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ABSTRACT 

Single-molecule and related experiments yield time series of an observable as it fluctuates due to 

thermal motion.  In such data, it can be difficult to distinguish fluctuating signal from fluctuating 

noise.  We present a method of separating signal from noise using nonlinear-correlation functions. 

The method is fully nonparametric: no a priori model for the system is required, no knowledge of 

whether the system is continuous or discrete is needed, the number of states is not fixed, and the 

system can be Markovian or not.  The noise-corrected, nonlinear-correlation functions can be 

converted to the system’s Green’s function; the noise-corrected moments yield the system’s 

equilibrium-probability distribution.  As a demonstration, we analyze synthetic data from a three-

state system.  The correlation method is compared to another fully nonparametric approach—time-

binning to remove noise, and histogramming to obtain the distribution.  The correlation method 

has substantially better resolution in time and state space.  We develop formulas for the limits on 

data quality needed for signal recovery from time series and test them on data sets of varying size 

and signal-to-noise ratio.  The formulas show that the signal-to-noise ratio needs to be on the order 

of or greater than one-half before convergence scales at a practical rate.  With experimental 

benchmark data, the positions and populations of the states and their exchange rates are recovered 

with an accuracy similar to parametric methods. The methods demonstrated here are essential 

components in building a complete analysis of time series using only high-order correlation 

functions.   
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I. INTRODUCTION 

Separating experimental data into signal and noise is an old problem.  For kinetics, the most 

common type of data is the response of an observable as it relaxes after a perturbation.  In these 

experiments, averaging multiple experimental runs is the obvious way to reduce noise.  This 

method works because, at each delay, the noise fluctuates, but the signal is constant.  An alternative 

type of kinetic data is a time series of thermal fluctuations of the same observable in an unperturbed 

system.  In these experiments, both signal and noise fluctuate.  Averaging multiple experimental 

runs is not possible; it eliminates the signal as much as it reduces the noise.  Most existing methods 

for analyzing noisy time series require some degree of prior knowledge of (or assumptions about) 

the system.  Nonparametric methods avoid these assumptions.  Time binning, histogramming and 

linear-correlation functions are well-established nonparametric methods, but by themselves, they 

are inefficient and incomplete.  This paper will demonstrate efficient nonparametric methods for 

analyzing time series with additive noise based on nonlinear-correlation functions.  The increased 

efficiency translates into improved resolution both in state space and in time. 

Time series are generated in many different experiments with different detectors and different 

types of noise, for example, single ion-channel recordings,1 single-emitter measurements,2-7 

fluorescence-,8,9 photon-,10 or x-ray–correlation11 spectroscopies.  Many of these experiments are 

inherently low signal and high noise.  Even when the dynamics are relatively simple, 

characterizing them can be difficult.  On the other hand, modern electronics can collect large 

quantities of data.  The problems are to define the limits to compensating for a low signal-to-noise 

ratio with a large data set and to find practical methods that approach these limits. 

This paper will introduce basic concepts using additive noise, which is the simplest type of 

noise to treat and is a reasonable model for many detectors.  Single-molecule and fluorescence-

correlation spectroscopies are particularly important experiments that are widely used in biology 

and material science.  They also include photon noise, which is more complex than additive noise.  

At least under certain circumstances, these complexities can be ignored, and single-molecule data 

can be treated with the proposed methods.  Moreover, the current treatment of additive noise lays 

the foundation for a full treatment of photon noise.12   

Many new types of time-series analysis have been introduced in recent years.13-15  They can 

provide good time resolution in the presence of high noise, but most require prior information 

about the system.  Among these methods, fully parametric ones require the most information.  A 

complete model of the system is specified, except for the values of certain parameters in the model.  

The parameters are fit to the data by maximum-likelihood or Bayesian16-22 methods.  If the state 

space is known to be continuous, the model might be based on diffusion equations.23,24  More 

often, methods are aimed at discrete-state systems with Markovian dynamics.  (Markovian 

dynamics imply exponential kinetics between the system’s states and multiexponential observed 
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decays.  In Markovian models, nonexponential, stretched or heterogeneous dynamics are explained 

by inferring the existence of multiple states that cannot be resolved by the experimental 

observable.)  A model based on a master equation can be used, resulting in a hidden-Markov 

model.25-37  Introducing Bayesian-nonparametric ideas allows the number of states to vary, within 

the same discrete-state–Markov framework.38-41  Noise is not removed per se in these methods.  

Instead, a specific description of the noise is incorporated into the overall model.  

Unfortunately, detailed prior knowledge about the system is often not available.  Instead, 

multiple models are proposed and fit.  This introduces a model-selection problem.  In addition, the 

models considered are typically restricted to a purely discrete state-space, to a purely continuous 

state-space, and/or to Markovian dynamics.  The proposed methods seek to circumvent these 

restrictions. 

A flexible and popular method of nonparametric noise removal is time binning.42-44  The only 

assumption is that the noise fluctuations are rapid compared to the signal.  However, time binning 

creates a competition between noise reduction and time resolution.  Moreover, the trade-off is 

inefficient: the time resolution is reduced by the square of the noise reduction.  Paradoxically, the 

effective time resolution of the experiment can be orders-of-magnitude lower than the instrument’s 

time resolution when the noise is high. 

Time binning is often combined with histogramming to estimate the equilibrium distribution. 
35,45-47  However, the histogram can be broadened by measurement noise and blurred by kinetics 

within the time bins.  By introducing models of these processes, one can attempt to disentangle 

their effects.48-52 

Improvement over simple time binning is possible, but again at the cost of introducing 

assumptions.  Most often, one assumes that the system consists of a small number of discrete states 

undergoing sudden transitions.  Various methods, from simple thresholding53,54 to more 

sophisticated change-point methods,55-61 identify these transitions.  By their nature, these methods 

do not work when the state space is continuous, for example, for molecular reorientation3 or 

intrinsically disordered proteins.5   

Both time binning and change-point methods aim to remove the noise from the time series 

itself to estimate an ideal, noise-free trajectory.  The ideal trajectory can then be analyzed with a 

parametric model or by model-free methods, such as dwell-time histograms or transition-

correlation functions.62-65  However, the ideal trajectory is problematic as a statistical quantity.  

The accuracy of state identification at a given time or the time of a specific transition cannot be 

increased arbitrarily by increasing the size of the data set.   

Correlation methods avoid many of the issues introduced by the above approaches.  Consider 

the linear-correlation function, 
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 11[ ]( ) ( ) (0)M D D D , (1) 

which is a functional of the time-series data D(t).  It is nonparametric: no model of the system is 
used, no restrictive assumptions are needed, and no model-selection problem is introduced.  It can 
be used with any type of state space, either continuous or discrete, and with any type of dynamics, 
either Markovian or not.  No ideal trajectory is involved.  As a result, its accuracy can be increased 
arbitrarily by collecting more data, either through longer time series or by measuring multiple time 
series.  The time resolution is equivalent to the instrument’s time resolution, even when the noise 
level is high.  Unfortunately, much of the important information about the system is not captured 
by this single function.   

Beyond the linear-correlation function, there is a large set of high-order correlation functions 
that do contain complete information about the data.  One can take a nonlinear function of the time 
series before the calculation, creating a nonlinear-correlation function, and/or one can use more 
than two time points, creating a multidimensional-correlation function (a correlation function with 
multiple time delays).  Using powers as a basis set for all nonlinear functions leads us to the 
moment-correlation functions, 

 1 1 1[ ]( , , ) ( ) ( ) (0)k l m
k lm N NM D D D D .  (2) 

Most work has focused on the linear-correlation function M11( ),66-71 which is just the lowest, 
nontrivial element of this set.  (Although, see Refs. 72,73 for early work with high-order functions).  
One objection to the linear-correlation function is that it loses information on heterogeneity in the 
sample.  However, it has been recognized that this information is in the multidimensional members 
of the set.  We have shown that M111( 2, 1) or M121( 2, 1) contain information on the heterogeneity 
of rate constants and that M1111( 3, 2, 1) measures the time evolution of those rate constants.74-79  
Marcus, van Hippel and coworkers have used M111( 2, 1) to evaluate discrete-state models 
containing an unobserved coordinate.80,81  These multidimensional-correlation methods should be 
compared to other time-series methods that use multiple coordinates, such as wavelets56,82,83 or 
polyspectra.84-86 

Here, we postpone issues of heterogeneity and focus on one-dimensional (1D), nonlinear-
correlation functions,  

 [ ]( ) ( ) (0) ,k l
klM D D D n k l . (3) 

(These time-domain functions can be equivalently represented by nonlinear spectral densities.87)  
In a previous paper, we showed that a set of these functions can be converted to the Green’s 
function of the system,87 which has complete information about the dynamics along the observed 
coordinate.    However, that procedure requires a noise-free time series and a known equilibrium-
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probability distribution.  It has been successful with computer simulations,79,88 but it cannot be 

applied to unmodified experimental data.  This paper presents a method for analyzing noisy time-

series analysis that solves these problems while retaining the advantages of a correlation approach.   

The major goals of this paper are threefold.  First, we seek a practical method to remove noise 

from nonlinear-correlation functions while only assuming that the noise-correlation time is faster 

than the signal-correlation time (Sec. III.A).  The noise-removal process is shown to be effective 

and accurate using a set of synthetic data (Sec. II).   

More attention is given to the second goal (Sec. III.B)—finding the equilibrium-probability 

distribution—which is a less well-studied problem.  A typical nonparametric approach is making 

a histogram of the time series after time binning.  In the correlation approach, the nonlinear 

correlation functions are first reduced to noise-corrected moments of the distribution.  The 

distribution is recovered from these moments.  This latter step is known to be unstable and error-

sensitive.89-100  We demonstrate a numerically stable route for our version of the problem and show 

that the noise-corrected moments can be sufficiently accurate for this route to work. The 

demonstration is  made on synthetic data and is compared to time-binned histograms.  There are 

substantial improvements in the resolution both in time and in state space.   

With the combination of noise-corrected correlation functions and an accurate equilibrium 

distribution, the system’s Green’s function can be found.87  From these results, the dynamical 

equation governing the system is reconstructed.  Although the details of this step have been 

covered elsewhere, a brief demonstration is given in Sec. III.C for completeness. 

The third major goal of the paper is to establish the limitation on data quality needed for this 

reconstruction, in particular, the minimum series length, signal-to-noise ratio, and ensemble size 

required.  This goal is achieved in part by looking at smaller synthetic-data sets, in part with a 

general theory, and in part by treating a set of experimental, benchmark data (Sec. IV).  Equations 

that estimate the amount of data needed and the time resolution versus the signal-to-noise ratio and 

the complexity of the equilibrium distribution are derived (Sec. IV.B).  These formulas can guide 

experimental design. 

In addition to these practical issues, we address two fundamental questions: Can collecting 

more data always compensate for a high noise level and can the time resolution of the experiment 

approach the time resolution of the instrument?  For the first question, we find that an arbitrarily 

small signal-to-noise ratio can always be compensated by an unlimited amount of data, as required 

by statistical consistency.  However, below a signal-to-noise ratio of one-half, the required amount 

increases at an impractical rate.  For the second question, the time resolution of the results can 

approach the time resolution of the instrument, but only if the signal-to-noise ratio is above one-

half.   
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An overarching goal is to build a comprehensive, nonparametric time-series analysis based on 
correlation methods.  Here, two important pieces of that program—noise removal and extracting 
the probability distribution—are shown to be viable.  However, this demonstration does not 
exhaust the needs of real experiments.  Photon-counting noise, multiple observables, and slow 
noise (e.g., baseline drift)101 are important examples of topics that still need to be addressed.  
However, this paper lays the foundations needed to treat these problems in the future. 

