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Asymptotics of noncolliding g-exchangeable random walks

Leonid Petrov, Mikhail Tikhonov

Abstract

We consider a process of noncolliding g-exchangeable random walks on Z making steps
0 (“straight”) and —1 (“down”). A single random walk is calledg=exchangeable if under
an elementary transposition of the neighboring steps (down, straight) —#(straight, down) the
probability of the trajectory is multiplied by a parameter ¢ € (0,1). Qur process of m
noncolliding g-exchangeable random walks is obtained from the independent g-exchangeable
walks via the Doob’s h-transform for a nonnegative eigenfunction hy(expressed via the g-
Vandermonde product) with the eigenvalue less than 1. The system of m walks evolves in the
presence of an absorbing wall at 0. The repulsion mechanisnnis the g-analogue of the Coulomb
repulsion of random matrix eigenvalues undergoing Dyson Brownian motion. However, in our
model, the particles are confined to the positive half-line and/do not spread as Brownian
motions or simple random walks.

We show that the trajectory of the noncolliding/ g-exchangeable walks started from an
arbitrary initial configuration forms a determinantal point process, and express its kernel in
a double contour integral form. This kernel isiobtainedias a limit from the correlation kernel
of g-distributed random lozenge tilings of sawtooth. polygons.

In the limit as m — oo, ¢ = e~ /™ with'% > 0 fixed, and under a suitable scaling of the
initial data, we obtain a limit shape of 'our-noncolliding walks and also show that their local
statistics are governed by the incomplete beta kernel. The latter is a distinguished translation
invariant ergodic extension of the two-dimensional discrete sine kernel.

1 Introduction

The main object of the present paper is an ensemble T, of random point configurations in the
two-dimensional lattice ZQZO which, belongs to two broad classes: noncolliding random walks and
q-distributed random lozengestilings.

The noncolliding randem walks on Z is a Markov chain of a fixed number m of particles
performing independeént,simple random walks. They interact through the condition that they
never collide, which is equivalent to Coulomb repulsion. This model can be traced back to
Karlin-McGregor [KM59]; see Konig—O’Connell-Roch [KOR02] for a detailed exposition. The
noncolliding random walks are a discretization of the celebrated 8 = 2 Dyson Brownian motion
[Dys62] describing the eigenvalues of the Gaussian Unitary Ensemble. More recently, noncolliding
random walks for.ether random matrix 3 values were considered by Huang [Hua21] and Gorin—
Huang [GH22].

We start from a g-deformation of the simple random walk, namely, the g-exchangeable walk
introduced by Gnedin-Olshanski [GO09]. Under an elementary transposition of the walks’ in-
crements, the probability of the trajectory is multiplied by ¢ or ¢~! (depending on the order
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of the increments), where ¢ € (0,1) is a parameter. When ¢ = 1, this property reduces‘to the
usual exchangeability. We show that the condition for independent g-exchangeable random walks
never to collide is realized through a Doob’s h-transform for an explicit nonnegative eigenfunction
involving the ¢-Vandermonde product, with eigenvalue q(?) From this perspectiveyour process
T, is a g-deformation of the classical model of noncolliding simple random walks, (and reduces to
this classical model in a ¢ — 1 limit). Note that all previously studied noncolliding random walks
(including the model of Borodin-Gorin [BG13] where ¢ enters the particle speeds 1,¢7%, ¢72,. ..
and thus plays a different role) satisfy the usual, undeformed exchangeability-

The g-exchangeability of the random walks produces strong confinément of the particles,
which beats the noncolliding Coulomb repulsion. This behavior is very different from many
noncolliding models, including the classical Dyson’s Brownian motion model«of random matrix
eigenvalues, where the particles at large times spread as Brownian metions, or its stationary
version already considered in [Dys62]. In the latter, the individual particles evolve as Ornstein—
Uhlenbeck diffusions, and the whole noncolliding system is stationary. Our model Y,, is not
stationary, yet the particles are confined to the positive half-line and approach an absorbing state
instead of spreading.

Our ¢-dependent process T,, is a part of a wider family of Markov chains with Macdonald
parameters (q,t) defined recently by Petrov [Pet22]. /The asymptotics of the latter should be
accessible through the technique of Gorin—-Huang [GH22], butiliere we stay within the ¢ = ¢ case
(corresponding to 5 = 2 in random matrices) which allows to show local bulk universality.

Let us add that in continuous time and space, noncolliding Brownian motions weighted by
the area penalty and their scaling limit, the'Dyson Ferrari-Spohn diffusion, were considered by
Caputo—Toffe-Wachtel [CIW19], Ferrari-Shlosman [FS23], in connection with interfaces in the
Ising model in two and three dimensiomns:

Let us now turn to random lozenge tilings and briefly overview the relevant models and typical
asymptotic results. Random lozenge tilings (equivalently, random dimer coverings / perfect
matchings on the hexagonal grid)iis a well-studied two-dimensional statistical mechanical model
of random interfaces, most notably, appearing in faceted crystals [FS03].

Mathematically, correlations'in random lozenge tiling models are expressible as determinants
of the inverse Kasteleyn matrix, as'first shown by Kasteleyn [Kas67] and Temperley—Fisher
[TF61]. See also the lecture netes by Kenyon [Ken09] and Gorin [Gor21]. Several types of asymp-
totic results about random tilings reveal their large-scale behavior and connections to physical
phenomena at different seales. Here we consider the limit shape and the bulk (lattice) universality.

The limit shape (lawof large numbers) phenomenon states that the normalized height function
of a random tiling tends to a nonrandom limiting height function. The latter has a variational
description as a global.entropy-maximizer (Cohn—Kenyon-Propp [CKP01] and Kenyon-Okounkov
[KOO07]). In miany problems, in particular, for uniformly random lozenge tilings of the so-called
sawtooth polygons considered in Petrov [Petl4] (see Figure 1), the variational problem can be
solved in termsiof.algebraic equations for the gradient of the limiting height function.

In a/ neighborhood where the limiting height function is non-flat, one expects to see pure
states (translation invariant ergodic Gibbs measures) with universal (independent of the initial
data) local statistics (correlations). However, analyzing this asymptotic regime requires either
an \explicit/inverse of the Kasteleyn matrix (which heavily depends on the boundary conditions)
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or an effective asymptotic control of this inverse. The pure state is unique for a given gradient,
and its correlations are described by the incomplete beta kernel (an extension of the diserete
sine kernel); see Sheffield [She05], Kenyon-Okounkov-Sheffield [KOS06]. This universal, bulk
behavior has been proven in full generality for uniformly random tilings by Aggarwal [Aggl9],
following the earlier works for the hexagon (Baik—Kriecherbauer-McLaughlin=Miller [BKMMO07],
Gorin [Gor08]), sawtooth polygons (Petrov [Pet14]), and a lozenge tiling model ¢orresponding to
the noncolliding Bernoulli simple random walks (Gorin—Petrov [GP19]). The curve separating
the region where the height function is non-flat is referred to as the frozen/ boundary’ (or arctic
curve). For uniformly random tilings of polygons this curve is algebraic.

A g-deformation of uniformly random lozenge tilings is obtained by assigning probability
weights proportional to q"°'"™¢ where the volume is measured under thesheight function. The
introduction of the extra parameter q is very natural from the mathematical point of view. On
the physical level, it introduces a “damping potential” component that allows considering tilings
of infinite domains (also sometimes called plane partitions) if the partition function is summable
for q € (0,1) (we use a different font for g to distinguish frem the g=éxchangeable parameter).
Cerf-Kenyon [CKO01] studied the g-weighted plane partitions and _proved a limit shape result.
Okounkov—Reshetikhin [OR03] found asymptotics of local eorrelations as q 1 and introduced
the incomplete beta kernel to describe them. In the subsequent” work [OR07], they looked at
random skew plane partitions which may have a back wall.sDepending on the number of back
wall turns, the frozen boundary may form several asymiptotes extending to infinity; see [OR07,

Figures 2, 15, 16] for illustrations.

/

Figure 1: A sawtooth polygon and frozen boundaries for the g-weighted lozenge tilings as q =
e Y/N 5 1, where Nl 00 is the linear size of the polygon. Here y > 0 on the left and vy < 0
on the right. /These frozemboundaries were obtained by Di Francesco-Guitter [DFG19].

For g-weighted random tilings of (bounded) sawtooth polygons, the frozen boundary was
computed by di Francesco-Guitter [DFG19] using the tangent method. Gorin-Huang [GH22]
recently obtained it for an even more general ensemble with (q, x)-weights introduced by Borodin—
Gorin-Rains [BGR10]. The boundaries of [DFG19] turn into the ones of [OR07] in a limit when
the side of the sawtooth polygon with multiple defects tends to infinity. Then the “cloud” parts
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adjacent to this side degenerate into multiple asymptotes.

For sawtooth polygons, bulk universality of the g-weighted lozenge tilings as q — 1 is still
open except for the hexagon case settled by Borodin—-Gorin—Rains [BGR10]. This is/despite the
explicit double contour integral expression for the correlation kernel Kj,, (a close rélative of the
inverse Kasteleyn matrix) given by Petrov [Pet14] which we recall in (4.2) below. The reason is
that the g-hypergeometric function under the integral in Kj,, has hindered its direct, asymptetic
analysis.

It is known that the g-dependent kernel K),, (and its subsequent asymptotie analysis) sim-
plifies in several cases. First, setting g = 1, we get a kernel for uniformly random tilings, which
has led to many asymptotic results; see Petrov [Pet14], [Pet15], Toninelli-Laslier [LT15], Gorin—
Petrov [GP19], Aggarwal [Aggl9]. In another regime, keeping q < l.fixedvand sending the top
boundary of the polygon (which has several turns) up to infinity, as imsFigure 1, left, one can
show that the g-weighted random tilings in a bottom part of the picture converge to the random
plane partitions with a back wall studied by Okounkov—Reshetikhin [OR07]. Moreover, in this
limit, the correlation kernel K),, turns into the simpler kermel [OR07, (25)] obtained originally
via the technique of Schur processes. The latter kernel is amenableto asymptotic analysis by the
standard steepest descent method, which in particular leadsto,the frozen boundary with several
asymptotes (already visible in Figure 1) and bulk universality.

