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ABSTRACT

Single-molecule and related experiments yield time series of an observable as it fluctuates due to
thermal motion. In such data, it can be difficult to distinguish fluctuating signal from fluctuating
noise. We present a method of separating signal from noise using nonlinear-correlation functions.
The method is fully nonparametric: no a priori model for the system is required, no knowledge of
whether the system is continuous or discrete is needed, the number of states is not fixed, and the
system can be Markovian or not. The noise-corrected, nonlinear-correlation functions can be
converted to the system’s Green’s function; the noise-corrected moments yield the system’s
equilibrium-probability distribution. As a demonstration, we analyze synthetic data from a three-
state system. The correlation method is compared to another fully nonparametric approach—time-
binning to remove noise, and histogramming to obtain the distribution. The correlation method
has substantially better resolution in time and state space. We develop formulas for the limits on
data quality needed for signal recovery from time series and test them on data sets of varying size
and signal-to-noise ratio. The formulas show that the signal-to-noise ratio needs to be on the order
of or greater than one-half before convergence scales at a practical rate. With experimental
benchmark data, the positions and populations of the states and their exchange rates are recovered
with an accuracy similar to parametric methods. The methods demonstrated here are essential
components in building a complete analysis of time series using only high-order correlation

functions.



I. INTRODUCTION

Separating experimental data into signal and noise is an old problem. For kinetics, the most
common type of data is the response of an observable as it relaxes after a perturbation. In these
experiments, averaging multiple experimental runs is the obvious way to reduce noise. This
method works because, at each delay, the noise fluctuates, but the signal is constant. An alternative
type of kinetic data is a time series of thermal fluctuations of the same observable in an unperturbed
system. In these experiments, both signal and noise fluctuate. Averaging multiple experimental
runs is not possible; it eliminates the signal as much as it reduces the noise. Most existing methods
for analyzing noisy time series require some degree of prior knowledge of (or assumptions about)
the system. Nonparametric methods avoid these assumptions. Time binning, histogramming and
linear-correlation functions are well-established nonparametric methods, but by themselves, they
are inefficient and incomplete. This paper will demonstrate efficient nonparametric methods for
analyzing time series with additive noise based on nonlinear-correlation functions. The increased
efficiency translates into improved resolution both in state space and in time.

Time series are generated in many different experiments with different detectors and different
types of noise, for example, single ion-channel recordings,' single-emitter measurements,>”’
fluorescence-,*° photon-,'° or x-ray—correlation'' spectroscopies. Many of these experiments are
inherently low signal and high noise. Even when the dynamics are relatively simple,
characterizing them can be difficult. On the other hand, modern electronics can collect large
quantities of data. The problems are to define the limits to compensating for a low signal-to-noise
ratio with a large data set and to find practical methods that approach these limits.

This paper will introduce basic concepts using additive noise, which is the simplest type of
noise to treat and is a reasonable model for many detectors. Single-molecule and fluorescence-
correlation spectroscopies are particularly important experiments that are widely used in biology
and material science. They also include photon noise, which is more complex than additive noise.
At least under certain circumstances, these complexities can be ignored, and single-molecule data
can be treated with the proposed methods. Moreover, the current treatment of additive noise lays
the foundation for a full treatment of photon noise.!?

Many new types of time-series analysis have been introduced in recent years.!3!> They can
provide good time resolution in the presence of high noise, but most require prior information
about the system. Among these methods, fully parametric ones require the most information. A
complete model of the system is specified, except for the values of certain parameters in the model.
The parameters are fit to the data by maximum-likelihood or Bayesian'®>* methods. If the state
space is known to be continuous, the model might be based on diffusion equations.>>** More
often, methods are aimed at discrete-state systems with Markovian dynamics. (Markovian

dynamics imply exponential kinetics between the system’s states and multiexponential observed



decays. In Markovian models, nonexponential, stretched or heterogeneous dynamics are explained
by inferring the existence of multiple states that cannot be resolved by the experimental
observable.) A model based on a master equation can be used, resulting in a hidden-Markov
model.>>>7 Introducing Bayesian-nonparametric ideas allows the number of states to vary, within
the same discrete-state—-Markov framework.*®*! Noise is not removed per se in these methods.
Instead, a specific description of the noise is incorporated into the overall model.

Unfortunately, detailed prior knowledge about the system is often not available. Instead,
multiple models are proposed and fit. This introduces a model-selection problem. In addition, the
models considered are typically restricted to a purely discrete state-space, to a purely continuous
state-space, and/or to Markovian dynamics. The proposed methods seek to circumvent these
restrictions.

A flexible and popular method of nonparametric noise removal is time binning.**** The only
assumption is that the noise fluctuations are rapid compared to the signal. However, time binning
creates a competition between noise reduction and time resolution. Moreover, the trade-off is
inefficient: the time resolution is reduced by the square of the noise reduction. Paradoxically, the
effective time resolution of the experiment can be orders-of-magnitude lower than the instrument’s
time resolution when the noise is high.

Time binning is often combined with histogramming to estimate the equilibrium distribution.
334547 However, the histogram can be broadened by measurement noise and blurred by kinetics
within the time bins. By introducing models of these processes, one can attempt to disentangle
their effects. 8>

Improvement over simple time binning is possible, but again at the cost of introducing
assumptions. Most often, one assumes that the system consists of a small number of discrete states
undergoing sudden transitions. Various methods, from simple thresholding®~* to more
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sophisticated change-point methods, identify these transitions. By their nature, these methods

do not work when the state space is continuous, for example, for molecular reorientation® or
intrinsically disordered proteins.’

Both time binning and change-point methods aim to remove the noise from the time series
itself to estimate an ideal, noise-free trajectory. The ideal trajectory can then be analyzed with a
parametric model or by model-free methods, such as dwell-time histograms or transition-
correlation functions.®*®> However, the ideal trajectory is problematic as a statistical quantity.
The accuracy of state identification at a given time or the time of a specific transition cannot be
increased arbitrarily by increasing the size of the data set.

Correlation methods avoid many of the issues introduced by the above approaches. Consider

the linear-correlation function,



M, [D)(z) = (D@)D(0)), (1)

which is a functional of the time-series data D(¢). It is nonparametric: no model of the system is
used, no restrictive assumptions are needed, and no model-selection problem is introduced. It can
be used with any type of state space, either continuous or discrete, and with any type of dynamics,
either Markovian or not. No ideal trajectory is involved. As a result, its accuracy can be increased
arbitrarily by collecting more data, either through longer time series or by measuring multiple time
series. The time resolution is equivalent to the instrument’s time resolution, even when the noise
level is high. Unfortunately, much of the important information about the system is not captured
by this single function.

Beyond the linear-correlation function, there is a large set of high-order correlation functions
that do contain complete information about the data. One can take a nonlinear function of the time
series before the calculation, creating a nonlinear-correlation function, and/or one can use more
than two time points, creating a multidimensional-correlation function (a correlation function with
multiple time delays). Using powers as a basis set for all nonlinear functions leads us to the

moment-correlation functions,
My [Dlzy,....70) = <D(TN +..+7)F ...D(rl)lD(O)m> : (2)

Most work has focused on the linear-correlation function M;(t),%*"!

which is just the lowest,
nontrivial element of this set. (Although, see Refs. 72,73 for early work with high-order functions).
One objection to the linear-correlation function is that it loses information on heterogeneity in the
sample. However, it has been recognized that this information is in the multidimensional members
of the set. We have shown that M| ;,(z,, ;) or M1,;(1,, 71) contain information on the heterogeneity
of rate constants and that M, ,(t3, 75, 7;) measures the time evolution of those rate constants.”*”
Marcus, van Hippel and coworkers have used M;;(tp, 71) to evaluate discrete-state models
containing an unobserved coordinate.’*8! These multidimensional-correlation methods should be

compared to other time-series methods that use multiple coordinates, such as wavelets®®$%83
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or
polyspectra.
Here, we postpone issues of heterogeneity and focus on one-dimensional (1D), nonlinear-

correlation functions,

Mkl[D](r):<D(r)kD(O)l>, n=k+l. 3)

(These time-domain functions can be equivalently represented by nonlinear spectral densities.®)
In a previous paper, we showed that a set of these functions can be converted to the Green’s
function of the system,®” which has complete information about the dynamics along the observed

coordinate. However, that procedure requires a noise-free time series and a known equilibrium-



probability distribution. It has been successful with computer simulations,’”®* but it cannot be
applied to unmodified experimental data. This paper presents a method for analyzing noisy time-
series analysis that solves these problems while retaining the advantages of a correlation approach.

The major goals of this paper are threefold. First, we seek a practical method to remove noise
from nonlinear-correlation functions while only assuming that the noise-correlation time is faster
than the signal-correlation time (Sec. III.A). The noise-removal process is shown to be effective
and accurate using a set of synthetic data (Sec. II).

More attention is given to the second goal (Sec. II1.B)—finding the equilibrium-probability
distribution—which is a less well-studied problem. A typical nonparametric approach is making
a histogram of the time series after time binning. In the correlation approach, the nonlinear
correlation functions are first reduced to noise-corrected moments of the distribution. The
distribution is recovered from these moments. This latter step is known to be unstable and error-
sensitive.*1% We demonstrate a numerically stable route for our version of the problem and show
that the noise-corrected moments can be sufficiently accurate for this route to work. The
demonstration is made on synthetic data and is compared to time-binned histograms. There are
substantial improvements in the resolution both in time and in state space.

With the combination of noise-corrected correlation functions and an accurate equilibrium
distribution, the system’s Green’s function can be found.®” From these results, the dynamical
equation governing the system is reconstructed. Although the details of this step have been
covered elsewhere, a brief demonstration is given in Sec. III.C for completeness.

The third major goal of the paper is to establish the limitation on data quality needed for this
reconstruction, in particular, the minimum series length, signal-to-noise ratio, and ensemble size
required. This goal is achieved in part by looking at smaller synthetic-data sets, in part with a
general theory, and in part by treating a set of experimental, benchmark data (Sec. IV). Equations
that estimate the amount of data needed and the time resolution versus the signal-to-noise ratio and
the complexity of the equilibrium distribution are derived (Sec. IV.B). These formulas can guide
experimental design.

In addition to these practical issues, we address two fundamental questions: Can collecting
more data always compensate for a high noise level and can the time resolution of the experiment
approach the time resolution of the instrument? For the first question, we find that an arbitrarily
small signal-to-noise ratio can always be compensated by an unlimited amount of data, as required
by statistical consistency. However, below a signal-to-noise ratio of one-half, the required amount
increases at an impractical rate. For the second question, the time resolution of the results can
approach the time resolution of the instrument, but only if the signal-to-noise ratio is above one-
half.



An overarching goal is to build a comprehensive, nonparametric time-series analysis based on
correlation methods. Here, two important pieces of that program—noise removal and extracting
the probability distribution—are shown to be viable. However, this demonstration does not
exhaust the needs of real experiments. Photon-counting noise, multiple observables, and slow
noise (e.g., baseline drift)!°! are important examples of topics that still need to be addressed.

However, this paper lays the foundations needed to treat these problems in the future.

Il. DATA WITH ADDITIVE NOISE

A. Additive noise in equilibrium-fluctuation measurements

A dynamic system has an observable property X(¢) that varies with time . We assume that
the system has reached an equilibrium or stable steady state at the start of the measurement. The
system’s static properties are described by its equilibrium distribution Pey(X). Its dynamics are
described by a Green’s function G(X;|Xy; 7), the conditional probability of observing X; at time
¢t + 1, if it has intensity X, at time ¢. If the system is small, thermal motion will cause X(¢) to
fluctuate in time, even though the system remains at equilibrium during the measurement. Such
noise-free measurements of the system property itself are found in computer experiments.?%’%%8
Without noise, the equilibrium distribution is simply the histogram of X(¢), and the Green’s
function can be extracted from the full set of moment-correlation functions of the time series
M;[X]() [Eq. (3)].7%7%

In a physical experiment, an ideal detector would yield a noise-free signal S(7) that is linearly

related to the system property,
S{t)=aX(t)+B. 4)

The constant a represents the overall detection efficiency and yields the signal as an intensity.
(Intensities include units of inverse time, for example, a current or counts per second.) The
detector may also create a background signal B, which will not be removed by the proposed
methods. For additive noise, the effects of the detection efficiency and background are relatively
simple, but when we move to nonadditive cases, their effects will be more complex.'> For
simplicity, we take a = 1 throughout this paper.