II. DATA WITH ADDITIVE NOISE 

A. Additive noise in equilibrium fluctuation measurements 
A dynamic system has an observable property X(t) that varies with time t.  We assume that 

the system has reached an equilibrium or stable steady state at the start of the measurement.  The 
system’s static properties are described by its equilibrium distribution Peq(X).  Its dynamics are 
described by a Green’s function G(X1|X0; ), the conditional probability of observing X1 at time 
t + , if it has intensity X0 at time t.  If the system is small, thermal motion will cause X(t) to 
fluctuate in time, even though the system remains at equilibrium during the measurement.  Such 
noise-free measurements of the system property itself are found in computer experiments.29,79,88  
Without noise, the equilibrium distribution is simply the histogram of X(t), and the Green’s 
function can be extracted from the full set of moment-correlation functions of the time series 
Mkl[X]( ) [Eq. (3)].79,87,88 

In a physical experiment, an ideal detector would yield a noise-free signal S(t) that is linearly 
related to the system property, 

 ( ) ( )S t X t B . (4) 

The constant  represents the overall detection efficiency and yields the signal as an intensity.  
(Intensities include units of inverse time, for example, a current or counts per second.)  The 
detector may also create a background signal B, which will not be removed by the proposed 
methods.  For additive noise, the effects of the detection efficiency and background are relatively 
simple, but when we move to nonadditive cases, their effects will be more complex.12  For 
simplicity, we take  = 1 throughout this paper.   

A real detector generates data D(tj) at time points tj with measurement noise that varies 
randomly from point to point with conditional probability P (D|S).  In practice, there is a finite, 
noise-correlation time T  required between measurements to obtain independent values of the 
noise.  This time defines the measurement time resolution.  More precisely, at T , the noise 
correlation has decayed to a level small compared to the signal correlation.  We assume that the 
raw data is collected in time steps equal to the measurement time resolution: tj+1  tj = T . 
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Time binning is the primary, existing, nonparametric method for correcting measurement 
noise.  To create binned data D(ti, Nb), the raw data is averaged over Nb time steps, 

 1( , ) ( )
bj N

j b i
b i j

D t N D t
N

, (5) 

reducing the time resolution of the experiment to Tr = NbT .  The magnitude of the noise is expected 
to decrease as Nb

1/2.  However, the magnitudes of intensities, such as S(t) or D(t), do not change 
size as a result of binning.   

The simplest type of noise is additive.  It is often caused by electronic amplifiers.  Additive 
noise is defined by 

 ( ) ( ) ( )D t S t t , (6) 

where S(t) is noise free, and (t) is a stochastic process with a noise distribution P ( ).  The noise 
distribution has a zero mean, E( ) = 0, so a simple average of D(t) is unbiased.  [An expectation 
value is indicated by E(…).]  The absolute size of the noise is given by , the standard deviation 
of P ( ), and its relative size is expressed by the signal-to-noise ratio, 

 SNR
S

.  (7) 

The key distinction between signal and noise lies in their correlation properties.  This is true 
for noise removal by either time binning or correlation methods.  The noise-correlation time is 
short, 

 ( ) ( )k l k lE t T t E E , (8) 

whereas the signal-correlation time is long, 

 2( ) (0)S nT S S   (9) 

for n not too large.  Because the noise distribution is independent of the signal size S, the noise is 
uncorrelated with the signal, 

 0 )( () ll kkE S E S  (10) 

for all , including  = 0.   
As a result of Eq. (10), the distribution of the measured data PD(D) is a convolution of the 

signal distribution PS(S) and the noise distribution, 

 ( ) ( ) ( )D SP D P S P D S dS . (11) 
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Noise-removal is essentially a blind deconvolution problem requiring that PD(D) be separated into 
PS(D) and P ( ) without knowing either of them. 

The lack of correlation between signal and noise [Eqs. (10) and (11)] no longer holds for 
photon noise, and the lack of bias no longer holds for photon counting.12  However, the separation 
of correlation times [Eqs. (8) and (9)] persists in these cases.  Section IV.D will show that the 
methods developed here can continue to work in these cases, despite the lack of full, formal support 
at this time. 

B. Generating synthetic data 
Synthetic data were generated from the three-state system shown in Fig. 1.  The system 

properties Xi for the states i form a vector X = {0, 0.5, 1.0}.  The equilibrium populations Peq,i are 
in the ratio of 5:3:4, forming a vector Peq = {5/12, 1/4, 1/3}.  All of the transitions are Markovian 
with rates from state i to j of kij (supplementary material, Sec. SI). We used a background of B = 
0.125 to avoid having a state with the special value of zero signal. 

Although this model has a discrete state space, the proposed method is equally applicable to 
continuous state spaces.  In fact, the recovered distribution will always be broadened into a quasi-
continuous function because the resolution of the recovery will not be perfect.  The state properties 
Xi convert between the discrete-state probabilities Peq,i and the continuous-state probability 
density, Peq(X) = i Peq,i (X – Xi).  Cumulative-distribution functions, for example 

 
0

( ) ( )
X

X XF X P X dX , (12) 

make it easier to compare peak areas between continuous and discrete descriptions.  Figure 1 shows 
an example.  

FIG. 1. The model used to generate the synthetic data. The equilibrium probabilities of
the states versus the value of the system property are shown as black bars (left scale)
along with their state to state rates and equilibration times (blue arrows). The
cumulative distribution function is shown as a dashed, red curve (right scale).
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The dynamics are conveniently characterized by the fast-equilibration time constant, Tf = 
(k12 + k21) 1, between states 1 and 2, and the slow-equilibration time constant, Ter = (k23 + k32) 1, 
between states 2 and 3.  Because Ter is the slowest relaxation in the model, it has been identified 
with the ergodic time, the time needed to fully explore the system’s configurations.  To make the 
results more concrete, we will quote times for a time step of T  = 1 s.  However, all results in this 
paper are independent of the absolute timescale, and times can be uniformly rescaled to other 
values.   

The fast-equilibration time is set to Tf = 100T  = 100 s.  In the absence of noise, the time 
resolution is more than adequate to measure this time, but at high noise levels, the equilibration 
will be obscured by time binning.  The slow-equilibration time is set to Ter = 104T  = 10 ms, which 
can be resolved under all reasonable levels of noise.  However, its measurement can be limited by 
the finite length of the time series TL.102-104  Initially, we wish to focus on the problem of 
measurement noise, so we first look at a long series of TL = 104Ter = 100 s.  (Shorter series are 
considered in Sec. IV.C.)  Solving the kinetic equations with these parameters (supplementary 
material, Sec. SI) gave the noise-free time series S(t). 

The form of the noise distribution is not important in our method.  For simplicity, we used 
Gaussian noise,  

 
2

2
1( ) exp

2 2
P . (13) 

The initial calculations were done with  = 1 or SNR = 0.583.  (The effects of changing the signal-
to-noise ratio will be examined in Sec. IV.A.)  Equation (6) was then used to generate the data 
D(t). 

The results can be seen as the black points in Fig. 2(a).  The noise-free signal S(t) is shown as 
red points for comparison.  A transition from state 2 to state 3 is marked by a blue vertical line.  A 
histogram of the unbinned data PD(D) is shown in Fig. 3 (Nb = 1).  The states and transitions are 
difficult to identify without some type of noise correction.   

Examples of noise correction by time binning are shown in Figs. 2(b)–2(d).  Corresponding 
histograms of the binned time series as a function of the extent of binning PD(D, Nb) are shown in 
Fig. 3.  The goals are for the binned data (black points) to approximate the noise-free time series 
(red points) in Fig. 2 and for the histogram (Fig. 3) to approximate the true distribution (Fig. 1).   

Achieving these goals is frustrated because binning puts time resolution and noise removal in 
conflict.  Too little binning does not remove enough noise: transitions are difficult to identify, and 
the peaks in the histogram are poorly resolved.  Too much binning reduces the time resolution: the 
fast-exchanging states blur, and their transition rates cannot be measured.  Many analysts would 
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select Nb = 100 (Fig. 3, blue, filled curve) as the best compromise, but the choice is subjective.  In 
this data set, no genuinely good choice is possible, despite the large amount of data available.  

FIG. 2. Effect of time binning on the time series. Segments of the noise free signal (red
squares) and the noisy data (black circles) with different amounts of binning: (a) Nb = 1
(no binning); (b) Nb = 100; (c) Nb = 103; (d) Nb = 104. Only points from non overlapping
bins are plotted. The time scale is changed in each subpanel to show the same number
of time bins. A fixed time, which is centered on a transition from state 2 to state 3, is
marked by a vertical, blue line. Note the different vertical scale in (a).

FIG. 3. Effect of time binning on the histogram. Histograms of the time binned data
versus the extent of binning. Increasing the binning reduces the broadening due to
measurement noise, but increases the blurring due to poor time resolution. The filled,
blue curve at Nb = 100 is taken as the best compromise.
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This data set has problems with time resolution for the fast dynamics and with adequate 
sampling of the slow dynamics.  The proposed correlation methods will ultimately address both 
problems.  

III. RECOVERING DYNAMICS FROM NOISY DATA 

A. Recovering nonlinear-correlation functions 
Equation (3) defined the moment-correlation functions as functionals of a time series.  The 

current goal is to relate the moment-correlation functions of data Mkl[D]( ) to those of the system 
property Mkl[X]( ).  Conventional analysis focuses on the linear-correlation function M11[D]( ), 
where the effects of noise and background are simple.  Using Eqs. (4), (6), (8), and (10) in Eq. (3) 
gives 

 

2
11

2 2

[ ]( ) ( ) ( ) (0)

( ) ( ) (0) 2

M D S S

X X B X B . (14) 

In addition to the property-correlation function, M11[X]( ) = X( )X(0) , there is a delta-function 
(first) term due to noise and a constant (last two terms) due to the background.  The constant is 
removed by defining  as the operation of subtracting the  =  value: Mkl[D] ( ) = Mkl[D] ( )  
Mkl[D] ( ).  The noise is removed by dropping the first delay point:   

 11 11 11[ ]( ) [ ]( ) [ ]( )M X M S M D T . (15) 

An example is shown in Fig. 4(a). The solid, black curve is calculated from the noise-free 
signal S(t), and the dashed, green curve is calculated from the noisy data D(t).  The delta-function 
component is off-scale, and its size is shown by the labeled point.  Aside from the  = 0 point, the 
two curves overlap perfectly.  (Correlation functions are calculated with quasi-logarithmic time 
bins.  Although restricted to monotonic decays, this method is faster and less noisy at long times 
than linear-time or Fourier-transform methods.105)   

This simple procedure does not extend to higher orders.  Starting with (k, l) = (3, 1), there are 
cross terms between lower-order functions and both the noise and the background:   

 

2
31 31 11

2 2
31 11

21

[ ]( 0) [ ]( ) 3 [ ]( )

[ ]( ) 3 [ ]( )

3 [ ]( )

M D M S M S

M X B M X

B M X . (16) 

Figure 4(b) compares M31[D]( ) from noisy data to M31[S]( ) from noise-free signal.  The 
difference is large: the noisy result has been divided by a factor of 2.5 to keep it on the same scale 
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as the noise-free result.  Once the two are on the same scale, one can also see that the decay shape 
is distorted.  Even when the noise is delta correlated, its effects are not confined to a single delay.   

FIG. 4. Effect of noise and noise correction on nonlinear correlation functions. Moment
correlation functions with the infinite time value subtracted for (a) (k, l) = (1, 1), (b) (k, l) =
(3, 1), (c) (k, l) = (4, 4), and (d) (k, l) = (6, 7). The solid, black curves are calculated from
the noise free signal Mkl[S]( ), the dashed, green curves are from the noisy data

Mkl[D]( ), and the red crosses are noise corrected data M kl[D]( ). The noisy results
have been divided by the factors shown. The horizontal scale is linear below 1 to show
the point at = 0.

A general formula for the noise-induced distortions is 

1

,
2
1

,
2

1 1

,
2 2

[ ]( ) [ ]( )

[ ]( )

[ ]( )

[ ]( ); 0

kl kl
k

i
k i l

i
l

j
l k j

j

k l
i j

k i l j
i j

M D M S

k
M S

i

l
M S

j

k l
M S

i j
. (17) 

The first term contains the desired signal-correlation function.  The next term was in the previous 
example [Eq. (16), Fig. 4(b)]; the third term is its symmetry companion.  Above (k, l) = (3, 3), the 
last term in Eq. (17) also becomes time dependent, further increasing the effect of noise.  Examples 
for M44( ) and M67( ) are shown in Figs. 4(c) and 4(d).  As a result of the combinatorial factors 
in Eq. (17), the desired first term becomes overwhelmed by noise-related terms as the order 
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increases.  Thus, correcting noise in nonlinear-correlation functions is more difficult than for linear 
ones. 