Our model T,, of noncolliding g-exchangeable random walks presents a new case when the
complicated kernel K\, simplifies. Namely, if instead of q <1, we keep q > 1, and send the bottom
boundary of the polygon down to infinity as in, Figurerl] right, then around the top boundary
of the polygon we have the convergence to the noncolliding ¢g-exchangeable random walks, with
g = q~!. The resulting correlation kernel K4 has an explicit double contour integral form for
any initial condition in the noncolliding walks:»From this kernel, we obtain the limit shape and
bulk universality results as the number m, of walks goes to infinity and ¢ = e~7/™ — 1. The
frozen boundary for the noncolliding walks (see’Figure 3 for examples) may form several “cloud
turns” and always has exactly one asymptote (already seen forming in Figure 1, right). The
damping potential coming from ghe g=deformation is read as g-exchangeability of the walks and
is responsible for the confinement and eventual absorption of the particles.

We conclude that limit shape results for ensembles of random lozenge tilings are accessible
by a variety of methods. However,\bulk universality requires knowledge or precise control of the
inverse Kasteleyn matrix (orits close relative, the correlation kernel). The ¢"°'"™¢ ensemble of
random lozenge tilings of sawtooth polygons is an example of a model where such control is still
out of reach. In the presentipaper, we explore a new degeneration of this lozenge tiling model,
which is amenable to asymptotic analysis and has a very nice interpretation as noncolliding
g-exchangeable random walks with arbitrary initial conditions.

Outline

Above inhe Introduction, we gave an overview of where our model Y, fits into the classes of
noncolliding walks and random lozenge tilings. Below in Section 2 we describe our model and
results imyfull detail. In particular, we show that our process T,, coincides with the system
of independent g-exchangeable random walks conditioned never to collide. The proofs of the
determinantal kernel and the asymptotic results are given in Sections 3 to 5.
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2 Model and main results

In this section, we discuss our model of noncolliding ¢g-exchangeablerandom walks and formulate
our main results on its determinantal structure and asymptotic/behavier.

2.1 The ¢g-exchangeable random walk

Consider a discrete-time simple random walk {y(t)}iecz., on Zymaking steps 0 (“straight”) and
—1 (“down”) according to independent flips of a given/(pessibly biased) coin.! It is well-known
that the sequence of steps in this random walk is ezehangeabley that is,

Prob(y(t+1) —y(t) =€, y(t +2) —y(@+ 1) =e€xy.. Lyt + k) —ylt+k—1)=¢;) (2.1)

is symmetric in €1, ..., € {0,—1} for any ¢t > Oand &k > 1.

Gnedin—Olshanski [GO09] considered a ¢-deformation of the concept of exchangeability de-
pending on a parameter ¢ € (0,1). For a g-ezchangeable random walk {y(t)}icz.,, the quantity
(2.1) is no longer symmetric in ei,. .., Instead, we have the following g-symmetry under
elementary transpositions €; <> €;41:

Prob(...,y(t+i) —y(t+i— V=€, y(t+i+1)—y(t+i) = €it1,...)
=q" 1 Prob (... y(t+i)=ylt+i—1) =€y, y(t+i+1) —ylt+1)=¢€,...).

In words, under a transposition of the neighboring steps (down, straight) — (straight, down), the
probability of the trajectoryds multiplied by q.

Remark 2.1. By convention, throughout all exact computations in the paper, the parameter q is
a fixed number between0 and 1. For the asymptotic analysis of the noncolliding g-exchangeable
random walks, wessend g /' 1. These asymptotic results are formulated in Section 2.6 and proven
in Section 5.

The space oflaws, (probability distributions) of g-exchangeable random walks is a convex sim-
plex. That is,the convex combination (mixture) of probability laws preserves g-exchangeability.
By a g-analogue of the de Finetti’s theorem proven in [GO09], extreme g-exchangeable random

walks (that is, extreme points of this simplex) are parametrized by A :={0,1,2,...} U{oco}. In

It is convenient to have random walks which move down on the one-dimensional integer lattice Z.



CONOYUT A~ WN =

AUTHOR SUBMITTED MANUSCRIPT - JPhysA-118983.R1

detail, for any g-exchangeable random walk y(t), there exists a probability measure p omA such
that the law of y(¢) is a mixture of the extreme distributions by means of p.

Our first observation is that all extreme g-exchangeable random walks parametrizéd by points
of Ag, ={0,1,2,...} C A are one and the same space-inhomogeneous random walk with varying
initial configuration and an absorbing wall at 0.

Definition 2.2 (The g-exchangeable random walk in Z>(). Let T; be the followingrone-step
Markov transition probability, where x,y € Z>o:

T

q, Yy=1x
Ti(z,y)=q1-¢", y=z-1
0, otherwise.

Proposition 2.3. 1. Started from any x € Z>o, the random/walk, with”transition probabilities
T is g-exchangeable.

2. Any extreme q-exchangeable random walk parametrizedtby a point x € Ag, can be identified
with the random walk Y1 started from x.

Proof. For the first part, we have
Ti(z,2)Ti(z,x—1) =¢"(1 4¢°) =q - Ti(z,z — 1)Li(z — 1,2 — 1),

which immediately implies the ¢-exchangeability. "Ihe second part follows by comparing our
random walk with the one described in [GO09,\Proposition 4.1]. O

Remark 2.4. In the scaling limit as ¢ =% — 1 and z = [e~!log(1/p)] + &, where p € (0,1)
and & € Z, the g-exchangeable random walk'en Z>( turns into the usual simple random walk on
Z. The latter corresponds to independent coin flips with the probability of Heads equal to p.

2.2 Noncolliding simple random walks

The central object of the present paper is a model of several interacting g-exchangeable random
walks which never collide./ Here we first discuss the well-known model of noncolliding simple
random walks on Z. Thanks .to Remark 2.4, this well-known model may be viewed as a ¢ — 1
limit of our model of noneolliding g-exchangeable random walks. We define the latter in detail in
Section 2.3 below.

The model of noncolliding simple random walks on Z dates back to Karlin-McGregor [KM59].
The model of noneolliding Brownian motions on R is the celebrated Dyson Brownian motion
for the Gaussiam,Unitary Ensemble [Dys62]. A systematic treatment of noncolliding random
walks connecting them to determinantal point processes (in particular, orthogonal polynomial
ensembles) is ‘performed by Ko6nig-O’Connell-Roch [KOR02].

The gne-step Markov transition probability of a model of m independent discrete-time simple
random ‘walks on Z (making steps 0 and —1 with probabilities p and 1 — p) conditioned never to
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collide has the form of a Doob’s h-transform [Doo84, 2.VI.13]

1)l @) T
Tm ($7y) = (q:l) . H (plyi:xi + (1 - p) 1yi:xi—1)7 (22)
by (%) 35
T (@9

where = (z1 > ...>xn), Y= (y1 > ... > ym), xi,y; € Z. Here

W@ = [ (wi—ay) (2.3)

1<i<j<m

is the Vandermonde determinant, and the product over i in (2.2) i$ simply the one-step Markov
transition probability of a collection of m independent simple random walks, which we denoted by
ng’:irﬂ. In (2.2) and throughout the text, 1 4 stands for the indi¢ator,of an'event or a condition A.

The fact that (2.2) defines a random walk of m particlés,is not straightforward. The key
property is that the right-hand side sums to 1 over all §. Equivalently, h$,‘{:1)(f) is a nonnegative

harmonic function for the collection of m independent simple random walks:

>R Y (7, ), = hIRAE). (24)
g

2.3 Noncolliding g-exchangeable random walks

Here we describe our main model Y,,, which is\a g-deformation of the classical model of noncol-
liding simple random walks from Sec¢tion 2:2.. For m = 1, the model Y is the g-exchangeable
random walk from Section 2.1 above.

Denote by W,,, the space of m-particle configurations in Z>q:

Wy = {T= (11 > 22> ... > 2y > 0)} CZT,, (2.5)
and set |Z| == z1 4+ ... + T,
Definition 2.5. We consider a Markov chain Y,, on W,,, with the following one-step transition

probabilities, where Z, 1 € Wj,:

m - — Yji — qYi m
Yo7, ) = ¢ LD [T LD (i, + (1 - )1y ). (26)

Tj _ g%
1<icj<m 1 L —

Tm,ind (fvg)

See Figure 2/ left, for an illustration of the trajectory of the process Y,, (with m = 4) started
from ¥ = (7,6,3,1)¢ As time goes to infinity, the dynamics T, reaches its unique absorbing
state dp="(m =1,m —2,...,1,0) € W,,. We call the Markov process Y,, the noncolliding
q-exchangeable random walks.

The process T, was introduced recently by Petrov [Pet22]. It is a particular ¢t = ¢ case of
the Macdonald noncolliding random walks, and the main goal of the present paper is a detailed
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asymptotic investigation of the ¢ = ¢ case. It turns out that the ¢t = ¢ process is determinantal
with an explicit double contour integral kernel. The asymptotic analysis of the general (g,t)
Macdonald case should be performed by different, non-determinantal methods (potentiallysbased
on [GH22]), but we leave this question out of the scope of the present work.

From the results of [Pet22] it follows that for any & € W,,, the quantities Y, (&, ¢) are
nonnegative and sum to 1 over all ¥ € W,,. Equivalently, the following ¢-deformation of,the
Vandermonde determinant

h (%) = ¢~V TT (67 — ™) (2.7)

1<i<j<m

is a nonnegative eigenfunction for 1, ;,q, the collection of m independent g-exehangeable random
walks:
Z hm(g)TTIL,iIld(f’ g) = q(2)hm(f) (28)
gewm
This property is similar to (2.4), but observe that here thé function h,, is not harmonic with

eigenvalue 1, but instead, its eigenvalue is equal to q(?).