A real detector generates data D(f;) at time points #; with measurement noise that varies
randomly from point to point with conditional probability P.(D|S). In practice, there is a finite,
noise-correlation time 7, required between measurements to obtain independent values of the
noise. This time defines the measurement time resolution. More precisely, at 7,, the noise
correlation has decayed to a level small compared to the signal correlation. We assume that the
T..

raw data is collected in time steps equal to the measurement time resolution: 4 — £; =



Time binning is the primary, existing, nonparametric method for correcting measurement

noise. To create binned data D(z;, N;,), the raw data is averaged over N, time steps,

D(t Nb)——ZD(t) )

blj

reducing the time resolution of the experiment to 7, = N, T,. The magnitude of the noise is expected

to decrease as N, 2

. However, the magnitudes of intensities, such as S(¢) or D(¢), do not change
size as a result of binning.
The simplest type of noise is additive. It is often caused by electronic amplifiers. Additive

noise is defined by

D(1)=S8(t)+¢(), (6)
where S(7) is noise free, and &(¢) is a stochastic process with a noise distribution P.(¢). The noise
distribution has a zero mean, E(¢) = 0, so a simple average of D(¢) is unbiased. [An expectation

value is indicated by E£(...).] The absolute size of the noise is given by o, the standard deviation

of P,(¢), and its relative size is expressed by the signal-to-noise ratio,

SNR :@. (7)

O

The key distinction between signal and noise lies in their correlation properties. This is true
for noise removal by either time binning or correlation methods. The noise-correlation time is
short,

E(g(t+Tg)k8(t)1):E(gk)E(gl), (8)
whereas the signal-correlation time is long,

(S(nT,)S(0)) = <52> )

for n not too large. Because the noise distribution is independent of the signal size S, the noise is

uncorrelated with the signal,
<E(g(r)kS(O)l)> _ E(gk)<Sl> (10)

for all 7, including 7 = 0.
As a result of Eq. (10), the distribution of the measured data Pp(D) is a convolution of the
signal distribution P(S) and the noise distribution,

P, (D) :.EZOPS(S)PS(D—S) ds . (11)



Noise-removal is essentially a blind deconvolution problem requiring that Pp(D) be separated into
Py(D) and P,(¢) without knowing either of them.

The lack of correlation between signal and noise [Egs. (10) and (11)] no longer holds for
photon noise, and the lack of bias no longer holds for photon counting.'> However, the separation
of correlation times [Egs. (8) and (9)] persists in these cases. Section IV.D will show that the
methods developed here can continue to work in these cases, despite the lack of full, formal support
at this time.

B. Generating synthetic data

Synthetic data were generated from the three-state system shown in Fig. 1. The system
properties X; for the states i form a vector X = {0, 0.5, 1.0}. The equilibrium populations P, ; are
in the ratio of 5:3:4, forming a vector Poy = {5/12, 1/4, 1/3}. All of the transitions are Markovian
with rates from state i to j of k;; (supplementary material, Sec. SI). We used a background of B =
0.125 to avoid having a state with the special value of zero signal.

Although this model has a discrete state space, the proposed method is equally applicable to
continuous state spaces. In fact, the recovered distribution will always be broadened into a quasi-
continuous function because the resolution of the recovery will not be perfect. The state properties
X; convert between the discrete-state probabilities P.y; and the continuous-state probability
density, Pey(X) = ¥ Peqi (X — X;). Cumulative-distribution functions, for example

X
Fy(X)=[ Py(XNdx" (12)

make it easier to compare peak areas between continuous and discrete descriptions. Figure 1 shows

an example.
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FIG. 1. The model used to generate the synthetic data. The equilibrium probabilities of
the states versus the value of the system property are shown as black bars (left scale)
along with their state-to-state rates and equilibration times (blue arrows). The
cumulative-distribution function is shown as a dashed, red curve (right scale).



The dynamics are conveniently characterized by the fast-equilibration time constant, 7=
(kya + kny) ', between states 1 and 2, and the slow-equilibration time constant, Ty, = (ky3 + k35) ",
between states 2 and 3. Because 7, is the slowest relaxation in the model, it has been identified
with the ergodic time, the time needed to fully explore the system’s configurations. To make the
results more concrete, we will quote times for a time step of 7, = 1 pus. However, all results in this
paper are independent of the absolute timescale, and times can be uniformly rescaled to other
values.

The fast-equilibration time is set to 7y= 1007, = 100 ps. In the absence of noise, the time
resolution is more than adequate to measure this time, but at high noise levels, the equilibration
will be obscured by time binning. The slow-equilibration time is set to 7, = 10*T; = = 10 ms, which
can be resolved under all reasonable levels of noise. However, its measurement can be limited by

the finite length of the time series 77.'%'%

Initially, we wish to focus on the problem of
measurement noise, so we first look at a long series of 7; = 10*7, or = 100 s. (Shorter series are
considered in Sec. IV.C.) Solving the kinetic equations with these parameters (supplementary
material, Sec. SI) gave the noise-free time series S(¢).

The form of the noise distribution is not important in our method. For simplicity, we used

1 £’
expl —— |- (13)
2ro, 20

&

Gaussian noise,

P.(e)=

The initial calculations were done with o, = 1 or SNR =0.583. (The effects of changing the signal-
to-noise ratio will be examined in Sec. IV.A.) Equation (6) was then used to generate the data
D(?).

The results can be seen as the black points in Fig. 2(a). The noise-free signal S(¢) is shown as
red points for comparison. A transition from state 2 to state 3 is marked by a blue vertical line. A
histogram of the unbinned data Pp(D) is shown in Fig. 3 (N, = 1). The states and transitions are
difficult to identify without some type of noise correction.

Examples of noise correction by time binning are shown in Figs. 2(b)-2(d). Corresponding
histograms of the binned time series as a function of the extent of binning Pp(D, N,) are shown in
Fig. 3. The goals are for the binned data (black points) to approximate the noise-free time series
(red points) in Fig. 2 and for the histogram (Fig. 3) to approximate the true distribution (Fig. 1).

Achieving these goals is frustrated because binning puts time resolution and noise removal in
conflict. Too little binning does not remove enough noise: transitions are difficult to identify, and
the peaks in the histogram are poorly resolved. Too much binning reduces the time resolution: the

fast-exchanging states blur, and their transition rates cannot be measured. Many analysts would
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select NV, = 100 (Fig. 3, blue, filled curve) as the best compromise, but the choice is subjective. In

this data set, no genuinely good choice is possible, despite the large amount of data available.
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FIG. 2. Effect of time binning on the time series. Segments of the noise-free signal (red
squares) and the noisy data (black circles) with different amounts of binning: (a) N, =1
(no binning); (b) N, = 100; (c) N, = 10%; (d) N, = 10% Only points from non-overlapping
bins are plotted. The time scale is changed in each subpanel to show the same number
of time bins. A fixed time, which is centered on a transition from state 2 to state 3, is
marked by a vertical, blue line. Note the different vertical scale in (a).
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FIG. 3. Effect of time binning on the histogram. Histograms of the time-binned data
versus the extent of binning. Increasing the binning reduces the broadening due to
measurement noise, but increases the blurring due to poor time resolution. The filled,
blue curve at N, = 100 is taken as the best compromise.
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This data set has problems with time resolution for the fast dynamics and with adequate
sampling of the slow dynamics. The proposed correlation methods will ultimately address both

problems.

lll. RECOVERING DYNAMICS FROM NOISY DATA

A. Recovering nonlinear-correlation functions

Equation (3) defined the moment-correlation functions as functionals of a time series. The
current goal is to relate the moment-correlation functions of data M;,[D](z) to those of the system
property M;,[X](r). Conventional analysis focuses on the linear-correlation function M;[D](7),
where the effects of noise and background are simple. Using Egs. (4), (6), (8), and (10) in Eq. (3)

gives
M,,[D](z) = 25(z) +(S(2)S(0))
=02 8(0) (X ()X (0))+2B(X )+ B”. (14)

In addition to the property-correlation function, M ;[X](r) = (X(7)X(0)), there is a delta-function
(first) term due to noise and a constant (last two terms) due to the background. The constant is
removed by defining A as the operation of subtracting the 7 = oo value: AMy,[D] (t) = My[D] (r) —
My [D] (). The noise is removed by dropping the first delay point:

AM [ X](7) =AM, [S](z) ~ AM | [DI(z +T,). (15)

An example is shown in Fig. 4(a). The solid, black curve is calculated from the noise-free
signal S(7), and the dashed, green curve is calculated from the noisy data D(z). The delta-function
component is off-scale, and its size is shown by the labeled point. Aside from the 7 = 0 point, the
two curves overlap perfectly. (Correlation functions are calculated with quasi-logarithmic time
bins. Although restricted to monotonic decays, this method is faster and less noisy at long times
than linear-time or Fourier-transform methods.'?)

This simple procedure does not extend to higher orders. Starting with (k, /) = (3, 1), there are

cross terms between lower-order functions and both the noise and the background:
AM | [D](z #0) =AM [S)(7)+3( ) AM | [S](7)
= AM 4 [X](2)+ 3(<gz> + B2 )AM1 [X1()
+3BAM , [ X](7) . (16)

Figure 4(b) compares AM3[D](7) from noisy data to AM3[S](7) from noise-free signal. The

difference is large: the noisy result has been divided by a factor of 2.5 to keep it on the same scale
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as the noise-free result. Once the two are on the same scale, one can also see that the decay shape

is distorted. Even when the noise is delta correlated, its effects are not confined to a single delay.
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FIG. 4. Effect of noise and noise-correction on nonlinear-correlation functions. Moment-
correlation functions with the infinite-time value subtracted for (a) (k, /) = (1, 1), (b) (k, /) =
(3, 1), (c) (k, I)=(4,4), and (d) (k, ]) = (6, 7). The solid, black curves are calculated from
the noise-free signal AMy[S](z), the dashed, green curves are from the noisy data
AMy[D](7), and the red crosses are noise-corrected data AM’y[D](r). The noisy results
have been divided by the factors shown. The horizontal scale is linear below 1 to show
the point at 7=0.

A general formula for the noise-induced distortions is

M, [D)(z) =M ,[S](7)

+g(f]<g">Mk,.,z[S]<r)

S

S s o,
i=2 j=2

The first term contains the desired signal-correlation function. The next term was in the previous
example [Eq. (16), Fig. 4(b)]; the third term is its symmetry companion. Above (k, /) = (3, 3), the
last term in Eq. (17) also becomes time dependent, further increasing the effect of noise. Examples
for AMy4(t) and AMg;(7) are shown in Figs. 4(c) and 4(d). As a result of the combinatorial factors
in Eq. (17), the desired first term becomes overwhelmed by noise-related terms as the order
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increases. Thus, correcting noise in nonlinear-correlation functions is more difficult than for linear
ones.

To treat high-order cases, a noise-corrected, moment-correlation function is defined as
}d[D](z')=<D(z'+nTg)k'D(O)l’>; n=k+1, (18)
where the primed powers are defined by
D" =D((k-DT, +1)...D(T, +1)D(t). (19)

In the primed power, the data points are separated by the correlation time for the noise 7,. As a
result, the factors of (.si) in Eq. (17) become <8i'> = E(a)i =0 [Eq. (8)]. Noise effects are eliminated.
On the other hand, if the noise-correlation time is substantially faster than the fastest signal-decay

time, T, < T, the signal-correlation functions will be unaffected. Thus, Eq. (17) becomes
My [D)(z) =M y[S](z). (20)

The accuracy of this result is shown in Fig. 4. The noise-corrected, moment-correlation functions
are shown as red crosses. They agree very well with the results calculated from noise-free signal

(solid, black), despite correcting several orders-of-magnitude of distortion.

B. Recovering the equilibrium distribution

1. Recovering distributions from their moments
In our correlation-based approach, the distribution is recovered from its moments x,. These

are defined as functionals of a probability distribution, for example,
1, [Ppy]= LodD D"P,(D). 1)

They are also the zero-time value of the moment-correlation function calculated from the

corresponding time series,

,un[D]:<D">:MkZ[D](O); n=k+l. 22)

Our problem is to invert Eq. (21), that is, to find the distribution Pey(X) from a sequence of
moments derived from a noisy time series.