To treat high-order cases, a noise-corrected, moment-correlation function is defined as 

 [ ]( ) ( ) (0) ;k l
klM D D nT D n k l , (18) 

where the primed powers are defined by 

 ( ) ( 1) ( ) ( )kD t D k T t D T t D t . (19) 

In the primed power, the data points are separated by the correlation time for the noise T .  As a 
result, the factors of i  in Eq. (17) become i  = E( )i = 0 [Eq. (8)].  Noise effects are eliminated.  
On the other hand, if the noise-correlation time is substantially faster than the fastest signal-decay 
time, T   Tf, the signal-correlation functions will be unaffected.  Thus, Eq. (17) becomes 

 [ ]( ) [ ]( )kl klM D M S . (20) 

The accuracy of this result is shown in Fig. 4.  The noise-corrected, moment-correlation functions 
are shown as red crosses.  They agree very well with the results calculated from noise-free signal 
(solid, black), despite correcting several orders-of-magnitude of distortion.   

B. Recovering the equilibrium distribution  

1. Recovering distributions from their moments   
In our correlation-based approach, the distribution is recovered from its moments n.  These 

are defined as functionals of a probability distribution, for example,  

 [ ] ( )n
n D DP dD D P D . (21) 

They are also the zero-time value of the moment-correlation function calculated from the 
corresponding time series, 

 [ ] [ ](0);n
n klD D M D n k l . (22) 

Our problem is to invert Eq. (21), that is, to find the distribution Peq(X) from a sequence of 
moments derived from a noisy time series.   

Simply applying Eq. (22) to the noisy data is an inadequate starting point.  The zero-time 
values of the uncorrected correlation functions are strongly affected by noise (Fig. 4).  Inverting 
those values would give PD(D), the distribution of the noisy data (Fig. 3, Nb = 1).  The success of 
the noise-corrected correlation functions suggests that we should start with their zero-time values, 
which we define as the noise-corrected moments, 
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 [ ] [ ](0);n lkD M D n k l . (23) 

Their values can also be calculated directly, without generating the entire correlation function: 

 [ ] ( ) ( ) (0) n
n D D nT D T D D . (24) 

If the signal does not decay significantly over nT , then  

 [ ] [ ]n S nP D , (25) 

and inverting the noise-corrected moments will give the distribution of the signal. 
The problem of finding a function from its moments is a classic problem in pure 

mathematics.89,90  Data analysis is always restricted to a finite domain, Xmin  X  Xmax, in which 
case, any function can be recovered uniquely and exactly from an infinite number of error-free 
moments.  Equation (24) removes measurement noise, but unfortunately, the noise-corrected 
moments still contain sampling error due to the finite length of the time series.  That error increases 
with order, so we only a finite moment sequence,  = { n} for n = 0 to N , will be accurate enough 
to be useful.   

To estimate the minimum number of moments needed for the inversion N ,min, first consider 
discrete-state systems, which always have a highest state at Xmax with a probability PX,max.  In the 
limit of high orders, n  , the behavior of the moments [PX] is dominated by this state, with 

 ,max maxln [ ] ln lnn X XP P n X . (26) 

As an example, the noise-corrected moments from our data are shown in Fig. 5 (black circles).  
Moments in the asymptotic region are redundant. 

FIG. 5. The noise corrected moments of our simulated, discrete state data (black curve
and circles). The red line is the asymptote. The moments of a continuous state Gaussian
(blue curve and squares) are shown for comparison.
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In a continuous-state system, the asymptote will not be a straight line; the Gaussian moments 
in Fig. 5 (blue squares) are an example.  However, we are only interested in problems where the 
probability density decays quickly at high intensities.  An asymptotic region will still exist that is 
dominated by the behavior of the high-intensity, low-probability tail of the distribution, but the 
shape of this tail is usually not important for interpreting the data.  Thus, moments in the 
asymptotic region of a continuous-state system are also redundant for practical purposes. 

The effective start of the asymptotic region nasy can be defined by the point where the 
deviation from the asymptote becomes less than the maximum allowable error level in the 
measured moment ,max.  From our experience [described below, see Eq. (42)], 

 3
, max asy5 10 forn n

n

n n . (27) 

As illustrated by Fig. 6, this number increases with the complexity of the distribution.  Moments 
have been calculated for three models that have the same first moments and the same asymptotic 
moments, but that have two (red circles), three (green squares) or four (blue triangles) states (X = 
{1/2, 2}, Peq = {2/3, 1/3}; X = {0, 1, 2}, Peq = {1/3, 1/3, 1/3}; and X = {0, 1/2, 3/2, 2}, Peq = {1/3, 
1/6, 1/6, 1/3}; respectively).  The deviation from the asymptote is plotted on a linear scale in the 
main panel of Fig. 6.  The more states in the distribution, the slower the approach to the asymptote.  
From the inset with a log-linear scale, one can use Eq. (27) to estimate nasy: if there are two states, 
nasy = 4–5; if there are three, nasy = 7–8; if there are four, nasy  16.   

FIG. 6. The deviation of the moments from their asymptotic values [Eq. (26)] versus
their order for three models of increasing complexity: 2 state (red circles), 3 state (green
squares), and 4 state (blue triangles). The inset are the same data on a log linear scale.
The dashed reference line indicates the start of the asymptotic region [Eq. (27)].
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This argument can be reversed when inverting a finite sequence of moments.  One must first 
decide on the maximum complexity of the distribution to be considered and thus on a maximum 
value of nasy.  Adding moments to the sequence beyond this number will not be helpful (although 
not necessarily harmful either).  Conversely, moments up to this number help to distinguish 
between different distributions.  Thus, the minimum number of moments needed for a successful 
inversion N ,min is taken to be nasy: N ,min = 4–5, if two states are considered; N ,min = 7–8, if three 
are considered; N ,min  16, if four states are considered. 

For models and data of practical concern, one needs to consider sequences of 10 or more 
moments.  In established treatments of inverting moment sequences, only a few (3 5) moments 
are considered.  In the well-known method of moments, one selects a distribution function from a 
standard library, and its parameters are matched to the moments.106  The generalized method of 
moments allows more flexibility in the choosing the function.107  Alternatively, a series expansion 
around a base distribution can be matched to the moments.95-98,106  These parametric methods are 
generally used with continuous distributions.  The primary nonparametric approaches have been 
based on the maximum-entropy method.91,93,94,100  It explicitly favors broad, continuous 
distributions.  Our problem differs from this previous work: we seek a nonparametric method that 
works well on long moment sequences and that is agnostic about whether the distribution is 
discrete, continuous or a mixture of the two.  

2. Finding an initial solution 
We first discretize Eq. (21).  A vector of NP points is taken along the signal axis, S = {Si} with 

S1 = Smin, and SNp = Smax.  The recovered distribution is given by the vector of values at these 
points, Pr(S) = {Pr(Si)}.  It should satisfy the equation  

 [ ] ( ) rD V S P , (28) 

where the Vandermonde matrix V(S) is defined by108 
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and N  is the number of moments used.  In our calculations, the points are equally spaced by a 
distance S, although evenly spaced point are not required.  We also use Smin = 0.0125, Smax = 
2.0125, and NP = 81 ( S = 0.025).  These values were chosen so the points in the calculation do 
not accidentally lie at the exact positions of the model states.  Calculations with a greater point 
density (NP = 161, S = 0.0125) show no significant changes (supplementary material, Fig. S2). 
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Even with an infinite number of moments, inverting V(S) is ill-conditioned: the solution is 
extremely sensitive to errors in the moments.108  With a finite number of moments, the problem is 
also underdetermined: the number of moments is much smaller than the number of points in the 
solution, NP  N .  Both problems are addressed by looking for a solution that nearly solves Eq. 
(28), but that also satisfies certain “regularizing” conditions.109  As the measure of the distance 
from an exact solution, we define a fitting error based the fractional error in the measured moments,  
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The correct solution will have a error of *, which is equal to the (unknown) error in the input 
moments.  A simple minimization of  will drive it to a value below this value, a process known 
as “fitting the error.” 

  One set of regularizing constraints has been implicitly imposed when the solution was 
confined to be between Smin and Smax.  We assume that our experiment is measuring light 
intensities, so we take Smin near zero with confidence.  Visual inspection of Fig. 5 gives Smax  1 
from the zero slope of the asymptote and log10 PS,max  –0.47 from its intercept.  We take Smax 
near two to be conservative.  This assumption will be verified if the recovered distribution 
approaches zero before reaching Smax.  If not, the data themselves will have indicated that Smax 
needs to be increased.  Thus, we have strong confidence in this boundary as well. 

The most important regularization conditions in our problem prove to be additional boundary 
constraints.  Specifically, we add the requirement that all the elements of Pr be nonnegative, 
consistent with their role as probabilities.  With the same justification, we require that the zeroth 
moment be exactly one, equivalent to Pr being a normalized probability distribution.  (Probabilities 
must also be less than one, but this result is already implied by these two constraints.)  General 
treatments of regularization often emphasize regularization functions.  However, using 
regularizing functions without these boundaries can result in wildly incorrect solutions and 
unrealistically small fitting errors (supplementary material, Sec. SII). 

To implement these boundary conditions, the first element of  and the first row of V are 
dropped in Eq. (30) and nonnegativity and normalization constraints are added to the minimization 
of :  

 

2
,

1

,

min ( ) subject to 1

and 0; 1, ,

P

r

N

P

r r i
i

r i

P

P i N
P

P

. (31) 



  18 

This problem, as well as its extensions below, is a quadratic minimization with linear constraints 
and constant boundaries.  Fast and efficient algorithms are available for this problem.110  See the 
supplementary material, Sec. SIII for details. 

FIG. 7. The recovered probability distribution Pr (solid, black peaks) and cumulative
distribution Fr (black, dashed dotted line) using only nonnegativity and unit area
constraints [Eq. (31) or Eq. (32) with = = 0] with N = 13 moments. The error in fitting
the measured moments is 0 = 0.8×10 4. The cumulative distribution of the correct
solution FS is the red, dashed line.

Figure 7 shows the solution to Eq. (31) using N  = 13 noise-corrected moments from our data 
(Fig. 5).  The error in matching the measured moments, 0 = 0.8×10 4, is small, but much larger 
than for the unconstrained minimum (  = 8.8×10 14, supplementary material Fig. S1).  (We use 0 
to denote the fitting error for the solution regularized only with boundary conditions.)  Comparing 
the recovered cumulative distribution (dash-dotted, black line) with the known solution (dashed, 
red line), we see that the solution is accurate both qualitatively and quantitatively: it correctly 
identifies the model as having three discrete states, the peak areas are correct, and the correct 
positions are within the recovered linewidths. 

3. Exploring the error range 
If we were working with real experimental data, we would not know whether this solution and 

its value of 0 were correct.  For example, by the arguments given by Tibshirani in connection with 
LASSO regularization,111 a cusp in the solution domain favors sparse solutions (solutions with 
many zero-probability points).  The boundary conditions that we have imposed create such cusps 
at Pr(Smin) = 0 and Pr(Smax) = 0.  Does this effect suppress interpeak intensity or artificially narrow 
the peaks in Fig. 7?  Or should the peaks be even narrower?  Would a solution more like the 
histogram in Fig. 3 be equally consistent with the data?  We need to explore the range of other 
solutions that fit the data nearly as well as the solution to Eq. (31).   
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To do this, we combine regularizing functions Ri(Pr) with the boundary constraints in Eq. (31)
: 
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Regularizing functions encode prior knowledge or assumptions about the correct solution.  
Increasing values of  and  reflect increasing confidence in the prior assumptions and will push 
 to higher values.  The values of  and  themselves are not meaningful, but the ratio / 0 reflects 

the reduction in the fit to the data.  Thus, the range of solutions with / 0 modestly higher than one 
defines the uncertainty range of the recovered distribution.   