From (2.6)(2.8) we see that the transition probabilities of the dynamics Y,, have a Doob’s
h-transform like form. Moreover, similarly to the simple random walk case in Section 2.2, our
process T, can be obtained from the independent g-exchangeable walks T, inq by conditioning
them never to collide. To formulate this result (Proposition 2.6 below), we need some notation.

Denote by TgT) the T-step transition probability. of thesingle g-exchangeable random walk. One
can readily compute this probability assuming thatZ" > z — y:2

T (4,4) =1 1—¢®)(1 A==m@r g1 gv(T-a+y) (¢ 9) . (2.9

Indeed, (1—¢*)(1—¢"1)... (1g¥*th) ¢?T=*49) is the probability that the walk first goes all the

(¢:9)T
(6D 2y (GO T—2+y

way down from x to y and then stays at y, and the g-binomial coefficient comes

from the g-exchangeability.

By [KM59], the T-step transition probability of an m-particle independent g-exchangeable
random walk Y, jnq conditiéned on the event that the particles do not collide over these T steps
is equal to det [TgT) (i, Y4 )]Tj:l, where 7,y € W,,,. Therefore, the one-step transition probability
from & to i of T}y, ing €onditioned to not collide up to time 7" and to get absorbed at d,, has the
form

—

m,ind (I, y) ]-yi—a:ie{O,—l} for all z-

datpey’ My m —
det[T{" (@i m — ),

2Here and throfghout the paper we use the g-Pochhammer symbols notation
(@;q)k = (1 —a)(l—ag)...(1—ag"™"), k€ Zxo,

and (2;q)se = []%, (1 — 2¢") is a convergent infinite product because ¢ € (0,1). The last ratio in (2.9) is the

i=0
i . : : ny  _ (a:9)n
g-binemial coefficient since (k)q = G as—.
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Proposition 2.6. For any Z,y € W,,, we have
- det| YTV (g m — )]
lim :

T .
T—+oo det[Y! )(mi,m—J)]Z%:l 1<i<j<m

m L Yi _ Y
SCACA | s (2.10)

Proof. Using (2.9) and factoring out qi=t(m=)(T=14m=3) anq 2= (m=DT+m5)  respedtively,
from the numerator and the denominator in the right-hand side (2.10) yields the factor q_(Tg) in
the left-hand side. After this, we can pass to the limit as T'— oo in the matrix elements of each
determinant because the resulting matrices stay nondegenerate. Thus, it temains to,compute one
such determinant with 7' = oo, say (after replacing the index j with m 4 1 — j);

1—g%)(1—g% ... (1—¢)) gl qm sTi(JSb)(@@—it2. o). . 1m
det [10<j_1<%. ( q )( 4 ) ( a )q ] = det |:q (q ) Q)J 1 )
=T (¢ Qws—jt1 ij=1 (¢;9) -1 ij=1
(2.11)

Here we rewrote the products in a convenient form, and observed that the indicator 1o<j_1<gz; is
automatically enforced in the right-hand side by the g-Pochh@mmer (g%~ %1:¢q);_;.

We see that each (i,7)-th entry in the determinant in the right-hand side of (2.11) is a
polynomial in ¢=% of degree j — 1. Therefore, the whole determinant is proportional to the

Vandermonde [], ., j <m(@% —q"). One readily sees thatithe coefficient by this Vandermonde is
—1)ym(m=1)/24=(m-1)|7

(D102 (GO m—1

equal to , which completes the proof. O

The limit relation in Proposition 2.6 completes the analogy between the well-known model of
noncolliding simple random walks on Z (and the,Dyson Brownian motion) and our noncolliding
g-exchangeable random walks Y,,. In both ‘cases, the h-transform structure of the transition
probability is due to the conditioningsthat the independent random walks never collide.

2.4 Gibbs interpretation as ¢-weighted lozenge tilings

The m-particle process Y,, satisfies a version of the g-exchangeability discussed for a single
random walk in Section 2.1. Namelypthis is the Gibbs property of the walk observed in [Pet22].

Fix m and an initial condition # € Wy, for the process T,,. Under a suitable affine transfor-
mation of the trajectory of Y,,, it ean be bijectively identified with a lozenge tiling of the vertical
strip of width =1 + 1, see Figure 2, right. The bottom boundary of the vertical strip is encoded by
Z in the following way. Viewing & as a particle configuration in Zx>(, each particle x; corresponds
to a straight piece in the boundary of slope (—1/v/3), and each hole in & corresponds to cutting a
small triangle out of the strip. Due to the eventual absorption of the walk Y, at §,,, the lozenge
tiling is “frozen” far at the top, with z; + 1 — m tiles of one type on the left followed by m tiles
of the other typen Thus, each lozenge tiling corresponding to a trajectory of Y,, contains only
finitely many horizontal lezenges.

The lozenge tiling corresponding to a trajectory of Y, can be interpreted as a stepped surface
in three dimensions such that the solid under this surface is made out of 1 x 1 x 1 boxes. Via this
interpretation, each trajectory of Y,, has a well-defined volume under the corresponding stepped
surface. [ In othér words, the volume of a given tiling is the number of boxes which must be added
to the minimal/configuration to get this tiling. For example, the volume of the tiling in Figure 2,
right, is equal to 34.

The next statement follows from [Pet22, Proposition 10].
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Figure 2: Left: Illustration of the trajectory of the noncolliding g-exchangeable random walks
Y, (with m = 4) started from Z = (7,6,3,1). Right: A bijective interpretation of the trajectory
as a lozenge tiling of a strip via an affine transformation.

Proposition 2.7. Fiz m and £ € W,,. “The probability distribution of the trajectory of the
Markov process Ty, (2.6) started from T is the same as the distribution of the random lozenge
tiling of the strip as in Figure 2, right (depending on &), where the probability weight of a tiling
is proportional to ¢g"oMmme.

Remark 2.8. Another ¢-dependent modehof noncolliding random walks was introduced and
studied in [BG13]. In that model, the parameter ¢ enters the particle speeds 1,q71,¢72,...,
but the dynamics as a whole satisfies the usual, undeformed exchangeability property. Indeed,
the single-particle dynamics in [BG13]yis/the simple random walk (with Poisson, Bernoulli, or

geometric jumps), and our single=particle’ dynamics is the g-exchangeable random walk.

Let us denote the ¢"°"™¢-weighted probability measure on tilings described in Proposition 2.7
by M%). The partition funetion (that is, the probability normalizing constant) of Mﬁ,af)

explicit form:

has an

volume

Proposition 2.9. /Thersum of the quantities q
Figure 2, right (determined by & € W,, ), is equal to

M) = H T a-q). (2.12)

z:l x’ 1<i<j<m

over all lozenge tilings of the strip as in

Note in particular that setting ¢ = 0, we get Z [Mg)} =1, as it should be.

Proof-of Proposition 2.9. From Proposition 2.7, it suffices to check that 1/Z[M ,,L)} is the transi-
tion probability (over x; —m + 1 steps) of fastest path from & to the absorbing state d,,. This

10
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fact follows by taking the product of the one-step transition probabilities (2.6) and observing
that the g-Vandermonde factors cancel out, except for the first such factor coming fromithe

initial condition Z. The resulting expression for 1/Z [Jv[ﬁ;’f)] is then verified directly. O

2.5 Determinantal kernel

Fix m € Z>; and an initial configuration ¥ € W,, for the noncolliding g#exchangeable ran-
dom walks T, (Definition 2.5). View the trajectory #(¢) of the process T,; as a random point
configuration {y;(t): j =1,...,m, t € Z>o} C Z%,,. The next statement is.our fitst main result.

Theorem 2.10. Thus defined random point configuration in ZQZO forms a determinantal point
process, that is, for any £ > 1 and any pairwise distinct points (u;, i€ ZQ>07 we have

Prob (the random configuration {y;(¢): 1 <j <m, t > 0} contains all (#;,%;), i =1,...,¢)

l
= det[ Kans (i, ti; gy t])] ;

i,j=1"
(2.13)
where the correlation kernel Kyaxs has double contour integral form:
(t1 to)(y1+t1) (y1—y2+t1—ta+1.
q 39 )ta—t1—1
Kwalks(ylatIS 927t2) =Ly—lyi—y, — Lio>ty 1y2+t2>y1+t1 ( ) —
( )tz—tl 1
_ g #dzdw 272l R (qu g, s Q)ta—1 ( H 1—q"/z
(27i)? w—2z (W @)y LG D1 (2 1, Qoo 51— g% Jw
(2.14)

Here y1,y2 € Z, t1 € Z>0, t2 € Z~o, thew,_contour is an arbitrarily small circle around 0, and
the z contour goes around gv2tt2, gv2tietl gvalet2 0 the w contour, and encircles no other
z poles of the integrand.

We prove Theorem 2.10 in Section 4sbelow after relating (in Section 3) the process T,, of
noncolliding g-exchangeable randem walks to a g-weighted distribution on lozenge tilings of a
sawtooth polygons. The detérminantal kernel for the latter is known from [Pet14].

2.6 Asymptotic results

Recall the definition of.a determinantal kernel which should appear in the bulk of our noncolliding
g-exchangeable random walks as the number of walks and the time go to infinity:

Definition 2.11. Letw.€ C\ {0,1}, Imw > 0, be a parameter called the complex slope. The
incomplete beta kernel 1s defined as

1 W
Bu(At, Ap) := %/_ (1 —w)u=2P 1y, At,Ap € 7, (2.15)

wheresthe imtegration arc from @ to w crosses (0,1) for At > 0 and (—o0,0) for At < 0.

11
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The kernel (2.15) was introduced in [OR03] to describe local asymptotics of a certain ensemble
of g-distributed random lozenge tilings of the whole plane (equivalent to random plane partitions).
Moreover, the incomplete beta kernel is the universal bulk scaling limit of uniformly random
lozenge tilings of bounded shapes [Agg19]. By [She05], [KOS06], for every complex slope w, there
is a unique ergodic translation invariant Gibbs measure on lozenge tilings of the whole planes and
its determinantal correlation kernel is B,.