Simply applying Eq. (22) to the noisy data is an inadequate starting point. The zero-time
values of the uncorrected correlation functions are strongly affected by noise (Fig. 4). Inverting
those values would give Pp(D), the distribution of the noisy data (Fig. 3, N, = 1). The success of
the noise-corrected correlation functions suggests that we should start with their zero-time values,

which we define as the noise-corrected moments,
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4, [D1=M}[DI(0); n=k+1. (23)
Their values can also be calculated directly, without generating the entire correlation function:

#,[D1=(D(nT,)...D(T,)D(0)) = <D”’> . (24)

If the signal does not decay significantly over n7,, then
M P51~ 1, [ D], (25)

and inverting the noise-corrected moments will give the distribution of the signal.

The problem of finding a function from its moments is a classic problem in pure
mathematics.®*° Data analysis is always restricted to a finite domain, X, < X < X;ax, in which
case, any function can be recovered uniquely and exactly from an infinite number of error-free
moments. Equation (24) removes measurement noise, but unfortunately, the noise-corrected
moments still contain sampling error due to the finite length of the time series. That error increases
with order, so we only a finite moment sequence, p’ = {1} for n =0 to N,, will be accurate enough
to be useful.

To estimate the minimum number of moments needed for the inversion N, i, first consider
discrete-state systems, which always have a highest state at X,,,, with a probability Py .. In the

limit of high orders, n — oo, the behavior of the moments u,’[Py] is dominated by this state, with

Ing, [Py]=InP

X ,max

+nln X, . (26)

As an example, the noise-corrected moments from our data are shown in Fig. 5 (black circles).

Moments in the asymptotic region are redundant.

-0.3

n

log o 1

oSl e

Order of Moment n

FIG. 5. The noise-corrected moments of our simulated, discrete-state data (black curve
and circles). The red line is the asymptote. The moments of a continuous-state Gaussian
(blue curve and squares) are shown for comparison.
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In a continuous-state system, the asymptote will not be a straight line; the Gaussian moments
in Fig. 5 (blue squares) are an example. However, we are only interested in problems where the
probability density decays quickly at high intensities. An asymptotic region will still exist that is
dominated by the behavior of the high-intensity, low-probability tail of the distribution, but the
shape of this tail is usually not important for interpreting the data. Thus, moments in the
asymptotic region of a continuous-state system are also redundant for practical purposes.

The effective start of the asymptotic region n,, can be defined by the point where the
deviation from the asymptote becomes less than the maximum allowable error level in the

measured moment @, .. From our experience [described below, see Eq. (42)],

My = My

——=w =5x107° forn=n, . (27)
Hy,

— e, max y

As illustrated by Fig. 6, this number increases with the complexity of the distribution. Moments
have been calculated for three models that have the same first moments and the same asymptotic
moments, but that have two (red circles), three (green squares) or four (blue triangles) states (X =
{1/2,2}, Peq = 12/3,1/3}; X = {0, 1, 2}, Pog = {1/3, 1/3, 1/3}; and X = {0, 1/2, 3/2, 2}, Peq = {1/3,
1/6, 1/6, 1/3}; respectively). The deviation from the asymptote is plotted on a linear scale in the
main panel of Fig. 6. The more states in the distribution, the slower the approach to the asymptote.
From the inset with a log-linear scale, one can use Eq. (27) to estimate n,,: if there are two states,

Nagy = 4-5; if there are three, n,,, = 7-8,; if there are four, n,g, = 16.

Order of Moment n

FIG. 6. The deviation of the moments from their asymptotic values [Eq. (26)] versus
their order for three models of increasing complexity: 2-state (red circles), 3-state (green
squares), and 4-state (blue triangles). The inset are the same data on a log-linear scale.
The dashed reference line indicates the start of the asymptotic region [Eq. (27)].
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This argument can be reversed when inverting a finite sequence of moments. One must first
decide on the maximum complexity of the distribution to be considered and thus on a maximum
value of n,5,. Adding moments to the sequence beyond this number will not be helpful (although
not necessarily harmful either). Conversely, moments up to this number help to distinguish
between different distributions. Thus, the minimum number of moments needed for a successful
inversion N, i, is taken to be n,g,: N,

U
are considered; N, min = 16, if four states are considered.

.min = 4=5, if two states are considered; N, i, = 7-8, if three

For models and data of practical concern, one needs to consider sequences of 10 or more
moments. In established treatments of inverting moment sequences, only a few (3—5) moments
are considered. In the well-known method of moments, one selects a distribution function from a
standard library, and its parameters are matched to the moments.'” The generalized method of
moments allows more flexibility in the choosing the function.!’” Alternatively, a series expansion
around a base distribution can be matched to the moments.”>%1% These parametric methods are
generally used with continuous distributions. The primary nonparametric approaches have been
based on the maximum-entropy method.”"?341% [t explicitly favors broad, continuous
distributions. Our problem differs from this previous work: we seek a nonparametric method that
works well on long moment sequences and that is agnostic about whether the distribution is

discrete, continuous or a mixture of the two.

2. Finding an initial solution

We first discretize Eq. (21). A vector of Np points is taken along the signal axis, S = {S;} with
S1= Smin» and Sy, = Spax-  The recovered distribution is given by the vector of values at these
points, P,(S) = {P,(S;)}. It should satisfy the equation

W[D1=V(S)-P,, (28)

where the Vandermonde matrix V(S) is defined by!'®

g0 1 1 1
Sl Sl Sz SNP

O T | 29)
SN" SIN" S2]vﬂ S]]vvy

and N, is the number of moments used. In our calculations, the points are equally spaced by a
distance oS, although evenly spaced point are not required. We also use Sy, = 0.0125, S0 =
2.0125, and Np = 81 (05 = 0.025). These values were chosen so the points in the calculation do
not accidentally lie at the exact positions of the model states. Calculations with a greater point

density (Np =161, 65 = 0.0125) show no significant changes (supplementary material, Fig. S2).
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Even with an infinite number of moments, inverting V(S) is ill-conditioned: the solution is
extremely sensitive to errors in the moments.'”® With a finite number of moments, the problem is
also underdetermined: the number of moments is much smaller than the number of points in the
solution, Np > N,.. Both problems are addressed by looking for a solution that nearly solves Eq.
(28), but that also satisfies certain “regularizing” conditions.'” As the measure of the distance

from an exact solution, we define a fitting error based the fractional error in the measured moments,

Y[(V-P,) —u D]

Pyl
ALCETPY TS

(30)

The correct solution will have a error of y*, which is equal to the (unknown) error in the input
moments. A simple minimization of y will drive it to a value below this value, a process known
as “fitting the error.”

One set of regularizing constraints has been implicitly imposed when the solution was
confined to be between S, and S,... We assume that our experiment is measuring light
intensities, so we take S,;, near zero with confidence. Visual inspection of Fig. 5 gives S;.x = 1
from the zero slope of the asymptote and logjg Pgmax = —0.47 from its intercept. We take Syax
near two to be conservative. This assumption will be verified if the recovered distribution
approaches zero before reaching S;,.x. If not, the data themselves will have indicated that S«
needs to be increased. Thus, we have strong confidence in this boundary as well.

The most important regularization conditions in our problem prove to be additional boundary
constraints. Specifically, we add the requirement that all the elements of P, be nonnegative,
consistent with their role as probabilities. With the same justification, we require that the zeroth
moment be exactly one, equivalent to P, being a normalized probability distribution. (Probabilities
must also be less than one, but this result is already implied by these two constraints.) General
treatments of regularization often emphasize regularization functions. However, using
regularizing functions without these boundaries can result in wildly incorrect solutions and
unrealistically small fitting errors (supplementary material, Sec. SII).

To implement these boundary conditions, the first element of p’ and the first row of V are
dropped in Eq. (30) and nonnegativity and normalization constraints are added to the minimization

of y:

NP
min ;((Pr)2 subject to ZP”. =1
P N B
r i=1
and P20, i=1...,Np. (31)
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This problem, as well as its extensions below, is a quadratic minimization with linear constraints
and constant boundaries. Fast and efficient algorithms are available for this problem.''® See the

supplementary material, Sec. SIII for details.
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FIG. 7. The recovered probability distribution P, (solid, black peaks) and cumulative
distribution F, (black, dashed-dotted line) using only nonnegativity and unit-area
constraints [Eq. (31) or Eq. (32) with a = # = 0] with N, =13 moments. The error in fitting
the measured moments is yy = 0.8x10™*. The cumulative distribution of the correct

solution Fy is the red, dashed line.

Figure 7 shows the solution to Eq. (31) using N, = 13 noise-corrected moments from our data
(Fig. 5). The error in matching the measured moments, y, = 0.8x 10%, is small, but much larger
than for the unconstrained minimum (y = 8.8% 1014, supplementary material Fig. S1). (We use y
to denote the fitting error for the solution regularized only with boundary conditions.) Comparing
the recovered cumulative distribution (dash-dotted, black line) with the known solution (dashed,
red line), we see that the solution is accurate both qualitatively and quantitatively: it correctly
identifies the model as having three discrete states, the peak areas are correct, and the correct

positions are within the recovered linewidths.

3. Exploring the error range

If we were working with real experimental data, we would not know whether this solution and
its value of y, were correct. For example, by the arguments given by Tibshirani in connection with
LASSO regularization,'!! a cusp in the solution domain favors sparse solutions (solutions with
many zero-probability points). The boundary conditions that we have imposed create such cusps
at P,(Spmin) = 0 and P,(Sax) = 0. Does this effect suppress interpeak intensity or artificially narrow
the peaks in Fig. 7?7 Or should the peaks be even narrower? Would a solution more like the
histogram in Fig. 3 be equally consistent with the data? We need to explore the range of other

solutions that fit the data nearly as well as the solution to Eq. (31).
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To do this, we combine regularizing functions R« P,) with the boundary constraints in Eq. (31)

NP
min[ 2(P)+ SR (P.)+ aRz(P,,)J subjectto 3 P, =1
P ; ?
p i=1
and Pr’iZO;i=1,...,NP. (32)

Regularizing functions encode prior knowledge or assumptions about the correct solution.
Increasing values of  and a reflect increasing confidence in the prior assumptions and will push
x to higher values. The values of f and a themselves are not meaningful, but the ratio y/y, reflects
the reduction in the fit to the data. Thus, the range of solutions with y/y, modestly higher than one
defines the uncertainty range of the recovered distribution.

The coefficients’ relationships to the fitting error, S(y) and a(y), are initially unknown. Values
of f and a are assumed, and the implied value of y is calculated from the minimized solution. An
example of S(y) is given in the supplementary material [Fig. S4(a)].

Regularization is used in a broad range of inverse and machine-learning problems, and many
regularization functions are available.!'? In general, there are two competing ideas about what
makes a better distribution, and so, we have included two regularizing functions. The idea that a
smoother, broader distribution is better is expressed by the smoothing regularizer R(P,). We
choose it to be

1
Np

~[p-®] %, (33)

R/(P,)=

where

D=| . .| (34)

The matrix D is a discrete approximation to the first derivative of the solution. The function R(P,.)
measures the mean-squared magnitude of the solution’s derivative and is a standard form in
Tikhonov regularization.'®

Figure 8 looks at solutions with varying smoothness and breadth. By increasing f in Eq. (32)
(with a = 0), y/x, increases from 1 to 2.5. The acceptable fitting error is not perfectly defined, but
this range covers the likely possibilities. Although the peaks broaden, they remain distinct and
well-separated by near-zero-intensity regions. The peak areas change very little. These are robust

features of the solution that cannot be eliminated without losing the fit to the data.
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FIG. 8. Effect of the smoothing regularizer R{(P,) on the recovered distribution. The
fitting error increases with increasing § [Eq. (32), & =0, N, = 13]: x/x0 =1 (thin, black curve;
from Fig. 7), 1.22 (short-dashed, red curve), 1.8 (dashed, green curve), 2.5 (blue points
and line). The y/yp =1 probability density [thin, black curve; panel (a)] has been divided
by 2.0. (a) Probability densities and (b) cumulative probabilities.