The coefficients’ relationships to the fitting error, ( ) and ( ), are initially unknown.  Values 
of  and  are assumed, and the implied value of  is calculated from the minimized solution.  An 
example of ( ) is given in the supplementary material [Fig. S4(a)].   

Regularization is used in a broad range of inverse and machine-learning problems, and many 
regularization functions are available.112  In general, there are two competing ideas about what 
makes a better distribution, and so, we have included two regularizing functions.  The idea that a 
smoother, broader distribution is better is expressed by the smoothing regularizer R1(Pr).  We 
choose it to be 

 2
1

1( )
1r r

PN
R P D P , (33) 

where 

 
1 1

1 1
D . (34) 

The matrix D is a discrete approximation to the first derivative of the solution.  The function R1(Pr) 
measures the mean-squared magnitude of the solution’s derivative and is a standard form in 
Tikhonov regularization.109   

Figure 8 looks at solutions with varying smoothness and breadth.  By increasing  in Eq. (32) 
(with  = 0), / 0 increases from 1 to 2.5.  The acceptable fitting error is not perfectly defined, but 
this range covers the likely possibilities.  Although the peaks broaden, they remain distinct and 
well-separated by near-zero-intensity regions.  The peak areas change very little.  These are robust 
features of the solution that cannot be eliminated without losing the fit to the data.   



  20 

FIG. 8. Effect of the smoothing regularizer R1(Pr) on the recovered distribution. The
fitting error increases with increasing [Eq. (32), = 0, N = 13]: / 0 = 1 (thin, black curve;
from Fig. 7), 1.22 (short dashed, red curve), 1.8 (dashed, green curve), 2.5 (blue points
and line). The / 0 = 1 probability density [thin, black curve; panel (a)] has been divided
by 2.0. (a) Probability densities and (b) cumulative probabilities.

Alternatively, the simplest and best solution can be taken to be the one with the smallest 
number of variables, parameters, or states.113  In our case, we favor solutions with large regions of 
zero or near-zero probability (sparse solutions) with R2(Pr).  This sparsity regularizer can narrow 
large peaks, eliminate small ones, or suppress baseline noise.  Although the particular solutions in 
Fig. 8 are already quite sparse, we will demonstrate its effect for use in other problems.   

A popular sparsity regularizer is the LASSO function,111 

 3 ,
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i
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This function cannot be used in the current problem because its value is fixed by the nonnegativity 
and normalization constraints in Eq. (32).  As an alternative, we sum over only the points that are 
already low: 
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This function will try to take probability away from points with probability below Psp and 
redistribute it to points with values larger than Psp.   

FIG. 9. Effect of the sparsity regularizer R2(Pr; Psp = 0.53) on the recovered distribution.
The N = 14 probability density without the sparsity regularizer [thin, black curve; = 0;
/ 0 = 1.21; from Fig. 10(c)] and with the sparsity regularizer (dashed, green curve; / 0 =
1.21). The horizontal, grey line marks the level of Psp.

As an example, Fig. 9 shows a solution from a moment sequence with an additional, high-
error moment included [N  = 14, see Fig. 10(c) below].  This error leads to a solution with broad 
peaks.  In principle, there are two parameters to be adjusted,  and Psp.  In this particular problem, 
increasing  has only a small effect on .  Thus, we take the large  limit, which forces all the 
points below Psp to zero.  As Fig. 9 shows the two peaks can be cleanly separated with very little 
increase in / 0.  Thus, there is no evidence in the data that the interpeak probability is real. 

The final question is how many moments N  should be used in Eq. (32) [via Eq. (30)].  Above 
some order, the moments will have more error than new information, resulting in a poorer solution 
for a longer moment sequence.  On the other hand, setting N  too small will throw away moments 
that do contain useful information, also reducing the quality of the result.   

These effects are seen in Fig. 10, which shows results from our data for different values of N .  
Using only N  = 6 gives a noisy result [Figs. 10(a) and 10(e)].  Adding another one or two moments 
[N  = 7 8, Figs. 10(a) and 10(e)] makes the distribution narrower and better resolved. We conclude 
that 7[D] contains critical new information and that 8[D] has some additional information.  The 
minimum sequence length, N ,min = 7–8, is consistent with our earlier estimate for a three-state 
system (see Fig. 6).   

At the other extreme, the solutions with N  = 17 20 [Figs. 10(d) and 10(h)] change erratically 
as moments are added.  The moments above n = 17, have so much error that they degrade the 
solution.  The moments from n = 14–16  [Figs. 10(c) and 10(g)] have less error, but enough to be 
detrimental.  Thus, there is also a maximum number of usable moments, N ,max = 13 in this case. 
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FIG. 10. Effect of the number of moments used N on the recovered distribution. (a) and
(e): N = 6 (thin, black curve), 7 (dashed, green curve), 8 (blue points). (b) and (f): N = 10
(dashed, green curve), 12 (blue points), 13 (thin, black curve)]. (c) and (g): N = 14 (thin,
black curve), 15 (dashed, green curve), 16 (short dashed, red curve), 17 (blue points). (d)
and (h): N = 18 (thin, black curve), 19 (blue points), 20 (dashed, green curve)]. Top row
[(a)–(d)]: probability densities. Bottom row [(e)–(h)]: cumulative probabilities. The
value of has been adjusted to / 0 1.22 to smooth out minor differences between the
solutions. Sparsity is not enforced ( = 0).

Between N ,min and N ,max [N  = 8 13, Figs. 10(b) and 10(f)], the solutions are almost 
independent of the number of moments used.  The moments 9[D]– 13[D] are accurate, but they 
are in the asymptotic region and do not better define a three-state system.  Although, these 
moments do not change the solution, they remain useful.  The fact that a fourth peak fails to appear 
up to N  = 13 increases our confidence that it does not exist.  We conclude that for this data set, 
N  = 13 is optimal. (By chance, the break at this point is particularly striking in this realization of 
the time series.  See Fig. S3 in the supplementary material.) 

C. Final results 

1. Equilibrium distribution 
We have explored the space of solutions consistent with the data and spanned by the 

parameters N , , and Psp.  Throughout this space, the solutions have the same major physical 
features: three narrow peaks with unchanging positions and areas.  The solution is not 
mathematically unique, but it is physically unique.  To conclude, a single solution is chosen to 
represent the acceptable solutions.  Statistical approaches to optimizing regularization parameters 
are not helpful (supplemental material, Sec. SIV), so we make a more subjective judgement. 
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FIG. 11. Comparison of the distribution from a correlation function approach Pr(S)
(solid, red curves) to one from time binning and histogramming PD(S, Nb) (short dashed,
blue curves; from Fig. 3, Nb = 100) and to the known solution [(a) black bars, (b) solid,
black lines; from Fig. 1]. The correlation function solution is the / 0 = 1.22 result from
Fig. 8 (N = 13, 0 = 0.8×10 4, = 0.0014, / 0 = 1.22, = 0). (a) Probability densities and
probabilities and (b) cumulative probabilities.

Our choice is shown in Fig. 11 (red, solid curves), where it is compared to the original model 
from Fig. 1 (black bars and solid curve).  The recovered distribution is not only qualitatively 
correct, but it is also quantitatively reliable: the mean positions of the states and the state 
populations are accurate.  In contrast to a hidden-Markov fit, the peaks have finite widths.  With 
real data, the widths would have indicated the extent of substructure within the states that would 
be consistent with the data.   

This result comes from a data set that is noisy, SNR = 0.58, but otherwise favorable: the data 
set is large, NP = 108; the instrument time-resolution is high compared to the fastest dynamics, 
Tf /T  = 100; and the slow-dynamics are well sampled, TL/Ter = 104.  Despite the favorable data, 
time binning is not able to provide similar results.  Figure 11 also shows the histogram with optimal 
time binning (blue, short dashed curve, see Fig. 3).  The time resolution of this histogram is 100 
times the instrumental time resolution, Tr /T  = 100.  The peaks are poorly resolved due to a 
combination of residual noise and imperfect time resolution.  Figure 3 shows that the binning time 
would have to be increased by more than 30-fold to narrow the long-lived, high-intensity peak as 
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much as the correlation method does.  Binning that drastic would reduce the time resolution of the 
experiment to 3000 times the instrument’s time resolution.    

The time resolution of the correlation method is not precisely defined.  However, if even 10% 
of the decay was not resolved, 10% of the population of the two low-intensity peak would be 
averaged to values between the two peaks.  The lack of interpeak intensity shows that Tr / T  < 10. 
Thus, noise-removal by correlation methods offers major improvements over time binning in both 
time and state-space resolution, without introducing a priori restrictions on the solution. 

2. System dynamics 
With the equilibrium distribution known, the conversion of the noise-corrected moment-

correlation functions can be converted to the system’s Green’s function.  As the full details are 
covered  in Ref. 87, we present only a brief, simplified conversion for purposes of illustration.  The 
linewidths in the equilibrium distribution are ignored: three delta-function states are taken at the 
positions of the peaks in Fig. 11(a), with their probabilities given by the plateaus in Fig. 11(b).  
This distribution defines the orthogonal polynomials Qk(S) or “modes” for the system.  Without 
linewidths, only three modes and only correlation functions only up to order n = 4 are required.  
The mode-correlation functions, Ckl( ) = Qk( )Ql(0) , were then calculated from the noise-
corrected, moment-correlation functions (Fig. 4).  In conjunction with the equilibrium distribution, 
the mode-correlation functions were converted to the Green’s function of the signal G(S1|S0; ). 

The results are displayed in the top row in Fig. 12 as the more symmetrical, joint-probability 
distribution P(S1, S0; ) = G(S1|S0; )Peq(S0).  Delta functions have been plotted as bars with their 
heights indicating their probabilities.  At  = 0, the joint distribution should be diagonal, 
P(S1, S0; 0) = (S1 – S0)Peq(S0).  The small, off-diagonal elements in Fig. 12(a) could have been 
eliminated by refitting our simplified model to the data.  The utility of the joint distribution comes 
at  = 100 s and 1 ms [Figs. 12(b) and 12(c)], the mid- and end-points of the first decay in the 
autocorrelation function [Fig. 4(a)].  During this period, the cross-peaks between the low- and mid-
intensity peaks grow, showing that the fast kinetics are between these two states.  Cross-peaks with 
the high-intensity peak only grow in near  = 10 ms [Fig. 12(d)], the time of the second decay of 
the autocorrelation function.  This decay can be assigned to the equilibration of this state.  Thus, 
higher correlation functions allow the assignment of times to particular state-to-state transitions, a 
feature lacking in the autocorrelation function alone.  At  = 110 ms [Fig. 12(e)], the distribution 
matches the equilibrium distribution, P(S1, S0; 110 ms) = Peq(S1)Peq(S0), confirming that the 
system equilibrates within this time. 

An alternative analysis is shown in the bottom row of Fig. 12.  The mode-correlation matrix 
can always be diagonalized at one delay, here chosen to be  = 1 ms.  Applying the same rotation 
to all times gives the eigenstate-correlation function Ekl( ).  If this matrix is diagonal at all times, 
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the system has eigenstates, and the diagonal elements Ekk( ) are the eigendecays.  As expected, 
this condition holds for our model, and the eigendecays are shown in Fig. 12(i).  The corresponding 
right eigenstates of the Green’s function Rk(S0) are derived from the diagonalizing matrix87 and 
are shown in the bottom row of Fig. 12.  As expected, the first eigenstate R0 is the assumed 
equilibrium distribution [Fig. 12(f)], and its eigendecay E00 is constant [Fig. 12(i), black].  The 
second eigenstate R1 is associated with transitions between the low- and mid-intensity states [Fig. 
12(g)].  Its eigendecay E11 fits a single exponential with a time constant Tf = (k12 + k21) 1 = 99 s, 
a good match to the true value of 100 s.  The last eigenstate R2 is associated with decay of the 
high-intensity state [Fig. 12(h)].  Its eigendecay is also exponential with a time constant Ter = 
(k3(1/2) + k(1/2)3) 1 = 10.0 ms, which again matches the true value.  From these time constants and 
the state populations from Fig. 11, the original master equation of the system can be reconstructed.  