Let us now describe the asymptotic regime of our random walks. Letun — 400, and’set
g = e /™ for fixed v > 0. Scale the time and the space variables in the random walk (as in
Figure 2, left) proportionally to m: ¢t = |tm|, y = |pm|, where 7,p &R are fixed. Let the
initial condition & € W,,, form a fixed number L > 1 of densely packed clusters:

x; =1+ |mCy] for map <i<magf, (2.16)

wherei=1,...,m, k=1,...,L,and 0 < C1 < Cy < ... < Crand0 =< a2 < ... <apy; =1
are the fixed parameters of the clusters. See the beginning of Sectiomn5¢1 for more detail.

In the (7, p) plane, let 9D be the curve with the followingational parametrization in the
exponential coordinates (e77,e7?):

y7(w) (wF(w))/ —e’ yo(w) e'YF’(w) R
° wF'(w) — F(w) + e"F2(w)’ ° eNwF(w)) —1’ we
where

w
Flw) = w—1 H werais1+Ci) _ 1"

This curve bounds a domain denoted by Dsuch that D N ([0, 7] x R>0) is bounded for any 7 > 0.
We call 0D the frozen boundary curve, and D the liquid region. See Figure 3 for examples.
For any (7,p) € D, let w = w(T, p) be thetunique root of the algebraic equation

wF(e‘W’ 1w ) — e(T+1)
1—e"w

in the upper half complex plane.,, The existence and uniqueness of the complex root of this

equation (equivalent to (5.9)) follow from Section 5.2 and the change of variables (5.19). With

all this notation in place, we/can now formulate the main asymptotic result of the paper:

Theorem 2.12. For angy(7,p) € D, in the limit regime described above, we have

lim (—1)2TEPRE s (Lom] + Ap, [7m] + At; [pm], |[7m]) = 1ai=ap=0 — Bu(At, Ap)

m——+00
for any fired At5:Ap € Z:

Let us maké two remarks about Theorem 2.12. First, the factor (—1)2teY("+P)A in front of
Kyalks s arso-called “gauge transformation” of the correlation kernel which does not change the
determinants in, (2.13), and thus preserves the determinantal process. Therefore, Theorem 2.12
states that the'point process of the random walks converges locally (at the lattice level, in a
neighborhood of the global position (7, p)) to the complement of the point process coming from
the unique'ergodic translation invariant Gibbs measure on lozenge tilings of the whole plane with

12
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CONOYUT A~ WN =
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l/

N
| -

9 . e
10
11 7
12 4
13
14 J
15 —
16
17 Figure 3: Examples of the liquid region and the frozen boundary in the_'(T, p) plane, with v =
18 1/3,1, and 3, and the same initial conditions @ = (0,0.1,0.2,0:6,1),"C = (0.05,0.45,0.8,1).
19 The bounding polygonal region indicates where the walks trajectories may lie, with the vertical
20 straight pieces being the initial densely packed clusters of particles.zZ. Outside the liquid region,
21 there are either no walks, or the walks are densely packéd and move deterministically straight,
;g horizontally or diagonally.
24
25 parameter w. The complement arises by the Kerov’s,complementation principle (see, for example,
;g [BOOO00, Appendix A.3]) because our correlation kerneliisd —B,,, where 1 is the identity operator.
28 Second, let us discuss the densely packed, clusters assumption (2.16). On the one hand, it
29 restricts the generality of the initial conditionsy On the other hand, it leads to elegant formulas
30 for the global frozen boundary, and/simplifiestthe technical part of the analysis. The bulk limit
31 asymptotics of Theorem 2.12 should follow, for general initial data Z by a more delicate steepest
32 descent analysis of our kernel, similarly to what is done in [GP19] for the ¢ = 1 noncolliding
gi random walks with general injtial data. We do not pursue this analysis here. See also [DM15],
35 [DM20] for limit shape and fluctuation results on uniformly random lozenge tilings with more
36 general boundary conditions.
37 Finally, we make a conjecture about the final absorbing time of the noncolliding ¢-exchangeable
gg random walks:
40 Remark 2.13 (Asymptotics of the absorption time of T,,). Note that the liquid region is un-
:; bounded. More precisely, the frozen boundary has an asymptote approaching p = 1 as 7 — 4o00.
43 This implies that the absorption time of the Markov chain Y,,, that is, the random time
44 _
45 tabs(m) =min{t € Z>g: y1(t) = m — 1},
:g grows faster than m. Based on the result of Mutafchiev [Mut06] on unrestricted random plane
48 partitions,we €onjecture that t,ps(m) ~ mlogm as m — +oc.
49 It should be possible to obtain a more precise behavior with the generating function coeffi-
50 cients technique as in [Mut06] (based on Hayman’s admissible functions [Hay56]). Indeed, this
51 is beeause our ensemble of plane partitions coming from Y,, has an explicit partition function
52 (Proposition 2.9).
53
54
55
56
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58
59
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3 From lozenge tilings to noncolliding ¢g-exchangeable walks

Here we recall the result from [Pet22] which shows how the noncolliding g-exchangeablérandom
walks T, arise as a limit of the g-distributed random lozenge tilings.

3.1 g-distributed lozenge tilings of sawtooth polygons

Let GTy be the set of all partitions of length N, that is, N-tuples of nennegative integers
A=(A1>X2> ... Ay >0). Denote |\ = A1 +...+ An. We say that u € GT y_2y interlaces with
A€ GTy, denoted by u < A, if Ay > 1 > Ao > ... > Ay_1 > uny—1 > Ax. For a sequence

A= (2 <AV <A@ <o o AW=D A AW A0 GT (3.1)

define its volume by
N-1
volume(A) = [Al™)],
m=1

Fix A € GTy, and consider the probability measure orl sequences (3.1) with fixed top row
AW) = X, and probability weight proportional to ¢~ volumetd) Denote this probability measure
by ‘J'](\?‘). We may express the partition function of ‘J'x‘) as followsi(see, e.g., [Pet14, Section 3] for

more detail):

A _ _ A _

Z[T](V)] = Z q volume(A) __ S/\(ql N7q2 N’ g 1’ 1)7 (3'2)
A: AN =X
where s is the Schur symmetric polynomial sy (213 ., z2x) = det [z;\j+N_j]£Yj:1 [T (zi—z) L.
1<i<j<N
The right-hand side of (3.2) may also_be simplified to the product form:
XNi—i _ o Ai—]
(M7 _ _|X@-N) q q

1<i<j<N

The probability measure ‘J'](é‘) has a bijective interpretation as a distribution on lozenge tilings
of a sawtooth polygon of depth /N and fixed top boundary determined by A. Define

pi=AY i 1<i<n<N. (3.3)

(2

Under ‘J'J(\/,\), the quantities pj’ form a random integer array P = {pI'}i<i<n<n satisfying the

interlacing constraints:

Pl <pi Tt <pf
(for all i’s and n’sdfor which these inequalities can be written out). Viewing each p! as the
coordinate of theeenter of a vertical lozenge Q, we may complete the tiling in a unique way by
the other two types ofilozenges. This leads to a corresponding tiling of a sawtooth polygon as in
Figure 4.

Remark 3.1./Notethat the measure ‘J’](\’,\) on lozenge tilings of a sawtooth polygon with weights
is different from the measure Mg) described in Section 2.4 above. In
particular, the tilings under Mg) live in an infinite domain, and are weighted proportionally to
gtvolume “Tnithe next Section 3.2 we explain how the measures ‘J'](\/,\) as N — +oo and special
)

choice of X lead to Mgn

proportiénal to, ¢~ velume

14
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Figure 4: An example of a lozenge tiling of a sawtooth polygon ofiheight N = 8 with top row
A= (16,16,16,16,14,11,11,8). The particle array ‘B = {p}' }/consists of the red circle dots placed
at the centers of the vertical lozenges, with coordinates relative tosthe (p,n) coordinate system
(with dotted axes).

3.2 Limit transition to random walks
(A

Now let us connect the probability measure ‘J'N) to the moncolliding ¢-exchangeable random walks
T,, from Definition 2.5. Observe that for A € GTy, we have:

p— )
TO (A0 = ) = L7 A M i3l vy su(L g a2
N ! A g sx(liq,....gN=2,¢N 1)

—volume

Indeed, the first equality follows.from the ¢ probability weights, and the second equality
is due to (3.2) and the homogeneityrof the Schur polynomials.

Fixm>1and Z, 5 € W,,. Liet A €GTy and p € GTy_1 depend on Z, ¥ as follows (here and
below we assume that N is sufficiently large):

{)\1—1,/\2—2,...,)\N—N}:{0,1,2,...,N+m—1}\{x1,...,$m},

(3.4)
{/1’1_17”2_2""3MN—1_(N_l)}:{1727"'aN+m_1}\{y1+17“'aym+1}'

This choice of A and gineansithat we pass from a lozenge tiling to nonintersecting paths avoiding
the lozenges of type Q, see Figure 4. Moreover, we choose the boundary conditions such that the
number m of paths stays fixed as N grows.

The following,resultiis a particular case of [Pet22, Section 3| with ¢ = ¢:

Proposition 3.2. With the above notation, for fired m and &,y € W,,,, we have

M (AWN=1) _ ) = 2 i
Jm Ty (A 1) = T (Z,9),

where Yy, is given by (2.6).

15
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Proposition 3.2 states that the limiting distribution of the nonintersecting paths in Figure 4
is the same as the distribution of the trajectory of the noncolliding g-exchangeable random walks
Y. In Figure 4, the noncolliding paths live in the coordinate system (y,¢) (with daghed axes),
and converge Y,, in an arbitrary finite neighborhood of the point y = ¢ = 0. In Seg¢tion 4 below
we use this limiting relation to write down the correlation kernel for the random walks X, .

