈ M1, then
P0×M1 is WS bounded by (P0, P̃1). Therefore, it remains to
show that P̃1 specified in (24) minimizes D(P1||P0), subject
to EP1 [X ] ≥ η. To this end, we follow the procedure outlined
in [23, Sec. 6.4.1]. Consider the Lagrangian

J(p1, λ, µ) = EP1
[
ln LP0,P1(X)

]
+ λ(η − EP1 [X ])

+ µ

(
1 −

∫
p1(x)ddx

)

=
∫ (

ln
p1(x)
p0(x)

− λx − µ

)
p1(x)dx + λη + µ

(28)

where the Lagrange multiplier λ ≥ 0 corresponds to the
constraint that the post-change mean is greater than η, and
µ corresponds to the constraint that p1(x) is a probability
measure. For an arbitrary direction z, we take the Gateaux
derivative with respect to p1:

∇p1,zJ(p1, λ, µ) := lim
h→0

J(p1 + hz, λ, µ) − J(p1, λ, µ)
h

=
∫ (

ln
p1(x)
p0(x)

− λx − µ̌

)
zdx (29)

where µ̌ = µ − 1, and since z is arbitrary, we arrive at

ln
p1(x)
p0(x)

− λx − µ̌ = 0 (30)

By the Generalized Kuhn-Tucker Theorem [24], since p0(x)
is bounded, p1(x) = p0(x)eλx+µ̌ is a necessary condition for
optimality. Furthermore, since J(p1, λ, µ) is convex in p1, this
is also a global optimum. To satisfy the constraints, we have

µ̌ = − ln
∫

p0(x) eλxdx = −κ0(λ) (31)

and that λ∗ satisfies,

η = EP̃1 [X ] = EP0
[
Xeλ∗X−κ0(λ

∗)
]

=
EP0

[
Xeλ∗X

]

EP0 [eλ∗X ]

=
d

dλ
κ0(λ∗). (32)
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Thus, P̃1 in (24) minimizes D(P1||P0), subject to
EP1 [X ] ≥ η.

Furthermore, the minimum KL-divergence is

D(P̃1||P0) =
∫

(λ∗x − κ0(λ∗))p̃1(x) dx

= λ∗η − κ0(λ∗) (33)

Hence, the worst-case delay satisfies

inf
τ∈CP0

α

sup
P1:P1,t∈M1,∀t

WADDP0,P1 (τ)

=
| ln α|

D(P̃1||P0)
(1 + o(1))

=
| ln α|

λ∗η − κ0(λ∗)
(1 + o(1)) (34)

as α → 0. !
Note that p̃1 is an exponentially-tilted version (or the

Esscher transform1) of p0.

B. Approximation for Small ∆
Even though we have an expression for the test statistic

when P0 is known, as given in (26), the exact solution of
λ∗ is not available in closed-form. Fortunately, if the mean-
change gap ∆ is small, we obtain a low-complexity test in
terms of only the pre-change mean and variance that closely
approximates the performance of the asymptotically minimax
optimal test in the previous section.

As ∆ → 0, η → µ0, and hence λ∗ → 0. In this subsection,
we denote the first and second derivative of κ0 by κ′

0 and κ′′
0 ,

respectively. Since µ0, σ2
0 < ∞, the first and second derivative

of κ0(λ) exist within some neighborhood around 0. From a
second-order Taylor expansion on κ0 around 0, we obtain

κ0(λ∗) = κ0(0) + κ′
0(0)λ∗ +

κ′′
0(0)
2

(λ∗)2 + o((λ∗)2)

= µ0λ
∗ +

σ2
0

2
(λ∗)2 + o((λ∗)2) (35)

In this same regime, by continuity of κ′
0(·),

λ∗ =
κ′

0(λ∗) − κ′
0(0)

κ′′
0(0)

+ o(∆)

=
η − µ0

σ2
0

+ o(∆)

=
2∆
σ2

0

+ o(∆) (36)

where we have used κ′
0(λ∗) = η. Hence, the approximate

log-likelihood ratio at time t is

λ∗Xt − κ0(λ∗) = λ∗Xt − (µ0λ
∗ +

σ2
0

2
(λ∗)2) + o((λ∗)2)

=
2∆
σ2

0

(Xt − µ0) −
σ2

0

2

(
2∆
σ2

0

)2

+ o(∆2)

=
2∆
σ2

0

(
Xt −

µ0 + η

2

)
+ o(∆2) (37)

1The Esscher transform has seen a number of applications in finance and
actuarial science (see, e.g., [25]).

and the corresponding minimum KL-divergence is approxi-
mated as:

D(P̃1||P0) =
2∆2

σ2
0

+ o(∆2). (38)

Now
2∆
σ2

0

(
Xt −

µ0 + η

2

)
> bα ⇐⇒ Xt −

µ0 + η

2
> b̃α (39)

where

b̃α :=
| ln α|σ2

0

2∆
=

| ln α|σ2
0

η − µ0
. (40)

Therefore, the stopping rule τ(ΛP0,P̃1 , bα) can be approxi-
mated by the stopping rule τ(Λ̃µ0,η, b̃α), where

Λ̃µ0,η(t) = max
1≤k≤t+1

t∑

i=k

(
Xi −

µ0 + η

2

)

=
(

Λ̃µ0,η(t − 1) +
(

Xt −
µ0 + η

2

))+

(41)

with Λ̃µ0,η(0) = 0. We call τ(Λ̃µ0,η, b̃α) the Mean-Change
Test (MCT), and Λ̃µ0,η the MCT statistic.