FIG. 12. Dynamic quantities extracted from the noise corrected, moment correlation
functions (Fig. 4). Top row, (a)–(e): The joint probability distribution P(S1, S0; ). Bottom
row: The eigenstates Rk(S) [(f)–(h)] and their corresponding eigendecays Ekl( ) [(i),
points]. The eigendecays E11 (red circles) and E22 (green, up triangles) are fit with single
exponentials (curves). The eigendecays E00 (black, down triangles) and E22 (green,
squares) are constant.

[There is an ambiguity about which state the high-intensity state couples to.  This ambiguity 
is inherent in kinetics when there is a wide timescale separation between decay times.  If the decay 
times were close, the cross-peaks between the lower and highest intensity states in Fig. 12(d) would 
not rise at the same rate, and the ambiguity would be resolved.]  

The fact that the eigendecays are single exponentials shows that the system is Markovian in 
the identified states and that no hidden states remain.87  Further analysis with multidimensional-
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correlation functions is not needed as it would only duplicate the information from the one-
dimensional analysis.  We can be confident that all the useful information in the data has been 
extracted. 

IV. ROBUSTNESS OF CORRELATION METHODS 

A. A floor in the usable SNR 
The last section demonstrated that correlation methods work well for one noisy, but large, 

data set.  This section explores the limits of this approach as the data quality decreases, in this 
subsection as the noise increases and in the next subsection as the data-set size decreases.  To 
begin, we must distinguish between measurement noise and sampling error.  Measurement noise 
is caused by the experimental apparatus and disappears when  goes to zero; sampling error is 
caused by the finite size of the data set and disappears when TL goes to infinity.  Sampling error 
manifests as residual fluctuations along the correlation function after noise correction [see Fig. 
4(d)].  The issues are similar at all delays, so we focus on the error in the  = 0 moments and the 
resulting error in the recovered distribution. 

FIG. 13. Distributions recovered from four realizations of a long, medium noise time
series (SNR = 0.58, Nt = 108, Nen = 1). All cases were smoothed until / 0 = 1.22, sparsity
was not enforced ( = 0), and N = 13. (a) Probability densities and (b) cumulative
probabilities. The result from Fig. 11 has black circles.
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We first test the method’s precision by looking at repeated measurements.  Three additional 
realizations of the data were generated with the same parameters used in Sec. III.B, but with 
different seeds for the random-number generators for both signal and noise.  Distributions 
recovered from each realization are shown in Fig. 13, along from the one presented in the previous 
section (Sec. 0).  The differences are small and are the result of sampling error, not residual 
measurement noise.   

FIG. 14. Deviation of the measuredmoments from the true moments for the realizations
used in Fig. 13 (same color and symbol code). (a) The total sampling error n,i, (b) the
absolute value of the signal sampling error | S,n,i|, and (c) the absolute value of the
noise sampling error | ,n,i|. The dashed, black curves are the predictions of the theory
for (a) ± n [Eq. (38)], (b) S [Eq. (39)], and (c) ,n [Eq. (40)].
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We next look at the error contributed by individual moments.  The sampling error n,i in a 
specific moment is defined as the fractional deviation of a finite-length, noise-corrected moment 
from the value calculated analytically from the true distribution, 
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The subscript i labels a specific realization.  Figure 14(a) shows results from the realizations used 
in Fig. 13.  As anticipated, the error increases for higher moments, but the pattern of increase is 
peculiar.  For moments n  14, the magnitude of the errors is small and nearly independent of the 
order.  For n  18, the error is large and increasing rapidly with order. Thus, there is a crossover 
in the character of the sampling error.  This crossover results in the maximum number of usable 
moments, N ,max = 13, being relatively well defined, as seen in Fig. 10. 

FIG. 15. Distributions recovered from long time series (Nt = 108, Nen = 1) with different
signal to noise ratios: SNR = 1.16 (dashed, red curve), 0.58 (solid, black curve), 0.39 (blue
points and line), 0.33 (short dashed, green curve), and 0.29 (dash–dotted, orange curve)
( = 0.5, 1.0, 1.5, 1.75 and 2.0, respectively). The numbers of moments used were N =
15, 13, 8, 7, and 7, respectively. All cases were smoothed until  / 0 1.22, and sparsity
was not enforced ( = 0). (a) Probability densities and (b) cumulative probabilities. The
result from Fig. 11 has a black curve.
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To see the effect of changing the signal-to-noise ratio, we constructed data sets with different 
noise levels.  In addition to the case analyzed above with SNR = 0.58, three cases with higher 
noise; SNR = 0.39, 0.33, and 0.29; and one with lower noise, SNR = 1.16, were examined.  To 
eliminate variations in the sampling noise, we used a single realization of the signal and one of the 
noise and combined them in different ratios.  The optimal number of moments was determined as 
in Fig. 10.  The resulting distributions are shown in Fig. 15.  There is a slow loss of resolution as 
the signal-to-noise level drops to SNR = 0.39, and then the resolution deteriorates rapidly for lower 
values.  Thus, there is a floor to the acceptable signal-to-noise ratio for a given data-set size. 

FIG. 16. Deviation of the measured moments from the true moments for the time series
used in Fig. 15: SNR = 1.16 (red circles), 0.58 (black squares), 0.39 (blue, up triangles),
0.33 (green diamonds), and 0.29 (orange, down triangles). (a) The total sampling error
n,i, and (b) the absolute value of the noise sampling error | ,n,i|. [See Fig. 14(b) (black
circles) for the signal sampling error.] The dashed curves are the predictions of the
theory for (a) ± n [Eq. (38)] and (b) ,n [Eq. (40)].

The same crossover in sampling error with order seen in Fig. 14(a) is also seen for different 
signal-to-noise ratios [Fig. 16(a)].  As the signal-to-noise ratio drops, the crossover occurs at 
smaller orders.  As a result, the maximum number of usable moments drops from N ,max = 15 (or 
more) with SNR = 1.16 to N ,max = 6 with SNR = 0.27.  Figure 6 estimated that a minimum of 
N ,min = 7–8 moments are needed to accurately recover a three-state system.  When the signal-to-
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noise ratio limits the number of accurate moments to below this minimum, the distribution 
recovery deteriorates.  Thus, the floor in the acceptable signal-to-noise ratio is directly linked to 
the crossover from constant to rapidly rising sampling error.   

B. Limits to data-set size and time resolution from sampling error 
An explanation of the crossover and its dependence on the signal-to-noise ratio requires a 

more quantitative analysis of sampling error and how it varies with the quality of the data set.  
Data-set quality depends on its signal-to-noise ratio, its dynamic range in time, Nt = TL / T , and 
its total size Ner.  Although our examples above consisted of a single time series, more generally, 
one collects data from an ensemble of Nen series from different members of the sample, so the total 
data-set size is Ner = Nt Nen.  (See Sec. IV.C for more discussion of ensemble averaging.) 

In addition to time and ensemble averages over one realization of the data, we also need to 
consider statistics over many hypothetical realizations of the data.  The supplemental material (Sec. 
SV) shows that noise removal is unbiased.  It also calculates the expected variance of the nth-order 
sampling error, n

2 = Var( n).  (Previous work has looked at the variance of uncorrected, linear, 
auto- and cross-correlation functions.105,114)  The result can be divided into two terms:  

 2 2 2
,n S n ,  (38) 

the signal-sampling error S and the noise-sampling error ,n.  The signal-sampling error results 
from incomplete sampling of the signal distribution.  It occurs even in the absence of measurement 
noise and does not depend on the signal-to-noise ratio.  In contrast, the noise-sampling error goes 
to zero as the signal-to-noise ratio becomes large.  It results from the need to effectively sample 
the noise distribution.  Although we are not interested in the noise distribution, Eq. (11) makes it 
clear that noise correction is really a blind separation of the data into two components, signal and 
noise.  Consequently, information about the noise distribution is just as important as information 
about the signal distribution.  This point is further emphasized later in Sec. V, which explicitly 
determines the noise distribution from the same moments we have been using. 

Asymptotic approximations for the two sources of sampling noise (supplementary material, 
Sec. SV) are sufficient to illustrate the important trends: 
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The constants a and b depend on the details of the distribution, but are of order unity.  Both types 
of error go to zero as the size of the data set goes to infinity, as expected.  More importantly, the 
signal-sampling error is independent of the order of moment, whereas the noise-sampling error is 
exponential in the error.  

To test these predictions against our data, the total error for each realization was decomposed 
by extending Eq. (38) to individual time series, 

 2 2 2
, , , , ,n i S n i n i . (41) 

The signal-sampling errors S,n,i were calculated from the noise-free time series and are plotted in 
Fig. 14(b).  The noise-sampling errors ,n,i were then calculated from Eq. (41) using the values 
from Figs. 14(a), 16(a), and 14(b).  The results are plotted in Fig. 14(c) and 16(b) as colored lines 
with symbols.  The predictions of Eqs. (38)–(40) are plotted as dashed curves.  Because a and b 
would not be known with real data, we have used generic values of a = b = 1.  The predictions are 
of the right magnitude and show the correct trends with order and signal-to-noise ratio.   

The combination of these effects explains the crossover in the total-sampling error.  In Figs. 
14(a) and 16(a), the constant, signal-sampling error dominates at low n.  Above some order, the 
exponential dependence of the noise-sampling error takes over, and the total rises rapidly.  The 
position of this crossover as a function of the signal-to-noise ratio is correctly predicted [Fig. 
16(a)].  Thus, this phenomenon is not specific to our examples; it is a general effect.  

In real experiments, the errors of individual moments are not known; only the maximum 
number of useful moments N ,max is discernable.  Before estimating its value, we note that the 
signal-sampling error has mild consequences.  Signal-sampling error creates a moment sequence 
that corresponds to a physically realistic distribution with the correct number of states and the 
correct state positions.  In contrast, noise-sampling error can distort a moment sequence in any 
way possible.  As a result, false peaks can appear, state widths can be broadened, or peak positions 
and areas can be incorrect.  Indeed, noise-sampling error may create a moment sequence that does 
not correspond to any real distribution. 

Thus, we focus on the stronger effects of noise-sampling error.  The maximum error that a 
moment can have without degrading the recovery is ,max.  As the order increases and the noise-
sampling error rises, there will be a maximum order that does not have excessive error nmax, which 
is defined as the order where the noise-sampling error is equal to ,max.  It is the counterpart to 
nasy, defined in Eq. (27): nasy defines the largest moment that provides new information about the 
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distribution greater than the error in the moment; nmax defines the largest moment that will not 
disrupt the distribution recovery because of its inaccuracy.  In between, the moments are accurate, 
but redundant.  These values then define the minimum and maximum sequence lengths, N ,min = 
nasy and N ,max = nmax, that produce accurate distributions.  So long as N ,max > N ,min, it is still 
possible find an N  that gives a good recovery.   

These definitions can be put into Eq. (40).  Dropping the right-hand one and taking a = b = 1, 
the value of N ,max is estimated to be   
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A value of ,max = 5×10 3 matches our results well.  This value gives N ,max = 13 [Eq. (42)] and 
N ,min = 7–8 [Fig. 6, Eq. (27)].  Figure 10 shows accurate, stable distributions are recovered in this 
range, and poor solutions are found outside it.  As the signal-to-noise ratio drops from 1.16 to 0.29 
in Fig. 15, N ,max drops: N ,max = 42, 13, 7.3, 6.0, 5.2.  Good distributions are found for the three 
high signal-to-noise cases, where N ,max  N ,min, and poor distributions are recovered for the two 
low signal-to-noise cases, where N ,max  N ,min.  This formula is accurate enough to estimate the 
position of the signal-to-noise floor. 

