ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) | 978-1-7281-6327-7/23/$31.00 ©2023 IEEE | DOI: 10.1109/ICASSP49357.2023.10096341

QUICKEST CHANGE DETECTION WITH LEAVE-ONE-OUT DENSITY ESTIMATION

Yuchen Liang and Venugopal V. Veeravalli

ECE Department and Coordinated Science Lab
University of Illinois at Urbana-Champaign
Email: yliang35, vvv@illinois.edu

ABSTRACT

The problem of quickest change detection in a sequence of in-
dependent observations is considered. The pre-change distri-
bution is assumed to be known, while the post-change distri-
bution is completely unknown. A window-limited leave-one-
out (LOO) CuSum test is developed, which does not assume
any knowledge of the post-change distribution, and does not
require any post-change training samples. It is shown that,
with certain convergence conditions on the density estima-
tor, the LOO-CuSum test is first-order asymptotically opti-
mal, as the false alarm rate goes to zero. The analysis is vali-
dated through numerical results, where the LOO-CuSum test
is compared with baseline tests that have distributional knowl-
edge.

Index Terms— Quickest change detection (QCD), non-
parametric statistics, (kernel) density estimation.

1. INTRODUCTION

The problem of quickest change detection (QCD) is of funda-
mental importance in mathematical statistics (see, e.g., [1, 2]
for an overview). Given a sequence of observations whose
distribution changes at some unknown change-point, the goal
is to detect the change in distribution as quickly as possible
after it occurs, while controlling the false alarm rate. In clas-
sical formulations of the QCD problem, it is assumed that the
pre- and post-change distributions are known, and that the ob-
servations are independent and identically distributed (i.i.d.)
in either the pre-change or the post-change regime. However,
in many practical situations, while it is reasonable to assume
that we can accurately estimate the pre-change distribution,
the post-change distribution is rarely completely known.
There have been extensive efforts to address pre- and/or
post-change distributional uncertainty in QCD problems.
In the case where both distributions are not fully known,
one approach is to assume that they are indexed by a (low-
dimensional) parameter that comes from a pre-defined pa-
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rameter set, and employ a generalized likelihood ratio (GLR)
approach to detection — this was first introduced in [3] and
later analyzed in more detail in [4]. In particular, in [4],
it is assumed that the pre-change distribution is known and
that the post-change distribution comes from a paramet-
ric family, with the parameter being finite-dimensional. A
window-limited GLR test is proposed, which is shown to
be asymptotically optimal under certain smoothness condi-
tions. This work has recently been extended to non-stationary
post-change settings [5, 6].

Another approach to dealing with distributional uncer-
tainty in QCD problems is the minimax robust approach [7],
where it is assumed that the pre- and post-change distributions
come from (known) mutually exclusive uncertainty classes,
and the goal is to optimize the performance for the worst-
case choice of distributions in the uncertainty classes. Under
certain conditions, e.g., joint stochastic boundedness (see,
e.g., [8] for a definition) and weak stochastic boundedness
[9], robust solutions can be found [10, 9]. However, these
robust tests can have suboptimal performance for the actual
distributions encountered in practice.

In this paper, we will assume complete knowledge of the
pre-change distribution, while not making any parametric as-
sumptions about the post-change distribution. There have also
been approaches to deal with non-parametric uncertainty in
the distributions in QCD problems. One approach is to re-
place the log-likelihood ratio by some other statistic and for-
mulate the test in the non-parametric setting. Examples of
this approach include the use of kernel M-statistics [11, 12],
one-class SVMs [13], nearest neighbors [14, 15], and Ge-
ometric Entropy Minimization [16]. In [11], a test is pro-
posed that compares the kernel maximum mean discrepancy
(MMD) within a window to a given threshold. A way to set
the threshold is also proposed that meets the false alarm rate
asymptotically [11]. Another approach is to estimate the log-
likelihood ratio and thus the CuSum test statistic through a
pre-collected training set. The include direct kernel estima-
tion [17] and, more recently, neural network estimation [18].
However, the tests proposed in [11]-[18] lack explicit perfor-
mance guarantees on the detection delay. The closest work
to ours is [19], where a binning approach is proposed to solve
the QCD problem asymptotically without any pre-collected
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training set. In particular, in [19], an asymptotically optimal
solution is established for the case where the pre-change dis-
tribution is known, the post-change distribution is distinguish-
able from the pre-change with binning, and both distributions
have discrete support.