From (38), it follows that as α → 0 and ∆ → 0, the
worst-case delay satisfies

inf
τ∈CP0

α

sup
P1:P1,t∈M1,∀t

WADDP0,P1 (τ)=
| ln α|σ2

0

2∆2
(1 + o(1)).

(42)

Therefore, if ∆ is small, it is sufficient to know only
the mean and variance to construct a good approximation to
the asymptotically minimax robust test. Furthermore, only the
mean of the pre-change distribution is needed to construct
the MCT statistic. From the simulation results in Section IV,
we see that the performance of the MCT can be very close
to that of the asymptotically minimax robust test even for
moderate values of ∆. Since the mean and variance of a
distribution are much easier and more accurate to estimate than
the entire density, this test can be useful and accurate when
only a moderate number of observations in the pre-change
regime is available.

Remark 1: It is interesting that the form of MCT statistic in
(41) coincides with that of the CuSum statistic (see (5)) with
known stationary pre- and post-change distributions, P0 ∼
N (µ0, σ2) and P1 ∼ N (η, σ2), respectively, where N (µ, σ2)
denotes a Gaussian distribution with mean µ and variance σ2.
This is simply a coincidence; in particular, if we make the
assumption that the observations have bounded support as we
do in the remainder of the paper, then the Gaussian distribution
is not admissible as a possible distribution for the observations.

C. Performance Analysis of MCT for Moderate ∆
We now study the asymptotic performance of the MCT for

fixed ∆, as α → 0. For this part of the analysis, we assume
that the pre- and post-change distributions have supports
that are uniformly bounded, and without loss of generality,
we assume that the bounding interval is [0, 1]. This assumption
holds in many practical applications, including the pandemic
monitoring problem discussed in Section IV.
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Define
Zt := Xt −

µ0 + η

2
, ∀t ≥ 1. (43)

Then the MCT statistic of (41) can be written as:

Λ̃µ0,η(t) =
(
Λ̃µ0,η(t − 1) + Zt

)+
(44)

with Λ̃µ0,η(0) = 0. The MCT stopping time is given by:

τ(Λ̃µ0,η, b) = inf{t : Λ̃µ0,η ≥ b} (45)

where b has to be chosen to meet the FAR constraint:

FARP0
(
τ(Λ̃µ0,η, b)

)
=

1

EP0,P1
∞

[
τ(Λ̃µ0,η, b)

] ≤ α (46)

In what follows, we write τ(Λ̃µ0,η, b) as τ(b), with the
understanding that the test statistic being used throughout is
the MCT statistic Λ̃µ0,η.

1) False Alarm Analysis: In Lemma 3.2 below, we first
control the boundary crossing probability of St in the pre-
change regime. Then, in Theorem 3.3, we use Lemma 3.2 to
bound the false alarm rate of the MCT asymptotically using
the procedure outlined in [26].

Lemma 3.2: Assume that the pre-change distribution P0 has
known pre-change mean µ0 and variance σ2

0 , and that the
post-change distribution is non-stationary with P1,t ∈ M1,
for all t ≥ 1. For b > 0, define the supplementary stopping
time

τ ′(b) := inf{t : St /∈ (0, b)} (47)

where St :=
∑t

i=1 Zi, with Zi defined in (43). Then,

PP0,P1
∞

{
Sτ ′(b) ≥ b

}

≤ 2R0

√
b2

∆2
K1

(
R2

0b∆
σ2

0

)
exp

(
−R2

0∆
σ2

0

b

)

=

√
2πσ2

0b

∆3
exp

(
−2R2

0∆
σ2

0

b

)
(1 + o(1)), as b → ∞, (48)

where
R0 = σ2

0/
(
σ2

0 + ∆ · max{µ0, 1 − µ0}/3
)

(49)

and Kβ(z) is the modified Bessel function of the second kind
of order β.

Proof: Note that EP0 [Zi] = (µ0 − η)/2 = −∆. Since
Xi ∈ [0, 1], we have Zi + ∆ ∈ [−µ0, 1 − µ0]. Let M =
max{µ0/3, (1−µ0)/3}; then |Zi +∆| ≤ 3M . Thus, we have

PP0,P1
∞

{
Sτ ′(b) ≥ b

}
= P0

{
Sτ ′(b) ≥ b

}

= P0






τ ′(b)∑

i=1

Zi ≥ b






=
∞∑

t=1

P0

{
t∑

i=1

Zi ≥ b, t = τ ′(b)

}

≤
∞∑

t=1

P0

{
t∑

i=1

Zi ≥ b

}

=
∞∑

t=1

P0

{
t∑

i=1

(Zi + ∆) ≥ b + t∆

}

(i)
≤

∞∑

t=1

exp
(
− (b + t∆)2

2(tσ2
0 + M(b + t∆))

)

(ii)
≤

∫ ∞

0
exp

(
− (b+x∆)2

2(xσ2
0+M(b+x∆))

)
dx

= a

∫ ∞

0
exp

(
− (a∆y + C)2

2y

)
dy

= ae−a∆C

∫ ∞

0
e−((a2∆2/2)y+(C2/2)y−1)dy

(iii)
=

2C

∆
e−a∆CK1(a∆C)

where a := (σ2
0 + M∆)−1 and C := σ2

0b/(σ2
0 + M∆).