With these formulas, we can address the fundamental questions posed in the introduction.  
First,  can a larger data set compensate for an arbitrarily low signal-to-noise ratio?  The restriction 
on data-set size and signal-to-noise ratio is given by the requirement that ,n  ,max for n = 
N ,min.  Putting this requirement into Eq. (40), gives different behavior for high and low signal-to-
noise ratios.  In the low-noise limit, SNR  ½, 
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whereas in the high-noise limit, SNR  ½, 

 ,min1/2 1
er ,max2SNR 2NN . (44) 

In either case, an arbitrarily low SNR can be compensated by an arbitrarily large data-set size.  In 
the high signal-to-noise ratio regime [Eq. (43)], the data-set size must be increased by the square 
of the decrease in signal-to-noise ratio.  This behavior is typical.  However, compensation is 
impractical in the low signal-to-noise regime.  In Eq. (44), SNR is raised to a high power.  In the 
case we have been looking at with N ,min = 7, a 2-fold decrease in signal-to-noise ratio requires a 
1.6×104-fold increase in the data-set size.  Thus, there is a minimum SNR  ½, below which it is 
impractical to collect enough data to make up for a high noise level. 
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The other fundamental question was: How is the time resolution of the experiment Tr related 
to the time resolution of the instrument T ?  If the signal-to-noise ratio is above one-half, the main 
restriction on the time resolution is the time averaging in the primed powers [Eq. (19)].  A simple 
average over the time range covered by a moment sequence gives an estimate of Tr /T  = 
½ (N ,min + 1).  Equations (43) and (44) imply that if the experimental signal-to-noise ratio is below 
one-half, then the data must be binned to reach this value.  The extent of binning needed is Nb = 
(2SNR) 2.  Thus, the ratio of the experimental time resolution to the measurement time resolution 
is approximately 
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Time binning shows a conflict between noise removal and time resolution and creates the 
paradox of the experimental time resolution being orders-of-magnitude lower than the instrumental 
resolution.  These problems are eliminated.  The time resolution of a nonparametric method can 
be similar to that of a more restricted, parametric analysis.31 

C. Using smaller data sets and shorter series  
It remains to test our methods on smaller data sets, closer to the limits implied by the theory 

presented above and closer to common experimental conditions.  The effects of time range Nt, 
data-set size Ner, ensemble size Nen, and signal-to-noise ratio SNR are all intertwined.  Rather than 
a full exploration of these parameters, we look at two, smaller data sets that illustrate the most 
salient points: a medium-sized data set with 100 times fewer data points (Ner = 106) than in the 
earlier, large sets (Ner = 108), and a small data set with 104 times fewer points (Ner = 104).  The 
new data sets also contain Nen = 100 series, in contrast to the single series (Nen = 1) in the earlier 
sets.  Thus, we will see the consequences of ensemble analysis.   

The new data sets have much shorter series as well.  The average series length in the medium 
set is 104 times shorter ( Nt  = 104) than in the previous examples (Nt = 108).  This length is only 
as long as the slowest relaxation time of the system, TL  = Ter = 10 ms.  The series lengths in the 
small data set are 106 shorter (Nt = 102) than in the earlier sets.  This length is only as long as the 
fastest relaxation time in the system, TL  = Tf  = 100 s.  

Finally, the medium data set has nonuniform series lengths, a common feature in experimental 
data.  The lengths of individual series TL,i were chosen from an exponential with a time constant 
of Ter.  Series shorter than Ter or longer than 3Ter were rejected.  This set mimics the effects of 
photobleaching in single-molecule experiments. 
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FIG. 17. Distributions recovered from data sets of various size [Ner = 108 (red, solid
curve), 106 (green, dashed curve), 104 (blue, dotted curve)] compared to the known
solution [(a) black bars, (b) solid, black lines; from Fig. 1]. The number of data points
was decreased through a combination of reducing the time range of the series [Nt = 108

(red), 104 (green), 104 (blue)], increasing the number of series measured [Nen = 1 (red),
100 (green), 100 (blue)] and increasing the signal to noise ratio [SNR = 0.58 (red), 1.16
(green), 1.75 (blue)]. (a) Probability densities and (b) cumulative probabilities. Recovery
was done with the N = 13 (red), 14 (green), 13 (blue), / 0 = 1.22, = 0.

Distributions recovered from the large, medium and small data sets are compared to the 
original model in Fig. 17.  To get acceptable results, the signal-to-noise ratio was raised as the size 
decreased: compared to the large sets (SNR = 0.58 and Ner = 108), the signal in the medium set 
was doubled when the size was cut 100-fold (SNR = 1.16 and Ner = 106), and the signal in the 
small set was trebled when the size was cut 104-fold (SNR = 1.75 and Ner = 104).  The sizes and 
signal-to-noise ratios satisfy the inequalities required by Eq. (43): for the medium set, 880 > 280, 
and for the small set, 130  280 (compared to 4400  280 for the large set).  The number of states 
and the peak positions are always accurate [Fig. 17(a)].  Because the small data set is crossing this 
limit, there is some error in the peak areas [Fig. 17(b)], and the peaks are slightly broader.  Overall, 
a much smaller data set can be compensated by a modest increase in the signal-to-noise ratio. 

Turning to the correlation functions, the total number of data points is not a full description of 
data quality: how the size is divided between series length and number of series is also important.  
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The role of ensemble analysis is not always clear in the literature.  Many parametric methods do a 
simultaneous fit over an ensemble of time series.37  Correlation methods naturally use an ergodic 
average, one mixing time and ensemble averages.  In this paper, Eqs. (23) and (24) are based on 
time and ensemble averages, respectively, and are taken to be equivalent.  This ergodic assumption 
should hold for systems at equilibrium or in a stable, steady state. 

However, ensemble averaging is sometimes portrayed as antithetical to single-molecule 
measurements.82,115-119  One objection is that time series themselves cannot be ensemble averaged 
without losing essential information.  However, by not analyzing series directly, correlation 
methods avoid this problem.  Another objection is that the linear-correlation function—as well as 
the 1D, nonlinear-correlation functions treated here—average over any heterogeneity in the 
ensemble.  However, it has now been shown that the information on heterogeneity is contained in 
(ergodically-averaged) two- and three-dimensional correlation functions.74-78,80,81   

Skepticism about ensemble averaging has led to the use of “single-molecule” correlation 
functions M kl[Di]( ), which are restricted to time averaging over a single series,3,102-104,120-125 
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where different series are identified by the subscript i.  Following conventional practice, the data 
have also been centered by subtracting the mean calculated from the same time series, 

 i i iD t D t D . (47) 

Single-molecule averages work well, if the series are sufficiently long.  For example, in our 
large data set, the long length (TL = 104 Ter) reduces the signal-sampling error to only 2.6% [Eq. 
(39)].  As a result, both linear- and nonlinear-correlation functions are quite good (Fig. 4).  
(However, data centering [Eq. (47)] does not give a long-time limit of zero for nonlinear-
correlation functions, as it does for linear ones.)   

On the other hand, single-molecule correlation functions become susceptible to signal-
sampling error when the series are short.  Vanden Bout and Kaufman have detailed this problem 
for the linear case.102-104  In our medium-sized data set, where the slow relaxation is poorly sampled 
( TL  = Ter), the estimated signal-sampling error for a single series is 180% [Eq. (39)].  Figures 
18(a) and 18(b) show selected single-molecule correlation functions, linear and nonlinear 
respectively, from this data set.  The linear-correlation functions fluctuate widely and are strongly 
biased toward short relaxation times.  The nonlinear-correlation functions deteriorate very rapidly 
with increasing order; the 4th-order case shown in Fig. 18(b) is the highest that could be 
meaningfully plotted.  Moreover, when series are short, neither single-molecule correlation 
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functions themselves nor statistics derived from them can be subsequently ensemble averaged 
because of the bias introduce by the nonlinear manipulations in Eq. (46).   

FIG. 18. Normalized correlation functions from shorter time series. In each subpanel,
the full, black curve is the correct function. In (a) and (b), the single molecule correlation
functions for selected short time series ( TL = 104 s, medium data set) are shown as thin,
colored curves. Ensemble averaged moment correlation functions are shown for short
series ( TL = 104 s, medium data set) in (c) and (d) (blue circles) and for very short series
(TL = 102 s, small data set) in (e) and (f) (green triangles).

To allow the use of short time series, uncentered, unnormalized moment-correlation functions 
[Eq. (3)] have been used so far.  These can be ensemble averaged without bias.  Because we have 
already looked at the distributions derived from the zero-time points of these functions, we can 
now focus on the kinetics alone, which are represented by normalized moment-correlation 
functions, 
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To avoid bias, the normalization at  = 0 and zeroing at  =  are only done with ensemble-averaged 
quantities. 

Figures 18(c) and 18(d) compare these functions from the medium-sized data set with the full 
correlation function.  Unavoidably, the slow relaxation is incomplete because few of the individual 
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series span the relaxation.  However, the dynamics within the series length are correctly 
represented, including the whole of the fast exchange between the two, low intensity states.  Even 
the fact that slow relaxation is incomplete is evident because the correlation functions do not decay 
to zero.  Because the simulated photobleaching reduces the number of series in the ensemble after 
 = 3 ms, the error increases noticeably after this time.  However, the variation in series lengths 

introduces no fundamental problem in calculating the ergodic average or observing the early 
dynamics.   

The small data set has series too short to yield any information on the kinetics [Figs. 18(e) and 
18(f)].  Nonetheless, the distribution can be correctly recovered (Fig. 19).  Intuitively, the static 
distribution should be measurable, even when the dynamics are not.  It is satisfying to see the 
correlation methods match this expectation.   

Overall, short time series do not create a problem for correlation methods.  As in all methods, 
dynamics beyond the series length cannot be measured.  Otherwise, short series can be 
compensated for by increasing the ensemble size.  The demand on the total number of data points 
is moderate for moderately complex dynamics and is within the reach of many experiments.  

D. Test on experimental data 
Synthetic data has the advantage that the truth behind the data is known, and the accuracy of 

the results can be judged.  However, real experiments can have issues that are not included in our 
synthetic examples: nonadditive noise, drifting background, or other, unknown complications.  To 
test for sensitivity to these issues, we analyzed FRET data that have been published by Schuler as 
a benchmark for time-series analysis.37,126  We compare our nonparametric results to the results of 
14 parametric methods that have been tested on this data.37 

The data set results from the interaction of the nuclear-coactivator binding domain of 
CBP/p300 with the intrinsically disordered activation domain of the steroid receptor coactivator 3 
and was measured by confocal, single-photon detection.127  It consists of Nen = 19 FRET series 
with a time bin of T  = 10 ms and an average length of TL  = 119 s, for a total of Ner = 226,100 
points.  The signal-to-noise ratio is SNR = 4.  Evaluating Eq. (43) with N ,min = 8 gives 1300 > 
200, meaning that the data should be sufficient to characterize three or fewer states.  For two states 
(N ,min = 5), the estimated time resolution [Eq. (45)] is Tr = 20 ms. 

Our recovered distribution [Fig. 19] shows two, distinct states.  The results (colored curves) 
are stable over a broad range of the number of moments used, consistent with the high quality of 
the data.  The correlation-based resolution is clearly better than the histogram (short-dashed, grey 
curves).   
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FIG. 19. Distributions recovered from the experimental data set (SNR = 4, Nt =1.19×104,
Nen = 19): histogram PD(D) (grey, short dashed curve), correlation method Pr(S) with N
= 6 (dashed, green curve) or 15 (red, thin curve). (a) Probability distributions. The mean
positions from 14 parametric analyses are shown as black, vertical lines. (b) Cumulative
distributions. The population of the low intensity state from 14 individual parametric
analyses are shown as points. The points are in the numerical order given in Ref. 37, left
to right.

The nonlinear-correlation functions from this data are simple: they all fit single exponentials 
with the same time constant of T = 175 ms (Fig. 20 and the supplementary material, Fig. S5).  This 
result is sufficient to indicate that the system is a two-state Markovian process;87 the complexity 
of generating a full Green’s function is not necessary.  Furthermore, all the information for such a 
process is contained in the 1D correlation functions; a multidimensional analysis is not needed.  
These results are reasonable and self-consistent.  Correlation methods prove to be robust enough 
to be used with real, experimental data. 

Although the correct solution is unknown, we can compare to the consensus of parametric 
analyses.37  The averaged state positions from the parametric analyses are shown as vertical, black 
lines in Fig. 19(a).  The populations of the low-intensity state as found by the individual parametric 
analyses (black points) are compared to the plateau in our cumulative distribution function in Fig. 
19(b).  Our value for the equilibration time T = 175 ms is consistent with the parametric results, 
which have a mean of T = 171 ms and a range of T =149 200 ms.   
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FIG. 20. The normalized moment correlation function from the experimental data set
(red circles) and a single exponential fit (black curve).