4 Limit transition in the kernel

4.1 Correlation kernel for ¢-distributed lozenge tilings of sawtooth polygons

We begin by recalling Theorem 4.1 from [Pet14] about the correlation kernel of'the measure ‘J'J(\?‘)

on lozenge tilings of the sawtooth polygon with top row A described/in Section 3.1 above. By the

results of [Ken97] (see also [Borll, Section 7]), this measure is a detérminantal point process in

the sense that for any ¢ > 1 and any pairwise distinct (p1,n1), 4 5.(pe, ne)’€ Z? we have

l

ij=1’
(4.1)

The kernel K),, is computed in [Pet14, Theorem 4.1] and is given.by the following double contour

integral formula:

Prob (the random array B contains all (p1,n1), ..., (pe, 7)) =det [ Ko, (pi, ni; pj, n5)]

p1—p2+1.
Kloz(pl’ ni; P2 77,2) = _1n2<n1 ]_p2<plq"2(l)1—p2) (q ’q)”l—nz—l
- (Q; Q)mf@fl
+ (qN_l; q_l)anl # dz dw an(pl_pQ)an
(27i)? " N o)
_ N o
xa¢1(q ¢ N T g el ET> " q)N 0y = g

(G DN-ns-1 2% z—ghTTP
Here the points (p1,7n1), (p2,n2) €.Z? are such that 1 < n;y < N, 1 < ny < N — 1. The z
and w integration contours are counterclockwise and do not intersect. The 2z contour encircles
gr2—PL gp2—pitl o gMmlep gand not P2 Pl gP2—P1=2 | The w contour is sufficiently large
and goes around 0 and the z.contouri Finally, 2¢1 in (4.2) is the (in this case, terminating) Gauss

g-hypergeometric function givén by

m—1, 1. _1 ni—1. —1 —j

-1 ni—10mN-1, —1. . —1y _ Z (q 3 q )j(q 34 )j w
2¢1(q , q »q ‘q ,w )7 _ _ _ _ .
= (N Liq7h); (a7 Y5q7Y);

(4.3)

In the rest of this section we consider the N — +oo limit of the kernel Kj,, in the regime
leading to theaoncolliding ¢g-exchangeable random walks (as discussed in Section 3.2), and prove
Theorem 2.10.

4.2 Rewriting the kernel

Fix t3.> Opte> 0, and let n; = N —t1,n9 = N —t9 (throughout the rest of the section we assume
that NV is sufficiently large). Change the integration variables in (4.2) as Z = z¢P*, W = wqP!, and

16
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then rename back to z,w. We have

(P72 q) g i

(q; Q)t2*t1*1

qN(pQ_pl)Kloz(pl, N —ty;pa, N —t3) = —1t2>t11p2§p1q(_t2)(”1_”2)

(qN—l; q_l)m # dzdw q(—tz)(pl—m)ZN—t2q—p1(N—t2)

+ :
(27i)? w w—z (4-4)
1—ps. N o A
-1 N—t;—-1. N-1| -1 -1 (zq F Qa1 w—q
Xod1(g g T g T g sw g —"
(@5 @)to—1 E =g
Here the z contour encircles only ¢P2, gP2*t1, ¢P2*2 ... and no other z poles of the integrand, and

the w contour goes around 0 and the z contour.

The factor ¢V #2771 ig a so-called “gauge transformation” of the corfélation kernel which does
not change the determinants in (4.1) and thus preserves the determinantal process. In general,
by a gauge transformation we mean replacing a kernel K (p1,t1;p2,%3). by %K(m, t1; 2, ta),
where f is nowhere vanishing.

In the next step, we use the fact that the top row A depends on N as in (3.4). Here ¥ € W,,
is the fixed initial configuration of the noncolliding ¢g-exchangeable random walks Y,,. Relation
(3.4) allows to express the last product over r in the integrand.in (4.4) in terms of the x;’s. After
necessary simplifications, we obtain

(" P2l q) iy 1

(Q; q)tz—t1—1

g PP Ko, (pr, N — thipa, N — t2) = —LiySigly,<prq 2012

(qN—l; q_l)t1 # dzdw Z—tquztz _Npy

N -1 N—ty-1. N—1| —1., —
)y g oo (0 T TR T T ()

N+m—1 m

" (2" P25 q) 1,1 1T 1—¢jw 11 L—q* )z
(@ @e—1 gL /2 S =gt fw

The integration contours in (4.5) are thesame as in (4.4).

4.3 Exchanging the contours

We now move the w gontouryinside the z contour in (4.5). The integral stays the same, but we
need to add a contour imtegral of minus the residue Res,—,, over the w contour around 0. The
residue is equal to
N—1. ~1
(q 14 )tl 1 —ta pato
— e W “q
271 w

x ¢ PP wlNogi (g gV T N T g w g

— Res,—y =

) (wq P25 q)1,—1 (4.6)

((I; Q)tzﬂ

Lemma 4.1. The integral in w of (4.6) over a small contour around zero is equal to

(=t2)(p1—p2) (qpl_pﬁlé Qig—t1-1 .
(€5 Q)ta—t,—1

1t2>t1 q

17
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Proof. Notice that 2¢1(¢~ %, ¢V 174 ¢VN =1 | ¢~ w™tgP) and (wq'™P2;q)i,—1 are Laurént poly-
nomials in w. Therefore, the integral of (4.6) over a small contour around zero is simplyithe
operation of picking the coefficient by 1/w.

By the g-binomial theorem, we can write
(wg' ;5 q)t,—1 = (WP T )1 (—wg )
(57) 3 L1yt (60 %
— (_wa—pz)ta—lq 9 (—1)7q p2—ta+1 gl ) 4/128) wr.

Z (0 (a D trmaj

Bo1g(27)

(4.7)

j=0
Using formula (4.3) for 2¢1 and (4.7), the product of the two Laurent polynomials has the form

N—t1—1 N—t1—1 to—1 N+to—t1—2

(q; Q)j(QS Q)tz—l—j §=0

From the prefactor in (4.6) we see that we need to compute the sum.dy_; which has the form

N-1
dy_q = pr(N=1=m)  (3) (_ 1y 2tz Dm (@ =m (@ Deas -
N-1= D ¢ q2/(=1)"q @ a ONa1-m (6D m (@) —1-m

N—tl—l; q—l)

m=0

Observe that m-th term in the sum vanishes for m > fs or m <.t1, so the limits of the summation
are 1;,>¢, Zﬁi;il. Rearranging the terms and relabeling'k = m — t1, we have
ta—t
(q 2 9 q)tl D1 (N—l—tl)-i-(t21)+(p2—t2+1)t1
(CRN)I
to—t1—1 . ( . )
% Z q(tl—p1+p2—t2+1)kq(2) (_1 k ' q; q to—t1—1 )
= (6 DR Dty —1-k

dy_1 = Ly, (1)1

Applying the ¢-binomial theorem, we can simplify this sum to:

(4" "5 q)s N-1— : —to+1 - -
dy-1 = 1t2>t1(—1)t1m P1( t)+(5)+p2—t2+1)ta (qh—mtp—tetl gy,
Putting together all factors from the.above computation completes the proof. O

By Lemma 4.1, the kernel'takes the form

(" 7P )yt 1
(Q;q)tz—tl—l
N-1.,—1 —to pat
q T a e dzdw 27 "2¢P?"? _ i 1 -1 —

4 )1# NerpN o (gt gV N T g w T g

qN(pz_pl)Kloz(pla N'= tl;p27 N — t2) - 1t2>t1 1p2>p1q(_t2)(p1_p2)

X (qu_pz; q)tg—l Nﬁl 1 — q‘j/’ll] ﬁ 1 — qx’r/z

The integration\contours in (4.8) have changed, namely, the w contour is an arbitrarily small circle
around Opand the z contour goes around ¢P?, g?>+!, gP2+2, ..., 0, the w contour, and encircles no
otheér z poles of the integrand. In (4.8), the first summand is a combination of the residue from
Lemma 4.1 and the first summand in the previous expression (4.5).

18
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4.4 Limit of the ¢g-hypergeometric function

After exchanging the z and w contours, |w| can be taken arbitrarily small. This allows.to take
a limit in NV in the part of the integrand in (4.8) containing the g-hypergeometric function 2¢,
(observe that this is essentially the only dependence on N left in the integrand). Denote

Qnw) = (" g VP N ogi (g7 gV T N T g w g

Then
N—1. -1y —N NNtlthllql)‘
— — P a
Qn(w) = ("¢ g Mw Z 1),jw]q”’l
J
N—t1—1 o

(g, Y ST N kg
’ ! (G157 1) Nty —an ’

k=0

where we used (4.3) and in the last line flipped the summationindex as k =N —t; — 1 — j. We
have

Next, in each k-th term in the sum we have (for & fixed):
N—t;—1, —1
(q 138 ) q )N—tl—l—k} (w/qpl)tl+]_+k
(@) N—t—1-k
N—t1—k—2 kdid1 t1—1

1—
_ (w/qpl)tl+1+k H % (w/q") L1+1+k H k+z+1) N — +oo,
i=0

and because |w| is small, the convergence is umiform in k and w. Thus, we have

o0

G @)= (w/g" ) (g ), (4.9)
k=0

uniformly in w for small |w].

Lemma 4.2. The sum in the.right-hand side of (4.9) is equal to

(¢;0)e
(w/g)tt—=
(Wq™PY;q)1 41

Proof. We have

o0 o0

g PayhIR (g — (=PI AL vk (G Dkt
5 @y = (wg )" T g @)y ) (wgTP)
£ : ' kz_o (¢ Dr(g Dy

_ (wq—pl)tl—f—l (q; Q)t1 .
(wg=P Q)¢ 41

where we used the g-binomial theorem, and the series converges because |w| is small. O
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Putting together the formula (4.8) for the kernel K),, and the results of the current Section 4.4,
we arrive at a N — +oo limit of the kernel Kj,,. Denote

e U ) T R #dzdw ZRuwh
(Q7Q)t2 —t1—1 27T1

R ) (2 P25 q)yp—1 ( )oo H 1 =g /z
(wg ™) n+1 (G Q-1 (2 1,q L gty

1 .
Klgzn(plv t1;p2, t2) = 1t2>t1 1p2>P1

(4.10)

where the w contour is an arbitrarily small circle around 0, and the/z contour goes around
qP2, g7t ¢P2t2 .0, the w contour, and encircles no other z poles of the integrand.
The next proposition follows directly from the previous computations.