Alternatively, the simplest and best solution can be taken to be the one with the smallest
number of variables, parameters, or states.!'* In our case, we favor solutions with large regions of
zero or near-zero probability (sparse solutions) with R,(P,.). This sparsity regularizer can narrow
large peaks, eliminate small ones, or suppress baseline noise. Although the particular solutions in
Fig. 8 are already quite sparse, we will demonstrate its effect for use in other problems.

A popular sparsity regularizer is the LASSO function,!!!

(35)

Pr,i

NP
Ry(P.)= Z
i=1

This function cannot be used in the current problem because its value is fixed by the nonnegativity

and normalization constraints in Eq. (32). As an alternative, we sum over only the points that are

already low:

Ry(P,P)= 3 B, (36)
Pr,i<Psp
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This function will try to take probability away from points with probability below Pg, and

redistribute it to points with values larger than Py,

Probability
Density P,
——
/‘
1
~

N/ PR

0.0 0.5
Signal §

FIG. 9. Effect of the sparsity regularizer Ry(P,; Psp = 0.53) on the recovered distribution.
The N, = 14 probability density without the sparsity regularizer [thin, black curve; o = 0;
x/xo=1.21; from Fig. 10(c)] and with the sparsity regularizer (dashed, green curve; y/y, =
1.21). The horizontal, grey line marks the level of Ps,.

As an example, Fig. 9 shows a solution from a moment sequence with an additional, high-
error moment included [N, = 14, see Fig. 10(c) below]. This error leads to a solution with broad
peaks. In principle, there are two parameters to be adjusted, a and Pg,. In this particular problem,
increasing o has only a small effect on y. Thus, we take the large a limit, which forces all the
points below Pg, to zero. As Fig. 9 shows the two peaks can be cleanly separated with very little
increase in y/x,. Thus, there is no evidence in the data that the interpeak probability is real.

The final question is how many moments N, should be used in Eq. (32) [via Eq. (30)]. Above
some order, the moments will have more error than new information, resulting in a poorer solution
for a longer moment sequence. On the other hand, setting N, too small will throw away moments
that do contain useful information, also reducing the quality of the result.

These effects are seen in Fig. 10, which shows results from our data for different values of N,
Using only N,,= 6 gives a noisy result [Figs. 10(a) and 10(¢)]. Adding another one or two moments
[N, =7-8, Figs. 10(a) and 10(e)] makes the distribution narrower and better resolved. We conclude
that u'7[ D] contains critical new information and that x's[ D] has some additional information. The
minimum sequence length, N, i, = 7-8, is consistent with our earlier estimate for a three-state
system (see Fig. 6).

At the other extreme, the solutions with N, = 17-20 [Figs. 10(d) and 10(h)] change erratically
as moments are added. The moments above n = 17, have so much error that they degrade the
solution. The moments from n = 14-16 [Figs. 10(c) and 10(g)] have less error, but enough to be

detrimental. Thus, there is also a maximum number of usable moments, N, a = 13 in this case.
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FIG. 10. Effect of the number of moments used N, on the recovered distribution. (a) and
(e): N, = 6 (thin, black curve), 7 (dashed, green curve), 8 (blue points). (b) and (f): N, =10
(dashed, green curve), 12 (blue points), 13 (thin, black curve)]. (c) and (g): N, = 14 (thin,
black curve), 15 (dashed, green curve), 16 (short dashed, red curve), 17 (blue points). (d)
and (h): N, = 18 (thin, black curve), 19 (blue points), 20 (dashed, green curve)]. Top row
[(a)~(d)]: probability densities. Bottom row [(e)-(h)]: cumulative probabilities. The
value of f has been adjusted to y/xo = 1.22 to smooth out minor differences between the
solutions. Sparsity is not enforced (a = 0).

Between N, min and N, max [N, = 8-13, Figs. 10(b) and 10(f)], the solutions are almost
independent of the number of moments used. The moments u'g[ D]—u'j3[D] are accurate, but they
are in the asymptotic region and do not better define a three-state system. Although, these
moments do not change the solution, they remain useful. The fact that a fourth peak fails to appear
up to N, = 13 increases our confidence that it does not exist. We conclude that for this data set,
N, =13 is optimal. (By chance, the break at this point is particularly striking in this realization of

the time series. See Fig. S3 in the supplementary material.)

C. Final results

1. Equilibrium distribution

We have explored the space of solutions consistent with the data and spanned by the
parameters N, f8, and Pg,. Throughout this space, the solutions have the same major physical
features: three narrow peaks with unchanging positions and areas. The solution is not
mathematically unique, but it is physically unique. To conclude, a single solution is chosen to
represent the acceptable solutions. Statistical approaches to optimizing regularization parameters

are not helpful (supplemental material, Sec. SIV), so we make a more subjective judgement.
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FIG. 11. Comparison of the distribution from a correlation-function approach P,(S)
(solid, red curves) to one from time-binning and histogramming Pp(S, N,) (short-dashed,
blue curves; from Fig. 3, N, = 100) and to the known solution [(a) black bars, (b) solid,
black lines; from Fig. 1]. The correlation-function solution is the y/yy = 1.22 result from
Fig. 8 (N/, =13, yo = 0.8x107% £ =0.0014, y/xo=1.22, a = 0). (a) Probability densities and
probabilities and (b) cumulative probabilities.

Our choice is shown in Fig. 11 (red, solid curves), where it is compared to the original model
from Fig. 1 (black bars and solid curve). The recovered distribution is not only qualitatively
correct, but it is also quantitatively reliable: the mean positions of the states and the state
populations are accurate. In contrast to a hidden-Markov fit, the peaks have finite widths. With
real data, the widths would have indicated the extent of substructure within the states that would
be consistent with the data.

This result comes from a data set that is noisy, SNR = 0.58, but otherwise favorable: the data
set is large, Np = 10%; the instrument time-resolution is high compared to the fastest dynamics,
Ty /T, = 100; and the slow-dynamics are well sampled, 7;/T,, = 10%, Despite the favorable data,
time binning is not able to provide similar results. Figure 11 also shows the histogram with optimal
time binning (blue, short dashed curve, see Fig. 3). The time resolution of this histogram is 100
times the instrumental time resolution, 7,./7, = 100. The peaks are poorly resolved due to a
combination of residual noise and imperfect time resolution. Figure 3 shows that the binning time

would have to be increased by more than 30-fold to narrow the long-lived, high-intensity peak as
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much as the correlation method does. Binning that drastic would reduce the time resolution of the
experiment to 3000 times the instrument’s time resolution.

The time resolution of the correlation method is not precisely defined. However, if even 10%
of the decay was not resolved, 10% of the population of the two low-intensity peak would be
averaged to values between the two peaks. The lack of interpeak intensity shows that 7./ T, < 10.
Thus, noise-removal by correlation methods offers major improvements over time binning in both

time and state-space resolution, without introducing a priori restrictions on the solution.

2. System dynamics

With the equilibrium distribution known, the conversion of the noise-corrected moment-
correlation functions can be converted to the system’s Green’s function. As the full details are
covered in Ref. 87, we present only a brief, simplified conversion for purposes of illustration. The
linewidths in the equilibrium distribution are ignored: three delta-function states are taken at the
positions of the peaks in Fig. 11(a), with their probabilities given by the plateaus in Fig. 11(b).
This distribution defines the orthogonal polynomials Q4(S) or “modes” for the system. Without
linewidths, only three modes and only correlation functions only up to order n = 4 are required.
The mode-correlation functions, Cy(7) = (Qu(r)Q/(0)), were then calculated from the noise-
corrected, moment-correlation functions (Fig. 4). In conjunction with the equilibrium distribution,
the mode-correlation functions were converted to the Green’s function of the signal G(S;|Sy; 7).

The results are displayed in the top row in Fig. 12 as the more symmetrical, joint-probability
distribution P(Sy, So; 1) = G(S1]Sp; 1)Peq(So). Delta functions have been plotted as bars with their
heights indicating their probabilities. At =0, the joint distribution should be diagonal,
P(S1, So; 0) = 6(S1 — So)Peg(So)- The small, off-diagonal elements in Fig. 12(a) could have been
eliminated by refitting our simplified model to the data. The utility of the joint distribution comes
at 7 =100 ps and 1 ms [Figs. 12(b) and 12(c)], the mid- and end-points of the first decay in the
autocorrelation function [Fig. 4(a)]. During this period, the cross-peaks between the low- and mid-
intensity peaks grow, showing that the fast kinetics are between these two states. Cross-peaks with
the high-intensity peak only grow in near r = 10 ms [Fig. 12(d)], the time of the second decay of
the autocorrelation function. This decay can be assigned to the equilibration of this state. Thus,
higher correlation functions allow the assignment of times to particular state-to-state transitions, a
feature lacking in the autocorrelation function alone. Atz = 110 ms [Fig. 12(e)], the distribution
matches the equilibrium distribution, P(Sj, Sp; 110 ms) = Pey(S1)Peq(So), confirming that the
system equilibrates within this time.

An alternative analysis is shown in the bottom row of Fig. 12. The mode-correlation matrix
can always be diagonalized at one delay, here chosen to be 7= 1 ms. Applying the same rotation

to all times gives the eigenstate-correlation function £y (t). If this matrix is diagonal at all times,
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the system has eigenstates, and the diagonal elements Ej;(7) are the eigendecays. As expected,
this condition holds for our model, and the eigendecays are shown in Fig. 12(i). The corresponding
right eigenstates of the Green’s function Ry(Sy) are derived from the diagonalizing matrix®’ and
are shown in the bottom row of Fig. 12. As expected, the first eigenstate R is the assumed
equilibrium distribution [Fig. 12(f)], and its eigendecay E is constant [Fig. 12(i), black]. The
second eigenstate R; is associated with transitions between the low- and mid-intensity states [Fig.
12(g)]. Its eigendecay E; fits a single exponential with a time constant 7= (ki + km)f1 =99 ps,
a good match to the true value of 100 ps. The last eigenstate R, is associated with decay of the
high-intensity state [Fig. 12(h)]. Its eigendecay is also exponential with a time constant 7. =
(ks12) + ka1 /2)3)71 = 10.0 ms, which again matches the true value. From these time constants and

the state populations from Fig. 11, the original master equation of the system can be reconstructed.
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FIG. 12. Dynamic quantities extracted from the noise-corrected, moment-correlation
functions (Fig. 4). Top row, (a)—(e): The joint-probability distribution P(S3, Sp; 7). Bottom
row: The eigenstates Ri(S) [(f)—(h)] and their corresponding eigendecays Ej(7) [(i),
points]. The eigendecays E11 (red circles) and Ey, (green, up triangles) are fit with single
exponentials (curves). The eigendecays Ey (black, down triangles) and E, (green,
squares) are constant.

[There is an ambiguity about which state the high-intensity state couples to. This ambiguity
is inherent in kinetics when there is a wide timescale separation between decay times. If the decay
times were close, the cross-peaks between the lower and highest intensity states in Fig. 12(d) would
not rise at the same rate, and the ambiguity would be resolved.]

The fact that the eigendecays are single exponentials shows that the system is Markovian in

the identified states and that no hidden states remain.’” Further analysis with multidimensional-



26

correlation functions is not needed as it would only duplicate the information from the one-
dimensional analysis. We can be confident that all the useful information in the data has been

extracted.