In the series of inequalities above, (i) follows from Bern-
stein’s inequality [27, p. 9], (ii) follows from bounding the
sum with an integral, and (iii) follows from Lemma A.2
in the appendix, with u = a2∆2/2 and v = C2/2. Since
K1(z) =

√
π
2z e−z(1+o(1)) as |z| → ∞, the asymptotic result

follows. !
Theorem 3.3: Under the same assumptions as in

Lemma 3.2, let b̃′α be such that
√

2πσ2
0 b̃

′
α

∆3
exp

(
−2R2

0∆
σ2

0

b̃′α

)
= α. (50)

Then, the MCT with b̃′α, i.e., τ(b̃′α), meets the FAR constraint
(46) asymptotically as α → 0.

Furthermore, as α → 0,

b̃′α =
b̃α

R2
0

(1 + o(1)) (51)

where b̃α is defined in (40) and R0 is defined in (49).
Proof: As α → 0, b̃′α → ∞. Recall the definition

of τ ′(b) in (47). From Lemma 3.2, for any P1,t ∈ M1,
P0

{
Sτ ′(b̃′α) ≥ b̃′α

}
≤ α(1+o(1)). Then, using [26, Sec. 2.6],

it can be shown that

EP0,P1
∞

[
τ(b̃′α)

]
=

EP0

[
τ ′(b̃′α)

]

P0

{
Sτ ′(b̃′α) ≥ b̃′α

}

(∗)
≥ 1

P0

{
Sτ ′(b̃′α) ≥ b̃′α

} ≥ α−1(1 + o(1)) (52)

where (∗) follows because EP0

[
τ ′(b̃′α)

]
≥ 1. Thus, (46) is

satisfied asymptotically.
For the second result, it is sufficient to show that (b̃′α −

b̃α)/b̃α = R−2
0 − 1 + o(1). Let

D :=
2∆
σ2

0

b̃′α − | ln α|. (53)

Then, recalling the definition of b̃α in (40), we have

b̃′α − b̃α

b̃α

=
2∆b̃′α

| ln α|σ2
0

− 1 =
D

| ln α| (54)

and we need to show that

D = (R−2
0 − 1)| ln α| + o(| ln α|). (55)
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Rearranging the terms in (54), we can express b̃′α as:

b̃′α = b̃α

(
1 +

D

| ln α|

)
=

σ2
0

2∆
(| ln α| + D) . (56)

Plugging this expression for b̃′α into (48), we have
√

σ4
0π

∆4
(D + | ln α|)e−R2

0(D+| ln α|) = α. (57)

Taking log on both sides, we obtain

−1
2

ln
(

σ4
0π

∆4
(D + | ln α|)

)
+R2

0(D + | ln α|) = | ln α|. (58)

In the following, we first hypothesize that D = D1| ln α|+
o(| ln α|), where D1 is not a function of α, and then validate
the hypothesis. Using this expression of D, the first term
becomes

ln
(

σ4
0π

∆4
(D + | ln α|)

)

= ln
(

σ4
0π

∆4
((D1 + 1)| ln α| + o(| ln α|)

)

= o(| ln α|).

Therefore, (58) can be restated as:

D = (R−2
0 − 1)| ln α| + o(| ln α|). (59)

This validates our hypothesis on D, and also establishes (55).
The proof is now complete. !

Remark 2: The threshold b̃′α that meets the FAR constraint
(46) asymptotically can be obtained by solving (50) numer-
ically. Alternatively, we can use the approximation in (51)
along with (40) to set:

b̃′α =
b̃α

R2
0

=
σ2

0 | ln α|
2R2

0∆
. (60)

2) Worst-Case Delay Analysis: We now turn to the delay
analysis of MCT. The following two lemmas are useful in
establishing the delay performance. Specifically, Lemma 3.4
is used to guarantee that MCT statistic is finite in expectation,
Lemma 3.5 is used to extend Wald’s identity to the non-
stationary setting, and finally Theorem 3.6 is used to upper
bound the asymptotic delay of MCT in the case where P1,t’s
are non-stationary.

Lemma 3.4: Suppose that P1,t ∈ M1 for all t ≥ 1. Then,

for any b > 0, EP0,P1
1 [τ(b)] < ∞.

Lemma 3.5: Let Z1, Z2, . . . be independent random vari-

ables. For any t ≥ 1, Zt ∼ Pt and EPt [Zt] ≥ ∆. Let T be
any stopping time w.r.t. Z1, Z2, . . . such that EP [T ] < ∞.
Then,

EP

[
T∑

t=1

Zt

]
≥ EP [T ]∆. (61)

The proofs of the lemmas are given in the appendix. Using
these lemmas, we can upper bound the asymptotic delay as
follows.