Proposition 4.3. For any fixed t; > 0, to > 0, p1,p2 € Z, we have
hmooq Nw2=P) Ky, (p1, N — t13pa, N — t2) = Ky, 113 pa, t2).

4.5 Particle-hole involution and time shift

We are now in a position to derive Theorem 2.10 from the limit transition of Proposition 4.3.
Define

Katis (Y1, 113 Y2, t2) = Ly gy Ly —yy — ¢TI TRETRRID ( p) 450 419, 8). (411)
Observe that we performed two transformationsito get Ky aixs from Kllgzn in (4.11):

e First, the point process defined by the noncolliding walks (formed by the solid dots in Figure 4)
is the complement of the process defined.by the particles p}'. Therefore, by the Kerov’s com-
plementation principle (see, for example, [BOOO0, Appendix A.3]), the kernel for the walks is
the identity minus the kernel for the lozenges.

e Second, the shifting of the variables p; = y; + t;, i = 1,2, corresponds to the passage from the
coordinate system (p,n) (wher€ n'=.N — t) to the coordinate system (y,t), see Figure 4.

Finally, the factor in front of Kllc‘)rzn in (4.11) is simply a gauge transformation which does not
change the determinantal process. One can readily verify that the resulting kernel K s (4.11)

is the same as (2.14). This completes the proof of Theorem 2.10.

5 Asymptotic analysis

In this section, we perform the bulk asymptotic analysis of the correlation kernel Kais (2.14)
of the process T, in the regime as ¢ — 1, m — oo, and the initial configuration & forms a finite
number of densely packed elusters. We make the latter assumption for technical convenience, see,
e.g., Duse-Metealfe [DM15], [DM20] for asymptotic results on uniformly random lozenge tilings
with moresgeneraltboundaries. Using the steepest descent method, we prove Theorem 2.12, that
is, obtain the limnit shape of the trajectories of Y,,, as well as the universal local fluctuations of the
paths which are governed by the incomplete beta kernel introduced by Okounkov-Reshetikhin
[OR03]. The latter is a two-dimensional extension of the discrete sine kernel introduced by
Borodin—-Okounkov—Olshanski [BOOO00].
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5.1 Limit regime

The limit regime we consider for the kernel Kyas(p1,t1;p2,t2) (2.14) is as follows:

m—+oo;  q=e M AL ty=|mT], ti=te+At;  pa=|mpl, pi=p2+ Ap.

(5.1)
Here (1,p) € R%Z,, v > 0, and the quantities At = t; — t5, Ap = p; — py €.Z are fixed. THe
regime with fixed differences At, Ap is called bulk limit, and it describes local.correlations around
the global point of observation (7,p) € ]R2>0. Finally, we assume that the/initial configuration
T € W, scales as follows: B

L

= ng (Z/m)Ja I1<i<m g(u) = Z(u + Ci)lue[ai,ai+1)a (5'2)
=1

where L > 1 is fixed (this is the number of clusters of densely packed particles in Z), and
O<Cl<02<...<CL, 0:a1<a2<...<aL+1:1 (5.3)

are the parameters of the clusters, and g(u) is weakly in¢reasing,with derivative 0 or 1.
We apply the standard steepest descent approach outlined in'[Oko02, Section 3]. For this, we
first rewrite the integrand in the double integral in &gy (p15f1; P2, t2) (2.14) as

g P Tyl (¢ ), (z¢' P22 )1 ( )oo H 1—q%/z
(271)?2 w—z (wg P75 q) 41 (¢ Dtn=1 1—q¢%/w
—t1—p1 .
q (@ 9)e, 1
- S, st1,p1) — Sm(z; ta, )
AP (4 s (w— (1 — A ) P U (Sl t1,01) = Snl: 2, 2))}
where
Sm(w;t, p) == — 10gw — = Zlog R

(5.4)

Ll Zlogl—w ¢ ——Zlogl— “lgtn).

Here we can take any branches of the logarithms so that S, is holomorphic in w belonging to the
upper half complex plane. Indeed, any branches taken the same in S,,(w;t1,p1) and Sy, (2; t2, p2)
produce the same signsin the exponent in the integrand.

Using (5.1)-(3.2), let us define the limiting version of the function S,:

S(w;T,p) = wlogw — / log <1 — w67(7+p_“)) du
0

o0 1
+ / log (1 — e ’Yu) du — / IOg (1 o w—le—'yg(u)) du.
0 0

Lemima 5.1. We have Sy, (w; |m7|, [mp]) = S(w; T, p) + O(m™1) as m — +oo, uniformly for w
and. (T, p) belonging to compact subsets of {w: Imw > 0} and RQZO, respectively.

(5.5)
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Proof. This follows from the convergence of the Riemann sums in (5.4) to the corresponding
integrals in (5.5), as the integrands are piecewise C'! functions in « with norms uniformly bounded
in w, 7, p belonging to compact subsets of their respective domains. =

Integrals in (5.5) can be expressed through the dilogarithm function which has theseries and
the integral representations

Lis(¢§) = Z §—2 = —n/oo log (1 — &e™™) du. (5.6)
k=1

The series converges for || < 1, and the integral representation (valid for any n > 0, but we will
mostly use it with = «y) follows a certain branch of the logarithm. Fer example, we may choose
a branch of Lis(€) to have cut at £ € R>;. We have

log(1 — €) o L
— 55 5LQ@ Ne (5.7)

With this notation and using (5.2), we have

Lip() = -

5.8
-y 1L12 + fy_l Z [L12 6_7(ai+oi)) — Lis (w—le—'y(aiﬂ—l—()‘i))} ] ( )

5.2 Critical points and the frozen boundary

Let us count the critical points of S{ws1, p)in the complex upper half-plane. Recall that w is a
critical point if, by definition, S’(w; T, p) =30, where the derivative is taken in w. By looking at
¢S (WiTp) e see that the critical points must satisfy the following algebraic equation:

weY(T+) T e ~ 1 H wer@+Ci) 1 . (5.9)
w—1 1 werlpkFr) — 11 N wer(air1+Ci) 1
1=

Lemma 5.2. For any 7, p > 0, equation (5.9) has at most one non-real root in w in the complex
upper half-plane.

We denote this root in'the upper half-plane by w. = w(T, p).

Proof of Lemma 5.2. Denote by ppum(w) and pge,(w) the polynomials in the denominator and
the numerator, respectively, in the left-hand side of (5.9). Let us first count the real roots of
(5.9) by considering intersections of the graphs of ppum(w) and pgen(w), w € R. Both polynomials
Pnum and Dgey, are of degree L + 2, and have only real roots. Since their top degree coefficients
have the same signgwe may and will assume that ppyum(—00) = pgen(—00) = +00.

The roots of ppym(w) are 0, e~ 77, and w]"™ = e~ (ei+Ci) | < < L. Similarly, pgen(w) has
roots 1,e-7(»+7) and wien = e~ @ir1+C) 1 < < L. By (5.2), the roots interlace as
<wiTl<1, 2<i<L. (5.10)

0< wden < w! den

num
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We first discuss two examples illustrating how we count the roots. Let us start with p >
(ap+1+Cr). Then the two leftmost roots of pge,(w) are 0 and e, and the two leftmost roots, of
Prum(w) are e~ 7P+7) and e=7(@+1+CL)  Moreover, 0 < e P47 < =P < e=7(@L11+CE) Te see
that on each of L + 1 segments between the roots of ppum, the graph of ppu,, intersects with the
graph of pgen. This counting produces at least L + 1 real solutions to (5.9). Since this equation is
equivalent to a polynomial equation of degree at most L + 2, it follows that thereare no complex
solutions to (5.9). See Figure 5 for an illustration.

e—Y(lap+Cp)

e” 7P Do laL A+CL 1)
: : il
Prnum) Pden m /
: : "N

“Y(ar+1+CL) :

0

_'y(‘.p-i—r) e_W(GL-]-CL_l) |
e

e—v(a1+C1)

Figure 5: Graphs of ppu, and pge, for large p.

Let us now decrease p while keeping p + 7 constant. At some point we will have a repeated
root e = ¢~ 71@1+1+CL) which upén furthérdecreasing p breaks the interlacing. Then we can
have L — 1 or L 4 1 roots (counted with multiplicity) at the intersections of the graphs of ppym
and pgen, see Figure 6 for an illustration. When there are L — 1 intersections, (5.9) may have a
single pair of complex conjugate non-real roots. We see that there cannot be more than one such
pair.

Now let us describe what happens for'p < (ar41+Cpr). Recall that e=7(@2+1+C0) < =70 < 1,
so for some 1 < ¢ < L we have wfe" < et P < w;’zf’f, where we set wge” = 1 for convenience. From
(5.10) we also have wfle" <"t < w?fﬁ‘, thus we have two roots of the numerator, namely w;"“"™
and e~7” located between two roots of denominator. Denote the interval between w;*™ and e~7”
by I, so [0, 1] = [0, min(w""", e=7?)] U1 U [max(w*™, e~ 7?), 1]. Note that some of these intervals
might be empty in the presencé of double roots of ppum.

If e=7(e+7) ¢ I Mhemithe interlacing is restored, and we have a structure similar to the first
case as in Figure 5. The graphs of p,um and pge, intersect L 4+ 1 times, which gives at least L +1
real critical points, and, thus no complex roots exist.

On the other hand, if ez +7) ¢ I, the configuration is similar to Figure 6, and we have either
L — 1 or L + Iintersections, leaving the possibility that at most one complex root in the upper
half-planeexists."This completes the proof. O

Definition 5.3. Let D C P be the open set of pairs (7, p), such that S(w;, p) defined by (5.5),
(5.8)"has one non-real critical point w. in the upper half-plane. We call D liquid region, and its
boundary gurve 9D the frozen boundary.
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e_'Y(aL—|—1+CL) / \

Pden

OL"FbL) y :

; —~v(ap+Cp_1)
R =2 NN € ‘

Pnu

e=1(agd+C1)

Figure 6: Graphs of ppym and pgen for p+7 > ap41 +cr > p > ap +.cr,. Possible dashed graphs
lead to nonexistence of complex roots, and solid graphs lead‘te.exactly one complex root in the
upper half-plane.