IV. ROBUSTNESS OF CORRELATION METHODS

A. A floor in the usable SNR
The last section demonstrated that correlation methods work well for one noisy, but large,

data set. This section explores the limits of this approach as the data quality decreases, in this
subsection as the noise increases and in the next subsection as the data-set size decreases. To
begin, we must distinguish between measurement noise and sampling error. Measurement noise
is caused by the experimental apparatus and disappears when o, goes to zero; sampling error is
caused by the finite size of the data set and disappears when 7 goes to infinity. Sampling error
manifests as residual fluctuations along the correlation function after noise correction [see Fig.
4(d)]. The issues are similar at all delays, so we focus on the error in the 7 = 0 moments and the

resulting error in the recovered distribution.
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FIG. 13. Distributions recovered from four realizations of a long, medium-noise time
series (SNR = 0.58, N, = 10®, N, = 1). All cases were smoothed until y/yo = 1.22, sparsity
was not enforced (a = 0), and N, = 13. (a) Probability densities and (b) cumulative

probabilities. The result from Fig. 11 has black circles.
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We first test the method’s precision by looking at repeated measurements. Three additional
realizations of the data were generated with the same parameters used in Sec. III.B, but with
different seeds for the random-number generators for both signal and noise. Distributions
recovered from each realization are shown in Fig. 13, along from the one presented in the previous
section (Sec. 0). The differences are small and are the result of sampling error, not residual

measurement noise.
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FIG. 14. Deviation of the measured moments from the true moments for the realizations
used in Fig. 13 (same color and symbol code). (a) The total sampling error &, ;, (b) the
absolute value of the signal-sampling error s, ;|, and (c) the absolute value of the
noise-sampling error |, ,;|. The dashed, black curves are the predictions of the theory
for (a) +w, [Eq. (38)], (b) ws [Eq. (39)], and (c) @, , [Eq. (40)].
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We next look at the error contributed by individual moments. The sampling error ¢, ; in a
specific moment is defined as the fractional deviation of a finite-length, noise-corrected moment

from the value calculated analytically from the true distribution,

_ M, (D] p, [P ] (37)
M, [Pl

gn,i

The subscript i labels a specific realization. Figure 14(a) shows results from the realizations used
in Fig. 13. As anticipated, the error increases for higher moments, but the pattern of increase is
peculiar. For moments n < 14, the magnitude of the errors is small and nearly independent of the
order. For n 2 18, the error is large and increasing rapidly with order. Thus, there is a crossover
in the character of the sampling error. This crossover results in the maximum number of usable

moments, N, max = 13, being relatively well defined, as seen in Fig. 10.
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FIG. 15. Distributions recovered from long time series (N; = 108, Nep = 1) with different
signal-to-noise ratios: SNR = 1.16 (dashed, red curve), 0.58 (solid, black curve), 0.39 (blue
points and line), 0.33 (short-dashed, green curve), and 0.29 (dash—-dotted, orange curve)
(0=0.5,1.0,1.5,1.75 and 2.0, respectively). The numbers of moments used were N, =
15,13, 8, 7, and 7, respectively. All cases were smoothed until y/yy = 1.22, and sparsity
was not enforced (a =0). (a) Probability densities and (b) cumulative probabilities. The

result from Fig. 11 has a black curve.
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To see the effect of changing the signal-to-noise ratio, we constructed data sets with different
noise levels. In addition to the case analyzed above with SNR = 0.58, three cases with higher
noise; SNR = 0.39, 0.33, and 0.29; and one with lower noise, SNR = 1.16, were examined. To
eliminate variations in the sampling noise, we used a single realization of the signal and one of the
noise and combined them in different ratios. The optimal number of moments was determined as
in Fig. 10. The resulting distributions are shown in Fig. 15. There is a slow loss of resolution as
the signal-to-noise level drops to SNR = 0.39, and then the resolution deteriorates rapidly for lower

values. Thus, there is a floor to the acceptable signal-to-noise ratio for a given data-set size.
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FIG. 16. Deviation of the measured moments from the true moments for the time series
used in Fig. 15: SNR = 1.16 (red circles), 0.58 (black squares), 0.39 (blue, up triangles),
0.33 (green diamonds), and 0.29 (orange, down triangles). (a) The total sampling error
&,.i» and (b) the absolute value of the noise-sampling error 1&, ;. [See Fig. 14(b) (black
circles) for the signal-sampling error.] The dashed curves are the predictions of the
theory for (a) +w, [Eq. (38)] and (b) », , [Eq. (40)].

The same crossover in sampling error with order seen in Fig. 14(a) is also seen for different
signal-to-noise ratios [Fig. 16(a)]. As the signal-to-noise ratio drops, the crossover occurs at
smaller orders. As a result, the maximum number of usable moments drops from N, . = 15 (or
more) with SNR = 1.16 to N, max = 6 with SNR = 0.27. Figure 6 estimated that a minimum of

N,min = 7-8 moments are needed to accurately recover a three-state system. When the signal-to-
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noise ratio limits the number of accurate moments to below this minimum, the distribution
recovery deteriorates. Thus, the floor in the acceptable signal-to-noise ratio is directly linked to

the crossover from constant to rapidly rising sampling error.

B. Limits to data-set size and time resolution from sampling error

An explanation of the crossover and its dependence on the signal-to-noise ratio requires a
more quantitative analysis of sampling error and how it varies with the quality of the data set.
Data-set quality depends on its signal-to-noise ratio, its dynamic range in time, N,= 7, / T, and
its total size N,,. Although our examples above consisted of a single time series, more generally,
one collects data from an ensemble of NV, series from different members of the sample, so the total
data-set size is N, = N; No,. (See Sec. IV.C for more discussion of ensemble averaging.)

In addition to time and ensemble averages over one realization of the data, we also need to
consider statistics over many hypothetical realizations of the data. The supplemental material (Sec.
SV) shows that noise removal is unbiased. It also calculates the expected variance of the nth-order
sampling error, a)nz = Var(&,). (Previous work has looked at the variance of uncorrected, linear,
auto- and cross-correlation functions.!®!'%) The result can be divided into two terms:

2 2+ 2
W, =wg a)s,n’

(38)

the signal-sampling error wg and the noise-sampling error w, ,. The signal-sampling error results
from incomplete sampling of the signal distribution. It occurs even in the absence of measurement
noise and does not depend on the signal-to-noise ratio. In contrast, the noise-sampling error goes
to zero as the signal-to-noise ratio becomes large. It results from the need to effectively sample
the noise distribution. Although we are not interested in the noise distribution, Eq. (11) makes it
clear that noise correction is really a blind separation of the data into two components, signal and
noise. Consequently, information about the noise distribution is just as important as information
about the signal distribution. This point is further emphasized later in Sec. V, which explicitly
determines the noise distribution from the same moments we have been using.

Asymptotic approximations for the two sources of sampling noise (supplementary material,

Sec. SV) are sufficient to illustrate the important trends:

2a-1

MEA

o= (39)

and
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ol | P 1. (40)

“" Ne|l (26SNR)

The constants a and b depend on the details of the distribution, but are of order unity. Both types
of error go to zero as the size of the data set goes to infinity, as expected. More importantly, the
signal-sampling error is independent of the order of moment, whereas the noise-sampling error is
exponential in the error.

To test these predictions against our data, the total error for each realization was decomposed

by extending Eq. (38) to individual time series,
2 2 2
Sni = SSmi T Semi- (41)

The signal-sampling errors s, ; were calculated from the noise-free time series and are plotted in
Fig. 14(b). The noise-sampling errors ¢, ,; were then calculated from Eq. (41) using the values
from Figs. 14(a), 16(a), and 14(b). The results are plotted in Fig. 14(c) and 16(b) as colored lines
with symbols. The predictions of Egs. (38)—(40) are plotted as dashed curves. Because a and b
would not be known with real data, we have used generic values of a = b = 1. The predictions are
of the right magnitude and show the correct trends with order and signal-to-noise ratio.

The combination of these effects explains the crossover in the total-sampling error. In Figs.
14(a) and 16(a), the constant, signal-sampling error dominates at low n. Above some order, the
exponential dependence of the noise-sampling error takes over, and the total rises rapidly. The
position of this crossover as a function of the signal-to-noise ratio is correctly predicted [Fig.
16(a)]. Thus, this phenomenon is not specific to our examples; it is a general effect.

In real experiments, the errors of individual moments are not known; only the maximum
number of useful moments N, . is discernable. Before estimating its value, we note that the
signal-sampling error has mild consequences. Signal-sampling error creates a moment sequence
that corresponds to a physically realistic distribution with the correct number of states and the
correct state positions. In contrast, noise-sampling error can distort a moment sequence in any
way possible. As a result, false peaks can appear, state widths can be broadened, or peak positions
and areas can be incorrect. Indeed, noise-sampling error may create a moment sequence that does
not correspond to any real distribution.

Thus, we focus on the stronger effects of noise-sampling error. The maximum error that a
moment can have without degrading the recovery is @, .. As the order increases and the noise-
sampling error rises, there will be a maximum order that does not have excessive error 7,,,, which
is defined as the order where the noise-sampling error is equal t0 @, max. It is the counterpart to

Nysy» defined in Eq. (27): nyqy defines the largest moment that provides new information about the
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distribution greater than the error in the moment; 7n,,,, defines the largest moment that will not
disrupt the distribution recovery because of its inaccuracy. In between, the moments are accurate,
but redundant. These values then define the minimum and maximum sequence lengths, N, in =
Nasy aNd N, nax = Nimay, that produce accurate distributions. So long as N max > Ny min, 1t 1s still
possible find an N, that gives a good recovery.

These definitions can be put into Eq. (40). Dropping the right-hand one and takinga =5 =1,
the value of N, iy 1s estimated to be

10§ Noy] 1

er &, max

Nmax = h{H(ZSNR)ﬂ . e

A value of @, g = 5% 10> matches our results well. This value gives N, max = 13 [Eq. (42)] and

N,

range, and poor solutions are found outside it. As the signal-to-noise ratio drops from 1.16 to 0.29
in Fig. 15, N, max drops: N, max = 42,13, 7.3,6.0,5.2. Good distributions are found for the three

high signal-to-noise cases, where N, max = N, min, and poor distributions are recovered for the two

min = 7—8 [Fig. 6, Eq. (27)]. Figure 10 shows accurate, stable distributions are recovered in this

low signal-to-noise cases, where N, max < Ny min. This formula is accurate enough to estimate the
position of the signal-to-noise floor.

With these formulas, we can address the fundamental questions posed in the introduction.
First, can a larger data set compensate for an arbitrarily low signal-to-noise ratio? The restriction
on data-set size and signal-to-noise ratio is given by the requirement that w,, < @, . for n =
N,

u
noise ratios. In the low-noise limit, SNR > 5,

min- Putting this requirement into Eq. (40), gives different behavior for high and low signal-to-

12
N, -
e | 2SNR 220, s (43)
,min
whereas in the high-noise limit, SNR « %,
NUZ (2SNR)Vemn 220t (44)

In either case, an arbitrarily low SNR can be compensated by an arbitrarily large data-set size. In
the high signal-to-noise ratio regime [Eq. (43)], the data-set size must be increased by the square
of the decrease in signal-to-noise ratio. This behavior is typical. However, compensation is
impractical in the low signal-to-noise regime. In Eq. (44), SNR is raised to a high power. In the
case we have been looking at with N, i, = 7, a 2-fold decrease in signal-to-noise ratio requires a
1.6x10%fold increase in the data-set size. Thus, there is a minimum SNR = %2, below which it is

impractical to collect enough data to make up for a high noise level.
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The other fundamental question was: How is the time resolution of the experiment 7, related
to the time resolution of the instrument 7,? If the signal-to-noise ratio is above one-half, the main
restriction on the time resolution is the time averaging in the primed powers [Eq. (19)]. A simple
average over the time range covered by a moment sequence gives an estimate of 7,./7, =
/2 (Nymin t 1). Equations (43) and (44) imply that if the experimental signal-to-noise ratio is below
one-half, then the data must be binned to reach this value. The extent of binning needed is N, =
(2 SNR)fz. Thus, the ratio of the experimental time resolution to the measurement time resolution

is approximately

+1 1; SNR

2=

2
(45)
S

2 |1/(2sNR)?; SNR

2=

Time binning shows a conflict between noise removal and time resolution and creates the
paradox of the experimental time resolution being orders-of-magnitude lower than the instrumental
resolution. These problems are eliminated. The time resolution of a nonparametric method can

be similar to that of a more restricted, parametric analysis.*!

C. Using smaller data sets and shorter series

It remains to test our methods on smaller data sets, closer to the limits implied by the theory
presented above and closer to common experimental conditions. The effects of time range N,
data-set size N, ensemble size N,,, and signal-to-noise ratio SNR are all intertwined. Rather than
a full exploration of these parameters, we look at two, smaller data sets that illustrate the most
salient points: a medium-sized data set with 100 times fewer data points (N, = 106) than in the
earlier, large sets (N, = 108), and a small data set with 10* times fewer points (N, = 104). The
new data sets also contain N, = 100 series, in contrast to the single series (N, = 1) in the earlier
sets. Thus, we will see the consequences of ensemble analysis.