Contributions:

1. We propose a window-limited leave-one-out (LOO)
CuSum test, which does not assume any knowledge of
the post-change distribution, and does not require any
post-change training samples.

2. We provide a way to set the test threshold that asymp-
totically meets the false alarm constraint.

3. We show that the proposed LOO-CuSum test is first-
order asymptotically optimum, as the false alarm rate
goes to zero.

4. We validate our analysis through numerical results, in
which we compare the LOO-CuSum test with baseline
tests that have distributional knowledge.

The rest of the paper is structured as follows. In Section 2,
we describe several properties required of the density estima-
tors for asymptotically optimal detection. In Section 3, we
propose the LOO-CuSum test, and analyze its theoretical per-
formance. In Section 4, we present numerical results that val-
idate the theoretical analysis. In Section 5, we provide some
conclusions.

2. LEAVE-ONE-OUT (LOO) DENSITY ESTIMATOR

Let X1, X5,--- € R? be i.id. samples drawn from an un-
known distribution p. Denote by supp(p) the support of p.
Denote by E,, and V,, the expectation and variance operator,
respectively, under p. Denote the LOO estimated density as
p f , where the subscript —i represents that X;, with k < ¢ <
n, is the sample that is left out. Note that the density is a func-
tion of X" := Xy,... X, 1, Xi11,..., Xn, and thus p™F
and X, are independent. The estimation procedure is assumed
to be sample-homogeneous, i.e., ﬁ’if < ﬁz’fﬁk <i<j<
n. The Kullback-Leibler (KL) divergence between distribu-
tions p and ¢ is D(p||q) := fsupp(p) log(p(x)/q(x))dx.

Suppose that, for large enough n, there exist constants
0 < B1,01,05 < o and 1 < f2 < 2 (that depend only
on the distribution p and the estimation procedure) such that,
foreach 1 <17 < n+ 1, the KL loss [20] of the leave-one-out
(LOO) estimator satisfies

Gy

KL-loss(p™') := E, [D(pllzﬁ’i’k)} = k)

; ey
where the expectation E, is over the randomness of p” ’ik.
Also, the total variance of the estimator satisfies

Vo (; log ﬁ%) <Cy(n—k+ 1)6 . 2)

One typical loss measure for a density estimator is the
mean-integrated squared error (MISE), defined as (see, e.g.,
[21, Chap. 2])

MISE(p, p"F) = B, [/(ﬁ"f(ﬂcz) _p(l‘i))2dIi]

2
=Ep [ ﬁf—pM JVE<i<n. (3

The following lemma connects the MISE with the bounds in
(1) and (2).

Lemma 2.1. Suppose that there exist (, ¢ such that
0 < ¢ < pl). 2 () < < o0, Y € supp(p). (4

for any k < i < n. If the estimator achieves

C
MISE(p,B) < (=5 5)
for some constant C3 < oo, then (1) and (2) are satisfied with
03 Z’I“QC?,
Ci=—, Cy= , Be=2-0
¢ ¢
tog(¢/0) \ *
L og (¢, .
where r .= <(C/C)—1> 1S a constant.

Proof Sketch. The key is to use the fact that log s < s—1 and
N

2 12 = . [ log(¢/C)
that (logs)? < 7(s —1)*ons > ¢/Cifr = <(</<)1) .
Thus,

X; X;
E, [log pAf}(X)z)] <E, lpk )Z) — 11

p(X0) oxo Y
Y (logﬁi;-’“(Xi)) = (ﬁi;-’%xz-) 1)

Note the definition of MISE in (3). Reordering the terms gives
the desired result. O

An example of a LOO estimator that satisfies (1) and (2)
(under condition (4)) is the LOO kernel density estimator
(LOO-KDE), defined as

~n.k - 1 - T — Ty
p_i(:c»—(n_k)thK( - ) 6)
7

where K (-) > 0 is a kernel function and & > 0 is a smooth-
ing parameter. The KL loss for kernel density estimators is
analyzed carefully in [20], where it is shown that the rate of
convergence in KL loss is slower than that of MISE for most
well-behaved densities. Nevertheless, this loss indeed con-
verges to zero with a polynomial decay rate with the use of
appropriate kernel functions, and thus (1) is satisfied. Fur-
thermore, using (4), it can be shown that (2) is also satisfied.
We note that the actual choices of 3; and (32 do not affect the
first-order asymptotic optimality result given in Thm 3.3.
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3. QCD WITH LOO DENSITY ESTIMATION