Our average FRET efficiencies and our population for the low-intensity state are slightly 
lower than the parametric consensus (Fig. 19), and our correlation functions do not relax to zero 
(Fig. 20).  Both effects can be assigned to the imperfect separation of noise and signal time scales, 
which only differ by a factor of 10.  The time averaging in the noise-corrected moments reduces 
all their sizes slightly.  Smaller moments will both shift the distribution toward smaller values and 
under correct the long-time values of the correlation functions [Eq. (48)]. 

On the other hand, the parametric analyses were restricted a priori to two states and to states 
with zero width.  The correlation analysis allows a broader range of possibilities.  Based on the 
constancy of the distribution using up to N  = 15 moments, a 3-state, a 4-state, or a similarly 
complex, continuous distribution were within the available solution space, but they are not 
consistent with the data.  The correlation analysis also allows the states to have a finite width.  
Widths as broad as those in Fig. 19(a) would be consistent with the data, a result not available in 
the parametric analyses.  Thus, parametric and nonparametric approaches are consistent with each 
other, but each has its expected strengths.  Nonparametric methods require less prior information 
and allow a broader range of solutions.  Parametric methods find more precise parameter values, 
if their assumptions are correct. 

V. RECOVERING THE NOISE DISTRIBUTION 
Although we have phrased the problem as removing the noise from the data, in fact, one is 

implicitly separating the data into two components, signal and noise.  Our synthetic data has 
Gaussian noise, but that fact has not been used, so the noise distribution is formally unknown.  In 
real experiments, noise comes from multiple sources, and its distribution is often truly unknown.  
For completeness, we will show that the noise distribution can also be recovered with correlation 
methods.   
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In addition, there is the question of how well our methods for converting noise-corrected 
moments to a distribution will work for a continuous distribution.  The moments of a continuous 
distribution are not asymptotically exponential, as the moments of a discrete distribution are [Fig. 
5].  Also, as mentioned in the discussion of Fig. 7, the boundary conditions we use may favor 
sparse solutions.  This exercise will test our regularization methods on a continuous distribution.  

Finally, this exercise will allow us to introduce a second basis for separating signal from noise.  
Up to this point, signal and noise have been distinguished by the difference in their time scales.  
However, signal and additive noise can also be distinguished by their lack of correlation [Eq. (10)
].  To exploit this property, we look at the nth-order cumulants n[P] of a distribution P.  They are 
algebraic combinations of moments of the same or lower order.106  For example,  
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and so on.  These formulas can be inverted to give the moments in terms of the cumulants of lower 
order.  The cumulants’ important property is that they are additive for uncorrelated variables.106  
Thus, Eq. (10) implies that 

 [ ] [ ] [ ]n D n S nP P P . (50) 

This result is used as follows: The moments without noise correction, n[D] [Eq. (22)], are 
converted to the cumulants of the data, { n[D]}  { n[D]}.  The noise-corrected moments, n[D] 
[Eqs. (23) and (24)], are converted to the cumulants of the signal, { n[D]}  { n[S]}.  Subtraction 
according to Eq. (50) gives the cumulants of the noise n[ ].  These are converted back to moments 
of the noise, { n[ ]}  { n[ ]}.  Equation (32) was then used to recover the noise distribution 
P ,r( ) from its moments.  We used a numerical method proposed by Smith to convert between 
moments and cumulants.128   

Figure 21 shows results corresponding to the signal distribution shown in Fig. 11. Using only 
boundary constraints [Eq. (31)] yields an erroneous answer for the noise distribution (thin, green 
curve) and an unreasonably small fitting error,  = 6.4×10 14.  However, simply adding smoothing 
until  is equal to the signal-fitting error dramatically improves the result (red curve). The tendency 
to produce sparse results is easily corrected.  Thus, correlation methods can be used with both 
continuous and discrete systems.   
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FIG. 21. The recovered distribution of the noise P ,r( ) with various regularization
conditions (N = 13, NP = 81, min = 4, and max = 4 in all cases): boundary constraints only
(thin, green curve; = 0; = 0; = 6.4×10 14), smoothing added (solid, red curve; = 0.149;

 = 0; = 7.7×10 5), and both smoothing and sparsity added (dashed, blue line; = 0.149;
Psp = 0.025; R2 = 0.016; = 1.2×10–4). The correct, Gaussian distribution P ( ) is shown as
black circles. On the left and right, the tails of the curves have been vertically offset and
magnified 10 times.

The tails of the recovered distribution have low-intensity satellite peaks at  = ±2.8.  One can 
test whether these tails are real by trying to eliminate them with the sparsity regularizer.  The blue 
curve shows an example where  has been allowed to double in an attempt to eliminate intensity 
below Psp = 0.025, and thus, the tails beyond  = ±2.1.  Unlike with the signal distribution (Fig. 9), 
the low-intensity regions cannot be eliminated without seriously degrading the fit.  The data require 
that the noise distribution have low-intensity tails, although it is not possible to recover the details 
of their shape.  

VI. DISCUSSION 

1. Parametric, correlation analysis   
A nonparametric data analysis is normally a prelude to proposing a specific, interpretive 

model.  In the example of Fig. 11, it would be natural to propose a three-discrete-state, Markov 
model.  Alternatively, the structure of the system may be known from previous studies.  In either 
case, one wants to make a parametric fit to the data.  Rather than revert to a method based on 
analyzing the time series directly, it is possible to parametrically fit the noise-corrected moments 
and nonlinear-correlation functions, rather than directly fitting the time series.  The 
implementation of a parametric, correlation analysis is specific to the model proposed, but it is 
relatively straightforward. 

One advantage of a parametric, correlation analysis is the reduction in the size of the problem.  
For example, our large data set contained 108 data points, but only 13 moments are needed to 
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describe the distribution, and only about 103 points in the moment-correlation functions are needed 
to characterize the dynamics.  As a result, even repeated analyses are computationally quick, in 
contrast to parametric fits to raw time series.31   

2. Non-Markovian dynamics and multidimensional-correlation functions 
In calculating the nonlinear-correlation functions, there is no restriction that the dynamics 

between observable states be either exponential or multiexponential.  Various stretch, non-
Markovian decays can also be found.  States that are degenerate in the observable, but distinct 
along some other, “hidden” coordinate, are not distinguished by 1D correlation functions, resulting 
in non-Markovian dynamics of the observable states.  Exploring dynamics along this hidden 
coordinate requires a second stage of analysis using multidimensional-correlation functions [Eq. 
(2)].74-78  In a parametric, hidden-Markov model, hidden system coordinates and the noise process 
are dealt with in a single stage of analysis, rather than in two.   

The noise-correction methods used here should extend in a simple way to multidimensional 
functions.  To see this point, consider the linear, multidimensional-correlation function of overall 
order n, M1,…,1[D]( n 1,…, 1) [see Eq. (2)].  Noise is confined to places where one or more of the 
delays i is zero.  Removing the noise requires shifting by one point along every time axes to 
eliminate these regions,  
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The noise correction of the linear-correlation function [Eq. (15)] is just the lowest-order example 
of this idea.  Setting the first k  1 and the last l – 1 delays to zero, 
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recovers the noise-corrected, 1D, nonlinear-correlation functions [Eq. (18)].  The extension to 
nonlinear, multidimensional-correlation functions just requires setting a different set of delays to 
zero, for example 

 
2

121 2 1 2 1 1

1111 2 1
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( ,0, )

M D D D

M
. (53) 

It is axiomatic that the full set of high-order correlation functions [Eq. (2)] contains complete 
information about a stationary time series.  However, this set is so large that its undirected use is 
impractical; one needs to identify manageable subsets that contain specific pieces of information.  
Earlier work has shown that the distribution along hidden coordinates is contained in two-
dimensional (2D) correlation functions,74-78 and that the dynamics along these coordinates are 
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contained in three-dimensional correlation functions.75-78  Most recently, we have shown that 
complete information about the dynamics along the observed coordinate is contained in the full 
set of 1D, nonlinear correlation functions.78,87,88  This paper contributes to this classification by 
showing that complete information about the distribution along the observed coordinate is 
contained in the “zero-dimensional” (0D) moments. 

The discussion of N ,max, the number of measurable 0D moments, propagates to higher 
dimensional functions.  The 0D moments are a point on the 1D functions of the same order, the 
1D functions are slices of the 2D functions of the same order, and so on.  If the 0D moments above 
N ,max are inaccurate, all the higher dimensional functions with order above N ,max will be 
inaccurate as well.   

Similarly, the number of moments needed for a successful analysis N ,min also propagates to 
higher dimensions.  Just as the 0D moments reduce to a distribution Peq(X) along one X dimension, 
the 1D moments reduce to a Green’s function G(X1| X0; ) along two X dimensions, and so on.  If 
N ,min moments are need to resolve the X-axis in Peq(X), the same order will be needed to resolve 
the X-axes in G(X1| X0; ).  Similar reasoning holds for even higher orders. 

VII. SUMMARY AND CONCLUSIONS 
Using a broad array of high-order correlation functions to yield comprehensive information 

about a time series is a new, and only partially proven, idea.  This paper has taken two important 
steps to further this idea: it has shown that correlation-based methods can separate signal 
fluctuations from measurement noise, and it has shown that they can recover equilibrium-
probability distributions.   

The paper first showed how to remove measurement noise, only assuming that noise fluctuates 
more rapidly than signal does.  With an example of synthetic data, we showed that accurate 
correlation-functions and moments can be extracted from noisy data.  With these quantities, the 
dynamics along the observed coordinate were fully defined.  Correlation results were compared to 
time-binning and histogramming, the other nonparametric methods in common use.  The 
correlation results have substantially better resolution, both in time and in state space.  The 
correlation methods were also tested on published, experimental data.  Good results for both the 
distribution and the kinetics were found. 

The paper then established the amount and quality of data needed for a correlation analysis.  
Although measurement noise can be removed, sampling error remains whenever a time series has 
a finite length.  We showed that there are two components to this error with differing behavior: 
noise-sampling error and signal-sampling error.  Approximate expressions for these errors were 
derived and used to predict the minimum data-set size and signal-to-noise ratio that are needed to 
recover a distribution of a given complexity.  There is a floor to the usable signal-to-noise ratio of 



  44 

approximately one-half, below which it is impractical to compensate for high noise with increased 
data collection.  Above this floor, the time resolution of the experiment can be close to the time 
resolution of the detector.  Below this floor, initial time binning is necessary, which limits the time 
resolution of the results. 

Most of the work in the paper used the short correlation time of the noise to distinguish it from 
signal.  In a final demonstration, we showed that the lack of correlation between signal and noise 
can also be used to discriminate between them.  Cumulants were used to extract the noise 
distribution from our data.  This work points toward methods for removing baseline drift and other 
types of noise that do not have a short correlation time.  

Correlation methods are nonparametric: no model of the system or the noise is needed.  The 
model-selection problem of parametric analysis is avoided.  A parametric analysis will always give 
an apparently narrower error range because the range of solutions is limited a priori.  However, a 
nonparametric approach has an important role.  If a feature is identified in a parametric analysis, 
but it is not required in a nonparametric analysis, one can infer that the feature results from the 
restrictions applied, as much as from the data.  Similarly, the requirements for data quality in a 
nonparametric analysis, as found here, inform a parametric analysis.  If a parametric approach 
finds a solution from data that violates these requirements, one knows that the prior assumptions 
play a critical role.  In either case, one can then assess one’s confidence in the assumed prior 
knowledge.   

Many types of experiment will require even further extensions of the ideas presented here.  
Some experiments involve multiple observables, for example, donor and acceptor intensities in 
FRET experiments or parallel and perpendicular polarizations in anisotropy measurements.  In this 
case, both high-order auto- and cross-correlation functions need to be considered.  Although more 
complex, there does not appear to be a fundamental barrier to this generalization. 