Let us obtain a parametrization of the frozen boundary:@D." Because the equation (5.9) has
real coefficients, as (7, p) approaches 9D, the corregponding critical point w, becomes close with
its complex conjugate w.. At 9D these twofroots of (5.9) merge, and thus the frozen boundary
is the discriminant curve of the equation (5.9).»We may-thus take w. € R as a parameter of this
curve 7 = T(w.), p = p(we).

Denote

w we@itCi) _ 1
Fw)= w=1 1_11 weY@it1+Ci) _1°

1=

Then the two equations for theidouble roots of (5.9) yield a rational parametrization of 9D in
the exponential coordinates (e, e¥):

677’(’[1)) _ (wF(w))l —e e'yp(w) _ e’yF/(w)
!/

 wF(w) — F () eYEB2(w)’ eV(wF(w)) — 1’

w € R. (5.11)
We used this explicit parametrization to draw the frozen boundaries in Figure 3 from Section 2.6.

5.3 Analysis of S(w;7,p)

In this subsectionswe assume that (7, p) € D, and investigate the behavior of the steepest descent
contours Im S(w; 7, p)= Im S(w,; 7, p) started from the critical point w.. In the next Section 5.4
we use this information terdeform the original integration contours in Kyas (2.14) to the steepest
descent ones.\\This will yield Theorem 2.12.

First,«we comsider the behavior of Im S(wj;7, p) close to the real line, that is, w = v + ie,
v € R, and € > 0 is sufficiently small and fixed. In logw and Liy(w) entering (5.8) we choose the
standard branch of the logarithm which has branch cut along the negative real line. Using the
integral representation in (5.6), we see that Lis(£) has branch cut along [1,400).
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Lemma 5.4. For sufficiently small fized € > 0, the graph of the function v — Im S(v Hi€; T, p),
v € R, has at most four intersections with any horizontal line. If there are four intersections,
then the leftmost of these intersections is in a small left neighborhood of zero, and goes to 0 as
e — 0.

See Figure 7 for an illustration of the graph of this function.

Proof of Lemma 5.4. Observe the following behavior of the functions entering (5.8):
e The graph of
v Im(7 log(v 4 i) = 7 tan ™ (¢ /v) + 771, <g
is in an O(g) neighborhood of the graph of the step function v — @71, with the added
vertical segment from (0, 7) to (0,0).

e The graph of v — Im(Lig(w + is)) is in an O(e) neighborhood ‘6f the graph of the function
X+(v) =mlogv - 1,>1. Indeed, this is because

Im (Lis(v + ie)) = — /000 Arg (1 — (0 +ie)e ¥) du

= 7['/ 11—’1}6’"<0 dU + O(E) (512)
0

= mwlogv - gz + Ofe).

e The graph of v — Im(Liz (1/(v + ie))) isn.an Ofe) neighborhood of the graph of the function
X—(v) = mlogv - Lp<y<1 with the added vertical line from (0,0) to (0,—oc). This fact is
obtained similarly to the expansion (5.12).

7

Y

-0.2 0.0 0.2 0.4 0.6 0.8 1.0

Figure 7: The graph of vt Im S(v + ie; 7, p) for small . For any fixed £ > 0 this function is
continuous. Its maximum/is in the neighborhood of zero and has order O(|logel).

Thus, forismall €/the graph of v — Im S(v + ie; 7, p) belongs to an O(e) neighborhood of the
graph of the following function:

S (01T, p) =T Lloco — v g (0e?) + 4 Ly (veV )

L
_ ,Y—lx_ (’U) + 7—1 Z [X— (,Ue’Y(aH-Ci)) — x— (ve’y(ai+1+c‘i))] )
=1
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We see that for v < 0 and for sufficiently large v, the function Sg is equal to m7. Next, the
function Sy is piecewise linear in logv. Due to the ordering of a; and C; (5.3), one readily sees
that Sg(v; T, p) for v > 0 first weakly decreases in v, then it may weakly increase v, and finally it
weakly decreases in v again until it stabilizes at the value nr.

Moreover, for any fixed € > 0, the pre-limit function v — Im S(v + ie; 7,/ p) is not eonstant.
Thus, we see that the graph of the pre-limit function may intersect any horizontal line at most
four times: at most once in a small left neighborhood of v = 0, and at most three times'for v > 0.
For small ¢, the graph of v — Im S(v + ie; 7, p) becomes more and more vertieal, and thus we see
that the leftmost point of intersection with a horizontal line goes to 0 as«e=— 0. This completes
the proof. O

Let us now look at the behavior of Im S(w; T, p) for large |w].
Lemma 5.5. We have '
lim Im S(Relg; T,p) =TT,
R—+00

uniformly in 6 € [0, 7].

Proof. Clearly, we have Im(log Rel?) = . Moreover, Liy(w ™) 0 for |w| — +o00 because Lis is
continuous at 0. To complete the proof, it remains to show,that

Im(Lig(ReiQ)) ~ (m,— 0)log R, R — +o0,
uniformly in 6 € [0, 7]. We have [NIS23, (25.12.4)]
. . 1 N2
Im(Lig(Rele)) =— Im(Lig(R_le_lo)) ~3 Im (log(—ReIG)) .
The first term goes to zero as R — +00, and for the second term we have
1 i\ ) 2 A 5,10 _ Pty — —
—5 Im (log(—Re )) Z%Re (1og( Re )) Im (1og( Re )) = —logR- (6 — ),

and we are done. O

5.4 Contour deformation and convergence to the incomplete beta kernel

Lemmas 5.4 and 5.5 imply that when (7,p) is in the liquid region D, all four half-contours
emanating from the critical,point w, in the upper half plane end on the real line. Let us denote
these points by

u? =0 <u? <ui <uf. (5.13)

We take the leftmost point to be 0 as the ¢ — 0 limit of the leftmost point of intersection in
Lemma 5.4. Moreover, fromwthe proof of Lemma 5.4 we see that

u? < e <y < e <l (5.14)

Let usidenote two closed, positively oriented contours Im S(w; 7, p) = Im S(w¢; 7, p) by V25 Yo,
whetre both of them pass through w. and w,, the contour v, goes through v?,u%, and v, goes

through u®, u¥.

26

Page 26 of 35



Page 27 of 35

CONOYUT A~ WN =

AUTHOR SUBMITTED MANUSCRIPT - JPhysA-118983.R1

Lemma 5.6. We have Re S(ui; 7, p) > Re S(we; 7, p) and Re S(ulf; 7, p) < Re S(we; T, p)s

These inequalities justify our notation for the points (5.13) and the contours v,s9. The
latter will be the new integration contours in the correlation kernel.

Proof of Lemma 5.6. Clearly, on the contours Im S(w; 7, p) = Im S(w¢; 7, p) (which are the steep-
est descent/ascent ones), the real part of S is monotone. Moreover, the increasing andide-
creasing behavior of Re S alternates throughout the four half-contours originating at the critical
point w, (Which is a saddle point for ReS). Therefore, the result will follownif we show that
+oo =Re S(u;7,p) > Re S(we; 7, p). That is, let us show that Re S(w, 7 p) — +o¢ as |w| — 0.
Using [NISQS, (25.12.4)] similarly to the proof of Lemma 5.5, we can write for small |w|:

7.(.2

Re(Liz(w™)) = ~ Re(Liz(w)) — % - %Re (log(—wah)”

For |w| — 0, the first summand in the right-hand side goes to zéro,whilefor the last one we have

— Re (log(—w™))” = — (log [w])* + 3 (ARt ))?

The argument is bounded, and so we see using (5.8) that.Re S(wjiT, p) behaves for small |w| as

i )2 — (log’wew(“”ci)

-1 -1 L
—Tlog(|w|71)+%(log|w|)2+%z (( )2> + const.
i=1

The term —7 log(|w|™!) is of smaller order than the'squared logarithms, and one readily sees that
the total contribution of the latter is 4-co. This,completes the proof. U

Let us recall the original integration‘eontours in the kernel K,k (2.14) which we reproduce
here for convenience:

q(t1—t2)(p1+t1)(qp1 —p2+ti—ta+1. q)

to—t1—1
Kwalks(p17t1;p2,t2) = 1L1=L2 1p1=p2 = 1L2>L1 1p2+L2>p1+L1 ——
( )tz—tl 1
g #dzdw 272wl (4;0)1, (2q'P27"259)1,1 ( H 1—q¢" )z
(2mi)? w=z (wePq)n 1 (@)1 (2= 1, Qoo ++ 1 —qg% Jw’
(5.15)

The w contour is an arbitrarily small positively oriented circle around 0, and the z contour is
positively oriented, goes.around g1tz gp2ttatl gp2ttat+2 - and the w contour, and encircles no
other z poles of the integrand. The singularities of the integrand are as follows (see Figure 8 for
an illustration):

e In w, there'is an essential singularity at w = 0, and all the simple poles are at
_ 451t S
w=z and we {¢" ]}j:O ﬂ{q”" [ (5.16)

e In z, all.the simple poles are at

z=w and zé€ {¢ }J 0\( ”2+J}t2 1U{ ‘LT}T 1) (5.17)
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Figure 8: Thick curves represent the original w and z contours MWK yaiks (5.15). The possible
w poles (5.16) lie between ¢P! and ¢P* 1. The possible z polegi(5.17) lie outside of the segment
between ¢P2t1 and ¢P>t*2~1. Note that the relative positiens of pyrand po, as well as of p; + t1
and ps + t2, may be arbitrary, and in the figure we display only, one such possibility. The union
of the dashed curves is the new w contour after we drag itsthrough infinity.