The new data sets have much shorter series as well. The average series length in the medium
set is 10* times shorter Ny = 104) than in the previous examples (N, = 108). This length is only
as long as the slowest relaxation time of the system, (7;) = T, = 10 ms. The series lengths in the
small data set are 10° shorter (N, = 102) than in the earlier sets. This length is only as long as the
fastest relaxation time in the system, (77) = Ty = 100 ps.

Finally, the medium data set has nonuniform series lengths, a common feature in experimental
data. The lengths of individual series 77 ; were chosen from an exponential with a time constant
of T Series shorter than 37, or longer than 37, were rejected. This set mimics the effects of

photobleaching in single-molecule experiments.
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FIG. 17. Distributions recovered from data sets of various size [N, = 10% (red, solid
curve), 10° (green, dashed curve), 10* (blue, dotted curve)] compared to the known
solution [(a) black bars, (b) solid, black lines; from Fig. 1]. The number of data points
was decreased through a combination of reducing the time range of the series [N; = 10
(red), 10* (green), 10* (blue)], increasing the number of series measured [Ne, = 1 (red),
100 (green), 100 (blue)] and increasing the signal-to-noise ratio [SNR = 0.58 (red), 1.16
(green), 1.75 (blue)]. (a) Probability densities and (b) cumulative probabilities. Recovery
was done with the N, = 13 (red), 14 (green), 13 (blue), x/xo=1.22, a = 0.

Distributions recovered from the large, medium and small data sets are compared to the
original model in Fig. 17. To get acceptable results, the signal-to-noise ratio was raised as the size
decreased: compared to the large sets (SNR = 0.58 and N, = 108), the signal in the medium set
was doubled when the size was cut 100-fold (SNR = 1.16 and N, = 106), and the signal in the
small set was trebled when the size was cut 10*-fold (SNR =1.75 and N,, = 104). The sizes and
signal-to-noise ratios satisfy the inequalities required by Eq. (43): for the medium set, 880 > 280,
and for the small set, 130 = 280 (compared to 4400 >> 280 for the large set). The number of states
and the peak positions are always accurate [Fig. 17(a)]. Because the small data set is crossing this
limit, there is some error in the peak areas [Fig. 17(b)], and the peaks are slightly broader. Overall,
a much smaller data set can be compensated by a modest increase in the signal-to-noise ratio.

Turning to the correlation functions, the total number of data points is not a full description of

data quality: how the size is divided between series length and number of series is also important.
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The role of ensemble analysis is not always clear in the literature. Many parametric methods do a
simultaneous fit over an ensemble of time series.’” Correlation methods naturally use an ergodic
average, one mixing time and ensemble averages. In this paper, Egs. (23) and (24) are based on
time and ensemble averages, respectively, and are taken to be equivalent. This ergodic assumption
should hold for systems at equilibrium or in a stable, steady state.

However, ensemble averaging is sometimes portrayed as antithetical to single-molecule
measurements.®>!1511% One objection is that time series themselves cannot be ensemble averaged
without losing essential information. However, by not analyzing series directly, correlation
methods avoid this problem. Another objection is that the linear-correlation function—as well as
the 1D, nonlinear-correlation functions treated here—average over any heterogeneity in the
ensemble. However, it has now been shown that the information on heterogeneity is contained in
(ergodically-averaged) two- and three-dimensional correlation functions.”*78-80:81
Skepticism about ensemble averaging has led to the use of “single-molecule” correlation

functions M ;[ D;](r), which are restricted to time averaging over a single series,!02-104.120-125

<5Dl.(r)"’5Di(0)”>

<5D(k+l)r> ’ (46)

M},[D,1(z) =

i

where different series are identified by the subscript i. Following conventional practice, the data

have also been centered by subtracting the mean calculated from the same time series,
5Di(t):Di(t)_<Di>' 47)

Single-molecule averages work well, if the series are sufficiently long. For example, in our
large data set, the long length (7} = 10T, or) reduces the signal-sampling error to only 2.6% [Eq.
(39)]. As a result, both linear- and nonlinear-correlation functions are quite good (Fig. 4).
(However, data centering [Eq. (47)] does not give a long-time limit of zero for nonlinear-
correlation functions, as it does for linear ones.)

On the other hand, single-molecule correlation functions become susceptible to signal-
sampling error when the series are short. Vanden Bout and Kaufman have detailed this problem
for the linear case.!*?!% In our medium-sized data set, where the slow relaxation is poorly sampled
(Ty) = T,), the estimated signal-sampling error for a single series is 180% [Eq. (39)]. Figures
18(a) and 18(b) show selected single-molecule correlation functions, linear and nonlinear
respectively, from this data set. The linear-correlation functions fluctuate widely and are strongly
biased toward short relaxation times. The nonlinear-correlation functions deteriorate very rapidly
with increasing order; the 4™-order case shown in Fig. 18(b) is the highest that could be

meaningfully plotted. Moreover, when series are short, neither single-molecule correlation



36

functions themselves nor statistics derived from them can be subsequently ensemble averaged

because of the bias introduce by the nonlinear manipulations in Eq. (46).
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FIG. 18. Normalized correlation functions from shorter time series. In each subpanel,
the full, black curve is the correct function. In (a) and (b), the single-molecule correlation
functions for selected short time series ((7}) = 10* us, medium data set) are shown as thin,
colored curves. Ensemble-averaged moment-correlation functions are shown for short
series ((71) =10 us, medium data set) in (c) and (d) (blue circles) and for very short series
(T1, =102 us, small data set) in (e) and (f) (green triangles).

To allow the use of short time series, uncentered, unnormalized moment-correlation functions
[Eq. (3)] have been used so far. These can be ensemble averaged without bias. Because we have
already looked at the distributions derived from the zero-time points of these functions, we can
now focus on the kinetics alone, which are represented by normalized moment-correlation

functions,

M, [D)(7) - 4 (D)D)
Hiea[D1= [ DY D]

My[D](z)= (48)
To avoid bias, the normalization at t= 0 and zeroing at t = oo are only done with ensemble-averaged
quantities.

Figures 18(c) and 18(d) compare these functions from the medium-sized data set with the full

correlation function. Unavoidably, the slow relaxation is incomplete because few of the individual
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series span the relaxation. However, the dynamics within the series length are correctly
represented, including the whole of the fast exchange between the two, low intensity states. Even
the fact that slow relaxation is incomplete is evident because the correlation functions do not decay
to zero. Because the simulated photobleaching reduces the number of series in the ensemble after
7= 3 ms, the error increases noticeably after this time. However, the variation in series lengths
introduces no fundamental problem in calculating the ergodic average or observing the early
dynamics.

The small data set has series too short to yield any information on the kinetics [Figs. 18(e) and
18(f)]. Nonetheless, the distribution can be correctly recovered (Fig. 19). Intuitively, the static
distribution should be measurable, even when the dynamics are not. It is satisfying to see the
correlation methods match this expectation.

Overall, short time series do not create a problem for correlation methods. As in all methods,
dynamics beyond the series length cannot be measured. Otherwise, short series can be
compensated for by increasing the ensemble size. The demand on the total number of data points

is moderate for moderately complex dynamics and is within the reach of many experiments.

D. Test on experimental data

Synthetic data has the advantage that the truth behind the data is known, and the accuracy of
the results can be judged. However, real experiments can have issues that are not included in our
synthetic examples: nonadditive noise, drifting background, or other, unknown complications. To
test for sensitivity to these issues, we analyzed FRET data that have been published by Schuler as
a benchmark for time-series analysis.*”"'*¢ We compare our nonparametric results to the results of
14 parametric methods that have been tested on this data.?’

The data set results from the interaction of the nuclear-coactivator binding domain of
CBP/p300 with the intrinsically disordered activation domain of the steroid receptor coactivator 3
and was measured by confocal, single-photon detection.'?” It consists of N., = 19 FRET series
with a time bin of 7, = 10 ms and an average length of (7;) = 119 s, for a total of N, = 226,100
points. The signal-to-noise ratio is SNR = 4. Evaluating Eq. (43) with N, i, = 8 gives 1300 >
200, meaning that the data should be sufficient to characterize three or fewer states. For two states

(N,

,min = 3), the estimated time resolution [Eq. (45)] is 7,. = 20 ms.

Our recovered distribution [Fig. 19] shows two, distinct states. The results (colored curves)
are stable over a broad range of the number of moments used, consistent with the high quality of
the data. The correlation-based resolution is clearly better than the histogram (short-dashed, grey

curves).
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FIG. 19. Distributions recovered from the experimental data set (SNR =4, (V) =1.19x10%,
Nen = 19): histogram Pp(D) (grey, short dashed curve), correlation method P,(S) with N,
= 6 (dashed, green curve) or 15 (red, thin curve). (a) Probability distributions. The mean
positions from 14 parametric analyses are shown as black, vertical lines. (b) Cumulative
distributions. The population of the low intensity state from 14 individual parametric
analyses are shown as points. The points are in the numerical order given in Ref. 37, left

to right.

The nonlinear-correlation functions from this data are simple: they all fit single exponentials
with the same time constant of 7= 175 ms (Fig. 20 and the supplementary material, Fig. S5). This
result is sufficient to indicate that the system is a two-state Markovian process;®’ the complexity
of generating a full Green’s function is not necessary. Furthermore, all the information for such a
process is contained in the 1D correlation functions; a multidimensional analysis is not needed.
These results are reasonable and self-consistent. Correlation methods prove to be robust enough
to be used with real, experimental data.

Although the correct solution is unknown, we can compare to the consensus of parametric
analyses.’” The averaged state positions from the parametric analyses are shown as vertical, black
lines in Fig. 19(a). The populations of the low-intensity state as found by the individual parametric
analyses (black points) are compared to the plateau in our cumulative distribution function in Fig.

19(b). Our value for the equilibration time 7'= 175 ms is consistent with the parametric results,

which have a mean of 7= 171 ms and a range of 7=149-200 ms.
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FIG. 20. The normalized moment-correlation function from the experimental data set
(red circles) and a single exponential fit (black curve).

Our average FRET efficiencies and our population for the low-intensity state are slightly
lower than the parametric consensus (Fig. 19), and our correlation functions do not relax to zero
(Fig. 20). Both effects can be assigned to the imperfect separation of noise and signal time scales,
which only differ by a factor of 10. The time averaging in the noise-corrected moments reduces
all their sizes slightly. Smaller moments will both shift the distribution toward smaller values and
under correct the long-time values of the correlation functions [Eq. (48)].

On the other hand, the parametric analyses were restricted a priori to two states and to states
with zero width. The correlation analysis allows a broader range of possibilities. Based on the
constancy of the distribution using up to N, = 15 moments, a 3-state, a 4-state, or a similarly
complex, continuous distribution were within the available solution space, but they are not
consistent with the data. The correlation analysis also allows the states to have a finite width.
Widths as broad as those in Fig. 19(a) would be consistent with the data, a result not available in
the parametric analyses. Thus, parametric and nonparametric approaches are consistent with each
other, but each has its expected strengths. Nonparametric methods require less prior information
and allow a broader range of solutions. Parametric methods find more precise parameter values,

if their assumptions are correct.

V. RECOVERING THE NOISE DISTRIBUTION

Although we have phrased the problem as removing the noise from the data, in fact, one is
implicitly separating the data into two components, signal and noise. Our synthetic data has
Gaussian noise, but that fact has not been used, so the noise distribution is formally unknown. In
real experiments, noise comes from multiple sources, and its distribution is often truly unknown.
For completeness, we will show that the noise distribution can also be recovered with correlation

methods.
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In addition, there is the question of how well our methods for converting noise-corrected
moments to a distribution will work for a continuous distribution. The moments of a continuous
distribution are not asymptotically exponential, as the moments of a discrete distribution are [Fig.
5]. Also, as mentioned in the discussion of Fig. 7, the boundary conditions we use may favor
sparse solutions. This exercise will test our regularization methods on a continuous distribution.