Many experiments are dominated by photon noise, which is not additive.  In addition, photon 
counting can introduce bias into the data.  Many parametric methods have been extended to 
“photon-by-photon” analysis for this situation.24,25,27,28,33,41,66,72  A similar extension of 
nonparametric, correlation methods is possible and will be discussed in a forthcoming paper.12 
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SI. GENERATING SYNTHETIC DATA  

The time series of states s(t) with s = 1, 2, or 3 was generated 
from a simulation of a master equation for the time-dependent 
probability P(t) of the states,  

 ( ) ( )d t t
dt

P k P , (S1) 

with the rate matrix 
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To ensure that the system equilibrates with the probabilities Peq, 
the detailed-balance equations were enforced: 
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and 

 31 13k k . (S5) 

The detailed-balance equations and the information in the main 
text determine the rate constants k12 = 3.75 ms−1, k21 = 6.25 ms−1, 
k23 = 57.1 s−1, and k12 = 42.9 s−1. 

The signal simulation requires the Green’s function for a 
small time step t, 

 tG 1 k . (S6) 

The time step in the simulation was the same as the time step in 
the final time series.  A series of random numbers {ri} was 
generated from a uniform distribution from zero to one for i = 
0, …, L − 1.  The first value was used to start the state-time series 
{si} from the equilibrium distribution: 
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The state-time series was propagated using the Green’s function: 
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Finally, the state-time series was converted to the signal-time 
series using the discrete version of Eq. (4), 
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SII. REGULARIZATION WITHOUT BOUNDARY 
CONSTRAINTS 

Singular-value decomposition (SVD) is a popular means of 
solving ill-conditioned problems without using boundary 
conditions.1,2  It is very fast and does not require a search for the 
minimum.  Simple truncation of the singular values 
simultaneously minimizes (Pr) and  

 2
0 ,

1

1( ) 
PN

r r i
P i

R P
N

P . (S10) 

This function penalizes solutions with high peaks and generally 
favors smoother functions.  When applied to our noise-
corrected moments, it yields the solution in Fig. S1.  This 
solution is clearly unphysical, with strong oscillations and many 
regions of negative probability, but it reproduces the noise-
corrected moments with extreme accuracy,  = 8.8×10−14.   

A Weiner cutoff of the singular values at a value  solves Eq. 
(32) with R1(Pr), but without the boundary constraints.  This 
process is also known as ridge regularization.3  The solutions do 
not improve significantly from Fig. S1. 
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FIG. S1.  The recovered probability distribution using only the regularizing function 
R0  [Eq. (S10)] and no boundary conditions.   The match to the measured moments 
is almost exactly (  = 8.8×10 14), but the result is far from the correct solution (Fig. 
1).  N  = 13 moments.   

SIII. MINIMIZATION ALGORITHM 

The regularization conditions were chosen, in part, because 
minimization of a quadratic form with linear constraints and 
constant boundaries is simple and efficient.4  To set up the 
solution of Eq. (32) without a sparsity regularizer (  = 0), we first 
look at a more general problem written in matrix form: 
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The smoothing regularizing function is R.  The matrix W is 
diagonal with elements giving the relative weights for the 
moments.  The first row of the Vandermonde matrix V [Eq. 
(29)] is dropped to give V and the first (zeroth) element of μ  is 
dropped to give μ .  The vector P0 is a preferred solution.   

Although Bayesian statistics are usually parametric,5 the 
regularization methods used in this nonparametric problem 
mimic Bayesian ideas.  Here, P0 mimics a prior distribution that 
will be improved by including the new data μ .  The regularizing 
parameter then controls the confidence given to the prior 
information relative to the new data.  From this perspective, Eq. 
(32) assumes a “no-information” prior.  These priors give zero 
for the regularization function and, therefore, do not appear 
explicitly.  For example, the smoothing regularizer R1(P) [Eq. 
(33)] has a no-information prior that is flat, P0(S) = 1/(Smax − 
Smin).  The sparsity regularizer R2(P, Psp) [Eq. (36)] has any 
single-state distribution as a no-information prior, for example, 
P0(S) = (S – S ).   

Following Ref. 4, Eq. (S11) can be converted to  
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with the concatenated matrix  
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and the concatenated vector  

 

FIG. S2.  Effect of the point density on the recovered distribution.  The black, dashed 
lines are from Fig. 11 (NP = 81, S = 0.025,).  The blue, solid lines are from an 
identical calculation, except with twice the point density (NP = 161, S = 0.0125).  (a) 
Probability densities and (b) cumulative probabilities. 
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To specialize to our problem, we use R = (NP – 1)−1/2 D for the 
regularization matrix [Eq. (34)].  With W = N −1/2 diag( n

−1), the 
first term in Eq. (S11) matches the definition of 2 in Eq. (30).  As 
the preferred solution, we take a constant, P0 = 1/NP.  This factor 
drops out, because DP0 = 0.   

The sparsity regularizer [Eq. (36)] is not quadratic and 
cannot be easily added to the minimization.  However, it is linear 
and can be added as a constraint: 
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The sparsity is adjusted by choosing the value of R2( ) instead of 
the value of .  Equations (S12) and (S15) were solved using the 
lsqlin function in MATLAB.  

Figure S2 shows the effect of changing the point density on 
the minimization.  The results are only slightly narrower with a 
higher point density.  The peak widths are limited by the data, 
not by the calculation. 
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SIV. OPTIMIZING THE REGULARIZATION 
PARAMETERS 

The most difficult issue in any regularization problem is 
choosing an optimal solution.  That issue translates to specify 
optimal values for the regularization parameters; N , ,  and Psp; 
and the correct level of fitting error * that they imply.  In the 
main text, we made a subjective judgement.  However, more 
objective methods are also popular.6-12  We consider some of 
them here, but we find that they do not work well on our 
problem.   

The first quantity to consider in any fitting problem is the 
error in the fit to the data .  Unfortunately,  is not a direct 
indication of the accuracy of the result.  As discussed in the main 
text, the signal-sampling error always creates a moment 
sequence that can be fit with no error.  The noise-sampling error 
is more variable, but it can also create a moment sequence that 
is close to one that exactly fits an incorrect solution.  The fitting 
error is only the component of the noise-sampling error that 
does not correspond to an allowed moment sequence.  As a 
result, the optimum fitting error * can be much less than the 
moment error n.  Figure S3(a) shows the fitting errors 
corresponding to the moment errors in Fig. 16.  The exponential 
rise of  with order is similar to the rise in noise-sampling error 
in Fig. 16(b), but its magnitude is much less. 

One can conjecture that the fitting error will be a fixed 
fraction c of the noise-sampling error,  = c .  The expected 
fitting error Χ is then the average of the expected moment error 
[Eq. (40)] 

 

FIG. S3.  Fitting error versus number of moments in the fit and the signal-to-noise 
ratio: SNR = 1.16 (red circles), 0.58 (black squares), 0.39 (blue, up triangles), 0.33 
(green diamonds), and 0.29 (orange, down triangles).  (a) Results corresponding to 
Fig. 16.  (b) Predictions of Eq. (S17). 

 

FIG. S4.  (a) A plot of log  (red circles) and log R1 (black squares) vs log  (a 
“regularization pathway”) for the problem in Fig. 8.  (b) A parametric plot of log R1 
versus log  (the “L-curve”) for  = 0 10.  The thin reference lines indicate our choice 
of solution (Fig. 11) 
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Integrating and keeping the leading term in N  gives 
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Figure S3(b) shows calculations with 2ac2 = 2.25×10−2.  The 
predictions have a semiquantitative similarity to the results in 
Fig. S3(a), but do not match quantitatively.  The correct size of 
the fitting error can be roughly anticipated.  For example, the 
solution of Fig. S1 can be rejected as overfit.  However, * cannot 
be predicted with enough accuracy to select an optimum 
solution. 

Some popular methods for choosing a regularized solution, 
for example, generalized cross-validation,7 rely on having 
uncorrelated errors.8  However, the errors in our problem are 
correlated. The signal-sampling error is highly correlated from 
moment to moment [Fig. 14(c)].  The noise-sampling error is 
more random, but each realization has its own discernable 
pattern [Fig. 14(b)].   

It is generally recognized that the regularization parameters 
themselves, such as  or , are not directly meaningful.  
However, one can look at patterns in their behavior.  Figure S4(a) 
shows a regularization “pathway”,   and R1 as a function of the 
smoothing parameter  (same data as Fig. 8).  Figure S4(b) 
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replots the data as an “L-curve”.8,9  Hanson and O’Leary argue 
that the corner of this curve, defined as the point of maximum 
curvature, is the optimum solution, even in the presence of 
correlated errors,8 although others have pointed out the 
limitations of this idea.11,12  However, for either of these plots to 
be useful, one needs to know the relative weight that should be 
given to matching the data versus having a smooth solution.  Our 
choices, which are shown on the figure, weight the data more 
heavily. 

SV. DERIVING THE SAMPLING-ERROR 
EQUATIONS 

In deriving Eqs. (38)–(40), we start with the assumption 
that the noise is unbiased, that is,  

 ( | )E D S S . (S18) 

Then, the primed power of the data [Eq. (19)] is also unbiased: 
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In the first line, we have first taken the primed power 
conditioned on a specific signal trajectory {Sj} and used the law 
of total expectation.  Assuming fast noise and slow signal gives 
the second line.  Equation (S18) then gives the final result.  The 
noise-corrected moment is then unbiased: 
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Throughout this section, moments of a time series, e.g., [ ]n D , 
indicate a value from a finite, sampled data set; moments on a 
probability distribution, e.g., [ ]n SP , indicate an ideal, 
population statistic. 

The variance of the noise-corrected moment is of more 
interest: 
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The second line uses the law of total variance to again separate 
the result for a specific signal series.  The assumptions of fast 
noise and slow signal yield 
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Knowing that the processes are stationary and using Eq. (S19) 
gives 
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Dividing by n[PS] gives Eq. (38), which separates the total, 
fractional sampling error into two components.  The noise-
sampling error comes from the first term in Eq. (S23): 
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The second term in Eq. (S23) forms the signal-sampling error, 

 2
, 2

Var [ ]

[ ]
n

S n
n S

S

P
. (S25) 

The signal-sampling error is complicated by the long 
correlation time of the signal.  We assume that the total data set 
can be separated into NS effectively independent samples of the 
signal with 
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Each new series in the data set starts with an new sample and a 
new sample is generated every time a signal-correlation time 
passes within the series. The signal correlation has multiple time 
scales, so we just use the longest Ter.  Equation (S25) is 
approximated by assuming the signal is constant within each of 
these samples: 
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By the independence of these samples, 
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The final formula depend on ratios of moments: 
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The important factor the noise-sampling error [Eq. (S24)] 
is 
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The second line uses the variance of a product of uncorrelated 
variables.  The last line come from Eq. (S18) and the stationarity 
of the noise.  With the binomial formula, Eq. (S24) becomes 
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Note the absence of the k = 0 term.   
At this point, we specialize to a particular type of noise 

additive noise.  Equation (6) implies that 

 2Var( | )D S . (S32) 

Thus, the noise-sampling error is also reduced to ratios of errors: 
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So far, the approximations have been mild, but to simplify 
further, we need a stronger one.  To evaluate the moment ratios, 
we approximate the moments with 
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where a and b are unitless constants of order unity.  This form 
has the correct units and holds exactly in limit of high n [Eq. 
(26)].  In this asymptotic case, 
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and  

 max

12
S

b . (S36) 

Because a successful distribution recovery requires working in or 
near the asymptotic region, this approach is reasonable.  Using 
Eq. (S34) in Eqs. (S29) and (S33), give Eqs. (39) and (40), 
respectively. 

SVI. EXPERIMENTAL CORRELATION FUNCTIONS  

Figure S5 contains high-order correlation functions from 
the experimental data discussed in Sec. IV.D.  The lowest order 
function has been shown in Fig. 20, along with a single-
exponential fit with a time constant of T = 175 ms.  The functions 
in Fig. S5 have also been fit with single exponentials constrained 
to have the same time constant.   

 

FIG. S5.  High-order, normalized, moment-correlation functions (red circles) and 
single exponential fits (black curve) for the experimental data set.  The time constants 
have been fixed to the value found for M11 (Fig. 20). 
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