Let X1, Xs,...,X,,--- € R? be a sequence of independent
random variables (or vectors), and let v be a change-point.
Assume that X;,..., X, _; all have density py with respect
to some measure p. Furthermore, assume that X, X, 11, ...
have densities p; also with respect to p. Here pg is assumed
to be completely known. While p; is completely unknown,
we assume that (1) and (2) are satisfied for LOO estimators of
P1-

Let P, denote the probability measure on the entire se-
quence of observations when the change-point is v, and let
E, [-] denote the corresponding expectation. The change-time
v is assumed to be unknown but deterministic. The problem is
to detect the change quickly, while controlling the false alarm
rate. Let 7 be a stopping time [8] defined on the observa-
tion sequence associated with the detection rule, i.e. 7 is the
time at which we stop taking observations and declare that the
change has occurred.

3.1. Classical Results

When p; is known, Lorden [3] proposed solving the following
optimization problem to find the best stopping time 7:

incf WADD (7) @)
TECH
where
WADD (1) :=supesssupE, [(7‘ v+ D) FE ®
v>1
characterizes the worst-case delay, and J,, denotes the sigma
algebra generated by X1,..., X, 1.e., Fp, = 0(X1,..., Xp).
The constraint set in (7) is
Co :={7:FAR(7) < a} )
with FAR (7) := m which guarantees that the false alarm

rate of the algorithm does not exceed «. Here, E [-] is the
expectation operator when the change never happens, and
()" := max{0, - }.

Lorden also showed that Page’s Cumulative Sum (CuSum)
algorithm [22] whose test statistic is given by:

. p1(Xi)
= I
Win) 1§r1?2§+12 % po(X)

solves the problem in (7) asymptotically as o« — 0. The
CuSum stopping rule is given by:

Tpage (b) := inf{n : W (n) > b} (10)

where the threshold is set as b = |log «|. It was shown by
Moustakides [23] that the CuSum algorithm is exactly opti-
mal for the problem in (7). The asymptotic performance is

|log a

inf WADD (7) ~ WADD (py (Jlog a])) ~ D(prlpo)
an

TECH

asa — 0. Here Y, ~ G, isequivalentto Y, = G, (140(1)).
Also, we use the notation o(1) to denote a quantity that goes
to0,asa — 0orb — oo.

When the post-change distribution has parametric uncer-
tainties, Lai [4] generalized this performance guarantee with
the following assumptions. Suppose that py and p; satisfy

v+t
sup P, {max Z; > (1+ 6)nl} 270 (12)

v>1 t<n 4
= i=v

for any 6 > 0, and

t+n
sup P, {Z Zi < (1- §)nl} 2700 (13)
i=t

t>v>1

for any § € (0, 1), with some constant 7 > 0. Also, suppose
that the window size m,, satisfies
liminf m,/|loga| > ™' and logm, = o(|log al).

Then, the window-limited (WL) GLR CuSum test:

Tarr (b) := inf {n : max supZsz > b}
© =k

n—me<k<n+1gc
(14)

with some test threshold b, ~ [|log | solves the problem in
(7) asymptotically as @ — 0. The asymptotic performance is

[log a

inf WADDy (7) ~ WADDj (Fpage (ba))

TECa

. (15)
Note that I = D(p1]||po) when pg and p; are independent.

3.2. Leave-one-out (LOO) CuSum Test

For the case when p; is unknown, we define the LOO log-
likelihood ratio as

P (X))
pO(Xi) ’

and the LOO CuSum stopping rule as

Vk <i<n. (16)

n
7(b) :=1inf ¢ n : ZME>ph . (17
T() lIl {n (n—mar)rﬁragxkgn—lg ' - } 17

Here the window size m,, is designed to satisfy
lim inf mg/ [loga| > fI~! with logm, = o(|]loga|) (18)

where f > 1 is a constant.