Finally, this exercise will allow us to introduce a second basis for separating signal from noise.
Up to this point, signal and noise have been distinguished by the difference in their time scales.
However, signal and additive noise can also be distinguished by their lack of correlation [Eq. (10)
]. To exploit this property, we look at the nth-order cumulants «,[ P] of a distribution P. They are

algebraic combinations of moments of the same or lower order.!®® For example,

x,[P]= 41, [P]
K3 [P] = 1y [ P]- 1, [P
K3 [P1= 413 P1=3 11, [ P1pt, [P)— 6,44, [PT, (49)

and so on. These formulas can be inverted to give the moments in terms of the cumulants of lower
order. The cumulants’ important property is that they are additive for uncorrelated variables.'%
Thus, Eq. (10) implies that

K, [Ppl=K,[Ps]+x,[P,]. (50)

This result is used as follows: The moments without noise correction, u,[D] [Eq. (22)], are
converted to the cumulants of the data, {u,[D]} — {x,[D]}. The noise-corrected moments, x’,,[ D]
[Egs. (23) and (24)], are converted to the cumulants of the signal, {¢',[D]} — {x,[S]}. Subtraction
according to Eq. (50) gives the cumulants of the noise «,[¢]. These are converted back to moments
of the noise, {x,[e]}— {u,[¢]}. Equation (32) was then used to recover the noise distribution
P, (&) from its moments. We used a numerical method proposed by Smith to convert between
moments and cumulants.'?

Figure 21 shows results corresponding to the signal distribution shown in Fig. 11. Using only
boundary constraints [Eq. (31)] yields an erroneous answer for the noise distribution (thin, green
curve) and an unreasonably small fitting error, y = 6.4% 10"'*. However, simply adding smoothing
until y is equal to the signal-fitting error dramatically improves the result (red curve). The tendency
to produce sparse results is easily corrected. Thus, correlation methods can be used with both

continuous and discrete systems.
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FIG. 21. The recovered distribution of the noise P, ,(¢) with various regularization
conditions (N, =13, Np =81, emin = —4, and &max =4 in all cases): boundary constraints only
(thin, green curve; f=0; a=0; y = 6.4x10714), smoothing added (solid, red curve; f=0.149;
a=0; y= 7.7><1075), and both smoothing and sparsity added (dashed, blue line; = 0.149;
Psp =0.025; Ry = 0.016; y = 1.2x107%). The correct, Gaussian distribution P,(¢) is shown as
black circles. On the left and right, the tails of the curves have been vertically offset and

magnified 10 times.

The tails of the recovered distribution have low-intensity satellite peaks at ¢ = +2.8. One can
test whether these tails are real by trying to eliminate them with the sparsity regularizer. The blue
curve shows an example where y has been allowed to double in an attempt to eliminate intensity
below Py, =0.025, and thus, the tails beyond ¢ =+2.1. Unlike with the signal distribution (Fig. 9),
the low-intensity regions cannot be eliminated without seriously degrading the fit. The data require

that the noise distribution have low-intensity tails, although it is not possible to recover the details

of their shape.

VI. DISCUSSION

1. Parametric, correlation analysis

A nonparametric data analysis is normally a prelude to proposing a specific, interpretive
model. In the example of Fig. 11, it would be natural to propose a three-discrete-state, Markov
model. Alternatively, the structure of the system may be known from previous studies. In either
case, one wants to make a parametric fit to the data. Rather than revert to a method based on
analyzing the time series directly, it is possible to parametrically fit the noise-corrected moments
and nonlinear-correlation functions, rather than directly fitting the time series.  The
implementation of a parametric, correlation analysis is specific to the model proposed, but it is
relatively straightforward.

One advantage of a parametric, correlation analysis is the reduction in the size of the problem.

For example, our large data set contained 10® data points, but only 13 moments are needed to
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describe the distribution, and only about 10° points in the moment-correlation functions are needed
to characterize the dynamics. As a result, even repeated analyses are computationally quick, in

contrast to parametric fits to raw time series.>!

2. Non-Markovian dynamics and multidimensional-correlation functions

In calculating the nonlinear-correlation functions, there is no restriction that the dynamics
between observable states be either exponential or multiexponential. Various stretch, non-
Markovian decays can also be found. States that are degenerate in the observable, but distinct
along some other, “hidden” coordinate, are not distinguished by 1D correlation functions, resulting
in non-Markovian dynamics of the observable states. Exploring dynamics along this hidden
coordinate requires a second stage of analysis using multidimensional-correlation functions [Eq.
(2)].7%"® In a parametric, hidden-Markov model, hidden system coordinates and the noise process
are dealt with in a single stage of analysis, rather than in two.

The noise-correction methods used here should extend in a simple way to multidimensional
functions. To see this point, consider the linear, multidimensional-correlation function of overall
order n, My 1[D](t)-1,..., 71) [see Eq. (2)]. Noise is confined to places where one or more of the
delays 7; is zero. Removing the noise requires shifting by one point along every time axes to

eliminate these regions,
M \[DXz, ...t =(Dlz, +.. 47 +(n-DT,]...
xD(t; +T,)D(0)) . (51)

The noise correction of the linear-correlation function [Eq. (15)] is just the lowest-order example
of this idea. Setting the first £ — 1 and the last / — 1 delays to zero,

M, [D](r)= MiMl[D](O,. ..,0,7,0,...,0), (52)
recovers the noise-corrected, 1D, nonlinear-correlation functions [Eq. (18)]. The extension to

nonlinear, multidimensional-correlation functions just requires setting a different set of delays to

zero, for example

' 2!
My (zy,1)) = <D(T2 +7)D(77) D(0)>
=Mjy,(75,0,7))

(53)

It is axiomatic that the full set of high-order correlation functions [Eq. (2)] contains complete
information about a stationary time series. However, this set is so large that its undirected use is
impractical; one needs to identify manageable subsets that contain specific pieces of information.
Earlier work has shown that the distribution along hidden coordinates is contained in two-

74-78

dimensional (2D) correlation functions, and that the dynamics along these coordinates are
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contained in three-dimensional correlation functions.”’8

Most recently, we have shown that
complete information about the dynamics along the observed coordinate is contained in the full
set of 1D, nonlinear correlation functions.”®”%% This paper contributes to this classification by
showing that complete information about the distribution along the observed coordinate is
contained in the “zero-dimensional” (0D) moments.

The discussion of N,y the number of measurable 0D moments, propagates to higher
dimensional functions. The 0D moments are a point on the 1D functions of the same order, the
1D functions are slices of the 2D functions of the same order, and so on. If the 0D moments above
N,

U
inaccurate as well.

.max are inaccurate, all the higher dimensional functions with order above N, . will be

Similarly, the number of moments needed for a successful analysis N, i, also propagates to
higher dimensions. Just as the 0D moments reduce to a distribution Py(X) along one X dimension,
the 1D moments reduce to a Green’s function G(X;| Xy; 7) along two X dimensions, and so on. If
Ny
the X-axes in G(X;| Xj; 7). Similar reasoning holds for even higher orders.

,min Moments are need to resolve the X-axis in Pey(X), the same order will be needed to resolve

VII. SUMMARY AND CONCLUSIONS

Using a broad array of high-order correlation functions to yield comprehensive information
about a time series is a new, and only partially proven, idea. This paper has taken two important
steps to further this idea: it has shown that correlation-based methods can separate signal
fluctuations from measurement noise, and it has shown that they can recover equilibrium-
probability distributions.

The paper first showed how to remove measurement noise, only assuming that noise fluctuates
more rapidly than signal does. With an example of synthetic data, we showed that accurate
correlation-functions and moments can be extracted from noisy data. With these quantities, the
dynamics along the observed coordinate were fully defined. Correlation results were compared to
time-binning and histogramming, the other nonparametric methods in common use. The
correlation results have substantially better resolution, both in time and in state space. The
correlation methods were also tested on published, experimental data. Good results for both the
distribution and the kinetics were found.

The paper then established the amount and quality of data needed for a correlation analysis.
Although measurement noise can be removed, sampling error remains whenever a time series has
a finite length. We showed that there are two components to this error with differing behavior:
noise-sampling error and signal-sampling error. Approximate expressions for these errors were
derived and used to predict the minimum data-set size and signal-to-noise ratio that are needed to

recover a distribution of a given complexity. There is a floor to the usable signal-to-noise ratio of
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approximately one-half, below which it is impractical to compensate for high noise with increased
data collection. Above this floor, the time resolution of the experiment can be close to the time
resolution of the detector. Below this floor, initial time binning is necessary, which limits the time
resolution of the results.

Most of the work in the paper used the short correlation time of the noise to distinguish it from
signal. In a final demonstration, we showed that the lack of correlation between signal and noise
can also be used to discriminate between them. Cumulants were used to extract the noise
distribution from our data. This work points toward methods for removing baseline drift and other
types of noise that do not have a short correlation time.

Correlation methods are nonparametric: no model of the system or the noise is needed. The
model-selection problem of parametric analysis is avoided. A parametric analysis will always give
an apparently narrower error range because the range of solutions is limited a priori. However, a
nonparametric approach has an important role. If a feature is identified in a parametric analysis,
but it is not required in a nonparametric analysis, one can infer that the feature results from the
restrictions applied, as much as from the data. Similarly, the requirements for data quality in a
nonparametric analysis, as found here, inform a parametric analysis. If a parametric approach
finds a solution from data that violates these requirements, one knows that the prior assumptions
play a critical role. In either case, one can then assess one’s confidence in the assumed prior
knowledge.

Many types of experiment will require even further extensions of the ideas presented here.
Some experiments involve multiple observables, for example, donor and acceptor intensities in
FRET experiments or parallel and perpendicular polarizations in anisotropy measurements. In this
case, both high-order auto- and cross-correlation functions need to be considered. Although more
complex, there does not appear to be a fundamental barrier to this generalization.

Many experiments are dominated by photon noise, which is not additive. In addition, photon
counting can introduce bias into the data. Many parametric methods have been extended to

24,25,27,28,33,41,66,72

“photon-by-photon” analysis for this situation. A similar extension of

nonparametric, correlation methods is possible and will be discussed in a forthcoming paper.'?
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SI. GENERATING SYNTHETIC DATA

The time series of states s(¢) with s = 1, 2, or 3 was generated
from a simulation of a master equation for the time-dependent
probability P(?) of the states,

%P(z):k?(z), (S1)
with the rate matrix
_k12 k21 0
k=| by (ks +ha) ks |- (S2)
0 k23 _k32

To ensure that the system equilibrates with the probabilities P,
the detailed-balance equations were enforced:

P

kyp = N ka1 (83)

eq,l

Fogs
k23 = ik32 > (84)

eq,2

and

kyy =k5. (S5)

The detailed-balance equations and the information in the main
text determine the rate constants k;, =3.75 ms ™', k,, = 6.25 ms ™,
kyy=57.1s",and k), =42.9s7".

The signal simulation requires the Green’s function for a
small time step o,

oG =1+Kkot . (S6)

The time step in the simulation was the same as the time step in
the final time series. A series of random numbers {r;} was
generated from a uniform distribution from zero to one for i =
0, ...,L — 1. The first value was used to start the state-time series
{s;} from the equilibrium distribution:

I, 0<rpy< Peq’1

51=492 Peq,1 <ry < Peq,1 +Peq)2 . (S7)

3; Peq’1 + Peq’2 <ry<l
The state-time series was propagated using the Green’s function:

L 0<r <G
i1 =12 Gy, <13 <Gy + Gy (S8)

3; G]Si + G2Si <r <l

Finally, the state-time series was converted to the signal-time
series using the discrete version of Eq. (4),

sa)=alx, +B). (S9)

Sil. REGULARIZATION WITHOUT BOUNDARY
CONSTRAINTS

Singular-value decomposition (SVD) is a popular means of
solving ill-conditioned problems without using boundary
conditions."” It is very fast and does not require a search for the
minimum.  Simple truncation of the singular values
simultaneously minimizes y(P,) and

N
1Y
RO(P,,)zN—ZPfi . (S10)

P i=1

This function penalizes solutions with high peaks and generally
favors smoother functions. When applied to our noise-
corrected moments, it yields the solution in Fig. S1. This
solution is clearly unphysical, with strong oscillations and many
regions of negative probability, but it reproduces the noise-
corrected moments with extreme accuracy, y = 8.8x107".