Note that z = 0 is not a pole thanks to the presence’of the function (27!;¢)s in the denominator.
Moreover, observe that at infinity, the integrand behaves as O(w~2) as a function of w. This
implies that it has no residue at w = oc.

In the bulk asymptotic regime (5.1)—(5.2);,assume that the position (7, p) is in the liquid
region D (Definition 5.3). We aim to'deform the contours in Kyaiks (5.15) to new contours which
intersect at the non-real critical points wg,w., and coincide with the steepest descent contours
vz, Yw (defined before Lemma 5.6) outside a small neighborhood of the real line. Fix small £ > 0,
and perform the contour deformations in the following order:

(1) Keeping the w contour a small cirele’ around 0 of radius €/2, deform the z contour to co-
incide with the steepest deseent contour -, outside of the e-neighborhood of R. In the
e-neighborhood of R, we'need to make sure that the deformation from the old to the new
z contour does not cross/any iz-poles of the integrand. Namely, in the e-neighborhood of
u? = 0, let the new’z contour pass around 0 following a circle of radius ¢ instead of going
straight to 0 along ¥z Around «7 which is between e~ (740 and e~ (see (5.14)) but may
not be between gP2t!2 and'¢P?, let the new z contour follow straight lines at distance e from
R, and then go around the existing poles at distance at least ¢ from these poles (see Figure 9

for an illustration). Denote the new z contour by ~5.

(2) Drag w threugh\infinityy that is, replace the w integral over a small contour around 0 by
minus thelintegral over all the other w-poles which are listed in (5.16). Thus, we obtain
minu§ the integral over the union of the dashed contours in Figure 8, minus 27i times the
residue of the integrand at w = z (which is still under the single integral in z over ~%).

(3) /Now let us deform the w contour to the steepest descent contour ,, outside the e-neighborhood
of R. In the e-neighborhood of R let us modify the new w contour so that the deformation
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does not pick any residues one the real line, at points w = ¢/ (this is done similarlyto the
contour ~%, see Figure 9 for an illustration). Denote the new w contour by 75,. The deforma-
tion of the w contour to 7;, picks a residue at w = z if z is in the right part of its contour,
from w, to w, in the counterclockwise order.

Accounting for all residues and sign changes throughout the contour deformation, we see that
the kernel Kyas (5.15) takes the form:

t1—t t t1—to+1.
(1 2)(p1+ 1)(qp1 —p2+t1—to+ Q)tg g

Kyalks(p1, 1502, t2) = _1t2>t11p2+t2>p1+t1 @D
Y 2—l1—

qtlpl/ Zhih(q;q)tl(quipgib;Q)t2—1dZ
2mi wﬁwc (@5 Dta—1(2q7P1 715 q)of5 1

;5 dz§£ Qi exp {m (Sm(w; t1,p1) — Sl t)p2))}
27r1

Dis—1 (w—2)(1 — 2g P b— 2q=pe—t2) ~

+ 1t1 =t2 1p1—p2 +

(5.18)

Here the single integral is over the left part of the contour ~Z, fromww,. to W, in the counterclockwise
order, and we used the notation (5.4).

-
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Figure 9: Deformeddmntegration contours to the steepest descent ones, with modifications in the
e-neighborhood of the real\line to avoid picking unnecessary residues. Note that for large m, not
all four modifications,in the e-neighborhood are present.

Lemma 5.7.\With & = m™', in the bulk limit regime (5.1)—(5.2), the double contour integral in
(5.18) goésto zero.

Proof. All the quantities except exp {m (Sp(w;t1,p1) — Sm(2;t2,p2))} in the double contour in-
tegral stay bounded in our limit regime. By Lemma 5.1, the functions .S,, are well-approximated
by S. Since the integration contours are steepest descent for S outside the e-neighborhood of R,
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we see that the contribution from the parts of the contours away from the real line goesto zero.
This is because outside a small neighborhood of w,. and ., the integrand is bounded in abseolute
value by e~ for some ¢ > 0.

To estimate the contribution from the neighborhood of the real line, we need to bound the
derivative of Re S(w; T, p) along the straight and the circular parts of the additional eontours.
All of these non-steepest descent additional contours have length of order ¢ = m7L. Indeeds, for
example, an additional contour may go from ¢! to uY{, and because v} > 777, theilength of
this contour is bounded from above by the distance between ¢P! and e~ 7?7/ This distance is of
order 1/m, see (5.1). Thus, it suffices to bound the derivative of Re S(wiayp) on the additional
contours by o(m!'~%) for some § > 0. Indeed, then the total change of Re S(iw;, p) along the
non-steepest descent additional contours is of order o(m™%), and em(—eHolm—))igill goes to zero
exponentially fast.

To estimate the derivative of the real part of a function f(z) ='u(x,y) + iv(z,y) which is
holomorphic in a neighborhood of a curve z(6) = (x(0),y(0)), werthave by the Cauchy-Riemann
equations:

0

5g Ref(2(0) = 2'(6) Re f'(=(6)) — y'(6) Imif(2(9)).

Let us now turn to the function S(w;,p) (5.8). Different summands in (5.8) have different
singularities, let us consider each of these singularities in erder. First, in a neighborhood of
u? = 0 the modified contour w(f) = ee'? goes in a/fireular way without straight parts. We have
(here and below in the proof, C' denotes a fixed sufficiently large positive constant whose value
may differ from one inequality to the next):

% Re(log w(#)) =0, > Re(LiQ(Aw(H)_l)) <C,

for any A > 0, and all other summands in (5.8) are regular around 0.

The next singularities may appear in the neighborhoods of u¥ or u3 . In these neighborhoods,
the modified contours may contaimistraight lines and circular segments. By changing variables,
it suffices to estimate only the dérivativessof the real parts of Lig(w) and Liz(w™!) in the neigh-
borhood of w = 1 (at all other peints except w = 0 these functions are regular, and we already
considered w = 0 above in themproof):™We have for the circular contours w(f) = 1 + ee':

% Re(Lig(w(Q)))' <Cclog(e™), % Re(Lig(w(Q)l))} < Celog(e™),

For the straight cogtoursww(r) = = + ie we have:

o

g Re(LiQ(w(l‘)))} S CIOg(5_1)7 8$

9 Re (Lig(w(:z)_l)) ‘ < Clog(e™h),

We see that theiderivative of Re S(w; 7, p) is upper bounded (in the absolute value) by C'log(e~!) =
C'logm,fwhich is o(m!'~%) for any § < 1. This completes the proof. O

It remainsto compute the limit of all the other terms in the right-hand side of (5.18) except
the negligible double integral:
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Lemma 5.8. In the bulk limit regime (5.1)—(5.2), the sum of the first three terms it (5.18)
converges to
(—1)3 e TR (14, 1y 1y —py — Bu(tr — b2, p1 — 2)),

where By, is the incomplete beta kernel (Definition 2.11), and

1-— wc(T’ p)e'YP
= wulr, p)erT )

(5.10)

w=w(r,p) =

where w.(T, p) is the critical point of S(w;T,p) (5.8) in the upper half-plawe (see Lemma 5.2).

The factor (—I)Ate*V(T“’)AL is simply a gauge transformation of the kernel which does not
change a determinantal process.

Proof of Lemma 5.8. Recall that the quantities At = t1 — to, Ap = p1 — ps are fixed. The first
three terms in the right-hand side of (5.18) have the form

At(P1+t1)( At+Ap+1.
q ;

q (J)—At—l
(QSQ)—At—1

g / AU Qe+ (20 P27259), 1 "
We—We ((ﬂ .

27i Q=1 (2qTR2F 2= AP=AL ) LA

Iat=np=0 — 1at<0lAt+ap<o
(5.20)

Here the integration arc is the left part of #he contour, from w. to w, in the counterclockwise
order.
We have for At < 0 and At + Ap < O:

At t At+Ap+1.
q (p1+ 1)(q +Ap+1,

Q)_At—l 1\ At—=1 _—v(T+p)At —At —Ap—1
— (=1) e CAf1 )

(¢;9)-at—1

Indeed, this is because 1:‘;2 —for fixed a,b/€ Z>1 as ¢ — 1.

In the integrand, we have

(0 @) taynt

At+1
(Q; Q)L2—1 ’

=(q";¢)at41 — (1 —e77)

using the standard notationfof the g-Pochhammer symbol (a;q)_ = (ag™"; q);17 k € Z>p, with
a negative index. Similarly,

(zq" 77272 @)y, 1
(zq~P2—t2mBr—Rlg)

to+At+1

1—-p2—Ap. o A
_(zi - 7A7tQ)Ap—1 L (1= 2e) AL () AL
(2qTP2= 2= AP Bl g AL Apt1

Let us make a change of variables

1—ze? 1—w 1—¢e™
g - e e
1 et T T o dz ‘ (1 —ermu)? !
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With this change of variables, (5.20) converges to

—At—Ap—1
1at=ap=0 + 1At<01At+AP<0(_1)At6_7(T+p)At< —tAt —pl )
(C1)Btemr (4t y

+ - / (1 —u)>uP~1 du,
w—w

27

where w is given by (5.19), and this point is in the upper half-plane. The integration arc goes
from w to @ and crosses the real line between 0 and 1.

In (5.21), we can remove the overall factor (—1)2e=(TTP)AL a5 it is/a gauge transformation
leading to an equivalent determinantal kernel. Finally, for At < 0, let us write

1

1 w
Py (1 —u)2u?P~Ldu = — Res,—o(1 — u) P~ — —L / (I u) > u P du,
i

Jw—w 21

where the integration arc from @ to w in the right-hand side crosses,the real line to the left of 0.
One readily sees that the minus residue at u = 0 exactly cancels out,with the second summand
in (5.21). For At > 0, the integral in (5.21) is equal to —s& [#(I— u)>'uP~1du, where the
integration arc from @ to w crosses the real line between(0 and,1. This completes the proof. [

The contour deformations in the kernel Kyais (5.15) and Léemmas 5.7 and 5.8 complete the
proof of Theorem 2.12.
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