In Lemma 3.1, we show that 7 with a properly chosen
threshold b,, satisfies the false alarm constraint in (9) asymp-
totically. In Lemma 3.2, we establish an asymptotic upper
bound on WADD (7(b,,)). Finally, in Theorem 3.3, we com-
bine the two lemmas and establish the first-order asymptotic
optimality of 7(by,).
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Lemma 3.1. Suppose that b,, satisfies
bo = |log a| + log(8my,). (19)

Then,
Eoo [T(ba)] > o™t

Remark. If m,, satisfies (18), then b, = |log | (1 + o(1)) as
a— 0.

Proof Sketch. For all thresholds b, we upper bound Po.{v <
7(b) < v+m} by upper bounding Po {7 (b) < k+m,} for
each k, where 75, is an auxiliary stopping time as seen in [4,
Proof of Lemma 2]. We use the fact that the density estimator
produces a density that is independent of X; for each ¢. Then,
we use [24, Lemma 2.2(ii)] to finish the proof.

O

Lemma 3.2. Let b, = |loga| (1+0(1)) and my, satisfy (18).
Suppose that (1) and (2) hold. Further, suppose (13) holds.
Then,

|log |

WADD (7(b)) < 520~ (1 + o(1))

(p1llpo)

as o — 0.

Proof Sketch. The key part in the proof is to show that

t+np—1
sup esssup]P’l,{ Z Zl-tﬂ”’_l’t <b|Fiqp <207
t>v>1 —
(20)
with ny := LI(%L%)J and some J, satisfying §, \,0asb *

oo. The left-hand side in (20) can be upper bounded by

ny ny
Pl{ZZi §b+e} + P, {;Z(zgnl) > ;}

=1 i=1

and it remains to choose a proper ¢ = ¢, in order to keep
both terms small. The idea is to choose €, by controlling the
second term via concentration inequalities. Then, it can be
verified that ¢, is small enough for the first term to vanish
when b is large. Indeed, we have ¢, = o(ny) as b — co. Then
the rest of the proof is similar to [4, Proof of Theorem 4]. [J

Theorem 3.3. Suppose that b, is chosen as in (19), with a
window size m,, large enough to satisfy (18), and suppose
that (12), (13) hold for the true log-likelihood ratio. Then
T (b)) with T defined in (17) solves the problem in (7) asymp-
totically as o — 0. The worst case delay is

| N llog o

inf WADD () ~ WADD (7 (by)) ~ ——2%_

2 ") 7))~ B, TIpo)
as o — 0.

Proof. The asymptotic lower bound on the delay follows
from (13) by using [4, Thm. 1]. The asymptotic optimality of
7(by) follows from Lemma 3.1 and Lemma 3.2. O

—e— Kernel LOO-CuSum (Window: 25)
—e— Kernel LOO-CuSum (Window: 50)
701 —s— Kernel LOO-CuSum (Window: 100)
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Fig. 1. Comparison of operating characteristics of LOO-
CuSum (solid lines) with the CuSum test (in red) and the WL-
GLR-CuSum test (dotted lines) in detecting a shift in mean
of a Gaussian. The pre- and post-change distributions are
N(0,1) and A(0.5,1). The change-point v = 1. The ker-
nel width parameter h = (min{n, m} — 1)~/5 where m is
the window size.

4. NUMERICAL RESULTS

In Fig. 1, we study the performance of the proposed LOO-
CuSum test defined in (17) through Monte Carlo (MC) sim-
ulations when the pre-change distribution is A(0,1). The
LOO-KDE (defined in (6)) is used to estimate the density. The
actual post-change distribution is N'(0.5,1), but the LOO-
CuSum test has no knowledge of it. The performance of the
LOO-CuSum test is compared with that of the following tests:

1. the CuSum test (in (10)), which assumes full knowl-
edge of the post-change distribution;

2. the WL-GLR-CuSum test, which assumes that the post-
change distribution belongs to {N (0, 1) }pso.

Different window sizes are considered, among which window
sizes of 100 and 200 are sufficiently large to cover the full
range of delay. It is seen that the expected delay of the LOO-
CuSum test is close to that of the WL-GLR-CuSum test for
all window sizes considered.

5. CONCLUSION

We studied a window-limited LOO-CuSum test for QCD that
does not assume any knowledge of the post-change distribu-
tion, and does not require post-change training samples. We
established the first-order asymptotic optimality of the test,
and validated our analysis through numerical results.
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