Theorem 3.6: Under the same assumptions as in
Lemma 3.2, the worst-case delay satisfies

sup
P1:P1,t∈M1,∀t

WADDP0,P1

(
τ(b̃′α)

)
=

| ln α|σ2
0

2∆2R2
0

(1 + o(1))

(62)
as α → 0, where b̃′α is defined in (50).

Proof: Following Lemma 3.4, the MCT stopping time is
finite in expectation even when the post-change distributions
are non-stationary (but lie in M1). Thus, for any P1,t ∈ M1,

WADDP0,P1

(
τ(b̃′α)

)
≤ EP0,P1

1

[
τ(b̃′α)

]

(i)
≤ 1

∆
EP1




τ(b̃′α)∑

t=1

Zt





=
1
∆

EP1




τ(b̃′α)−1∑

t=1

Zt + Zτ(b̃′α)





(ii)
≤ 1

∆

(
b̃′α + 1

)

=
| lnα|σ2

0

2∆2R2
0

(1 + o(1)) (63)

where (i) follows by Lemma 3.5, and (ii) follows because
Zτ(b̃′α) ≤ 1. Thus,

sup
P1:P1,t∈M1,∀t≥1

WADDP0,P1

(
τb̃′α

)

≤ 1
∆

(
b̃′α + 1

)
=

| ln α|σ2
0

2∆2R2
0

(1 + o(1)) (64)

where o(1) → 0 as α → 0.
For the other direction, consider stationary P1,t = P ∗

1 ∈
M1 with the post-change mean EP∗

1 [Xi] = η, which implies
EP∗

1 [Zi] = ∆. Then, as α → 0,

WADDP0,P∗
1

(
τ(b̃′α)

)
=

b̃′α
∆

(1 + o(1))

=
| ln α|σ2

0

2∆2R2
0

(1 + o(1)) (65)

where the first line follows by a standard renewal theory
argument [28, Sec. 2.5]. !

Remark 3: As ∆ → 0, R0 → 1. Thus, the result in
Theorem 3.6 becomes

sup
P1:P1,t∈M1,∀t≥1

WADDP0,P1

(
τ(Λ̃µ0,η, b̃′α)

)

=
| ln α|σ2

0

2∆2
(1 + o(1)) (66)

where o(1) goes zero as α and ∆ go to zero, which coincides
with the minimax robust worst-case delay in (42).

IV. NUMERICAL RESULTS AND DISCUSSION

A. Numerical Performance of MCT

In this subsection, we study the performance of the proposed
tests through simulations for the case where the pre- and
post-change distributions are Beta(4,16) (µ0 = 0.2) and
Beta(4.5,16) (µ1 = 0.2195), respectively. The mean-threshold
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Fig. 1. Performances of tests with different statistics. The pre- and
post-change distribution are Beta(4,16) (µ0 = 0.2) and Beta(4.5,16) (µ1 =
0.2195), respectively. The mean-threshold η = 0.21. Note that in this case,
P0 is a singleton, and P1 is defined in (20).

η is set to be 0.21. In particular, we compare the performances
for the following three tests:

1) The CuSum test for the case where both the pre- and
post-change distributions are known, defined in (5).

2) The asymptotically minimax robust test when only the
pre-change distribution is known, defined in (26). The
value of λ∗ is obtained solving equation (25) numeri-
cally offline.

3) The MCT test defined in (41).
Since all three tests use statistics with a recursive structure and
the observations are independent, it is easy to show that the
worst-case value of the change-point for computing WADD in
(1) is ν = 1. Therefore we can estimate the worst-case delays
of the tests by simulating the post-change distribution from
time 1.

We see in Fig. 1 that the performance of MCT is very close
to that of the asymptotically minimax robust optimal test that
uses the full knowledge of the pre-change distribution. Note
that the MCT statistic uses only the pre-change mean; the
variance is required for setting the threshold to meet a given
FAR constraint.

In Fig. 2, we compare the performance of the MCT when
the post-change distribution is non-stationary with that when
the post-change distribution is stationary, for beta distrib-
uted observations. In the stationary case, we choose the
post-change distribution to have mean µ1 = η, and in the
non-stationary we choose the post-change distributions such
that they all have mean greater than or equal to η. We observe,
as expected, that the worst-case delay in the non-stationary
case is always smaller than that in the stationary case.

B. Comparing MCT With Scan Statistics

In this subsection, we compare our MCT test with a test
using scan statistics (without windowing), defined as (see,
e.g., [15]):

τscan(b) := inf{t : ∃s ∈ [2, t] : |µ̂1:s−1 − µ̂s:t| ≥ b} (67)

Fig. 2. Performances of MCT under stationary and non-stationary post-
change distributions. In the stationary case, the pre- and post-change distribu-
tion are Beta(2,2) (µ0 = 0.5) and Beta(3.5,2) (µ1 = 0.636), respectively, and
the mean-threshold η = µ1. In the non-stationary case, the post-change obser-
vations are drawn from Beta(A,2) at each time t, where A ∼ Unif(3.5,4.5).