A Weiner cutoff of the singular values at a value f solves Eq.
(32) with R,(P,), but without the boundary constraints. This
process is also known as ridge regularization.” The solutions do
not improve significantly from Fig. S1.
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FIG. S1. The recovered probability distribution using only the regularizing function
Ry [Eq. (S10)] and no boundary conditions. The match to the measured moments
is almost exactly (; = 8.8x107"), but the result is far from the correct solution (Fig.
1). N, =13 moments.

Slil. MINIMIZATION ALGORITHM

The regularization conditions were chosen, in part, because
minimization of a quadratic form with linear constraints and
constant boundaries is simple and efficient.* To set up the
solution of Eq. (32) without a sparsity regularizer (a = 0), we first
look at a more general problem written in matrix form:

rrll);n{\\w(v P, -i)|" + F[R(P, - Po)ﬂ

subjectto 0< Pr,i; i=1...,Np

and 1-P =1 (S11)
The smoothing regularizing function is R. The matrix W is
diagonal with elements giving the relative weights for the
moments. The first row of the Vandermonde matrix V [Eq.
(29)] is dropped to give V and the first (zeroth) element of W is
dropped to give f'. The vector P is a preferred solution.
Although Bayesian statistics are usually parametric,’ the
regularization methods used in this nonparametric problem
mimic Bayesian ideas. Here, P, mimics a prior distribution that
will be improved by including the new data p’. The regularizing
parameter then controls the confidence given to the prior
information relative to the new data. From this perspective, Eq.
(32) assumes a “no-information” prior. These priors give zero
for the regularization function and, therefore, do not appear
explicitly. For example, the smoothing regularizer R,(P) [Eq.
(33)] has a no-information prior that is flat, Py(S) = 1/(S,,x —
S The sparsity regularizer R,(P, Psp) [Eq. (36)] has any

min)'
single-state distribution as a no-information prior, for example,

Py(S) = 3(S - (S)).
Following Ref. 4, Eq. (S11) can be converted to

min|C-P, —d|> subjectto 0<P; i=1..,N,
P ,
and 1-P. =1 , (S12)
with the concatenated matrix
W-V
C= (S13)
PR

S2

and the concatenated vector
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o
[$)]

oold v v v o1
0.0 05 1.0

Signal S

FIG. S2. Effect of the point density on the recovered distribution. The black, dashed
lines are from Fig. 11 (N = 81, 6S = 0.025,). The blue, solid lines are from an
identical calculation, except with twice the point density (N, = 161, 65 = 0.0125). (a)
Probability densities and (b) cumulative probabilities.

4~ e |
SR-P,
To specialize to our problem, we use R = (Np - 1)™2 D for the
regularization matrix [Eq. (34)]. With W = Nﬂ_” * diag(u, "), the
first term in Eq. (S11) matches the definition of 1in Eq. (30). As
the preferred solution, we take a constant, P, = 1/Np. This factor
drops out, because DP,, = 0.
The sparsity regularizer [Eq. (36)] is not quadratic and
cannot be easily added to the minimization. However, it is linear
and can be added as a constraint:

(S14)

0<P; i=1...,Np

n})inHC P, —dH2 subject to <P

and 1-P, =1
and > Pi=R, (S15)
Fi<k,

The sparsity is adjusted by choosing the value of R,(«) instead of
the value of a. Equations (S12) and (S15) were solved using the
Isqlin function in MATLAB.

Figure S2 shows the effect of changing the point density on
the minimization. The results are only slightly narrower with a
higher point density. The peak widths are limited by the data,
not by the calculation.



SIV.OPTIMIZING THE REGULARIZATION
PARAMETERS

The most difficult issue in any regularization problem is
choosing an optimal solution. That issue translates to specify
optimal values for the regularization parameters; N, #, a.and P;
and the correct level of fitting error y* that they imply. In the
main text, we made a subjective judgement. However, more
objective methods are also popular.®’> We consider some of
them here, but we find that they do not work well on our
problem.

The first quantity to consider in any fitting problem is the
error in the fit to the data y. Unfortunately, y is not a direct
indication of the accuracy of the result. As discussed in the main
text, the signal-sampling error always creates a moment
sequence that can be fit with no error. The noise-sampling error
is more variable, but it can also create a moment sequence that
is close to one that exactly fits an incorrect solution. The fitting
error is only the component of the noise-sampling error that
does not correspond to an allowed moment sequence. As a
result, the optimum fitting error y* can be much less than the
moment error ¢,  Figure S3(a) shows the fitting errors
corresponding to the moment errors in Fig. 16. The exponential
rise of y with order is similar to the rise in noise-sampling error
in Fig. 16(b), but its magnitude is much less.

One can conjecture that the fitting error will be a fixed
fraction c of the noise-sampling error, y = ¢£. The expected
fitting error X is then the average of the expected moment error
[Eq. (40)]
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FIG. 83. Fitting error versus number of moments in the fit and the signal-to-noise
ratio: SNR = 1.16 (red circles), 0.58 (black squares), 0.39 (blue, up triangles), 0.33
(green diamonds), and 0.29 (orange, down triangles). (a) Results corresponding to
Fig. 16. (b) Predictions of Eq. (S17).
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FIG. S4. (a) A plot of log y (red circles) and log R4 (black squares) vs log / (a
‘regularization pathway”) for the problem in Fig. 8. (b) A parametric plot of log R
versus log y (the “L-curve”) for #=0-10. The thin reference lines indicate our choice
of solution (Fig. 11)

X?=E(x")
L (N, 2 2
=N7J~0 c o dn. (S16)
Integrating and keeping the leading term in N, gives
2 N,
S R T (517)
N Nend (2bSNR)

Figure S3(b) shows calculations with 2ac* = 2.25x107%. The
predictions have a semiquantitative similarity to the results in
Fig. S3(a), but do not match quantitatively. The correct size of
the fitting error can be roughly anticipated. For example, the
solution of Fig. SI can be rejected as overfit. However, y* cannot
be predicted with enough accuracy to select an optimum
solution.

Some popular methods for choosing a regularized solution,
for example, generalized cross-validation,” rely on having
uncorrelated errors.® However, the errors in our problem are
correlated. The signal-sampling error is highly correlated from
moment to moment [Fig. 14(c)]. The noise-sampling error is
more random, but each realization has its own discernable
pattern [Fig. 14(b)].

It is generally recognized that the regularization parameters
themselves, such as f or a, are not directly meaningful.
However, one can look at patterns in their behavior. Figure S4(a)
shows a regularization “pathway”, y and R, as a function of the
smoothing parameter f (same data as Fig. 8). Figure S4(b)



replots the data as an “L-curve”.*® Hanson and O’Leary argue
that the corner of this curve, defined as the point of maximum
curvature, is the optimum solution, even in the presence of
correlated errors,® although others have pointed out the
limitations of this idea."""> However, for either of these plots to
be useful, one needs to know the relative weight that should be
given to matching the data versus having a smooth solution. Our
choices, which are shown on the figure, weight the data more
heavily.

SV. DERIVING THE SAMPLING-ERROR
EQUATIONS

In deriving Eqgs. (38)-(40), we start with the assumption
that the noise is unbiased, that is,

E(D|S)=S. (S18)

Then, the primed power of the data [Eq. (19)] is also unbiased:
E(D"™) = E(E(Dn...Dl | {Sj}))
=E(E(D,|S)...E(D,|S)))

=E(S") (S19)
In the first line, we have first taken the primed power
conditioned on a specific signal trajectory {S;} and used the law
of total expectation. Assuming fast noise and slow signal gives
the second line. Equation (S18) then gives the final result. The
noise-corrected moment is then unbiased:

Ner
E(u,[D]) = E[N;l ZD;"] = u,[P]. (S20)

i=1

Throughout this section, moments of a time series, e.g., 4,[D],
indicate a value from a finite, sampled data set; moments on a
probability distribution, e.g., #,[Ps], indicate an ideal,
population statistic.

The variance of the noise-corrected moment is of more
interest:

N,
Var(4,[D]) = Var[Nerl ZD;"]

i=1

i=1

NCY
= E[Var[NerIZD["'

i
{s,}]].

The second line uses the law of total variance to again separate
the result for a specific signal series. The assumptions of fast
noise and slow signal yield

NC!‘
+Var[E[NerlZD["' (S21)

i=1

Ner
Var(4,[D]) = E[N;ZZVar(D,"' S[)]

i=1
Si)] . (522)

NCI’

+Va{NerIZE(Di"'

i=1

S4
Knowing that the processes are stationary and using Eq. (S19)

gives
o)

Var(u![D]) = N;IE(Var(D"'

(S23)

N:‘r
+Var[Ner12Si”]
i=1

Dividing by u,[Ps] gives Eq. (38), which separates the total,
fractional sampling error into two components. The noise-
sampling error comes from the first term in Eq. (523):

> 1
Oy =5
/Un[Ps] N,

&N
er

E(Var(D"'

S)) (S24)

The second term in Eq. (523) forms the signal-sampling error,

ol = Var(u,[S]) .

3 (S25)
Hy [Ps]

The signal-sampling error is complicated by the long
correlation time of the signal. We assume that the total data set
can be separated into Ny effectively independent samples of the

signal with
T,
Ng=N,, [1+LJ .
Ter

Each new series in the data set starts with an new sample and a
new sample is generated every time a signal-correlation time
passes within the series. The signal correlation has multiple time
scales, so we just use the longest 7.. Equation (S25) is
approximated by assuming the signal is constant within each of
these samples:

(S26)

Ns
w3, = 12Var[NS 1251.”] . (S27)
Hy [Ps] i=1
By the independence of these samples,
2 1 s
w5, =————5 2. Var(s")
ﬂn[ s] s i=l
2
:LﬂZn[PS]_lunz[PS] , (828)
NS Hy [Ps]
The final formula depend on ratios of moments:
a)éyn _ 1 [ﬂZn[PSZ] _ IJ . (829)
Nen[l +TL] Hal Fs]

er

The important factor the noise-sampling error [Eq. (S24)]



nt n
Var(D"' | S) = Var(Hi:lDi

5

:ﬁ(Var(D,. 1S)+ E(D, | S)z)—ﬁE(D,. 15)>
i=1

i=1

- (Var(D 1S)+ 52)" _g (S30)
The second line uses the variance of a product of uncorrelated
variables. The last line come from Eq. (S18) and the stationarity
of the noise. With the binomial formula, Eq. (§24) becomes

1 " .
o, :2Z(ZJE(Var(D |5)k 520 ")) . (S31)
U, [Pg]™ Ny k=1

Note the absence of the k£ = 0 term.
At this point, we specialize to a particular type of noise
additive noise. Equation (6) implies that

Var(D|S) =07 . (S32)

Thus, the noise-sampling error is also reduced to ratios of errors:

2 1 < [”j 2k Han-[Ps]
o ——==,

@, — - > (S33)
H, [Ps]

en
N k=1 k

So far, the approximations have been mild, but to simplify
further, we need a stronger one. To evaluate the moment ratios,
we approximate the moments with

2bu, )"
ﬂn:( ) )

> (S34)

where ¢ and b are unitless constants of order unity. This form
has the correct units and holds exactly in limit of high » [Eq.
(26)]. In this asymptotic case,

1
a=— (S35)
2Pk
and
S
b=—max (S36)
21

Because a successful distribution recovery requires working in or
near the asymptotic region, this approach is reasonable. Using
Eq. (S34) in Egs. (S29) and (S33), give Egs. (39) and (40),
respectively.

SVI.LEXPERIMENTAL CORRELATION FUNCTIONS

Figure S5 contains high-order correlation functions from
the experimental data discussed in Sec. IV.D. The lowest order
function has been shown in Fig. 20, along with a single-
exponential fit with a time constant of 7= 175 ms. The functions
in Fig. S5 have also been fit with single exponentials constrained
to have the same time constant.

S5

10 100 1000 10000 10 100 1000 10000

Normalized Correlation

10 100 1000 10000 10 100 1000 10000

Delay 7(ms) Delay 7(ms)

FIG. 85. High-order, normalized, moment-correlation functions (red circles) and
single exponential fits (black curve) for the experimental data set. The time constants
have been fixed to the value found for A4 (Fig. 20).
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