Fig. 3. Performances of MCT and SST (τscan as defined in (67)). The
pre- and post-change distribution are Beta(4,16) (µ0 = 0.2) and Beta(4.5,16)
(µ1 = 0.2195), respectively.

where, assuming s ≤ t,

µ̂s:t :=
1

t − s + 1

t∑

i=s

Xi. (68)

The scan statistic test (SST) τscan is designed to detect a
change in the mean of the observation sequence, but does not
incorporate the knowledge that the post-change mean is greater
than or equal to η. The SST also does not require knowledge
of the pre-change mean, but it requires the change-point to be
large enough so that a reasonable estimate of the pre-change
mean can be obtained from µ̂1:s−1.

In the results shown in Fig. 3, we assume that the
change-point occurs after the first 100 observations are col-
lected. To allow for a fair comparison between MCT and
SST, we use the first 100 observations to estimate µ0 for
use in the MCT statistic, instead of assuming that µ0 is
known. For the MCT simulation, the statistic is initialized

Authorized licensed use limited to: University of Illinois. Downloaded on August 10,2023 at 22:03:17 UTC from IEEE Xplore.  Restrictions apply. 



8048 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 12, DECEMBER 2022

Fig. 4. COVID-19 monitoring example. The upper subplot is the three-day
moving average of the new cases of COVID-19 as a fraction of the population
in Wayne County, MI (left), St. Louis County, MO (middle), and Hamilton
County, OH (right). The x-axis is the number days elapsed after January
21, 2020. The pre-change mean and variance are estimated using data from
days 120 to 150. The FAR threshold α is set to 0.01. For each county, the
mean-threshold η (in green) is set to be 3.3 times of the estimated pre-change
mean (in cyan). The lower subplot shows the evolution of the statistic Λ̃ in
the corresponding county. The Λ-threshold b̃α (in red) is calculated using
equation (40).

after the estimation of µ0 from the first 100 samples, and
therefore the delay is simulated by assuming that the change
happens immediately after initialization, which corresponds to
ν = 1, the worst-case value of the change-point. For the SST
simulation, the change-point is set ν = 101, which may not
necessarily result in the worst-case delay. In Fig. 3, we see that
the worst-case delay for MCT is much smaller than the delay
of τscan at ν = 101, which is a lower bound of the worst-case
delay of τscan over all possible change-points.

C. Application: Detecting the Onset of a New Wave of an
Existing Pandemic

In Fig. 4, we apply the MCT to monitoring the spread
of COVID-19 using new case data from various counties in
the US [29]. The incremental cases from day to day can be
assumed to be roughly independent. The goal is to detect the
onset of a new wave of the pandemic based on the incremental
cases as a fraction of the county population exceeding some
pre-specified level. The pre-change mean and variance are esti-
mated using observations for periods in which the increments
remain low and roughly constant. We set the mean-threshold
η to be a multiple of the pre-change mean, with understanding
that such a threshold might be indicative of a new wave. With
this choice, we observe that the MCT statistic significantly and
persistently crosses the test-threshold around late November
in all counties, which is strong indication of a new wave of
the pandemic. More importantly, unlike the raw observations
which are highly varying, the MCT statistic shows a clear
dichotomy between the pre- and post-change settings, with
the statistic staying near zero before the purported onset of
the new wave, and taking off nearly vertically after the onset.

V. CONCLUSION

We studied the problem of quickest detection of a change
in the mean of an observation sequence to a value above a

pre-specified threshold in a non-parametric setting, allowing
for the post-change distribution to be non-stationary. For the
case where the pre-change distribution is known, we derived
a test that asymptotically minimizes the worst-case detection
delay over all post-change distributions, as the false alarm rate
goes to zero. In the process of deriving this asymptotically
optimal test, we provided some new results for the general
problem of asymptotic minimax robust quickest change detec-
tion in non-stationary settings, which should be of independent
interest. We then studied the limiting form of the optimal test
as the gap between the pre- and post-change means goes to
zero, the MCT. The MCT statistic only requires knowledge
of the pre-change mean. Under the additional assumption that
the distributions of the observations have bounded support,
we derived an asymptotic upper bound on the FAR of the
MCT for moderate values of mean gap, which can be used
to set the threshold of the MCT using only knowledge of
the pre-change mean and variance. We also characterized the
asymptotic worst-case delay of the MCT for moderate values
of the mean gap.

We validated our analysis through numerical results for
detecting a change in the mean of a beta distribution. In par-
ticular, we found that the MCT suffers little performance
loss relative to the asymptotically optimal test with known
pre-change distribution. We also showed that the MCT can
significantly outperform tests based on prior work on scan
statistics, which do not use information about the post-change
mean threshold η. We also demonstrated the use of the MCT
for detecting the onset of a new wave of an existing pandemic.

A possible avenue for future research on this topic is the
detection of a change in statistics other than the mean. Another
possible avenue of interest is to formulate the mean-change
detection problem in the Bayesian setting. It is also of interest
to study the mean-change detection problem in sensor network
settings.

APPENDIX

The following lemma is useful for the proof of Lemma 2.1.
Lemma A.1: Let Y1, . . . , Yn be independent, zero-mean

random variables. Suppose

sup
1≤t≤n

E
[
Y 2

t

]
= o(n)

as n → ∞. Then, as n → ∞,

n−1
n∑

i=1

Yi
p.−→ 0.

Proof of Lemma A.1: Denote Un =
∑n

i=1 Yi. By Cheby-
shev’s inequality, for any ε > 0,

P
{∣∣∣∣∣n

−1
n∑

i=1

Yi

∣∣∣∣∣ > ε

}
= P

{
U2

n > (nε)2
}

≤
E

[
U2

n

]

n2ε2
(∗)
≤

n max1≤i≤n E
[
Y 2

i

]

n2ε2
n→∞−−−−→ 0
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where (∗) is due to the fact that Yi’s are independent with
zero-mean. !

Proof of Lemma 2.1: Fix 0 < δ < 1. Denote τb(P̃0, P̃1)
as a short-hand notation for τ(ΛP̃0,P̃1 , b). For any t ≥ ν, let

I P̃0,P̃1
t := EP1,t

[
LP̃0,P̃1(X)

]
= D(P1,t||P̃0) − D(P1,t||P̃1).

(69)

By definition of WS boundedness,

I P̃0,P̃1
t ≥ D(P̃1||P̃0). (70)

Let

nc :=
⌊

b

(1 − δ)D(P̃1||P̃0)

⌋
. (71)

Define P̃0 as the sequence of probability measures such that
P0,t = P̃0, ∀t ≥ 1. Similarly define P̃1. For simplicity, denote

Yt := lnLP̃0,P̃1(Xt).
From the proof of Theorem 4 in [30] (and also Theorem 1

in [4]), if we can establish

lim
n→∞

PP0,P1
ν

{
n−1

t+n−1∑

i=t

Yi ≤ D(P̃1||P̃0)(1 − δ)

}
= 0

(72)

for any t > ν, then, with a large enough b, we can get a large
enough nc to satisfy

PP0,P1
ν

{
n−1

c

t+nc−1∑

i=t

Yi ≤ D(P̃1||P̃0)(1 − δ)

}
< δ, (73)

or equivalently,

PP0,P1
ν

{
t+nc−1∑

i=t

Yi < b

}
< δ. (74)

Now, despite the non-stationarity of the post-change obser-
vations,

∑ν+jnc−1
i=ν+(j−1)nc

Yi and Fν−1 are independent for all

j ≥ 1, and
∑ν+jnc−1

i=ν+(j−1)nc
Yi and

∑ν+knc−1
i=ν+(k−1)nc

Yi are inde-
pendent whenever j /= k. Therefore, we obtain

ess sup PP0,P1
ν

{
(τb(P̃0, P̃1) − ν + 1)+ > l × nc|Fν−1

}

= PP0,P1
ν

{
(τb(P̃0, P̃1)−ν + 1)+ >l×nc

}

≤ PP0,P1
ν






ν+jnc−1∑

i=ν+(j−1)nc

Yi <b, ∀1≤j≤ l






=
l∏

j=1

PP0,P1
ν






ν+jnc−1∑

i=ν+(j−1)nc

Yi < b




 ≤ δl

(75)

for any ν ≥ 1 and l ≥ 1. Therefore,

ess sup EP0,P1
ν

[
(τb(P̃0, P̃1) − ν + 1)+|Fν−1

]

= nc ess supEP0,P1
ν

[
n−1

c (τb(P̃0, P̃1) − ν + 1)+|Fν−1

]

≤ nc

∞∑

l=1

ess supPP0,P1
ν

{
n−1

c (τb(P̃0, P̃1)−ν+1)+>l|Fν−1

}

≤ nc

∞∑

l=0

δl =
nc

1 − δ
, (76)

and from the definition of nc,

WADDP0,P1

(
τb(P̃0, P̃1)

)

≤ (1 + o(1))
(

b

D(P̃1||P̃0)

)
1

(1 − δ)2
. (77)

Because δ is arbitrary, we can take δ → 0 and the proof is
complete.

It remains to show (72). For any t > ν and δ > 0,

PP0,P1
ν

{
n−1

t+n−1∑

i=t

Yi ≤ (1 − δ)D(P̃1||P̃0)

}

(∗)
≤ PP0,P1

ν

{
n−1

t+n−1∑

i=t

Yi ≤ n−1
t+n−1∑

i=t

I P̃0,P̃1
i −δD(P̃1||P̃0)

}

= PP0,P1
ν






n−1
t+n−1∑

i=t

(
Yi − I P̃0,P̃1

i

)

︸ ︷︷ ︸
zero mean, independent

under measure PP0,P1
ν

≤ −δD(P̃1||P̃0)






.

(78)

Note that (∗) follows from the WS boundedness assumption,
and δD(P̃1||P̃0) is some strictly positive constant. Next,
we will use the previous lemma. Denote Y i := Yi − I P̃0,P̃1

i
as the centered version of Yi under measure PP0,P1

ν . Since
by assumption sup1≤t≤n VarP1,t (Yt) = o(n) as n → ∞,

we obtain that sup1≤t≤n EP1,t

[
Y

2
t

]
= o(n). Thus, by

Lemma A.1,

n−1
t+n−1∑

i=t

Yi − I P̃0,P̃1
i

p.−→ 0 (79)

under measure PP0,P1
ν when t > ν as n → ∞. Thus, (72) is

proved, and the proof is complete. !
Proof of Lemma 2.2: Recall that if no change ever

happens, Xt ∼ P0,t ∈ P0 for all t ≥ 1 and P0 = {P0,t}t≥1.
Here P0,t’s are independent, but could be non-stationary.
We follow the procedure in [30, Thm. 4]. For simplicity,
denote Yt := lnLP̃0,P̃1(Xt).

Define the stopping times:

σm+1 := inf

{
t > σm :

t∑

i=σm+1

Yi < 0

}
, (80)
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and let σ0 := 0 and inf ∅ := ∞. Suppose for now that we can
establish that, on {σm < ∞},

P0

{
t∑

i=σm+1

Yi ≥ b for some t > σm

∣∣∣Fσm

}
≤ e−b (81)

for any threshold b > 0. Define the number of zero-crossings
before hitting the threshold as

M := inf{m ≥ 0 :σm < ∞ and
t∑

i=σm+1

Yi ≥ b for some t > σm}. (82)

Thus, for any m > 0,

P0{M > m}
= EP0 [1{M > m}]

= EP0

[
EP0

[
1{M > m}1{M > m − 1}

∣∣∣Fσm

]]

= EP0 [P0{M > m|Fσm}1{M > m − 1}]

= EP0

[
P0

{
t∑

i=σm+1

Yi< b, ∀t >σm

∣∣∣Fσm

}
1{M >m−1}

]

≥ (1 − e−b)P0{M > m − 1}
≥ (1 − e−b)m (83)

where the first inequality follows from (81) and the second
one follows from recursion. Therefore,

EP0

[
τ(ΛP̃0,P̃1 , b)

]
≥EP0 [M ] ≥

∞∑

m=0

(1 − e−b)m =eb. (84)

It remains to show (81). By WS boundedness condi-
tion, EP0,t [exp(Yt)] ≤ 1 for any t ≥ 1. Therefore,
{exp (

∑n
i=k Yi) ,Fn, n ≥ k} is a non-negative supermartin-

gale under P0, and, on {σm < ∞},

P0

{
t∑

i=σm+1

Yi ≥ b for some t > σm

∣∣∣Fσm

}

≤ P0

{
max

σm+1≤n≤t

n∑

i=σm+1

Yi ≥ b
∣∣∣Fσm

}

(∗)
≤ e−b EP0,σm+1 [exp(Yσm+1)]
≤ e−b (85)

where (∗) follows from Lemma 1 in [4]. The proof is now
complete. !

Proof of Theorem 2.3: The proof steps are similar to [4].
From max-min inequality, it is true that

inf
T∈CP0

α

sup
(P0,P1):(P0,t,P1,t)∈P0×P1,∀t

WADDP0,P1 (T )

≥ sup
(P0,P1):(P0,t,P1,t)∈P0×P1,∀t

inf
T∈CP0

α

WADDP0,P1 (T ) .

(86)

It suffices to prove the other direction.

For any (P0, P1) such that (P0,t, P1,t) ∈ P0 × P1 for any
t ≥ 1, we have

WADDP0,P1

(
τ(ΛP̃0,P̃1 , bα)

)

(i)
≤ (1 + o(1))

(
bα

D(P̃1||P̃0)

)

(ii)
= WADDP̃0,P̃1

(
τ(ΛP̃0,P̃1 , bα)

)

(iii)
= inf

T∈CP̃0
α

WADDP̃0,P̃1 (T )

(iv)
= inf

T∈CP0
α

WADDP̃0,P̃1 (T )

(v)
≤ sup

(P0,P1):(P0,t,P1,t)∈P0×P1,∀t
inf

T∈CP0
α

WADDP0,P1 (T )

(87)

where o(1) → 0 as α → 0. In the above series of inequalities,
(i) follows directly from Lemma 2.1, (ii) and (iii) follow
from standard CuSum analyses (e.g., [30]), (iv) is justified
below, and (v) follows from the fact that (P̃0, P̃1) ∈ P0×P1.
Note that (iii) − (v) are satisfied for any 0 < α < 1.

We now justify (iv). Since P̃0 ∈ P0, CP0
α ⊆

CP̃0
α . Following standard CuSum analysis (e.g., [30]),

τ(ΛP̃0,P̃1 , bα) ∈ CP̃0
α . From Lemma 2.2, for any P0,t ∈ P0,

FARP0

(
τ(ΛP̃0,P̃1 , bα)

)
≤ α, and therefore τ(ΛP̃0,P̃1 , bα) ∈

CP0
α . For any α, since τ(ΛP̃0,P̃1 , bα) achieves the infimum over

the set CP̃0
α , it also does over the subset CP0

α .
Since (87) holds for any (P0, P1) : (P0,t, P1,t) ∈ P0 ×

P1, ∀t ≥ 1,

sup
(P0,P1):(P0,t,P1,t)∈P0×P1,∀t

WADDP0,P1

(
τ(ΛP̃0,P̃1 , bα)

)

≤ sup
(P0,P1):(P0,t,P1,t)∈P0×P1,∀t

inf
T∈CP0

α

WADDP0,P1 (T ) ,

(88)

and thus

inf
T∈CP0

α

sup
(P0,P1):(P0,t,P1,t)∈P0×P1,∀t

WADDP0,P1 (T )

≤ sup
(P0,P1):(P0,t,P1,t)∈P0×P1,∀t

inf
T∈CP0

α

WADDP0,P1 (T ) .

(89)

Therefore, τ(ΛP̃0,P̃1 , bα) asymptotically solves (8) as α → 0,
and

sup
(P0,P1):(P0,t,P1,t)∈P0×P1,∀t

WADDP0,P1

(
τ(ΛP̃0,P̃1 , bα)

)

=
(

| ln α|
D(P̃1||P̃0)

)
(1 + o(1)) (90)

where o(1) → 0 as α → 0. !
The following Lemma is useful for the proof of Lemma 3.2.
Lemma A.2: Let u, v be some constant. Then,

∫ ∞

0
exp

(
−

(
uy +

v

y

))
dy = 2

√
v

u
K1(2

√
uv) (91)
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where Kβ(z) is the modified Bessel function of the second
kind of order β.

Proof: Let y = eθ
√

v/u. Then, the integral becomes
∫ ∞

0
exp

(
−

(
uy +

v

y

))
dy

=
∫ ∞

−∞
exp

(
−
√

uv
(
eθ + e−θ

)) √
v/ueθdθ

=
√

v/u

∫ ∞

−∞
exp

(
−2

√
uv cosh(θ)

)
eθdθ

=
√

v/u

∫ ∞

−∞
exp

(
−2

√
uv cosh(θ)

)
(cosh(θ) + sinh(θ))dθ

(∗)
= 2

√
v/u

∫ ∞

0
exp

(
−2

√
uv cosh(θ)

)
cosh(θ)dθ

= 2
√

v/uK1(2
√

uv) (92)

where (∗) follows because cosh(θ) is an even function while
sinh(θ) is an odd function.

Proof of Lemma 3.4: Recall that Zi := Xi−(µ0+η)/2 and
St =

∑t
i=1 Zi. By assumption on M1, let Zt have mean

∆t ≥ ∆ for any t under measure P1,t. Fix b > 0. Define the
supplementary stopping time

τ̄ ′(b) := inf {t ≥ 1 : St ≥ b} . (93)

Consider t > t0 := 3b/∆4. Then,

PP0,P1
1 {τ̄ ′(b) > t} = P1{τ̄ ′(b) > t}

= P1

{
t∑

i=1

Zi < b

}

= P1

{
t∑

i=1

(Zi − ∆) < b−t∆

}

≤ P1

{∣∣∣∣∣

t∑

i=1

(Zi − ∆i)

∣∣∣∣∣ > t∆ − b

}

(∗)
≤ 2 exp

(
−2∆2(t−b/∆)2

t

)
(94)

where (∗) follows from Hoeffding’s inequality.
Using the same technique as the proof of lemma 3.2,
∫ ∞

0
exp

(
−2∆2(t−b/∆)2

t

)
dt =

2b

∆
e4b∆K1(4b∆) < ∞

(95)

where K1(z) is the modified Bessel function of the second
kind with order 1. Hence,

EP1 [τ̄ ′(b)] =
∞∑

t=0

P1 {τ̄ ′(b) > t}

≤
t0∑

t=0

P1 {τ̄ ′(b) > t}

+
∫ ∞

t0

2 exp
(
−2∆2(t−b/∆)2

t

)
dt

< ∞. (96)

Therefore, for any P1,t ∈ M1, EP0,P1
1 [τ̄ ′(b)] = EP1 [τ̄ ′(b)] <

∞. Finally, it follows directly that EP0,P1
1 [τ(b)] ≤

EP0,P1
1 [τ̄ ′(b)] < ∞. !

Proof of Lemma 3.5: For each t ≥ 1, let Z+
t :=

max{0, Zt} and Z−
t := −min{0, Zt}. Note that Z+

t , Z−
t ≥

0 and Zt = Z+
t − Z−

t . Therefore,

EP

[
lim
n

n∑

t=1

Z+
t 1{t ≤ T }

]
= lim

n

n∑

t=1

EP
[
Z+

t 1{t ≤ T }
]

(97)

by Monotone Convergence Theorem, since
∑n

t=1 Z+
t 1{t ≤

T } is non-decreasing in n. The same argument applies to Z−
t .

Hence,

EP
T

t=1

Zt = EP
T

t=1

Z+
t − EP

T

t=1

Z−
t

= EP
∞

t=1

Z+
t 1{t ≤ T} − EP

∞

t=1

Z−
t 1{t ≤ T}

=
∞

t=1

EP Z+
t − Z−

t EP [1{t ≤ T}]

≥ ∆
∞

t=1

EP [1{T ≥ t}]

= EP [T ]∆. (98)

!
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